lfs_syscalls.c revision 1.112 1 /* $NetBSD: lfs_syscalls.c,v 1.112 2006/04/18 22:42:33 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.112 2006/04/18 22:42:33 perseant Exp $");
71
72 #ifndef LFS
73 # define LFS /* for prototypes in syscallargs.h */
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/buf.h>
80 #include <sys/mount.h>
81 #include <sys/vnode.h>
82 #include <sys/kernel.h>
83
84 #include <sys/sa.h>
85 #include <sys/syscallargs.h>
86
87 #include <ufs/ufs/inode.h>
88 #include <ufs/ufs/ufsmount.h>
89 #include <ufs/ufs/ufs_extern.h>
90
91 #include <ufs/lfs/lfs.h>
92 #include <ufs/lfs/lfs_extern.h>
93
94 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, caddr_t);
95 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
96
97 pid_t lfs_cleaner_pid = 0;
98
99 /*
100 * sys_lfs_markv:
101 *
102 * This will mark inodes and blocks dirty, so they are written into the log.
103 * It will block until all the blocks have been written. The segment create
104 * time passed in the block_info and inode_info structures is used to decide
105 * if the data is valid for each block (in case some process dirtied a block
106 * or inode that is being cleaned between the determination that a block is
107 * live and the lfs_markv call).
108 *
109 * 0 on success
110 * -1/errno is return on error.
111 */
112 #ifdef USE_64BIT_SYSCALLS
113 int
114 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
115 {
116 struct sys_lfs_markv_args /* {
117 syscallarg(fsid_t *) fsidp;
118 syscallarg(struct block_info *) blkiov;
119 syscallarg(int) blkcnt;
120 } */ *uap = v;
121 BLOCK_INFO *blkiov;
122 struct proc *p = l->l_proc;
123 int blkcnt, error;
124 fsid_t fsid;
125 struct lfs *fs;
126 struct mount *mntp;
127
128 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
129 return (error);
130
131 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
132 return (error);
133
134 if ((mntp = vfs_getvfs(fsidp)) == NULL)
135 return (ENOENT);
136 fs = VFSTOUFS(mntp)->um_lfs;
137
138 blkcnt = SCARG(uap, blkcnt);
139 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
140 return (EINVAL);
141
142 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
143 if ((error = copyin(SCARG(uap, blkiov), blkiov,
144 blkcnt * sizeof(BLOCK_INFO))) != 0)
145 goto out;
146
147 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
148 copyout(blkiov, SCARG(uap, blkiov),
149 blkcnt * sizeof(BLOCK_INFO));
150 out:
151 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
152 return error;
153 }
154 #else
155 int
156 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
157 {
158 struct sys_lfs_markv_args /* {
159 syscallarg(fsid_t *) fsidp;
160 syscallarg(struct block_info *) blkiov;
161 syscallarg(int) blkcnt;
162 } */ *uap = v;
163 BLOCK_INFO *blkiov;
164 BLOCK_INFO_15 *blkiov15;
165 struct proc *p = l->l_proc;
166 int i, blkcnt, error;
167 fsid_t fsid;
168 struct lfs *fs;
169 struct mount *mntp;
170
171 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
172 return (error);
173
174 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
175 return (error);
176
177 if ((mntp = vfs_getvfs(&fsid)) == NULL)
178 return (ENOENT);
179 fs = VFSTOUFS(mntp)->um_lfs;
180
181 blkcnt = SCARG(uap, blkcnt);
182 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
183 return (EINVAL);
184
185 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
186 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
187 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
188 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
189 goto out;
190
191 for (i = 0; i < blkcnt; i++) {
192 blkiov[i].bi_inode = blkiov15[i].bi_inode;
193 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
194 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
195 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
196 blkiov[i].bi_version = blkiov15[i].bi_version;
197 blkiov[i].bi_bp = blkiov15[i].bi_bp;
198 blkiov[i].bi_size = blkiov15[i].bi_size;
199 }
200
201 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0) {
202 for (i = 0; i < blkcnt; i++) {
203 blkiov15[i].bi_inode = blkiov[i].bi_inode;
204 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
205 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
206 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
207 blkiov15[i].bi_version = blkiov[i].bi_version;
208 blkiov15[i].bi_bp = blkiov[i].bi_bp;
209 blkiov15[i].bi_size = blkiov[i].bi_size;
210 }
211 copyout(blkiov15, SCARG(uap, blkiov),
212 blkcnt * sizeof(BLOCK_INFO_15));
213 }
214 out:
215 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
216 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
217 return error;
218 }
219 #endif
220
221 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
222
223 int
224 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
225 {
226 BLOCK_INFO *blkp;
227 IFILE *ifp;
228 struct buf *bp;
229 struct inode *ip = NULL;
230 struct lfs *fs;
231 struct mount *mntp;
232 struct vnode *vp = NULL;
233 ino_t lastino;
234 daddr_t b_daddr, v_daddr;
235 int cnt, error;
236 int do_again = 0;
237 int numrefed = 0;
238 ino_t maxino;
239 size_t obsize;
240
241 /* number of blocks/inodes that we have already bwrite'ed */
242 int nblkwritten, ninowritten;
243
244 if ((mntp = vfs_getvfs(fsidp)) == NULL)
245 return (ENOENT);
246
247 fs = VFSTOUFS(mntp)->um_lfs;
248
249 if (fs->lfs_ronly)
250 return EROFS;
251
252 maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
253 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
254
255 cnt = blkcnt;
256
257 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
258 return (error);
259
260 /*
261 * This seglock is just to prevent the fact that we might have to sleep
262 * from allowing the possibility that our blocks might become
263 * invalid.
264 *
265 * It is also important to note here that unless we specify SEGM_CKP,
266 * any Ifile blocks that we might be asked to clean will never get
267 * to the disk.
268 */
269 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
270
271 /* Mark blocks/inodes dirty. */
272 error = 0;
273
274 /* these were inside the initialization for the for loop */
275 v_daddr = LFS_UNUSED_DADDR;
276 lastino = LFS_UNUSED_INUM;
277 nblkwritten = ninowritten = 0;
278 for (blkp = blkiov; cnt--; ++blkp)
279 {
280 /* Bounds-check incoming data, avoid panic for failed VGET */
281 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
282 error = EINVAL;
283 goto err3;
284 }
285 /*
286 * Get the IFILE entry (only once) and see if the file still
287 * exists.
288 */
289 if (lastino != blkp->bi_inode) {
290 /*
291 * Finish the old file, if there was one. The presence
292 * of a usable vnode in vp is signaled by a valid v_daddr.
293 */
294 if (v_daddr != LFS_UNUSED_DADDR) {
295 lfs_vunref(vp);
296 numrefed--;
297 }
298
299 /*
300 * Start a new file
301 */
302 lastino = blkp->bi_inode;
303 if (blkp->bi_inode == LFS_IFILE_INUM)
304 v_daddr = fs->lfs_idaddr;
305 else {
306 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
307 /* XXX fix for force write */
308 v_daddr = ifp->if_daddr;
309 brelse(bp);
310 }
311 if (v_daddr == LFS_UNUSED_DADDR)
312 continue;
313
314 /* Get the vnode/inode. */
315 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
316 &vp,
317 (blkp->bi_lbn == LFS_UNUSED_LBN
318 ? blkp->bi_bp
319 : NULL));
320
321 if (!error) {
322 numrefed++;
323 }
324 if (error) {
325 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
326 " failed with %d (ino %d, segment %d)\n",
327 error, blkp->bi_inode,
328 dtosn(fs, blkp->bi_daddr)));
329 /*
330 * If we got EAGAIN, that means that the
331 * Inode was locked. This is
332 * recoverable: just clean the rest of
333 * this segment, and let the cleaner try
334 * again with another. (When the
335 * cleaner runs again, this segment will
336 * sort high on the list, since it is
337 * now almost entirely empty.) But, we
338 * still set v_daddr = LFS_UNUSED_ADDR
339 * so as not to test this over and over
340 * again.
341 */
342 if (error == EAGAIN) {
343 error = 0;
344 do_again++;
345 }
346 #ifdef DIAGNOSTIC
347 else if (error != ENOENT)
348 panic("lfs_markv VFS_VGET FAILED");
349 #endif
350 /* lastino = LFS_UNUSED_INUM; */
351 v_daddr = LFS_UNUSED_DADDR;
352 vp = NULL;
353 ip = NULL;
354 continue;
355 }
356 ip = VTOI(vp);
357 ninowritten++;
358 } else if (v_daddr == LFS_UNUSED_DADDR) {
359 /*
360 * This can only happen if the vnode is dead (or
361 * in any case we can't get it...e.g., it is
362 * inlocked). Keep going.
363 */
364 continue;
365 }
366
367 /* Past this point we are guaranteed that vp, ip are valid. */
368
369 /* If this BLOCK_INFO didn't contain a block, keep going. */
370 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
371 /* XXX need to make sure that the inode gets written in this case */
372 /* XXX but only write the inode if it's the right one */
373 if (blkp->bi_inode != LFS_IFILE_INUM) {
374 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
375 if (ifp->if_daddr == blkp->bi_daddr)
376 LFS_SET_UINO(ip, IN_CLEANING);
377 brelse(bp);
378 }
379 continue;
380 }
381
382 b_daddr = 0;
383 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
384 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
385 {
386 if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
387 dtosn(fs, blkp->bi_daddr))
388 {
389 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
390 (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
391 }
392 do_again++;
393 continue;
394 }
395
396 /*
397 * Check block sizes. The blocks being cleaned come from
398 * disk, so they should have the same size as their on-disk
399 * counterparts.
400 */
401 if (blkp->bi_lbn >= 0)
402 obsize = blksize(fs, ip, blkp->bi_lbn);
403 else
404 obsize = fs->lfs_bsize;
405 /* Check for fragment size change */
406 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
407 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
408 }
409 if (obsize != blkp->bi_size) {
410 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
411 " size (%ld != %d), try again\n",
412 blkp->bi_inode, (long long)blkp->bi_lbn,
413 (long) obsize, blkp->bi_size));
414 do_again++;
415 continue;
416 }
417
418 /*
419 * If we get to here, then we are keeping the block. If
420 * it is an indirect block, we want to actually put it
421 * in the buffer cache so that it can be updated in the
422 * finish_meta section. If it's not, we need to
423 * allocate a fake buffer so that writeseg can perform
424 * the copyin and write the buffer.
425 */
426 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
427 /* Data Block */
428 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
429 blkp->bi_size, blkp->bi_bp);
430 /* Pretend we used bread() to get it */
431 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
432 } else {
433 /* Indirect block or ifile */
434 if (blkp->bi_size != fs->lfs_bsize &&
435 ip->i_number != LFS_IFILE_INUM)
436 panic("lfs_markv: partial indirect block?"
437 " size=%d\n", blkp->bi_size);
438 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
439 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
440 /*
441 * The block in question was not found
442 * in the cache; i.e., the block that
443 * getblk() returned is empty. So, we
444 * can (and should) copy in the
445 * contents, because we've already
446 * determined that this was the right
447 * version of this block on disk.
448 *
449 * And, it can't have changed underneath
450 * us, because we have the segment lock.
451 */
452 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
453 if (error)
454 goto err2;
455 }
456 }
457 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
458 goto err2;
459
460 nblkwritten++;
461 /*
462 * XXX should account indirect blocks and ifile pages as well
463 */
464 if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
465 > LFS_MARKV_MAX_BLOCKS) {
466 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
467 nblkwritten, ninowritten));
468 lfs_segwrite(mntp, SEGM_CLEAN);
469 nblkwritten = ninowritten = 0;
470 }
471 }
472
473 /*
474 * Finish the old file, if there was one
475 */
476 if (v_daddr != LFS_UNUSED_DADDR) {
477 lfs_vunref(vp);
478 numrefed--;
479 }
480
481 #ifdef DIAGNOSTIC
482 if (numrefed != 0)
483 panic("lfs_markv: numrefed=%d", numrefed);
484 #endif
485 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
486 nblkwritten, ninowritten));
487
488 /*
489 * The last write has to be SEGM_SYNC, because of calling semantics.
490 * It also has to be SEGM_CKP, because otherwise we could write
491 * over the newly cleaned data contained in a checkpoint, and then
492 * we'd be unhappy at recovery time.
493 */
494 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
495
496 lfs_segunlock(fs);
497
498 vfs_unbusy(mntp);
499 if (error)
500 return (error);
501 else if (do_again)
502 return EAGAIN;
503
504 return 0;
505
506 err2:
507 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
508
509 /*
510 * XXX we're here because copyin() failed.
511 * XXX it means that we can't trust the cleanerd. too bad.
512 * XXX how can we recover from this?
513 */
514
515 err3:
516 /*
517 * XXX should do segwrite here anyway?
518 */
519
520 if (v_daddr != LFS_UNUSED_DADDR) {
521 lfs_vunref(vp);
522 --numrefed;
523 }
524
525 lfs_segunlock(fs);
526 vfs_unbusy(mntp);
527 #ifdef DIAGNOSTIC
528 if (numrefed != 0)
529 panic("lfs_markv: numrefed=%d", numrefed);
530 #endif
531
532 return (error);
533 }
534
535 /*
536 * sys_lfs_bmapv:
537 *
538 * This will fill in the current disk address for arrays of blocks.
539 *
540 * 0 on success
541 * -1/errno is return on error.
542 */
543 #ifdef USE_64BIT_SYSCALLS
544 int
545 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
546 {
547 struct sys_lfs_bmapv_args /* {
548 syscallarg(fsid_t *) fsidp;
549 syscallarg(struct block_info *) blkiov;
550 syscallarg(int) blkcnt;
551 } */ *uap = v;
552 struct proc *p = l->l_proc;
553 BLOCK_INFO *blkiov;
554 int blkcnt, error;
555 fsid_t fsid;
556 struct lfs *fs;
557 struct mount *mntp;
558
559 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
560 return (error);
561
562 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
563 return (error);
564
565 if ((mntp = vfs_getvfs(&fsid)) == NULL)
566 return (ENOENT);
567 fs = VFSTOUFS(mntp)->um_lfs;
568
569 blkcnt = SCARG(uap, blkcnt);
570 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
571 return (EINVAL);
572 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
573 if ((error = copyin(SCARG(uap, blkiov), blkiov,
574 blkcnt * sizeof(BLOCK_INFO))) != 0)
575 goto out;
576
577 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
578 copyout(blkiov, SCARG(uap, blkiov),
579 blkcnt * sizeof(BLOCK_INFO));
580 out:
581 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
582 return error;
583 }
584 #else
585 int
586 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
587 {
588 struct sys_lfs_bmapv_args /* {
589 syscallarg(fsid_t *) fsidp;
590 syscallarg(struct block_info *) blkiov;
591 syscallarg(int) blkcnt;
592 } */ *uap = v;
593 struct proc *p = l->l_proc;
594 BLOCK_INFO *blkiov;
595 BLOCK_INFO_15 *blkiov15;
596 int i, blkcnt, error;
597 fsid_t fsid;
598 struct lfs *fs;
599 struct mount *mntp;
600
601 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
602 return (error);
603
604 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
605 return (error);
606
607 if ((mntp = vfs_getvfs(&fsid)) == NULL)
608 return (ENOENT);
609 fs = VFSTOUFS(mntp)->um_lfs;
610
611 blkcnt = SCARG(uap, blkcnt);
612 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
613 return (EINVAL);
614 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
615 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
616 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
617 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
618 goto out;
619
620 for (i = 0; i < blkcnt; i++) {
621 blkiov[i].bi_inode = blkiov15[i].bi_inode;
622 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
623 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
624 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
625 blkiov[i].bi_version = blkiov15[i].bi_version;
626 blkiov[i].bi_bp = blkiov15[i].bi_bp;
627 blkiov[i].bi_size = blkiov15[i].bi_size;
628 }
629
630 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0) {
631 for (i = 0; i < blkcnt; i++) {
632 blkiov15[i].bi_inode = blkiov[i].bi_inode;
633 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
634 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
635 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
636 blkiov15[i].bi_version = blkiov[i].bi_version;
637 blkiov15[i].bi_bp = blkiov[i].bi_bp;
638 blkiov15[i].bi_size = blkiov[i].bi_size;
639 }
640 copyout(blkiov15, SCARG(uap, blkiov),
641 blkcnt * sizeof(BLOCK_INFO_15));
642 }
643 out:
644 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
645 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
646 return error;
647 }
648 #endif
649
650 int
651 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
652 {
653 BLOCK_INFO *blkp;
654 IFILE *ifp;
655 struct buf *bp;
656 struct inode *ip = NULL;
657 struct lfs *fs;
658 struct mount *mntp;
659 struct ufsmount *ump;
660 struct vnode *vp;
661 ino_t lastino;
662 daddr_t v_daddr;
663 int cnt, error;
664 int numrefed = 0;
665
666 lfs_cleaner_pid = p->p_pid;
667
668 if ((mntp = vfs_getvfs(fsidp)) == NULL)
669 return (ENOENT);
670
671 ump = VFSTOUFS(mntp);
672 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
673 return (error);
674
675 cnt = blkcnt;
676
677 fs = VFSTOUFS(mntp)->um_lfs;
678
679 error = 0;
680
681 /* these were inside the initialization for the for loop */
682 v_daddr = LFS_UNUSED_DADDR;
683 lastino = LFS_UNUSED_INUM;
684 for (blkp = blkiov; cnt--; ++blkp)
685 {
686 /*
687 * Get the IFILE entry (only once) and see if the file still
688 * exists.
689 */
690 if (lastino != blkp->bi_inode) {
691 /*
692 * Finish the old file, if there was one. The presence
693 * of a usable vnode in vp is signaled by a valid
694 * v_daddr.
695 */
696 if (v_daddr != LFS_UNUSED_DADDR) {
697 lfs_vunref(vp);
698 numrefed--;
699 }
700
701 /*
702 * Start a new file
703 */
704 lastino = blkp->bi_inode;
705 if (blkp->bi_inode == LFS_IFILE_INUM)
706 v_daddr = fs->lfs_idaddr;
707 else {
708 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
709 v_daddr = ifp->if_daddr;
710 brelse(bp);
711 }
712 if (v_daddr == LFS_UNUSED_DADDR) {
713 blkp->bi_daddr = LFS_UNUSED_DADDR;
714 continue;
715 }
716 /*
717 * A regular call to VFS_VGET could deadlock
718 * here. Instead, we try an unlocked access.
719 */
720 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
721 if (vp != NULL && !(vp->v_flag & VXLOCK)) {
722 ip = VTOI(vp);
723 if (lfs_vref(vp)) {
724 v_daddr = LFS_UNUSED_DADDR;
725 continue;
726 }
727 numrefed++;
728 } else {
729 /*
730 * Don't VFS_VGET if we're being unmounted,
731 * since we hold vfs_busy().
732 */
733 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
734 v_daddr = LFS_UNUSED_DADDR;
735 continue;
736 }
737 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
738 if (error) {
739 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
740 "%d failed with %d",
741 blkp->bi_inode,error));
742 v_daddr = LFS_UNUSED_DADDR;
743 continue;
744 } else {
745 KASSERT(VOP_ISLOCKED(vp));
746 VOP_UNLOCK(vp, 0);
747 numrefed++;
748 }
749 }
750 ip = VTOI(vp);
751 } else if (v_daddr == LFS_UNUSED_DADDR) {
752 /*
753 * This can only happen if the vnode is dead.
754 * Keep going. Note that we DO NOT set the
755 * bi_addr to anything -- if we failed to get
756 * the vnode, for example, we want to assume
757 * conservatively that all of its blocks *are*
758 * located in the segment in question.
759 * lfs_markv will throw them out if we are
760 * wrong.
761 */
762 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
763 continue;
764 }
765
766 /* Past this point we are guaranteed that vp, ip are valid. */
767
768 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
769 /*
770 * We just want the inode address, which is
771 * conveniently in v_daddr.
772 */
773 blkp->bi_daddr = v_daddr;
774 } else {
775 daddr_t bi_daddr;
776
777 /* XXX ondisk32 */
778 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
779 &bi_daddr, NULL);
780 if (error)
781 {
782 blkp->bi_daddr = LFS_UNUSED_DADDR;
783 continue;
784 }
785 blkp->bi_daddr = dbtofsb(fs, bi_daddr);
786 /* Fill in the block size, too */
787 if (blkp->bi_lbn >= 0)
788 blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
789 else
790 blkp->bi_size = fs->lfs_bsize;
791 }
792 }
793
794 /*
795 * Finish the old file, if there was one. The presence
796 * of a usable vnode in vp is signaled by a valid v_daddr.
797 */
798 if (v_daddr != LFS_UNUSED_DADDR) {
799 lfs_vunref(vp);
800 numrefed--;
801 }
802
803 #ifdef DIAGNOSTIC
804 if (numrefed != 0)
805 panic("lfs_bmapv: numrefed=%d", numrefed);
806 #endif
807
808 vfs_unbusy(mntp);
809
810 return 0;
811 }
812
813 /*
814 * sys_lfs_segclean:
815 *
816 * Mark the segment clean.
817 *
818 * 0 on success
819 * -1/errno is return on error.
820 */
821 int
822 sys_lfs_segclean(struct lwp *l, void *v, register_t *retval)
823 {
824 struct sys_lfs_segclean_args /* {
825 syscallarg(fsid_t *) fsidp;
826 syscallarg(u_long) segment;
827 } */ *uap = v;
828 struct lfs *fs;
829 struct mount *mntp;
830 fsid_t fsid;
831 int error;
832 unsigned long segnum;
833 struct proc *p = l->l_proc;
834
835 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
836 return (error);
837
838 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
839 return (error);
840 if ((mntp = vfs_getvfs(&fsid)) == NULL)
841 return (ENOENT);
842
843 fs = VFSTOUFS(mntp)->um_lfs;
844 segnum = SCARG(uap, segment);
845
846 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
847 return (error);
848
849 lfs_seglock(fs, SEGM_PROT);
850 error = lfs_do_segclean(fs, segnum);
851 lfs_segunlock(fs);
852 vfs_unbusy(mntp);
853 return error;
854 }
855
856 /*
857 * Actually mark the segment clean.
858 * Must be called with the segment lock held.
859 */
860 int
861 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
862 {
863 extern int lfs_dostats;
864 struct buf *bp;
865 CLEANERINFO *cip;
866 SEGUSE *sup;
867
868 if (dtosn(fs, fs->lfs_curseg) == segnum) {
869 return (EBUSY);
870 }
871
872 LFS_SEGENTRY(sup, fs, segnum, bp);
873 if (sup->su_nbytes) {
874 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
875 " %d live bytes\n", segnum, sup->su_nbytes));
876 brelse(bp);
877 return (EBUSY);
878 }
879 if (sup->su_flags & SEGUSE_ACTIVE) {
880 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
881 " segment is active\n", segnum));
882 brelse(bp);
883 return (EBUSY);
884 }
885 if (!(sup->su_flags & SEGUSE_DIRTY)) {
886 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
887 " segment is already clean\n", segnum));
888 brelse(bp);
889 return (EALREADY);
890 }
891
892 fs->lfs_avail += segtod(fs, 1);
893 if (sup->su_flags & SEGUSE_SUPERBLOCK)
894 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
895 if (fs->lfs_version > 1 && segnum == 0 &&
896 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
897 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
898 simple_lock(&fs->lfs_interlock);
899 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
900 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
901 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
902 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
903 if (fs->lfs_dmeta < 0)
904 fs->lfs_dmeta = 0;
905 simple_unlock(&fs->lfs_interlock);
906 sup->su_flags &= ~SEGUSE_DIRTY;
907 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
908
909 LFS_CLEANERINFO(cip, fs, bp);
910 ++cip->clean;
911 --cip->dirty;
912 fs->lfs_nclean = cip->clean;
913 cip->bfree = fs->lfs_bfree;
914 simple_lock(&fs->lfs_interlock);
915 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
916 wakeup(&fs->lfs_avail);
917 simple_unlock(&fs->lfs_interlock);
918 (void) LFS_BWRITE_LOG(bp);
919
920 if (lfs_dostats)
921 ++lfs_stats.segs_reclaimed;
922
923 return (0);
924 }
925
926 /*
927 * This will block until a segment in file system fsid is written. A timeout
928 * in milliseconds may be specified which will awake the cleaner automatically.
929 * An fsid of -1 means any file system, and a timeout of 0 means forever.
930 */
931 int
932 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
933 {
934 struct mount *mntp;
935 void *addr;
936 u_long timeout;
937 int error, s;
938
939 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
940 addr = &lfs_allclean_wakeup;
941 else
942 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
943 /*
944 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
945 * XXX IS THAT WHAT IS INTENDED?
946 */
947 s = splclock();
948 timeradd(tv, &time, tv);
949 timeout = hzto(tv);
950 splx(s);
951 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
952 return (error == ERESTART ? EINTR : 0);
953 }
954
955 /*
956 * sys_lfs_segwait:
957 *
958 * System call wrapper around lfs_segwait().
959 *
960 * 0 on success
961 * 1 on timeout
962 * -1/errno is return on error.
963 */
964 int
965 sys_lfs_segwait(struct lwp *l, void *v, register_t *retval)
966 {
967 struct sys_lfs_segwait_args /* {
968 syscallarg(fsid_t *) fsidp;
969 syscallarg(struct timeval *) tv;
970 } */ *uap = v;
971 struct proc *p = l->l_proc;
972 struct timeval atv;
973 fsid_t fsid;
974 int error;
975
976 /* XXX need we be su to segwait? */
977 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) {
978 return (error);
979 }
980 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
981 return (error);
982
983 if (SCARG(uap, tv)) {
984 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
985 if (error)
986 return (error);
987 if (itimerfix(&atv))
988 return (EINVAL);
989 } else /* NULL or invalid */
990 atv.tv_sec = atv.tv_usec = 0;
991 return lfs_segwait(&fsid, &atv);
992 }
993
994 /*
995 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
996 * daddr from the ifile, so don't look it up again. If the cleaner is
997 * processing IINFO structures, it may have the ondisk inode already, so
998 * don't go retrieving it again.
999 *
1000 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1001 * when finished.
1002 */
1003 extern struct lock ufs_hashlock;
1004
1005 int
1006 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1007 {
1008 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
1009 if ((*vpp)->v_flag & VXLOCK) {
1010 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VXLOCK\n",
1011 ino));
1012 lfs_stats.clean_vnlocked++;
1013 return EAGAIN;
1014 }
1015 if (lfs_vref(*vpp)) {
1016 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1017 " for ino %d\n", ino));
1018 lfs_stats.clean_inlocked++;
1019 return EAGAIN;
1020 }
1021 } else
1022 *vpp = NULL;
1023
1024 return (0);
1025 }
1026
1027 int
1028 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp, struct ufs1_dinode *dinp)
1029 {
1030 struct inode *ip;
1031 struct ufs1_dinode *dip;
1032 struct vnode *vp;
1033 struct ufsmount *ump;
1034 dev_t dev;
1035 int error, retries;
1036 struct buf *bp;
1037 struct lfs *fs;
1038
1039 ump = VFSTOUFS(mp);
1040 dev = ump->um_dev;
1041 fs = ump->um_lfs;
1042
1043 /*
1044 * Wait until the filesystem is fully mounted before allowing vget
1045 * to complete. This prevents possible problems with roll-forward.
1046 */
1047 simple_lock(&fs->lfs_interlock);
1048 while (fs->lfs_flags & LFS_NOTYET) {
1049 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1050 &fs->lfs_interlock);
1051 }
1052 simple_unlock(&fs->lfs_interlock);
1053
1054 /*
1055 * This is playing fast and loose. Someone may have the inode
1056 * locked, in which case they are going to be distinctly unhappy
1057 * if we trash something.
1058 */
1059
1060 error = lfs_fasthashget(dev, ino, vpp);
1061 if (error != 0 || *vpp != NULL)
1062 return (error);
1063
1064 /*
1065 * getnewvnode(9) will call vfs_busy, which will block if the
1066 * filesystem is being unmounted; but umount(9) is waiting for
1067 * us because we're already holding the fs busy.
1068 * XXXMP
1069 */
1070 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1071 *vpp = NULL;
1072 return EDEADLK;
1073 }
1074 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1075 *vpp = NULL;
1076 return (error);
1077 }
1078
1079 do {
1080 error = lfs_fasthashget(dev, ino, vpp);
1081 if (error != 0 || *vpp != NULL) {
1082 ungetnewvnode(vp);
1083 return (error);
1084 }
1085 } while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
1086
1087 /* Allocate new vnode/inode. */
1088 lfs_vcreate(mp, ino, vp);
1089
1090 /*
1091 * Put it onto its hash chain and lock it so that other requests for
1092 * this inode will block if they arrive while we are sleeping waiting
1093 * for old data structures to be purged or for the contents of the
1094 * disk portion of this inode to be read.
1095 */
1096 ip = VTOI(vp);
1097 ufs_ihashins(ip);
1098 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
1099
1100 /*
1101 * XXX
1102 * This may not need to be here, logically it should go down with
1103 * the i_devvp initialization.
1104 * Ask Kirk.
1105 */
1106 ip->i_lfs = fs;
1107
1108 /* Read in the disk contents for the inode, copy into the inode. */
1109 if (dinp) {
1110 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
1111 if (error) {
1112 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1113 " for ino %d\n", ino));
1114 ufs_ihashrem(ip);
1115
1116 /* Unlock and discard unneeded inode. */
1117 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1118 lfs_vunref(vp);
1119 *vpp = NULL;
1120 return (error);
1121 }
1122 if (ip->i_number != ino)
1123 panic("lfs_fastvget: I was fed the wrong inode!");
1124 } else {
1125 retries = 0;
1126 again:
1127 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1128 NOCRED, &bp);
1129 if (error) {
1130 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1131 error));
1132 /*
1133 * The inode does not contain anything useful, so it
1134 * would be misleading to leave it on its hash chain.
1135 * Iput() will return it to the free list.
1136 */
1137 ufs_ihashrem(ip);
1138
1139 /* Unlock and discard unneeded inode. */
1140 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1141 lfs_vunref(vp);
1142 brelse(bp);
1143 *vpp = NULL;
1144 return (error);
1145 }
1146 dip = lfs_ifind(ump->um_lfs, ino, bp);
1147 if (dip == NULL) {
1148 /* Assume write has not completed yet; try again */
1149 bp->b_flags |= B_INVAL;
1150 brelse(bp);
1151 ++retries;
1152 if (retries > LFS_IFIND_RETRIES)
1153 panic("lfs_fastvget: dinode not found");
1154 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1155 " retrying...\n"));
1156 goto again;
1157 }
1158 *ip->i_din.ffs1_din = *dip;
1159 brelse(bp);
1160 }
1161 lfs_vinit(mp, &vp);
1162
1163 *vpp = vp;
1164
1165 KASSERT(VOP_ISLOCKED(vp));
1166 VOP_UNLOCK(vp, 0);
1167
1168 return (0);
1169 }
1170
1171 /*
1172 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1173 */
1174 struct buf *
1175 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
1176 {
1177 struct buf *bp;
1178 int error;
1179
1180 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1181
1182 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1183 error = copyin(uaddr, bp->b_data, size);
1184 if (error) {
1185 lfs_freebuf(fs, bp);
1186 return NULL;
1187 }
1188 KDASSERT(bp->b_iodone == lfs_callback);
1189
1190 #if 0
1191 simple_lock(&fs->lfs_interlock);
1192 ++fs->lfs_iocount;
1193 simple_unlock(&fs->lfs_interlock);
1194 #endif
1195 bp->b_bufsize = size;
1196 bp->b_bcount = size;
1197 return (bp);
1198 }
1199