lfs_syscalls.c revision 1.115 1 /* $NetBSD: lfs_syscalls.c,v 1.115 2006/07/23 22:06:15 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.115 2006/07/23 22:06:15 ad Exp $");
71
72 #ifndef LFS
73 # define LFS /* for prototypes in syscallargs.h */
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/buf.h>
80 #include <sys/mount.h>
81 #include <sys/vnode.h>
82 #include <sys/kernel.h>
83 #include <sys/kauth.h>
84
85 #include <sys/sa.h>
86 #include <sys/syscallargs.h>
87
88 #include <ufs/ufs/inode.h>
89 #include <ufs/ufs/ufsmount.h>
90 #include <ufs/ufs/ufs_extern.h>
91
92 #include <ufs/lfs/lfs.h>
93 #include <ufs/lfs/lfs_extern.h>
94
95 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, caddr_t);
96 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
97
98 pid_t lfs_cleaner_pid = 0;
99
100 /*
101 * sys_lfs_markv:
102 *
103 * This will mark inodes and blocks dirty, so they are written into the log.
104 * It will block until all the blocks have been written. The segment create
105 * time passed in the block_info and inode_info structures is used to decide
106 * if the data is valid for each block (in case some process dirtied a block
107 * or inode that is being cleaned between the determination that a block is
108 * live and the lfs_markv call).
109 *
110 * 0 on success
111 * -1/errno is return on error.
112 */
113 #ifdef USE_64BIT_SYSCALLS
114 int
115 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
116 {
117 struct sys_lfs_markv_args /* {
118 syscallarg(fsid_t *) fsidp;
119 syscallarg(struct block_info *) blkiov;
120 syscallarg(int) blkcnt;
121 } */ *uap = v;
122 BLOCK_INFO *blkiov;
123 int blkcnt, error;
124 fsid_t fsid;
125 struct lfs *fs;
126 struct mount *mntp;
127
128 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
129 &l->l_acflag)) != 0)
130 return (error);
131
132 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
133 return (error);
134
135 if ((mntp = vfs_getvfs(fsidp)) == NULL)
136 return (ENOENT);
137 fs = VFSTOUFS(mntp)->um_lfs;
138
139 blkcnt = SCARG(uap, blkcnt);
140 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
141 return (EINVAL);
142
143 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
144 if ((error = copyin(SCARG(uap, blkiov), blkiov,
145 blkcnt * sizeof(BLOCK_INFO))) != 0)
146 goto out;
147
148 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
149 copyout(blkiov, SCARG(uap, blkiov),
150 blkcnt * sizeof(BLOCK_INFO));
151 out:
152 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
153 return error;
154 }
155 #else
156 int
157 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
158 {
159 struct sys_lfs_markv_args /* {
160 syscallarg(fsid_t *) fsidp;
161 syscallarg(struct block_info *) blkiov;
162 syscallarg(int) blkcnt;
163 } */ *uap = v;
164 BLOCK_INFO *blkiov;
165 BLOCK_INFO_15 *blkiov15;
166 int i, blkcnt, error;
167 fsid_t fsid;
168 struct lfs *fs;
169 struct mount *mntp;
170
171 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
172 &l->l_acflag)) != 0)
173 return (error);
174
175 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
176 return (error);
177
178 if ((mntp = vfs_getvfs(&fsid)) == NULL)
179 return (ENOENT);
180 fs = VFSTOUFS(mntp)->um_lfs;
181
182 blkcnt = SCARG(uap, blkcnt);
183 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
184 return (EINVAL);
185
186 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
187 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
188 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
189 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
190 goto out;
191
192 for (i = 0; i < blkcnt; i++) {
193 blkiov[i].bi_inode = blkiov15[i].bi_inode;
194 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
195 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
196 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
197 blkiov[i].bi_version = blkiov15[i].bi_version;
198 blkiov[i].bi_bp = blkiov15[i].bi_bp;
199 blkiov[i].bi_size = blkiov15[i].bi_size;
200 }
201
202 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
203 for (i = 0; i < blkcnt; i++) {
204 blkiov15[i].bi_inode = blkiov[i].bi_inode;
205 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
206 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
207 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
208 blkiov15[i].bi_version = blkiov[i].bi_version;
209 blkiov15[i].bi_bp = blkiov[i].bi_bp;
210 blkiov15[i].bi_size = blkiov[i].bi_size;
211 }
212 copyout(blkiov15, SCARG(uap, blkiov),
213 blkcnt * sizeof(BLOCK_INFO_15));
214 }
215 out:
216 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
217 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
218 return error;
219 }
220 #endif
221
222 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
223
224 int
225 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
226 {
227 BLOCK_INFO *blkp;
228 IFILE *ifp;
229 struct buf *bp;
230 struct inode *ip = NULL;
231 struct lfs *fs;
232 struct mount *mntp;
233 struct vnode *vp = NULL;
234 ino_t lastino;
235 daddr_t b_daddr, v_daddr;
236 int cnt, error;
237 int do_again = 0;
238 int numrefed = 0;
239 ino_t maxino;
240 size_t obsize;
241
242 /* number of blocks/inodes that we have already bwrite'ed */
243 int nblkwritten, ninowritten;
244
245 if ((mntp = vfs_getvfs(fsidp)) == NULL)
246 return (ENOENT);
247
248 fs = VFSTOUFS(mntp)->um_lfs;
249
250 if (fs->lfs_ronly)
251 return EROFS;
252
253 maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
254 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
255
256 cnt = blkcnt;
257
258 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
259 return (error);
260
261 /*
262 * This seglock is just to prevent the fact that we might have to sleep
263 * from allowing the possibility that our blocks might become
264 * invalid.
265 *
266 * It is also important to note here that unless we specify SEGM_CKP,
267 * any Ifile blocks that we might be asked to clean will never get
268 * to the disk.
269 */
270 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
271
272 /* Mark blocks/inodes dirty. */
273 error = 0;
274
275 /* these were inside the initialization for the for loop */
276 v_daddr = LFS_UNUSED_DADDR;
277 lastino = LFS_UNUSED_INUM;
278 nblkwritten = ninowritten = 0;
279 for (blkp = blkiov; cnt--; ++blkp)
280 {
281 /* Bounds-check incoming data, avoid panic for failed VGET */
282 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
283 error = EINVAL;
284 goto err3;
285 }
286 /*
287 * Get the IFILE entry (only once) and see if the file still
288 * exists.
289 */
290 if (lastino != blkp->bi_inode) {
291 /*
292 * Finish the old file, if there was one. The presence
293 * of a usable vnode in vp is signaled by a valid v_daddr.
294 */
295 if (v_daddr != LFS_UNUSED_DADDR) {
296 lfs_vunref(vp);
297 numrefed--;
298 }
299
300 /*
301 * Start a new file
302 */
303 lastino = blkp->bi_inode;
304 if (blkp->bi_inode == LFS_IFILE_INUM)
305 v_daddr = fs->lfs_idaddr;
306 else {
307 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
308 /* XXX fix for force write */
309 v_daddr = ifp->if_daddr;
310 brelse(bp);
311 }
312 if (v_daddr == LFS_UNUSED_DADDR)
313 continue;
314
315 /* Get the vnode/inode. */
316 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
317 &vp,
318 (blkp->bi_lbn == LFS_UNUSED_LBN
319 ? blkp->bi_bp
320 : NULL));
321
322 if (!error) {
323 numrefed++;
324 }
325 if (error) {
326 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
327 " failed with %d (ino %d, segment %d)\n",
328 error, blkp->bi_inode,
329 dtosn(fs, blkp->bi_daddr)));
330 /*
331 * If we got EAGAIN, that means that the
332 * Inode was locked. This is
333 * recoverable: just clean the rest of
334 * this segment, and let the cleaner try
335 * again with another. (When the
336 * cleaner runs again, this segment will
337 * sort high on the list, since it is
338 * now almost entirely empty.) But, we
339 * still set v_daddr = LFS_UNUSED_ADDR
340 * so as not to test this over and over
341 * again.
342 */
343 if (error == EAGAIN) {
344 error = 0;
345 do_again++;
346 }
347 #ifdef DIAGNOSTIC
348 else if (error != ENOENT)
349 panic("lfs_markv VFS_VGET FAILED");
350 #endif
351 /* lastino = LFS_UNUSED_INUM; */
352 v_daddr = LFS_UNUSED_DADDR;
353 vp = NULL;
354 ip = NULL;
355 continue;
356 }
357 ip = VTOI(vp);
358 ninowritten++;
359 } else if (v_daddr == LFS_UNUSED_DADDR) {
360 /*
361 * This can only happen if the vnode is dead (or
362 * in any case we can't get it...e.g., it is
363 * inlocked). Keep going.
364 */
365 continue;
366 }
367
368 /* Past this point we are guaranteed that vp, ip are valid. */
369
370 /* If this BLOCK_INFO didn't contain a block, keep going. */
371 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
372 /* XXX need to make sure that the inode gets written in this case */
373 /* XXX but only write the inode if it's the right one */
374 if (blkp->bi_inode != LFS_IFILE_INUM) {
375 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
376 if (ifp->if_daddr == blkp->bi_daddr)
377 LFS_SET_UINO(ip, IN_CLEANING);
378 brelse(bp);
379 }
380 continue;
381 }
382
383 b_daddr = 0;
384 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
385 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
386 {
387 if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
388 dtosn(fs, blkp->bi_daddr))
389 {
390 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
391 (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
392 }
393 do_again++;
394 continue;
395 }
396
397 /*
398 * Check block sizes. The blocks being cleaned come from
399 * disk, so they should have the same size as their on-disk
400 * counterparts.
401 */
402 if (blkp->bi_lbn >= 0)
403 obsize = blksize(fs, ip, blkp->bi_lbn);
404 else
405 obsize = fs->lfs_bsize;
406 /* Check for fragment size change */
407 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
408 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
409 }
410 if (obsize != blkp->bi_size) {
411 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
412 " size (%ld != %d), try again\n",
413 blkp->bi_inode, (long long)blkp->bi_lbn,
414 (long) obsize, blkp->bi_size));
415 do_again++;
416 continue;
417 }
418
419 /*
420 * If we get to here, then we are keeping the block. If
421 * it is an indirect block, we want to actually put it
422 * in the buffer cache so that it can be updated in the
423 * finish_meta section. If it's not, we need to
424 * allocate a fake buffer so that writeseg can perform
425 * the copyin and write the buffer.
426 */
427 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
428 /* Data Block */
429 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
430 blkp->bi_size, blkp->bi_bp);
431 /* Pretend we used bread() to get it */
432 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
433 } else {
434 /* Indirect block or ifile */
435 if (blkp->bi_size != fs->lfs_bsize &&
436 ip->i_number != LFS_IFILE_INUM)
437 panic("lfs_markv: partial indirect block?"
438 " size=%d\n", blkp->bi_size);
439 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
440 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
441 /*
442 * The block in question was not found
443 * in the cache; i.e., the block that
444 * getblk() returned is empty. So, we
445 * can (and should) copy in the
446 * contents, because we've already
447 * determined that this was the right
448 * version of this block on disk.
449 *
450 * And, it can't have changed underneath
451 * us, because we have the segment lock.
452 */
453 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
454 if (error)
455 goto err2;
456 }
457 }
458 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
459 goto err2;
460
461 nblkwritten++;
462 /*
463 * XXX should account indirect blocks and ifile pages as well
464 */
465 if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
466 > LFS_MARKV_MAX_BLOCKS) {
467 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
468 nblkwritten, ninowritten));
469 lfs_segwrite(mntp, SEGM_CLEAN);
470 nblkwritten = ninowritten = 0;
471 }
472 }
473
474 /*
475 * Finish the old file, if there was one
476 */
477 if (v_daddr != LFS_UNUSED_DADDR) {
478 lfs_vunref(vp);
479 numrefed--;
480 }
481
482 #ifdef DIAGNOSTIC
483 if (numrefed != 0)
484 panic("lfs_markv: numrefed=%d", numrefed);
485 #endif
486 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
487 nblkwritten, ninowritten));
488
489 /*
490 * The last write has to be SEGM_SYNC, because of calling semantics.
491 * It also has to be SEGM_CKP, because otherwise we could write
492 * over the newly cleaned data contained in a checkpoint, and then
493 * we'd be unhappy at recovery time.
494 */
495 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
496
497 lfs_segunlock(fs);
498
499 vfs_unbusy(mntp);
500 if (error)
501 return (error);
502 else if (do_again)
503 return EAGAIN;
504
505 return 0;
506
507 err2:
508 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
509
510 /*
511 * XXX we're here because copyin() failed.
512 * XXX it means that we can't trust the cleanerd. too bad.
513 * XXX how can we recover from this?
514 */
515
516 err3:
517 /*
518 * XXX should do segwrite here anyway?
519 */
520
521 if (v_daddr != LFS_UNUSED_DADDR) {
522 lfs_vunref(vp);
523 --numrefed;
524 }
525
526 lfs_segunlock(fs);
527 vfs_unbusy(mntp);
528 #ifdef DIAGNOSTIC
529 if (numrefed != 0)
530 panic("lfs_markv: numrefed=%d", numrefed);
531 #endif
532
533 return (error);
534 }
535
536 /*
537 * sys_lfs_bmapv:
538 *
539 * This will fill in the current disk address for arrays of blocks.
540 *
541 * 0 on success
542 * -1/errno is return on error.
543 */
544 #ifdef USE_64BIT_SYSCALLS
545 int
546 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
547 {
548 struct sys_lfs_bmapv_args /* {
549 syscallarg(fsid_t *) fsidp;
550 syscallarg(struct block_info *) blkiov;
551 syscallarg(int) blkcnt;
552 } */ *uap = v;
553 BLOCK_INFO *blkiov;
554 int blkcnt, error;
555 fsid_t fsid;
556 struct lfs *fs;
557 struct mount *mntp;
558
559 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
560 &l->l_acflag)) != 0)
561 return (error);
562
563 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
564 return (error);
565
566 if ((mntp = vfs_getvfs(&fsid)) == NULL)
567 return (ENOENT);
568 fs = VFSTOUFS(mntp)->um_lfs;
569
570 blkcnt = SCARG(uap, blkcnt);
571 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
572 return (EINVAL);
573 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
574 if ((error = copyin(SCARG(uap, blkiov), blkiov,
575 blkcnt * sizeof(BLOCK_INFO))) != 0)
576 goto out;
577
578 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
579 copyout(blkiov, SCARG(uap, blkiov),
580 blkcnt * sizeof(BLOCK_INFO));
581 out:
582 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
583 return error;
584 }
585 #else
586 int
587 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
588 {
589 struct sys_lfs_bmapv_args /* {
590 syscallarg(fsid_t *) fsidp;
591 syscallarg(struct block_info *) blkiov;
592 syscallarg(int) blkcnt;
593 } */ *uap = v;
594 BLOCK_INFO *blkiov;
595 BLOCK_INFO_15 *blkiov15;
596 int i, blkcnt, error;
597 fsid_t fsid;
598 struct lfs *fs;
599 struct mount *mntp;
600
601 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
602 &l->l_acflag)) != 0)
603 return (error);
604
605 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
606 return (error);
607
608 if ((mntp = vfs_getvfs(&fsid)) == NULL)
609 return (ENOENT);
610 fs = VFSTOUFS(mntp)->um_lfs;
611
612 blkcnt = SCARG(uap, blkcnt);
613 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
614 return (EINVAL);
615 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
616 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
617 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
618 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
619 goto out;
620
621 for (i = 0; i < blkcnt; i++) {
622 blkiov[i].bi_inode = blkiov15[i].bi_inode;
623 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
624 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
625 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
626 blkiov[i].bi_version = blkiov15[i].bi_version;
627 blkiov[i].bi_bp = blkiov15[i].bi_bp;
628 blkiov[i].bi_size = blkiov15[i].bi_size;
629 }
630
631 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
632 for (i = 0; i < blkcnt; i++) {
633 blkiov15[i].bi_inode = blkiov[i].bi_inode;
634 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
635 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
636 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
637 blkiov15[i].bi_version = blkiov[i].bi_version;
638 blkiov15[i].bi_bp = blkiov[i].bi_bp;
639 blkiov15[i].bi_size = blkiov[i].bi_size;
640 }
641 copyout(blkiov15, SCARG(uap, blkiov),
642 blkcnt * sizeof(BLOCK_INFO_15));
643 }
644 out:
645 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
646 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
647 return error;
648 }
649 #endif
650
651 int
652 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
653 {
654 BLOCK_INFO *blkp;
655 IFILE *ifp;
656 struct buf *bp;
657 struct inode *ip = NULL;
658 struct lfs *fs;
659 struct mount *mntp;
660 struct ufsmount *ump;
661 struct vnode *vp;
662 ino_t lastino;
663 daddr_t v_daddr;
664 int cnt, error;
665 int numrefed = 0;
666
667 lfs_cleaner_pid = p->p_pid;
668
669 if ((mntp = vfs_getvfs(fsidp)) == NULL)
670 return (ENOENT);
671
672 ump = VFSTOUFS(mntp);
673 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
674 return (error);
675
676 cnt = blkcnt;
677
678 fs = VFSTOUFS(mntp)->um_lfs;
679
680 error = 0;
681
682 /* these were inside the initialization for the for loop */
683 v_daddr = LFS_UNUSED_DADDR;
684 lastino = LFS_UNUSED_INUM;
685 for (blkp = blkiov; cnt--; ++blkp)
686 {
687 /*
688 * Get the IFILE entry (only once) and see if the file still
689 * exists.
690 */
691 if (lastino != blkp->bi_inode) {
692 /*
693 * Finish the old file, if there was one. The presence
694 * of a usable vnode in vp is signaled by a valid
695 * v_daddr.
696 */
697 if (v_daddr != LFS_UNUSED_DADDR) {
698 lfs_vunref(vp);
699 numrefed--;
700 }
701
702 /*
703 * Start a new file
704 */
705 lastino = blkp->bi_inode;
706 if (blkp->bi_inode == LFS_IFILE_INUM)
707 v_daddr = fs->lfs_idaddr;
708 else {
709 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
710 v_daddr = ifp->if_daddr;
711 brelse(bp);
712 }
713 if (v_daddr == LFS_UNUSED_DADDR) {
714 blkp->bi_daddr = LFS_UNUSED_DADDR;
715 continue;
716 }
717 /*
718 * A regular call to VFS_VGET could deadlock
719 * here. Instead, we try an unlocked access.
720 */
721 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
722 if (vp != NULL && !(vp->v_flag & VXLOCK)) {
723 ip = VTOI(vp);
724 if (lfs_vref(vp)) {
725 v_daddr = LFS_UNUSED_DADDR;
726 continue;
727 }
728 numrefed++;
729 } else {
730 /*
731 * Don't VFS_VGET if we're being unmounted,
732 * since we hold vfs_busy().
733 */
734 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
735 v_daddr = LFS_UNUSED_DADDR;
736 continue;
737 }
738 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
739 if (error) {
740 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
741 "%d failed with %d",
742 blkp->bi_inode,error));
743 v_daddr = LFS_UNUSED_DADDR;
744 continue;
745 } else {
746 KASSERT(VOP_ISLOCKED(vp));
747 VOP_UNLOCK(vp, 0);
748 numrefed++;
749 }
750 }
751 ip = VTOI(vp);
752 } else if (v_daddr == LFS_UNUSED_DADDR) {
753 /*
754 * This can only happen if the vnode is dead.
755 * Keep going. Note that we DO NOT set the
756 * bi_addr to anything -- if we failed to get
757 * the vnode, for example, we want to assume
758 * conservatively that all of its blocks *are*
759 * located in the segment in question.
760 * lfs_markv will throw them out if we are
761 * wrong.
762 */
763 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
764 continue;
765 }
766
767 /* Past this point we are guaranteed that vp, ip are valid. */
768
769 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
770 /*
771 * We just want the inode address, which is
772 * conveniently in v_daddr.
773 */
774 blkp->bi_daddr = v_daddr;
775 } else {
776 daddr_t bi_daddr;
777
778 /* XXX ondisk32 */
779 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
780 &bi_daddr, NULL);
781 if (error)
782 {
783 blkp->bi_daddr = LFS_UNUSED_DADDR;
784 continue;
785 }
786 blkp->bi_daddr = dbtofsb(fs, bi_daddr);
787 /* Fill in the block size, too */
788 if (blkp->bi_lbn >= 0)
789 blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
790 else
791 blkp->bi_size = fs->lfs_bsize;
792 }
793 }
794
795 /*
796 * Finish the old file, if there was one. The presence
797 * of a usable vnode in vp is signaled by a valid v_daddr.
798 */
799 if (v_daddr != LFS_UNUSED_DADDR) {
800 lfs_vunref(vp);
801 numrefed--;
802 }
803
804 #ifdef DIAGNOSTIC
805 if (numrefed != 0)
806 panic("lfs_bmapv: numrefed=%d", numrefed);
807 #endif
808
809 vfs_unbusy(mntp);
810
811 return 0;
812 }
813
814 /*
815 * sys_lfs_segclean:
816 *
817 * Mark the segment clean.
818 *
819 * 0 on success
820 * -1/errno is return on error.
821 */
822 int
823 sys_lfs_segclean(struct lwp *l, void *v, register_t *retval)
824 {
825 struct sys_lfs_segclean_args /* {
826 syscallarg(fsid_t *) fsidp;
827 syscallarg(u_long) segment;
828 } */ *uap = v;
829 struct lfs *fs;
830 struct mount *mntp;
831 fsid_t fsid;
832 int error;
833 unsigned long segnum;
834
835 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
836 &l->l_acflag)) != 0)
837 return (error);
838
839 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
840 return (error);
841 if ((mntp = vfs_getvfs(&fsid)) == NULL)
842 return (ENOENT);
843
844 fs = VFSTOUFS(mntp)->um_lfs;
845 segnum = SCARG(uap, segment);
846
847 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
848 return (error);
849
850 lfs_seglock(fs, SEGM_PROT);
851 error = lfs_do_segclean(fs, segnum);
852 lfs_segunlock(fs);
853 vfs_unbusy(mntp);
854 return error;
855 }
856
857 /*
858 * Actually mark the segment clean.
859 * Must be called with the segment lock held.
860 */
861 int
862 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
863 {
864 extern int lfs_dostats;
865 struct buf *bp;
866 CLEANERINFO *cip;
867 SEGUSE *sup;
868
869 if (dtosn(fs, fs->lfs_curseg) == segnum) {
870 return (EBUSY);
871 }
872
873 LFS_SEGENTRY(sup, fs, segnum, bp);
874 if (sup->su_nbytes) {
875 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
876 " %d live bytes\n", segnum, sup->su_nbytes));
877 brelse(bp);
878 return (EBUSY);
879 }
880 if (sup->su_flags & SEGUSE_ACTIVE) {
881 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
882 " segment is active\n", segnum));
883 brelse(bp);
884 return (EBUSY);
885 }
886 if (!(sup->su_flags & SEGUSE_DIRTY)) {
887 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
888 " segment is already clean\n", segnum));
889 brelse(bp);
890 return (EALREADY);
891 }
892
893 fs->lfs_avail += segtod(fs, 1);
894 if (sup->su_flags & SEGUSE_SUPERBLOCK)
895 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
896 if (fs->lfs_version > 1 && segnum == 0 &&
897 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
898 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
899 simple_lock(&fs->lfs_interlock);
900 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
901 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
902 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
903 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
904 if (fs->lfs_dmeta < 0)
905 fs->lfs_dmeta = 0;
906 simple_unlock(&fs->lfs_interlock);
907 sup->su_flags &= ~SEGUSE_DIRTY;
908 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
909
910 LFS_CLEANERINFO(cip, fs, bp);
911 ++cip->clean;
912 --cip->dirty;
913 fs->lfs_nclean = cip->clean;
914 cip->bfree = fs->lfs_bfree;
915 simple_lock(&fs->lfs_interlock);
916 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
917 wakeup(&fs->lfs_avail);
918 simple_unlock(&fs->lfs_interlock);
919 (void) LFS_BWRITE_LOG(bp);
920
921 if (lfs_dostats)
922 ++lfs_stats.segs_reclaimed;
923
924 return (0);
925 }
926
927 /*
928 * This will block until a segment in file system fsid is written. A timeout
929 * in milliseconds may be specified which will awake the cleaner automatically.
930 * An fsid of -1 means any file system, and a timeout of 0 means forever.
931 */
932 int
933 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
934 {
935 struct mount *mntp;
936 void *addr;
937 u_long timeout;
938 int error;
939
940 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
941 addr = &lfs_allclean_wakeup;
942 else
943 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
944 /*
945 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
946 * XXX IS THAT WHAT IS INTENDED?
947 */
948 timeout = tvtohz(tv);
949 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
950 return (error == ERESTART ? EINTR : 0);
951 }
952
953 /*
954 * sys_lfs_segwait:
955 *
956 * System call wrapper around lfs_segwait().
957 *
958 * 0 on success
959 * 1 on timeout
960 * -1/errno is return on error.
961 */
962 int
963 sys_lfs_segwait(struct lwp *l, void *v, register_t *retval)
964 {
965 struct sys_lfs_segwait_args /* {
966 syscallarg(fsid_t *) fsidp;
967 syscallarg(struct timeval *) tv;
968 } */ *uap = v;
969 struct timeval atv;
970 fsid_t fsid;
971 int error;
972
973 /* XXX need we be su to segwait? */
974 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
975 &l->l_acflag)) != 0)
976 return (error);
977 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
978 return (error);
979
980 if (SCARG(uap, tv)) {
981 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
982 if (error)
983 return (error);
984 if (itimerfix(&atv))
985 return (EINVAL);
986 } else /* NULL or invalid */
987 atv.tv_sec = atv.tv_usec = 0;
988 return lfs_segwait(&fsid, &atv);
989 }
990
991 /*
992 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
993 * daddr from the ifile, so don't look it up again. If the cleaner is
994 * processing IINFO structures, it may have the ondisk inode already, so
995 * don't go retrieving it again.
996 *
997 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
998 * when finished.
999 */
1000 extern struct lock ufs_hashlock;
1001
1002 int
1003 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1004 {
1005 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
1006 if ((*vpp)->v_flag & VXLOCK) {
1007 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VXLOCK\n",
1008 ino));
1009 lfs_stats.clean_vnlocked++;
1010 return EAGAIN;
1011 }
1012 if (lfs_vref(*vpp)) {
1013 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1014 " for ino %d\n", ino));
1015 lfs_stats.clean_inlocked++;
1016 return EAGAIN;
1017 }
1018 } else
1019 *vpp = NULL;
1020
1021 return (0);
1022 }
1023
1024 int
1025 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp, struct ufs1_dinode *dinp)
1026 {
1027 struct inode *ip;
1028 struct ufs1_dinode *dip;
1029 struct vnode *vp;
1030 struct ufsmount *ump;
1031 dev_t dev;
1032 int error, retries;
1033 struct buf *bp;
1034 struct lfs *fs;
1035
1036 ump = VFSTOUFS(mp);
1037 dev = ump->um_dev;
1038 fs = ump->um_lfs;
1039
1040 /*
1041 * Wait until the filesystem is fully mounted before allowing vget
1042 * to complete. This prevents possible problems with roll-forward.
1043 */
1044 simple_lock(&fs->lfs_interlock);
1045 while (fs->lfs_flags & LFS_NOTYET) {
1046 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1047 &fs->lfs_interlock);
1048 }
1049 simple_unlock(&fs->lfs_interlock);
1050
1051 /*
1052 * This is playing fast and loose. Someone may have the inode
1053 * locked, in which case they are going to be distinctly unhappy
1054 * if we trash something.
1055 */
1056
1057 error = lfs_fasthashget(dev, ino, vpp);
1058 if (error != 0 || *vpp != NULL)
1059 return (error);
1060
1061 /*
1062 * getnewvnode(9) will call vfs_busy, which will block if the
1063 * filesystem is being unmounted; but umount(9) is waiting for
1064 * us because we're already holding the fs busy.
1065 * XXXMP
1066 */
1067 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1068 *vpp = NULL;
1069 return EDEADLK;
1070 }
1071 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1072 *vpp = NULL;
1073 return (error);
1074 }
1075
1076 do {
1077 error = lfs_fasthashget(dev, ino, vpp);
1078 if (error != 0 || *vpp != NULL) {
1079 ungetnewvnode(vp);
1080 return (error);
1081 }
1082 } while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
1083
1084 /* Allocate new vnode/inode. */
1085 lfs_vcreate(mp, ino, vp);
1086
1087 /*
1088 * Put it onto its hash chain and lock it so that other requests for
1089 * this inode will block if they arrive while we are sleeping waiting
1090 * for old data structures to be purged or for the contents of the
1091 * disk portion of this inode to be read.
1092 */
1093 ip = VTOI(vp);
1094 ufs_ihashins(ip);
1095 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
1096
1097 /*
1098 * XXX
1099 * This may not need to be here, logically it should go down with
1100 * the i_devvp initialization.
1101 * Ask Kirk.
1102 */
1103 ip->i_lfs = fs;
1104
1105 /* Read in the disk contents for the inode, copy into the inode. */
1106 if (dinp) {
1107 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
1108 if (error) {
1109 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1110 " for ino %d\n", ino));
1111 ufs_ihashrem(ip);
1112
1113 /* Unlock and discard unneeded inode. */
1114 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1115 lfs_vunref(vp);
1116 *vpp = NULL;
1117 return (error);
1118 }
1119 if (ip->i_number != ino)
1120 panic("lfs_fastvget: I was fed the wrong inode!");
1121 } else {
1122 retries = 0;
1123 again:
1124 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1125 NOCRED, &bp);
1126 if (error) {
1127 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1128 error));
1129 /*
1130 * The inode does not contain anything useful, so it
1131 * would be misleading to leave it on its hash chain.
1132 * Iput() will return it to the free list.
1133 */
1134 ufs_ihashrem(ip);
1135
1136 /* Unlock and discard unneeded inode. */
1137 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1138 lfs_vunref(vp);
1139 brelse(bp);
1140 *vpp = NULL;
1141 return (error);
1142 }
1143 dip = lfs_ifind(ump->um_lfs, ino, bp);
1144 if (dip == NULL) {
1145 /* Assume write has not completed yet; try again */
1146 bp->b_flags |= B_INVAL;
1147 brelse(bp);
1148 ++retries;
1149 if (retries > LFS_IFIND_RETRIES)
1150 panic("lfs_fastvget: dinode not found");
1151 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1152 " retrying...\n"));
1153 goto again;
1154 }
1155 *ip->i_din.ffs1_din = *dip;
1156 brelse(bp);
1157 }
1158 lfs_vinit(mp, &vp);
1159
1160 *vpp = vp;
1161
1162 KASSERT(VOP_ISLOCKED(vp));
1163 VOP_UNLOCK(vp, 0);
1164
1165 return (0);
1166 }
1167
1168 /*
1169 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1170 */
1171 struct buf *
1172 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
1173 {
1174 struct buf *bp;
1175 int error;
1176
1177 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1178
1179 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1180 error = copyin(uaddr, bp->b_data, size);
1181 if (error) {
1182 lfs_freebuf(fs, bp);
1183 return NULL;
1184 }
1185 KDASSERT(bp->b_iodone == lfs_callback);
1186
1187 #if 0
1188 simple_lock(&fs->lfs_interlock);
1189 ++fs->lfs_iocount;
1190 simple_unlock(&fs->lfs_interlock);
1191 #endif
1192 bp->b_bufsize = size;
1193 bp->b_bcount = size;
1194 return (bp);
1195 }
1196