Home | History | Annotate | Line # | Download | only in lfs
lfs_syscalls.c revision 1.116
      1 /*	$NetBSD: lfs_syscalls.c,v 1.116 2006/09/01 19:41:28 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*-
     39  * Copyright (c) 1991, 1993, 1994
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_syscalls.c	8.10 (Berkeley) 5/14/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.116 2006/09/01 19:41:28 perseant Exp $");
     71 
     72 #ifndef LFS
     73 # define LFS		/* for prototypes in syscallargs.h */
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/proc.h>
     79 #include <sys/buf.h>
     80 #include <sys/mount.h>
     81 #include <sys/vnode.h>
     82 #include <sys/kernel.h>
     83 #include <sys/kauth.h>
     84 
     85 #include <sys/sa.h>
     86 #include <sys/syscallargs.h>
     87 
     88 #include <ufs/ufs/inode.h>
     89 #include <ufs/ufs/ufsmount.h>
     90 #include <ufs/ufs/ufs_extern.h>
     91 
     92 #include <ufs/lfs/lfs.h>
     93 #include <ufs/lfs/lfs_extern.h>
     94 
     95 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, caddr_t);
     96 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
     97 
     98 pid_t lfs_cleaner_pid = 0;
     99 
    100 /*
    101  * sys_lfs_markv:
    102  *
    103  * This will mark inodes and blocks dirty, so they are written into the log.
    104  * It will block until all the blocks have been written.  The segment create
    105  * time passed in the block_info and inode_info structures is used to decide
    106  * if the data is valid for each block (in case some process dirtied a block
    107  * or inode that is being cleaned between the determination that a block is
    108  * live and the lfs_markv call).
    109  *
    110  *  0 on success
    111  * -1/errno is return on error.
    112  */
    113 #ifdef USE_64BIT_SYSCALLS
    114 int
    115 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
    116 {
    117 	struct sys_lfs_markv_args /* {
    118 		syscallarg(fsid_t *) fsidp;
    119 		syscallarg(struct block_info *) blkiov;
    120 		syscallarg(int) blkcnt;
    121 	} */ *uap = v;
    122 	BLOCK_INFO *blkiov;
    123 	int blkcnt, error;
    124 	fsid_t fsid;
    125 	struct lfs *fs;
    126 	struct mount *mntp;
    127 
    128 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    129 	    &l->l_acflag)) != 0)
    130 		return (error);
    131 
    132 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    133 		return (error);
    134 
    135 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    136 		return (ENOENT);
    137 	fs = VFSTOUFS(mntp)->um_lfs;
    138 
    139 	blkcnt = SCARG(uap, blkcnt);
    140 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    141 		return (EINVAL);
    142 
    143 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    144 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    145 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    146 		goto out;
    147 
    148 	if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
    149 		copyout(blkiov, SCARG(uap, blkiov),
    150 			blkcnt * sizeof(BLOCK_INFO));
    151     out:
    152 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    153 	return error;
    154 }
    155 #else
    156 int
    157 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
    158 {
    159 	struct sys_lfs_markv_args /* {
    160 		syscallarg(fsid_t *) fsidp;
    161 		syscallarg(struct block_info *) blkiov;
    162 		syscallarg(int) blkcnt;
    163 	} */ *uap = v;
    164 	BLOCK_INFO *blkiov;
    165 	BLOCK_INFO_15 *blkiov15;
    166 	int i, blkcnt, error;
    167 	fsid_t fsid;
    168 	struct lfs *fs;
    169 	struct mount *mntp;
    170 
    171 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    172 	    &l->l_acflag)) != 0)
    173 		return (error);
    174 
    175 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    176 		return (error);
    177 
    178 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    179 		return (ENOENT);
    180 	fs = VFSTOUFS(mntp)->um_lfs;
    181 
    182 	blkcnt = SCARG(uap, blkcnt);
    183 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    184 		return (EINVAL);
    185 
    186 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    187 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    188 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    189 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    190 		goto out;
    191 
    192 	for (i = 0; i < blkcnt; i++) {
    193 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    194 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    195 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    196 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    197 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    198 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    199 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    200 	}
    201 
    202 	if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    203 		for (i = 0; i < blkcnt; i++) {
    204 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    205 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    206 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    207 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    208 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    209 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    210 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    211 		}
    212 		copyout(blkiov15, SCARG(uap, blkiov),
    213 			blkcnt * sizeof(BLOCK_INFO_15));
    214 	}
    215     out:
    216 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    217 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    218 	return error;
    219 }
    220 #endif
    221 
    222 #define	LFS_MARKV_MAX_BLOCKS	(LFS_MAX_BUFS)
    223 
    224 int
    225 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
    226 {
    227 	BLOCK_INFO *blkp;
    228 	IFILE *ifp;
    229 	struct buf *bp;
    230 	struct inode *ip = NULL;
    231 	struct lfs *fs;
    232 	struct mount *mntp;
    233 	struct vnode *vp = NULL;
    234 	ino_t lastino;
    235 	daddr_t b_daddr, v_daddr;
    236 	int cnt, error;
    237 	int do_again = 0;
    238 	int numrefed = 0;
    239 	ino_t maxino;
    240 	size_t obsize;
    241 
    242 	/* number of blocks/inodes that we have already bwrite'ed */
    243 	int nblkwritten, ninowritten;
    244 
    245 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    246 		return (ENOENT);
    247 
    248 	fs = VFSTOUFS(mntp)->um_lfs;
    249 
    250 	if (fs->lfs_ronly)
    251 		return EROFS;
    252 
    253 	maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
    254 		      fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
    255 
    256 	cnt = blkcnt;
    257 
    258 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    259 		return (error);
    260 
    261 	/*
    262 	 * This seglock is just to prevent the fact that we might have to sleep
    263 	 * from allowing the possibility that our blocks might become
    264 	 * invalid.
    265 	 *
    266 	 * It is also important to note here that unless we specify SEGM_CKP,
    267 	 * any Ifile blocks that we might be asked to clean will never get
    268 	 * to the disk.
    269 	 */
    270 	lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    271 
    272 	/* Mark blocks/inodes dirty.  */
    273 	error = 0;
    274 
    275 	/* these were inside the initialization for the for loop */
    276 	v_daddr = LFS_UNUSED_DADDR;
    277 	lastino = LFS_UNUSED_INUM;
    278 	nblkwritten = ninowritten = 0;
    279 	for (blkp = blkiov; cnt--; ++blkp)
    280 	{
    281 		/* Bounds-check incoming data, avoid panic for failed VGET */
    282 		if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
    283 			error = EINVAL;
    284 			goto err3;
    285 		}
    286 		/*
    287 		 * Get the IFILE entry (only once) and see if the file still
    288 		 * exists.
    289 		 */
    290 		if (lastino != blkp->bi_inode) {
    291 			/*
    292 			 * Finish the old file, if there was one.  The presence
    293 			 * of a usable vnode in vp is signaled by a valid v_daddr.
    294 			 */
    295 			if (v_daddr != LFS_UNUSED_DADDR) {
    296 				lfs_vunref(vp);
    297 				numrefed--;
    298 			}
    299 
    300 			/*
    301 			 * Start a new file
    302 			 */
    303 			lastino = blkp->bi_inode;
    304 			if (blkp->bi_inode == LFS_IFILE_INUM)
    305 				v_daddr = fs->lfs_idaddr;
    306 			else {
    307 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    308 				/* XXX fix for force write */
    309 				v_daddr = ifp->if_daddr;
    310 				brelse(bp);
    311 			}
    312 			if (v_daddr == LFS_UNUSED_DADDR)
    313 				continue;
    314 
    315 			/* Get the vnode/inode. */
    316 			error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
    317 					   &vp,
    318 					   (blkp->bi_lbn == LFS_UNUSED_LBN
    319 					    ? blkp->bi_bp
    320 					    : NULL));
    321 
    322 			if (!error) {
    323 				numrefed++;
    324 			}
    325 			if (error) {
    326 				DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
    327 				      " failed with %d (ino %d, segment %d)\n",
    328 				      error, blkp->bi_inode,
    329 				      dtosn(fs, blkp->bi_daddr)));
    330 				/*
    331 				 * If we got EAGAIN, that means that the
    332 				 * Inode was locked.  This is
    333 				 * recoverable: just clean the rest of
    334 				 * this segment, and let the cleaner try
    335 				 * again with another.	(When the
    336 				 * cleaner runs again, this segment will
    337 				 * sort high on the list, since it is
    338 				 * now almost entirely empty.) But, we
    339 				 * still set v_daddr = LFS_UNUSED_ADDR
    340 				 * so as not to test this over and over
    341 				 * again.
    342 				 */
    343 				if (error == EAGAIN) {
    344 					error = 0;
    345 					do_again++;
    346 				}
    347 #ifdef DIAGNOSTIC
    348 				else if (error != ENOENT)
    349 					panic("lfs_markv VFS_VGET FAILED");
    350 #endif
    351 				/* lastino = LFS_UNUSED_INUM; */
    352 				v_daddr = LFS_UNUSED_DADDR;
    353 				vp = NULL;
    354 				ip = NULL;
    355 				continue;
    356 			}
    357 			ip = VTOI(vp);
    358 			ninowritten++;
    359 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    360 			/*
    361 			 * This can only happen if the vnode is dead (or
    362 			 * in any case we can't get it...e.g., it is
    363 			 * inlocked).  Keep going.
    364 			 */
    365 			continue;
    366 		}
    367 
    368 		/* Past this point we are guaranteed that vp, ip are valid. */
    369 
    370 		/* Can't clean VDIROP directories in case of truncation */
    371 		/* XXX - maybe we should mark removed dirs specially? */
    372 		if (vp->v_type == VDIR && (vp->v_flag & VDIROP)) {
    373 			do_again++;
    374 			continue;
    375 		}
    376 
    377 		/* If this BLOCK_INFO didn't contain a block, keep going. */
    378 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    379 			/* XXX need to make sure that the inode gets written in this case */
    380 			/* XXX but only write the inode if it's the right one */
    381 			if (blkp->bi_inode != LFS_IFILE_INUM) {
    382 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    383 				if (ifp->if_daddr == blkp->bi_daddr)
    384 					LFS_SET_UINO(ip, IN_CLEANING);
    385 				brelse(bp);
    386 			}
    387 			continue;
    388 		}
    389 
    390 		b_daddr = 0;
    391 		if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
    392 		    dbtofsb(fs, b_daddr) != blkp->bi_daddr)
    393 		{
    394 			if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
    395 			    dtosn(fs, blkp->bi_daddr))
    396 			{
    397 				DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
    398 				      (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
    399 			}
    400 			do_again++;
    401 			continue;
    402 		}
    403 
    404 		/*
    405 		 * Check block sizes.  The blocks being cleaned come from
    406 		 * disk, so they should have the same size as their on-disk
    407 		 * counterparts.
    408 		 */
    409 		if (blkp->bi_lbn >= 0)
    410 			obsize = blksize(fs, ip, blkp->bi_lbn);
    411 		else
    412 			obsize = fs->lfs_bsize;
    413 		/* Check for fragment size change */
    414 		if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
    415 			obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
    416 		}
    417 		if (obsize != blkp->bi_size) {
    418 			DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
    419 			      " size (%ld != %d), try again\n",
    420 			      blkp->bi_inode, (long long)blkp->bi_lbn,
    421 			      (long) obsize, blkp->bi_size));
    422 			do_again++;
    423 			continue;
    424 		}
    425 
    426 		/*
    427 		 * If we get to here, then we are keeping the block.  If
    428 		 * it is an indirect block, we want to actually put it
    429 		 * in the buffer cache so that it can be updated in the
    430 		 * finish_meta section.	 If it's not, we need to
    431 		 * allocate a fake buffer so that writeseg can perform
    432 		 * the copyin and write the buffer.
    433 		 */
    434 		if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
    435 			/* Data Block */
    436 			bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
    437 					 blkp->bi_size, blkp->bi_bp);
    438 			/* Pretend we used bread() to get it */
    439 			bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
    440 		} else {
    441 			/* Indirect block or ifile */
    442 			if (blkp->bi_size != fs->lfs_bsize &&
    443 			    ip->i_number != LFS_IFILE_INUM)
    444 				panic("lfs_markv: partial indirect block?"
    445 				    " size=%d\n", blkp->bi_size);
    446 			bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
    447 			if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
    448 				/*
    449 				 * The block in question was not found
    450 				 * in the cache; i.e., the block that
    451 				 * getblk() returned is empty.	So, we
    452 				 * can (and should) copy in the
    453 				 * contents, because we've already
    454 				 * determined that this was the right
    455 				 * version of this block on disk.
    456 				 *
    457 				 * And, it can't have changed underneath
    458 				 * us, because we have the segment lock.
    459 				 */
    460 				error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
    461 				if (error)
    462 					goto err2;
    463 			}
    464 		}
    465 		if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
    466 			goto err2;
    467 
    468 		nblkwritten++;
    469 		/*
    470 		 * XXX should account indirect blocks and ifile pages as well
    471 		 */
    472 		if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
    473 		    > LFS_MARKV_MAX_BLOCKS) {
    474 			DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
    475 			      nblkwritten, ninowritten));
    476 			lfs_segwrite(mntp, SEGM_CLEAN);
    477 			nblkwritten = ninowritten = 0;
    478 		}
    479 	}
    480 
    481 	/*
    482 	 * Finish the old file, if there was one
    483 	 */
    484 	if (v_daddr != LFS_UNUSED_DADDR) {
    485 		lfs_vunref(vp);
    486 		numrefed--;
    487 	}
    488 
    489 #ifdef DIAGNOSTIC
    490 	if (numrefed != 0)
    491 		panic("lfs_markv: numrefed=%d", numrefed);
    492 #endif
    493 	DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
    494 	      nblkwritten, ninowritten));
    495 
    496 	/*
    497 	 * The last write has to be SEGM_SYNC, because of calling semantics.
    498 	 * It also has to be SEGM_CKP, because otherwise we could write
    499 	 * over the newly cleaned data contained in a checkpoint, and then
    500 	 * we'd be unhappy at recovery time.
    501 	 */
    502 	lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    503 
    504 	lfs_segunlock(fs);
    505 
    506 	vfs_unbusy(mntp);
    507 	if (error)
    508 		return (error);
    509 	else if (do_again)
    510 		return EAGAIN;
    511 
    512 	return 0;
    513 
    514 err2:
    515 	DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
    516 
    517 	/*
    518 	 * XXX we're here because copyin() failed.
    519 	 * XXX it means that we can't trust the cleanerd.  too bad.
    520 	 * XXX how can we recover from this?
    521 	 */
    522 
    523 err3:
    524 	/*
    525 	 * XXX should do segwrite here anyway?
    526 	 */
    527 
    528 	if (v_daddr != LFS_UNUSED_DADDR) {
    529 		lfs_vunref(vp);
    530 		--numrefed;
    531 	}
    532 
    533 	lfs_segunlock(fs);
    534 	vfs_unbusy(mntp);
    535 #ifdef DIAGNOSTIC
    536 	if (numrefed != 0)
    537 		panic("lfs_markv: numrefed=%d", numrefed);
    538 #endif
    539 
    540 	return (error);
    541 }
    542 
    543 /*
    544  * sys_lfs_bmapv:
    545  *
    546  * This will fill in the current disk address for arrays of blocks.
    547  *
    548  *  0 on success
    549  * -1/errno is return on error.
    550  */
    551 #ifdef USE_64BIT_SYSCALLS
    552 int
    553 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
    554 {
    555 	struct sys_lfs_bmapv_args /* {
    556 		syscallarg(fsid_t *) fsidp;
    557 		syscallarg(struct block_info *) blkiov;
    558 		syscallarg(int) blkcnt;
    559 	} */ *uap = v;
    560 	BLOCK_INFO *blkiov;
    561 	int blkcnt, error;
    562 	fsid_t fsid;
    563 	struct lfs *fs;
    564 	struct mount *mntp;
    565 
    566 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    567 	    &l->l_acflag)) != 0)
    568 		return (error);
    569 
    570 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    571 		return (error);
    572 
    573 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    574 		return (ENOENT);
    575 	fs = VFSTOUFS(mntp)->um_lfs;
    576 
    577 	blkcnt = SCARG(uap, blkcnt);
    578 	if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    579 		return (EINVAL);
    580 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    581 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    582 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    583 		goto out;
    584 
    585 	if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
    586 		copyout(blkiov, SCARG(uap, blkiov),
    587 			blkcnt * sizeof(BLOCK_INFO));
    588     out:
    589 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    590 	return error;
    591 }
    592 #else
    593 int
    594 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
    595 {
    596 	struct sys_lfs_bmapv_args /* {
    597 		syscallarg(fsid_t *) fsidp;
    598 		syscallarg(struct block_info *) blkiov;
    599 		syscallarg(int) blkcnt;
    600 	} */ *uap = v;
    601 	BLOCK_INFO *blkiov;
    602 	BLOCK_INFO_15 *blkiov15;
    603 	int i, blkcnt, error;
    604 	fsid_t fsid;
    605 	struct lfs *fs;
    606 	struct mount *mntp;
    607 
    608 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    609 	    &l->l_acflag)) != 0)
    610 		return (error);
    611 
    612 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    613 		return (error);
    614 
    615 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    616 		return (ENOENT);
    617 	fs = VFSTOUFS(mntp)->um_lfs;
    618 
    619 	blkcnt = SCARG(uap, blkcnt);
    620 	if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    621 		return (EINVAL);
    622 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    623 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    624 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    625 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    626 		goto out;
    627 
    628 	for (i = 0; i < blkcnt; i++) {
    629 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    630 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    631 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    632 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    633 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    634 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    635 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    636 	}
    637 
    638 	if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    639 		for (i = 0; i < blkcnt; i++) {
    640 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    641 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    642 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    643 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    644 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    645 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    646 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    647 		}
    648 		copyout(blkiov15, SCARG(uap, blkiov),
    649 			blkcnt * sizeof(BLOCK_INFO_15));
    650 	}
    651     out:
    652 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    653 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    654 	return error;
    655 }
    656 #endif
    657 
    658 int
    659 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
    660 {
    661 	BLOCK_INFO *blkp;
    662 	IFILE *ifp;
    663 	struct buf *bp;
    664 	struct inode *ip = NULL;
    665 	struct lfs *fs;
    666 	struct mount *mntp;
    667 	struct ufsmount *ump;
    668 	struct vnode *vp;
    669 	ino_t lastino;
    670 	daddr_t v_daddr;
    671 	int cnt, error;
    672 	int numrefed = 0;
    673 
    674 	lfs_cleaner_pid = p->p_pid;
    675 
    676 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    677 		return (ENOENT);
    678 
    679 	ump = VFSTOUFS(mntp);
    680 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    681 		return (error);
    682 
    683 	cnt = blkcnt;
    684 
    685 	fs = VFSTOUFS(mntp)->um_lfs;
    686 
    687 	error = 0;
    688 
    689 	/* these were inside the initialization for the for loop */
    690 	v_daddr = LFS_UNUSED_DADDR;
    691 	lastino = LFS_UNUSED_INUM;
    692 	for (blkp = blkiov; cnt--; ++blkp)
    693 	{
    694 		/*
    695 		 * Get the IFILE entry (only once) and see if the file still
    696 		 * exists.
    697 		 */
    698 		if (lastino != blkp->bi_inode) {
    699 			/*
    700 			 * Finish the old file, if there was one.  The presence
    701 			 * of a usable vnode in vp is signaled by a valid
    702 			 * v_daddr.
    703 			 */
    704 			if (v_daddr != LFS_UNUSED_DADDR) {
    705 				lfs_vunref(vp);
    706 				numrefed--;
    707 			}
    708 
    709 			/*
    710 			 * Start a new file
    711 			 */
    712 			lastino = blkp->bi_inode;
    713 			if (blkp->bi_inode == LFS_IFILE_INUM)
    714 				v_daddr = fs->lfs_idaddr;
    715 			else {
    716 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    717 				v_daddr = ifp->if_daddr;
    718 				brelse(bp);
    719 			}
    720 			if (v_daddr == LFS_UNUSED_DADDR) {
    721 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    722 				continue;
    723 			}
    724 			/*
    725 			 * A regular call to VFS_VGET could deadlock
    726 			 * here.  Instead, we try an unlocked access.
    727 			 */
    728 			vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
    729 			if (vp != NULL && !(vp->v_flag & VXLOCK)) {
    730 				ip = VTOI(vp);
    731 				if (lfs_vref(vp)) {
    732 					v_daddr = LFS_UNUSED_DADDR;
    733 					continue;
    734 				}
    735 				numrefed++;
    736 			} else {
    737 				/*
    738 				 * Don't VFS_VGET if we're being unmounted,
    739 				 * since we hold vfs_busy().
    740 				 */
    741 				if (mntp->mnt_iflag & IMNT_UNMOUNT) {
    742 					v_daddr = LFS_UNUSED_DADDR;
    743 					continue;
    744 				}
    745 				error = VFS_VGET(mntp, blkp->bi_inode, &vp);
    746 				if (error) {
    747 					DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
    748 					      "%d failed with %d",
    749 					      blkp->bi_inode,error));
    750 					v_daddr = LFS_UNUSED_DADDR;
    751 					continue;
    752 				} else {
    753 					KASSERT(VOP_ISLOCKED(vp));
    754 					VOP_UNLOCK(vp, 0);
    755 					numrefed++;
    756 				}
    757 			}
    758 			ip = VTOI(vp);
    759 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    760 			/*
    761 			 * This can only happen if the vnode is dead.
    762 			 * Keep going.	Note that we DO NOT set the
    763 			 * bi_addr to anything -- if we failed to get
    764 			 * the vnode, for example, we want to assume
    765 			 * conservatively that all of its blocks *are*
    766 			 * located in the segment in question.
    767 			 * lfs_markv will throw them out if we are
    768 			 * wrong.
    769 			 */
    770 			/* blkp->bi_daddr = LFS_UNUSED_DADDR; */
    771 			continue;
    772 		}
    773 
    774 		/* Past this point we are guaranteed that vp, ip are valid. */
    775 
    776 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    777 			/*
    778 			 * We just want the inode address, which is
    779 			 * conveniently in v_daddr.
    780 			 */
    781 			blkp->bi_daddr = v_daddr;
    782 		} else {
    783 			daddr_t bi_daddr;
    784 
    785 			/* XXX ondisk32 */
    786 			error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
    787 					 &bi_daddr, NULL);
    788 			if (error)
    789 			{
    790 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    791 				continue;
    792 			}
    793 			blkp->bi_daddr = dbtofsb(fs, bi_daddr);
    794 			/* Fill in the block size, too */
    795 			if (blkp->bi_lbn >= 0)
    796 				blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
    797 			else
    798 				blkp->bi_size = fs->lfs_bsize;
    799 		}
    800 	}
    801 
    802 	/*
    803 	 * Finish the old file, if there was one.  The presence
    804 	 * of a usable vnode in vp is signaled by a valid v_daddr.
    805 	 */
    806 	if (v_daddr != LFS_UNUSED_DADDR) {
    807 		lfs_vunref(vp);
    808 		numrefed--;
    809 	}
    810 
    811 #ifdef DIAGNOSTIC
    812 	if (numrefed != 0)
    813 		panic("lfs_bmapv: numrefed=%d", numrefed);
    814 #endif
    815 
    816 	vfs_unbusy(mntp);
    817 
    818 	return 0;
    819 }
    820 
    821 /*
    822  * sys_lfs_segclean:
    823  *
    824  * Mark the segment clean.
    825  *
    826  *  0 on success
    827  * -1/errno is return on error.
    828  */
    829 int
    830 sys_lfs_segclean(struct lwp *l, void *v, register_t *retval)
    831 {
    832 	struct sys_lfs_segclean_args /* {
    833 		syscallarg(fsid_t *) fsidp;
    834 		syscallarg(u_long) segment;
    835 	} */ *uap = v;
    836 	struct lfs *fs;
    837 	struct mount *mntp;
    838 	fsid_t fsid;
    839 	int error;
    840 	unsigned long segnum;
    841 
    842 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    843 	    &l->l_acflag)) != 0)
    844 		return (error);
    845 
    846 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    847 		return (error);
    848 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    849 		return (ENOENT);
    850 
    851 	fs = VFSTOUFS(mntp)->um_lfs;
    852 	segnum = SCARG(uap, segment);
    853 
    854 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    855 		return (error);
    856 
    857 	lfs_seglock(fs, SEGM_PROT);
    858 	error = lfs_do_segclean(fs, segnum);
    859 	lfs_segunlock(fs);
    860 	vfs_unbusy(mntp);
    861 	return error;
    862 }
    863 
    864 /*
    865  * Actually mark the segment clean.
    866  * Must be called with the segment lock held.
    867  */
    868 int
    869 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
    870 {
    871 	extern int lfs_dostats;
    872 	struct buf *bp;
    873 	CLEANERINFO *cip;
    874 	SEGUSE *sup;
    875 
    876 	if (dtosn(fs, fs->lfs_curseg) == segnum) {
    877 		return (EBUSY);
    878 	}
    879 
    880 	LFS_SEGENTRY(sup, fs, segnum, bp);
    881 	if (sup->su_nbytes) {
    882 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    883 		      " %d live bytes\n", segnum, sup->su_nbytes));
    884 		brelse(bp);
    885 		return (EBUSY);
    886 	}
    887 	if (sup->su_flags & SEGUSE_ACTIVE) {
    888 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    889 		      " segment is active\n", segnum));
    890 		brelse(bp);
    891 		return (EBUSY);
    892 	}
    893 	if (!(sup->su_flags & SEGUSE_DIRTY)) {
    894 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    895 		      " segment is already clean\n", segnum));
    896 		brelse(bp);
    897 		return (EALREADY);
    898 	}
    899 
    900 	fs->lfs_avail += segtod(fs, 1);
    901 	if (sup->su_flags & SEGUSE_SUPERBLOCK)
    902 		fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
    903 	if (fs->lfs_version > 1 && segnum == 0 &&
    904 	    fs->lfs_start < btofsb(fs, LFS_LABELPAD))
    905 		fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    906 	simple_lock(&fs->lfs_interlock);
    907 	fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    908 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    909 	fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    910 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    911 	if (fs->lfs_dmeta < 0)
    912 		fs->lfs_dmeta = 0;
    913 	simple_unlock(&fs->lfs_interlock);
    914 	sup->su_flags &= ~SEGUSE_DIRTY;
    915 	LFS_WRITESEGENTRY(sup, fs, segnum, bp);
    916 
    917 	LFS_CLEANERINFO(cip, fs, bp);
    918 	++cip->clean;
    919 	--cip->dirty;
    920 	fs->lfs_nclean = cip->clean;
    921 	cip->bfree = fs->lfs_bfree;
    922 	simple_lock(&fs->lfs_interlock);
    923 	cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
    924 	wakeup(&fs->lfs_avail);
    925 	simple_unlock(&fs->lfs_interlock);
    926 	(void) LFS_BWRITE_LOG(bp);
    927 
    928 	if (lfs_dostats)
    929 		++lfs_stats.segs_reclaimed;
    930 
    931 	return (0);
    932 }
    933 
    934 /*
    935  * This will block until a segment in file system fsid is written.  A timeout
    936  * in milliseconds may be specified which will awake the cleaner automatically.
    937  * An fsid of -1 means any file system, and a timeout of 0 means forever.
    938  */
    939 int
    940 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
    941 {
    942 	struct mount *mntp;
    943 	void *addr;
    944 	u_long timeout;
    945 	int error;
    946 
    947 	if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
    948 		addr = &lfs_allclean_wakeup;
    949 	else
    950 		addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
    951 	/*
    952 	 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
    953 	 * XXX IS THAT WHAT IS INTENDED?
    954 	 */
    955 	timeout = tvtohz(tv);
    956 	error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
    957 	return (error == ERESTART ? EINTR : 0);
    958 }
    959 
    960 /*
    961  * sys_lfs_segwait:
    962  *
    963  * System call wrapper around lfs_segwait().
    964  *
    965  *  0 on success
    966  *  1 on timeout
    967  * -1/errno is return on error.
    968  */
    969 int
    970 sys_lfs_segwait(struct lwp *l, void *v, register_t *retval)
    971 {
    972 	struct sys_lfs_segwait_args /* {
    973 		syscallarg(fsid_t *) fsidp;
    974 		syscallarg(struct timeval *) tv;
    975 	} */ *uap = v;
    976 	struct timeval atv;
    977 	fsid_t fsid;
    978 	int error;
    979 
    980 	/* XXX need we be su to segwait? */
    981 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    982 	    &l->l_acflag)) != 0)
    983 		return (error);
    984 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    985 		return (error);
    986 
    987 	if (SCARG(uap, tv)) {
    988 		error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
    989 		if (error)
    990 			return (error);
    991 		if (itimerfix(&atv))
    992 			return (EINVAL);
    993 	} else /* NULL or invalid */
    994 		atv.tv_sec = atv.tv_usec = 0;
    995 	return lfs_segwait(&fsid, &atv);
    996 }
    997 
    998 /*
    999  * VFS_VGET call specialized for the cleaner.  The cleaner already knows the
   1000  * daddr from the ifile, so don't look it up again.  If the cleaner is
   1001  * processing IINFO structures, it may have the ondisk inode already, so
   1002  * don't go retrieving it again.
   1003  *
   1004  * we lfs_vref, and it is the caller's responsibility to lfs_vunref
   1005  * when finished.
   1006  */
   1007 extern struct lock ufs_hashlock;
   1008 
   1009 int
   1010 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
   1011 {
   1012 	if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
   1013 		if ((*vpp)->v_flag & VXLOCK) {
   1014 			DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VXLOCK\n",
   1015 			      ino));
   1016 			lfs_stats.clean_vnlocked++;
   1017 			return EAGAIN;
   1018 		}
   1019 		if (lfs_vref(*vpp)) {
   1020 			DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
   1021 			      " for ino %d\n", ino));
   1022 			lfs_stats.clean_inlocked++;
   1023 			return EAGAIN;
   1024 		}
   1025 	} else
   1026 		*vpp = NULL;
   1027 
   1028 	return (0);
   1029 }
   1030 
   1031 int
   1032 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp, struct ufs1_dinode *dinp)
   1033 {
   1034 	struct inode *ip;
   1035 	struct ufs1_dinode *dip;
   1036 	struct vnode *vp;
   1037 	struct ufsmount *ump;
   1038 	dev_t dev;
   1039 	int error, retries;
   1040 	struct buf *bp;
   1041 	struct lfs *fs;
   1042 
   1043 	ump = VFSTOUFS(mp);
   1044 	dev = ump->um_dev;
   1045 	fs = ump->um_lfs;
   1046 
   1047 	/*
   1048 	 * Wait until the filesystem is fully mounted before allowing vget
   1049 	 * to complete.	 This prevents possible problems with roll-forward.
   1050 	 */
   1051 	simple_lock(&fs->lfs_interlock);
   1052 	while (fs->lfs_flags & LFS_NOTYET) {
   1053 		ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
   1054 			&fs->lfs_interlock);
   1055 	}
   1056 	simple_unlock(&fs->lfs_interlock);
   1057 
   1058 	/*
   1059 	 * This is playing fast and loose.  Someone may have the inode
   1060 	 * locked, in which case they are going to be distinctly unhappy
   1061 	 * if we trash something.
   1062 	 */
   1063 
   1064 	error = lfs_fasthashget(dev, ino, vpp);
   1065 	if (error != 0 || *vpp != NULL)
   1066 		return (error);
   1067 
   1068 	/*
   1069 	 * getnewvnode(9) will call vfs_busy, which will block if the
   1070 	 * filesystem is being unmounted; but umount(9) is waiting for
   1071 	 * us because we're already holding the fs busy.
   1072 	 * XXXMP
   1073 	 */
   1074 	if (mp->mnt_iflag & IMNT_UNMOUNT) {
   1075 		*vpp = NULL;
   1076 		return EDEADLK;
   1077 	}
   1078 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1079 		*vpp = NULL;
   1080 		return (error);
   1081 	}
   1082 
   1083 	do {
   1084 		error = lfs_fasthashget(dev, ino, vpp);
   1085 		if (error != 0 || *vpp != NULL) {
   1086 			ungetnewvnode(vp);
   1087 			return (error);
   1088 		}
   1089 	} while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
   1090 
   1091 	/* Allocate new vnode/inode. */
   1092 	lfs_vcreate(mp, ino, vp);
   1093 
   1094 	/*
   1095 	 * Put it onto its hash chain and lock it so that other requests for
   1096 	 * this inode will block if they arrive while we are sleeping waiting
   1097 	 * for old data structures to be purged or for the contents of the
   1098 	 * disk portion of this inode to be read.
   1099 	 */
   1100 	ip = VTOI(vp);
   1101 	ufs_ihashins(ip);
   1102 	lockmgr(&ufs_hashlock, LK_RELEASE, 0);
   1103 
   1104 	/*
   1105 	 * XXX
   1106 	 * This may not need to be here, logically it should go down with
   1107 	 * the i_devvp initialization.
   1108 	 * Ask Kirk.
   1109 	 */
   1110 	ip->i_lfs = fs;
   1111 
   1112 	/* Read in the disk contents for the inode, copy into the inode. */
   1113 	if (dinp) {
   1114 		error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
   1115 		if (error) {
   1116 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
   1117 			      " for ino %d\n", ino));
   1118 			ufs_ihashrem(ip);
   1119 
   1120 			/* Unlock and discard unneeded inode. */
   1121 			lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
   1122 			lfs_vunref(vp);
   1123 			*vpp = NULL;
   1124 			return (error);
   1125 		}
   1126 		if (ip->i_number != ino)
   1127 			panic("lfs_fastvget: I was fed the wrong inode!");
   1128 	} else {
   1129 		retries = 0;
   1130 	    again:
   1131 		error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
   1132 			      NOCRED, &bp);
   1133 		if (error) {
   1134 			DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
   1135 			      error));
   1136 			/*
   1137 			 * The inode does not contain anything useful, so it
   1138 			 * would be misleading to leave it on its hash chain.
   1139 			 * Iput() will return it to the free list.
   1140 			 */
   1141 			ufs_ihashrem(ip);
   1142 
   1143 			/* Unlock and discard unneeded inode. */
   1144 			lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
   1145 			lfs_vunref(vp);
   1146 			brelse(bp);
   1147 			*vpp = NULL;
   1148 			return (error);
   1149 		}
   1150 		dip = lfs_ifind(ump->um_lfs, ino, bp);
   1151 		if (dip == NULL) {
   1152 			/* Assume write has not completed yet; try again */
   1153 			bp->b_flags |= B_INVAL;
   1154 			brelse(bp);
   1155 			++retries;
   1156 			if (retries > LFS_IFIND_RETRIES)
   1157 				panic("lfs_fastvget: dinode not found");
   1158 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
   1159 			      " retrying...\n"));
   1160 			goto again;
   1161 		}
   1162 		*ip->i_din.ffs1_din = *dip;
   1163 		brelse(bp);
   1164 	}
   1165 	lfs_vinit(mp, &vp);
   1166 
   1167 	*vpp = vp;
   1168 
   1169 	KASSERT(VOP_ISLOCKED(vp));
   1170 	VOP_UNLOCK(vp, 0);
   1171 
   1172 	return (0);
   1173 }
   1174 
   1175 /*
   1176  * Make up a "fake" cleaner buffer, copy the data from userland into it.
   1177  */
   1178 struct buf *
   1179 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
   1180 {
   1181 	struct buf *bp;
   1182 	int error;
   1183 
   1184 	KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
   1185 
   1186 	bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
   1187 	error = copyin(uaddr, bp->b_data, size);
   1188 	if (error) {
   1189 		lfs_freebuf(fs, bp);
   1190 		return NULL;
   1191 	}
   1192 	KDASSERT(bp->b_iodone == lfs_callback);
   1193 
   1194 #if 0
   1195 	simple_lock(&fs->lfs_interlock);
   1196 	++fs->lfs_iocount;
   1197 	simple_unlock(&fs->lfs_interlock);
   1198 #endif
   1199 	bp->b_bufsize = size;
   1200 	bp->b_bcount = size;
   1201 	return (bp);
   1202 }
   1203