Home | History | Annotate | Line # | Download | only in lfs
lfs_syscalls.c revision 1.119
      1 /*	$NetBSD: lfs_syscalls.c,v 1.119 2007/01/04 16:55:29 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*-
     39  * Copyright (c) 1991, 1993, 1994
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_syscalls.c	8.10 (Berkeley) 5/14/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.119 2007/01/04 16:55:29 elad Exp $");
     71 
     72 #ifndef LFS
     73 # define LFS		/* for prototypes in syscallargs.h */
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/proc.h>
     79 #include <sys/buf.h>
     80 #include <sys/mount.h>
     81 #include <sys/vnode.h>
     82 #include <sys/kernel.h>
     83 #include <sys/kauth.h>
     84 
     85 #include <sys/sa.h>
     86 #include <sys/syscallargs.h>
     87 
     88 #include <ufs/ufs/inode.h>
     89 #include <ufs/ufs/ufsmount.h>
     90 #include <ufs/ufs/ufs_extern.h>
     91 
     92 #include <ufs/lfs/lfs.h>
     93 #include <ufs/lfs/lfs_extern.h>
     94 
     95 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, caddr_t);
     96 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
     97 
     98 pid_t lfs_cleaner_pid = 0;
     99 
    100 /*
    101  * sys_lfs_markv:
    102  *
    103  * This will mark inodes and blocks dirty, so they are written into the log.
    104  * It will block until all the blocks have been written.  The segment create
    105  * time passed in the block_info and inode_info structures is used to decide
    106  * if the data is valid for each block (in case some process dirtied a block
    107  * or inode that is being cleaned between the determination that a block is
    108  * live and the lfs_markv call).
    109  *
    110  *  0 on success
    111  * -1/errno is return on error.
    112  */
    113 #ifdef USE_64BIT_SYSCALLS
    114 int
    115 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
    116 {
    117 	struct sys_lfs_markv_args /* {
    118 		syscallarg(fsid_t *) fsidp;
    119 		syscallarg(struct block_info *) blkiov;
    120 		syscallarg(int) blkcnt;
    121 	} */ *uap = v;
    122 	BLOCK_INFO *blkiov;
    123 	int blkcnt, error;
    124 	fsid_t fsid;
    125 	struct lfs *fs;
    126 	struct mount *mntp;
    127 
    128 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    129 	    NULL)) != 0)
    130 		return (error);
    131 
    132 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    133 		return (error);
    134 
    135 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    136 		return (ENOENT);
    137 	fs = VFSTOUFS(mntp)->um_lfs;
    138 
    139 	blkcnt = SCARG(uap, blkcnt);
    140 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    141 		return (EINVAL);
    142 
    143 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    144 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    145 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    146 		goto out;
    147 
    148 	if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
    149 		copyout(blkiov, SCARG(uap, blkiov),
    150 			blkcnt * sizeof(BLOCK_INFO));
    151     out:
    152 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    153 	return error;
    154 }
    155 #else
    156 int
    157 sys_lfs_markv(struct lwp *l, void *v, register_t *retval)
    158 {
    159 	struct sys_lfs_markv_args /* {
    160 		syscallarg(fsid_t *) fsidp;
    161 		syscallarg(struct block_info *) blkiov;
    162 		syscallarg(int) blkcnt;
    163 	} */ *uap = v;
    164 	BLOCK_INFO *blkiov;
    165 	BLOCK_INFO_15 *blkiov15;
    166 	int i, blkcnt, error;
    167 	fsid_t fsid;
    168 	struct lfs *fs;
    169 	struct mount *mntp;
    170 
    171 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    172 	    NULL)) != 0)
    173 		return (error);
    174 
    175 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    176 		return (error);
    177 
    178 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    179 		return (ENOENT);
    180 	fs = VFSTOUFS(mntp)->um_lfs;
    181 
    182 	blkcnt = SCARG(uap, blkcnt);
    183 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    184 		return (EINVAL);
    185 
    186 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    187 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    188 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    189 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    190 		goto out;
    191 
    192 	for (i = 0; i < blkcnt; i++) {
    193 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    194 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    195 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    196 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    197 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    198 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    199 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    200 	}
    201 
    202 	if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    203 		for (i = 0; i < blkcnt; i++) {
    204 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    205 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    206 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    207 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    208 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    209 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    210 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    211 		}
    212 		copyout(blkiov15, SCARG(uap, blkiov),
    213 			blkcnt * sizeof(BLOCK_INFO_15));
    214 	}
    215     out:
    216 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    217 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    218 	return error;
    219 }
    220 #endif
    221 
    222 #define	LFS_MARKV_MAX_BLOCKS	(LFS_MAX_BUFS)
    223 
    224 int
    225 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
    226     int blkcnt)
    227 {
    228 	BLOCK_INFO *blkp;
    229 	IFILE *ifp;
    230 	struct buf *bp;
    231 	struct inode *ip = NULL;
    232 	struct lfs *fs;
    233 	struct mount *mntp;
    234 	struct vnode *vp = NULL;
    235 	ino_t lastino;
    236 	daddr_t b_daddr, v_daddr;
    237 	int cnt, error;
    238 	int do_again = 0;
    239 	int numrefed = 0;
    240 	ino_t maxino;
    241 	size_t obsize;
    242 
    243 	/* number of blocks/inodes that we have already bwrite'ed */
    244 	int nblkwritten, ninowritten;
    245 
    246 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    247 		return (ENOENT);
    248 
    249 	fs = VFSTOUFS(mntp)->um_lfs;
    250 
    251 	if (fs->lfs_ronly)
    252 		return EROFS;
    253 
    254 	maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
    255 		      fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
    256 
    257 	cnt = blkcnt;
    258 
    259 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    260 		return (error);
    261 
    262 	/*
    263 	 * This seglock is just to prevent the fact that we might have to sleep
    264 	 * from allowing the possibility that our blocks might become
    265 	 * invalid.
    266 	 *
    267 	 * It is also important to note here that unless we specify SEGM_CKP,
    268 	 * any Ifile blocks that we might be asked to clean will never get
    269 	 * to the disk.
    270 	 */
    271 	lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    272 
    273 	/* Mark blocks/inodes dirty.  */
    274 	error = 0;
    275 
    276 	/* these were inside the initialization for the for loop */
    277 	v_daddr = LFS_UNUSED_DADDR;
    278 	lastino = LFS_UNUSED_INUM;
    279 	nblkwritten = ninowritten = 0;
    280 	for (blkp = blkiov; cnt--; ++blkp)
    281 	{
    282 		/* Bounds-check incoming data, avoid panic for failed VGET */
    283 		if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
    284 			error = EINVAL;
    285 			goto err3;
    286 		}
    287 		/*
    288 		 * Get the IFILE entry (only once) and see if the file still
    289 		 * exists.
    290 		 */
    291 		if (lastino != blkp->bi_inode) {
    292 			/*
    293 			 * Finish the old file, if there was one.  The presence
    294 			 * of a usable vnode in vp is signaled by a valid v_daddr.
    295 			 */
    296 			if (v_daddr != LFS_UNUSED_DADDR) {
    297 				lfs_vunref(vp);
    298 				numrefed--;
    299 			}
    300 
    301 			/*
    302 			 * Start a new file
    303 			 */
    304 			lastino = blkp->bi_inode;
    305 			if (blkp->bi_inode == LFS_IFILE_INUM)
    306 				v_daddr = fs->lfs_idaddr;
    307 			else {
    308 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    309 				/* XXX fix for force write */
    310 				v_daddr = ifp->if_daddr;
    311 				brelse(bp);
    312 			}
    313 			if (v_daddr == LFS_UNUSED_DADDR)
    314 				continue;
    315 
    316 			/* Get the vnode/inode. */
    317 			error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
    318 					   &vp,
    319 					   (blkp->bi_lbn == LFS_UNUSED_LBN
    320 					    ? blkp->bi_bp
    321 					    : NULL));
    322 
    323 			if (!error) {
    324 				numrefed++;
    325 			}
    326 			if (error) {
    327 				DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
    328 				      " failed with %d (ino %d, segment %d)\n",
    329 				      error, blkp->bi_inode,
    330 				      dtosn(fs, blkp->bi_daddr)));
    331 				/*
    332 				 * If we got EAGAIN, that means that the
    333 				 * Inode was locked.  This is
    334 				 * recoverable: just clean the rest of
    335 				 * this segment, and let the cleaner try
    336 				 * again with another.	(When the
    337 				 * cleaner runs again, this segment will
    338 				 * sort high on the list, since it is
    339 				 * now almost entirely empty.) But, we
    340 				 * still set v_daddr = LFS_UNUSED_ADDR
    341 				 * so as not to test this over and over
    342 				 * again.
    343 				 */
    344 				if (error == EAGAIN) {
    345 					error = 0;
    346 					do_again++;
    347 				}
    348 #ifdef DIAGNOSTIC
    349 				else if (error != ENOENT)
    350 					panic("lfs_markv VFS_VGET FAILED");
    351 #endif
    352 				/* lastino = LFS_UNUSED_INUM; */
    353 				v_daddr = LFS_UNUSED_DADDR;
    354 				vp = NULL;
    355 				ip = NULL;
    356 				continue;
    357 			}
    358 			ip = VTOI(vp);
    359 			ninowritten++;
    360 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    361 			/*
    362 			 * This can only happen if the vnode is dead (or
    363 			 * in any case we can't get it...e.g., it is
    364 			 * inlocked).  Keep going.
    365 			 */
    366 			continue;
    367 		}
    368 
    369 		/* Past this point we are guaranteed that vp, ip are valid. */
    370 
    371 		/* Can't clean VDIROP directories in case of truncation */
    372 		/* XXX - maybe we should mark removed dirs specially? */
    373 		if (vp->v_type == VDIR && (vp->v_flag & VDIROP)) {
    374 			do_again++;
    375 			continue;
    376 		}
    377 
    378 		/* If this BLOCK_INFO didn't contain a block, keep going. */
    379 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    380 			/* XXX need to make sure that the inode gets written in this case */
    381 			/* XXX but only write the inode if it's the right one */
    382 			if (blkp->bi_inode != LFS_IFILE_INUM) {
    383 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    384 				if (ifp->if_daddr == blkp->bi_daddr)
    385 					LFS_SET_UINO(ip, IN_CLEANING);
    386 				brelse(bp);
    387 			}
    388 			continue;
    389 		}
    390 
    391 		b_daddr = 0;
    392 		if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
    393 		    dbtofsb(fs, b_daddr) != blkp->bi_daddr)
    394 		{
    395 			if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
    396 			    dtosn(fs, blkp->bi_daddr))
    397 			{
    398 				DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
    399 				      (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
    400 			}
    401 			do_again++;
    402 			continue;
    403 		}
    404 
    405 		/*
    406 		 * Check block sizes.  The blocks being cleaned come from
    407 		 * disk, so they should have the same size as their on-disk
    408 		 * counterparts.
    409 		 */
    410 		if (blkp->bi_lbn >= 0)
    411 			obsize = blksize(fs, ip, blkp->bi_lbn);
    412 		else
    413 			obsize = fs->lfs_bsize;
    414 		/* Check for fragment size change */
    415 		if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
    416 			obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
    417 		}
    418 		if (obsize != blkp->bi_size) {
    419 			DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
    420 			      " size (%ld != %d), try again\n",
    421 			      blkp->bi_inode, (long long)blkp->bi_lbn,
    422 			      (long) obsize, blkp->bi_size));
    423 			do_again++;
    424 			continue;
    425 		}
    426 
    427 		/*
    428 		 * If we get to here, then we are keeping the block.  If
    429 		 * it is an indirect block, we want to actually put it
    430 		 * in the buffer cache so that it can be updated in the
    431 		 * finish_meta section.	 If it's not, we need to
    432 		 * allocate a fake buffer so that writeseg can perform
    433 		 * the copyin and write the buffer.
    434 		 */
    435 		if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
    436 			/* Data Block */
    437 			bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
    438 					 blkp->bi_size, blkp->bi_bp);
    439 			/* Pretend we used bread() to get it */
    440 			bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
    441 		} else {
    442 			/* Indirect block or ifile */
    443 			if (blkp->bi_size != fs->lfs_bsize &&
    444 			    ip->i_number != LFS_IFILE_INUM)
    445 				panic("lfs_markv: partial indirect block?"
    446 				    " size=%d\n", blkp->bi_size);
    447 			bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
    448 			if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
    449 				/*
    450 				 * The block in question was not found
    451 				 * in the cache; i.e., the block that
    452 				 * getblk() returned is empty.	So, we
    453 				 * can (and should) copy in the
    454 				 * contents, because we've already
    455 				 * determined that this was the right
    456 				 * version of this block on disk.
    457 				 *
    458 				 * And, it can't have changed underneath
    459 				 * us, because we have the segment lock.
    460 				 */
    461 				error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
    462 				if (error)
    463 					goto err2;
    464 			}
    465 		}
    466 		if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
    467 			goto err2;
    468 
    469 		nblkwritten++;
    470 		/*
    471 		 * XXX should account indirect blocks and ifile pages as well
    472 		 */
    473 		if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
    474 		    > LFS_MARKV_MAX_BLOCKS) {
    475 			DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
    476 			      nblkwritten, ninowritten));
    477 			lfs_segwrite(mntp, SEGM_CLEAN);
    478 			nblkwritten = ninowritten = 0;
    479 		}
    480 	}
    481 
    482 	/*
    483 	 * Finish the old file, if there was one
    484 	 */
    485 	if (v_daddr != LFS_UNUSED_DADDR) {
    486 		lfs_vunref(vp);
    487 		numrefed--;
    488 	}
    489 
    490 #ifdef DIAGNOSTIC
    491 	if (numrefed != 0)
    492 		panic("lfs_markv: numrefed=%d", numrefed);
    493 #endif
    494 	DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
    495 	      nblkwritten, ninowritten));
    496 
    497 	/*
    498 	 * The last write has to be SEGM_SYNC, because of calling semantics.
    499 	 * It also has to be SEGM_CKP, because otherwise we could write
    500 	 * over the newly cleaned data contained in a checkpoint, and then
    501 	 * we'd be unhappy at recovery time.
    502 	 */
    503 	lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    504 
    505 	lfs_segunlock(fs);
    506 
    507 	vfs_unbusy(mntp);
    508 	if (error)
    509 		return (error);
    510 	else if (do_again)
    511 		return EAGAIN;
    512 
    513 	return 0;
    514 
    515 err2:
    516 	DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
    517 
    518 	/*
    519 	 * XXX we're here because copyin() failed.
    520 	 * XXX it means that we can't trust the cleanerd.  too bad.
    521 	 * XXX how can we recover from this?
    522 	 */
    523 
    524 err3:
    525 	/*
    526 	 * XXX should do segwrite here anyway?
    527 	 */
    528 
    529 	if (v_daddr != LFS_UNUSED_DADDR) {
    530 		lfs_vunref(vp);
    531 		--numrefed;
    532 	}
    533 
    534 	lfs_segunlock(fs);
    535 	vfs_unbusy(mntp);
    536 #ifdef DIAGNOSTIC
    537 	if (numrefed != 0)
    538 		panic("lfs_markv: numrefed=%d", numrefed);
    539 #endif
    540 
    541 	return (error);
    542 }
    543 
    544 /*
    545  * sys_lfs_bmapv:
    546  *
    547  * This will fill in the current disk address for arrays of blocks.
    548  *
    549  *  0 on success
    550  * -1/errno is return on error.
    551  */
    552 #ifdef USE_64BIT_SYSCALLS
    553 int
    554 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
    555 {
    556 	struct sys_lfs_bmapv_args /* {
    557 		syscallarg(fsid_t *) fsidp;
    558 		syscallarg(struct block_info *) blkiov;
    559 		syscallarg(int) blkcnt;
    560 	} */ *uap = v;
    561 	BLOCK_INFO *blkiov;
    562 	int blkcnt, error;
    563 	fsid_t fsid;
    564 	struct lfs *fs;
    565 	struct mount *mntp;
    566 
    567 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    568 	    NULL)) != 0)
    569 		return (error);
    570 
    571 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    572 		return (error);
    573 
    574 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    575 		return (ENOENT);
    576 	fs = VFSTOUFS(mntp)->um_lfs;
    577 
    578 	blkcnt = SCARG(uap, blkcnt);
    579 	if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    580 		return (EINVAL);
    581 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    582 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    583 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    584 		goto out;
    585 
    586 	if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
    587 		copyout(blkiov, SCARG(uap, blkiov),
    588 			blkcnt * sizeof(BLOCK_INFO));
    589     out:
    590 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    591 	return error;
    592 }
    593 #else
    594 int
    595 sys_lfs_bmapv(struct lwp *l, void *v, register_t *retval)
    596 {
    597 	struct sys_lfs_bmapv_args /* {
    598 		syscallarg(fsid_t *) fsidp;
    599 		syscallarg(struct block_info *) blkiov;
    600 		syscallarg(int) blkcnt;
    601 	} */ *uap = v;
    602 	BLOCK_INFO *blkiov;
    603 	BLOCK_INFO_15 *blkiov15;
    604 	int i, blkcnt, error;
    605 	fsid_t fsid;
    606 	struct lfs *fs;
    607 	struct mount *mntp;
    608 
    609 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    610 	    NULL)) != 0)
    611 		return (error);
    612 
    613 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    614 		return (error);
    615 
    616 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    617 		return (ENOENT);
    618 	fs = VFSTOUFS(mntp)->um_lfs;
    619 
    620 	blkcnt = SCARG(uap, blkcnt);
    621 	if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    622 		return (EINVAL);
    623 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    624 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    625 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    626 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    627 		goto out;
    628 
    629 	for (i = 0; i < blkcnt; i++) {
    630 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    631 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    632 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    633 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    634 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    635 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    636 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    637 	}
    638 
    639 	if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    640 		for (i = 0; i < blkcnt; i++) {
    641 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    642 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    643 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    644 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    645 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    646 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    647 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    648 		}
    649 		copyout(blkiov15, SCARG(uap, blkiov),
    650 			blkcnt * sizeof(BLOCK_INFO_15));
    651 	}
    652     out:
    653 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    654 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    655 	return error;
    656 }
    657 #endif
    658 
    659 int
    660 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
    661 {
    662 	BLOCK_INFO *blkp;
    663 	IFILE *ifp;
    664 	struct buf *bp;
    665 	struct inode *ip = NULL;
    666 	struct lfs *fs;
    667 	struct mount *mntp;
    668 	struct ufsmount *ump;
    669 	struct vnode *vp;
    670 	ino_t lastino;
    671 	daddr_t v_daddr;
    672 	int cnt, error;
    673 	int numrefed = 0;
    674 
    675 	lfs_cleaner_pid = p->p_pid;
    676 
    677 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    678 		return (ENOENT);
    679 
    680 	ump = VFSTOUFS(mntp);
    681 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    682 		return (error);
    683 
    684 	cnt = blkcnt;
    685 
    686 	fs = VFSTOUFS(mntp)->um_lfs;
    687 
    688 	error = 0;
    689 
    690 	/* these were inside the initialization for the for loop */
    691 	v_daddr = LFS_UNUSED_DADDR;
    692 	lastino = LFS_UNUSED_INUM;
    693 	for (blkp = blkiov; cnt--; ++blkp)
    694 	{
    695 		/*
    696 		 * Get the IFILE entry (only once) and see if the file still
    697 		 * exists.
    698 		 */
    699 		if (lastino != blkp->bi_inode) {
    700 			/*
    701 			 * Finish the old file, if there was one.  The presence
    702 			 * of a usable vnode in vp is signaled by a valid
    703 			 * v_daddr.
    704 			 */
    705 			if (v_daddr != LFS_UNUSED_DADDR) {
    706 				lfs_vunref(vp);
    707 				numrefed--;
    708 			}
    709 
    710 			/*
    711 			 * Start a new file
    712 			 */
    713 			lastino = blkp->bi_inode;
    714 			if (blkp->bi_inode == LFS_IFILE_INUM)
    715 				v_daddr = fs->lfs_idaddr;
    716 			else {
    717 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    718 				v_daddr = ifp->if_daddr;
    719 				brelse(bp);
    720 			}
    721 			if (v_daddr == LFS_UNUSED_DADDR) {
    722 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    723 				continue;
    724 			}
    725 			/*
    726 			 * A regular call to VFS_VGET could deadlock
    727 			 * here.  Instead, we try an unlocked access.
    728 			 */
    729 			vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
    730 			if (vp != NULL && !(vp->v_flag & VXLOCK)) {
    731 				ip = VTOI(vp);
    732 				if (lfs_vref(vp)) {
    733 					v_daddr = LFS_UNUSED_DADDR;
    734 					continue;
    735 				}
    736 				numrefed++;
    737 			} else {
    738 				/*
    739 				 * Don't VFS_VGET if we're being unmounted,
    740 				 * since we hold vfs_busy().
    741 				 */
    742 				if (mntp->mnt_iflag & IMNT_UNMOUNT) {
    743 					v_daddr = LFS_UNUSED_DADDR;
    744 					continue;
    745 				}
    746 				error = VFS_VGET(mntp, blkp->bi_inode, &vp);
    747 				if (error) {
    748 					DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
    749 					      "%d failed with %d",
    750 					      blkp->bi_inode,error));
    751 					v_daddr = LFS_UNUSED_DADDR;
    752 					continue;
    753 				} else {
    754 					KASSERT(VOP_ISLOCKED(vp));
    755 					VOP_UNLOCK(vp, 0);
    756 					numrefed++;
    757 				}
    758 			}
    759 			ip = VTOI(vp);
    760 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    761 			/*
    762 			 * This can only happen if the vnode is dead.
    763 			 * Keep going.	Note that we DO NOT set the
    764 			 * bi_addr to anything -- if we failed to get
    765 			 * the vnode, for example, we want to assume
    766 			 * conservatively that all of its blocks *are*
    767 			 * located in the segment in question.
    768 			 * lfs_markv will throw them out if we are
    769 			 * wrong.
    770 			 */
    771 			/* blkp->bi_daddr = LFS_UNUSED_DADDR; */
    772 			continue;
    773 		}
    774 
    775 		/* Past this point we are guaranteed that vp, ip are valid. */
    776 
    777 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    778 			/*
    779 			 * We just want the inode address, which is
    780 			 * conveniently in v_daddr.
    781 			 */
    782 			blkp->bi_daddr = v_daddr;
    783 		} else {
    784 			daddr_t bi_daddr;
    785 
    786 			/* XXX ondisk32 */
    787 			error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
    788 					 &bi_daddr, NULL);
    789 			if (error)
    790 			{
    791 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    792 				continue;
    793 			}
    794 			blkp->bi_daddr = dbtofsb(fs, bi_daddr);
    795 			/* Fill in the block size, too */
    796 			if (blkp->bi_lbn >= 0)
    797 				blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
    798 			else
    799 				blkp->bi_size = fs->lfs_bsize;
    800 		}
    801 	}
    802 
    803 	/*
    804 	 * Finish the old file, if there was one.  The presence
    805 	 * of a usable vnode in vp is signaled by a valid v_daddr.
    806 	 */
    807 	if (v_daddr != LFS_UNUSED_DADDR) {
    808 		lfs_vunref(vp);
    809 		numrefed--;
    810 	}
    811 
    812 #ifdef DIAGNOSTIC
    813 	if (numrefed != 0)
    814 		panic("lfs_bmapv: numrefed=%d", numrefed);
    815 #endif
    816 
    817 	vfs_unbusy(mntp);
    818 
    819 	return 0;
    820 }
    821 
    822 /*
    823  * sys_lfs_segclean:
    824  *
    825  * Mark the segment clean.
    826  *
    827  *  0 on success
    828  * -1/errno is return on error.
    829  */
    830 int
    831 sys_lfs_segclean(struct lwp *l, void *v, register_t *retval)
    832 {
    833 	struct sys_lfs_segclean_args /* {
    834 		syscallarg(fsid_t *) fsidp;
    835 		syscallarg(u_long) segment;
    836 	} */ *uap = v;
    837 	struct lfs *fs;
    838 	struct mount *mntp;
    839 	fsid_t fsid;
    840 	int error;
    841 	unsigned long segnum;
    842 
    843 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    844 	    NULL)) != 0)
    845 		return (error);
    846 
    847 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    848 		return (error);
    849 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    850 		return (ENOENT);
    851 
    852 	fs = VFSTOUFS(mntp)->um_lfs;
    853 	segnum = SCARG(uap, segment);
    854 
    855 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    856 		return (error);
    857 
    858 	lfs_seglock(fs, SEGM_PROT);
    859 	error = lfs_do_segclean(fs, segnum);
    860 	lfs_segunlock(fs);
    861 	vfs_unbusy(mntp);
    862 	return error;
    863 }
    864 
    865 /*
    866  * Actually mark the segment clean.
    867  * Must be called with the segment lock held.
    868  */
    869 int
    870 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
    871 {
    872 	extern int lfs_dostats;
    873 	struct buf *bp;
    874 	CLEANERINFO *cip;
    875 	SEGUSE *sup;
    876 
    877 	if (dtosn(fs, fs->lfs_curseg) == segnum) {
    878 		return (EBUSY);
    879 	}
    880 
    881 	LFS_SEGENTRY(sup, fs, segnum, bp);
    882 	if (sup->su_nbytes) {
    883 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    884 		      " %d live bytes\n", segnum, sup->su_nbytes));
    885 		brelse(bp);
    886 		return (EBUSY);
    887 	}
    888 	if (sup->su_flags & SEGUSE_ACTIVE) {
    889 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    890 		      " segment is active\n", segnum));
    891 		brelse(bp);
    892 		return (EBUSY);
    893 	}
    894 	if (!(sup->su_flags & SEGUSE_DIRTY)) {
    895 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    896 		      " segment is already clean\n", segnum));
    897 		brelse(bp);
    898 		return (EALREADY);
    899 	}
    900 
    901 	fs->lfs_avail += segtod(fs, 1);
    902 	if (sup->su_flags & SEGUSE_SUPERBLOCK)
    903 		fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
    904 	if (fs->lfs_version > 1 && segnum == 0 &&
    905 	    fs->lfs_start < btofsb(fs, LFS_LABELPAD))
    906 		fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    907 	simple_lock(&fs->lfs_interlock);
    908 	fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    909 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    910 	fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    911 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    912 	if (fs->lfs_dmeta < 0)
    913 		fs->lfs_dmeta = 0;
    914 	simple_unlock(&fs->lfs_interlock);
    915 	sup->su_flags &= ~SEGUSE_DIRTY;
    916 	LFS_WRITESEGENTRY(sup, fs, segnum, bp);
    917 
    918 	LFS_CLEANERINFO(cip, fs, bp);
    919 	++cip->clean;
    920 	--cip->dirty;
    921 	fs->lfs_nclean = cip->clean;
    922 	cip->bfree = fs->lfs_bfree;
    923 	simple_lock(&fs->lfs_interlock);
    924 	cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
    925 	wakeup(&fs->lfs_avail);
    926 	simple_unlock(&fs->lfs_interlock);
    927 	(void) LFS_BWRITE_LOG(bp);
    928 
    929 	if (lfs_dostats)
    930 		++lfs_stats.segs_reclaimed;
    931 
    932 	return (0);
    933 }
    934 
    935 /*
    936  * This will block until a segment in file system fsid is written.  A timeout
    937  * in milliseconds may be specified which will awake the cleaner automatically.
    938  * An fsid of -1 means any file system, and a timeout of 0 means forever.
    939  */
    940 int
    941 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
    942 {
    943 	struct mount *mntp;
    944 	void *addr;
    945 	u_long timeout;
    946 	int error;
    947 
    948 	if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
    949 		addr = &lfs_allclean_wakeup;
    950 	else
    951 		addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
    952 	/*
    953 	 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
    954 	 * XXX IS THAT WHAT IS INTENDED?
    955 	 */
    956 	timeout = tvtohz(tv);
    957 	error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
    958 	return (error == ERESTART ? EINTR : 0);
    959 }
    960 
    961 /*
    962  * sys_lfs_segwait:
    963  *
    964  * System call wrapper around lfs_segwait().
    965  *
    966  *  0 on success
    967  *  1 on timeout
    968  * -1/errno is return on error.
    969  */
    970 int
    971 sys_lfs_segwait(struct lwp *l, void *v, register_t *retval)
    972 {
    973 	struct sys_lfs_segwait_args /* {
    974 		syscallarg(fsid_t *) fsidp;
    975 		syscallarg(struct timeval *) tv;
    976 	} */ *uap = v;
    977 	struct timeval atv;
    978 	fsid_t fsid;
    979 	int error;
    980 
    981 	/* XXX need we be su to segwait? */
    982 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    983 	    NULL)) != 0)
    984 		return (error);
    985 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    986 		return (error);
    987 
    988 	if (SCARG(uap, tv)) {
    989 		error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
    990 		if (error)
    991 			return (error);
    992 		if (itimerfix(&atv))
    993 			return (EINVAL);
    994 	} else /* NULL or invalid */
    995 		atv.tv_sec = atv.tv_usec = 0;
    996 	return lfs_segwait(&fsid, &atv);
    997 }
    998 
    999 /*
   1000  * VFS_VGET call specialized for the cleaner.  The cleaner already knows the
   1001  * daddr from the ifile, so don't look it up again.  If the cleaner is
   1002  * processing IINFO structures, it may have the ondisk inode already, so
   1003  * don't go retrieving it again.
   1004  *
   1005  * we lfs_vref, and it is the caller's responsibility to lfs_vunref
   1006  * when finished.
   1007  */
   1008 extern struct lock ufs_hashlock;
   1009 
   1010 int
   1011 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
   1012 {
   1013 	if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
   1014 		if ((*vpp)->v_flag & VXLOCK) {
   1015 			DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VXLOCK\n",
   1016 			      ino));
   1017 			lfs_stats.clean_vnlocked++;
   1018 			return EAGAIN;
   1019 		}
   1020 		if (lfs_vref(*vpp)) {
   1021 			DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
   1022 			      " for ino %d\n", ino));
   1023 			lfs_stats.clean_inlocked++;
   1024 			return EAGAIN;
   1025 		}
   1026 	} else
   1027 		*vpp = NULL;
   1028 
   1029 	return (0);
   1030 }
   1031 
   1032 int
   1033 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp, struct ufs1_dinode *dinp)
   1034 {
   1035 	struct inode *ip;
   1036 	struct ufs1_dinode *dip;
   1037 	struct vnode *vp;
   1038 	struct ufsmount *ump;
   1039 	dev_t dev;
   1040 	int error, retries;
   1041 	struct buf *bp;
   1042 	struct lfs *fs;
   1043 
   1044 	ump = VFSTOUFS(mp);
   1045 	dev = ump->um_dev;
   1046 	fs = ump->um_lfs;
   1047 
   1048 	/*
   1049 	 * Wait until the filesystem is fully mounted before allowing vget
   1050 	 * to complete.	 This prevents possible problems with roll-forward.
   1051 	 */
   1052 	simple_lock(&fs->lfs_interlock);
   1053 	while (fs->lfs_flags & LFS_NOTYET) {
   1054 		ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
   1055 			&fs->lfs_interlock);
   1056 	}
   1057 	simple_unlock(&fs->lfs_interlock);
   1058 
   1059 	/*
   1060 	 * This is playing fast and loose.  Someone may have the inode
   1061 	 * locked, in which case they are going to be distinctly unhappy
   1062 	 * if we trash something.
   1063 	 */
   1064 
   1065 	error = lfs_fasthashget(dev, ino, vpp);
   1066 	if (error != 0 || *vpp != NULL)
   1067 		return (error);
   1068 
   1069 	/*
   1070 	 * getnewvnode(9) will call vfs_busy, which will block if the
   1071 	 * filesystem is being unmounted; but umount(9) is waiting for
   1072 	 * us because we're already holding the fs busy.
   1073 	 * XXXMP
   1074 	 */
   1075 	if (mp->mnt_iflag & IMNT_UNMOUNT) {
   1076 		*vpp = NULL;
   1077 		return EDEADLK;
   1078 	}
   1079 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1080 		*vpp = NULL;
   1081 		return (error);
   1082 	}
   1083 
   1084 	do {
   1085 		error = lfs_fasthashget(dev, ino, vpp);
   1086 		if (error != 0 || *vpp != NULL) {
   1087 			ungetnewvnode(vp);
   1088 			return (error);
   1089 		}
   1090 	} while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
   1091 
   1092 	/* Allocate new vnode/inode. */
   1093 	lfs_vcreate(mp, ino, vp);
   1094 
   1095 	/*
   1096 	 * Put it onto its hash chain and lock it so that other requests for
   1097 	 * this inode will block if they arrive while we are sleeping waiting
   1098 	 * for old data structures to be purged or for the contents of the
   1099 	 * disk portion of this inode to be read.
   1100 	 */
   1101 	ip = VTOI(vp);
   1102 	ufs_ihashins(ip);
   1103 	lockmgr(&ufs_hashlock, LK_RELEASE, 0);
   1104 
   1105 	/*
   1106 	 * XXX
   1107 	 * This may not need to be here, logically it should go down with
   1108 	 * the i_devvp initialization.
   1109 	 * Ask Kirk.
   1110 	 */
   1111 	ip->i_lfs = fs;
   1112 
   1113 	/* Read in the disk contents for the inode, copy into the inode. */
   1114 	if (dinp) {
   1115 		error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
   1116 		if (error) {
   1117 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
   1118 			      " for ino %d\n", ino));
   1119 			ufs_ihashrem(ip);
   1120 
   1121 			/* Unlock and discard unneeded inode. */
   1122 			lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
   1123 			lfs_vunref(vp);
   1124 			*vpp = NULL;
   1125 			return (error);
   1126 		}
   1127 		if (ip->i_number != ino)
   1128 			panic("lfs_fastvget: I was fed the wrong inode!");
   1129 	} else {
   1130 		retries = 0;
   1131 	    again:
   1132 		error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
   1133 			      NOCRED, &bp);
   1134 		if (error) {
   1135 			DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
   1136 			      error));
   1137 			/*
   1138 			 * The inode does not contain anything useful, so it
   1139 			 * would be misleading to leave it on its hash chain.
   1140 			 * Iput() will return it to the free list.
   1141 			 */
   1142 			ufs_ihashrem(ip);
   1143 
   1144 			/* Unlock and discard unneeded inode. */
   1145 			lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
   1146 			lfs_vunref(vp);
   1147 			brelse(bp);
   1148 			*vpp = NULL;
   1149 			return (error);
   1150 		}
   1151 		dip = lfs_ifind(ump->um_lfs, ino, bp);
   1152 		if (dip == NULL) {
   1153 			/* Assume write has not completed yet; try again */
   1154 			bp->b_flags |= B_INVAL;
   1155 			brelse(bp);
   1156 			++retries;
   1157 			if (retries > LFS_IFIND_RETRIES)
   1158 				panic("lfs_fastvget: dinode not found");
   1159 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
   1160 			      " retrying...\n"));
   1161 			goto again;
   1162 		}
   1163 		*ip->i_din.ffs1_din = *dip;
   1164 		brelse(bp);
   1165 	}
   1166 	lfs_vinit(mp, &vp);
   1167 
   1168 	*vpp = vp;
   1169 
   1170 	KASSERT(VOP_ISLOCKED(vp));
   1171 	VOP_UNLOCK(vp, 0);
   1172 
   1173 	return (0);
   1174 }
   1175 
   1176 /*
   1177  * Make up a "fake" cleaner buffer, copy the data from userland into it.
   1178  */
   1179 struct buf *
   1180 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
   1181 {
   1182 	struct buf *bp;
   1183 	int error;
   1184 
   1185 	KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
   1186 
   1187 	bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
   1188 	error = copyin(uaddr, bp->b_data, size);
   1189 	if (error) {
   1190 		lfs_freebuf(fs, bp);
   1191 		return NULL;
   1192 	}
   1193 	KDASSERT(bp->b_iodone == lfs_callback);
   1194 
   1195 #if 0
   1196 	simple_lock(&fs->lfs_interlock);
   1197 	++fs->lfs_iocount;
   1198 	simple_unlock(&fs->lfs_interlock);
   1199 #endif
   1200 	bp->b_bufsize = size;
   1201 	bp->b_bcount = size;
   1202 	return (bp);
   1203 }
   1204