lfs_syscalls.c revision 1.125 1 /* $NetBSD: lfs_syscalls.c,v 1.125 2007/12/20 23:03:14 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.125 2007/12/20 23:03:14 dsl Exp $");
71
72 #ifndef LFS
73 # define LFS /* for prototypes in syscallargs.h */
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/buf.h>
80 #include <sys/mount.h>
81 #include <sys/vnode.h>
82 #include <sys/kernel.h>
83 #include <sys/kauth.h>
84 #include <sys/syscallargs.h>
85
86 #include <ufs/ufs/inode.h>
87 #include <ufs/ufs/ufsmount.h>
88 #include <ufs/ufs/ufs_extern.h>
89
90 #include <ufs/lfs/lfs.h>
91 #include <ufs/lfs/lfs_extern.h>
92
93 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
94 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
95
96 pid_t lfs_cleaner_pid = 0;
97
98 /*
99 * sys_lfs_markv:
100 *
101 * This will mark inodes and blocks dirty, so they are written into the log.
102 * It will block until all the blocks have been written. The segment create
103 * time passed in the block_info and inode_info structures is used to decide
104 * if the data is valid for each block (in case some process dirtied a block
105 * or inode that is being cleaned between the determination that a block is
106 * live and the lfs_markv call).
107 *
108 * 0 on success
109 * -1/errno is return on error.
110 */
111 #ifdef USE_64BIT_SYSCALLS
112 int
113 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
114 {
115 /* {
116 syscallarg(fsid_t *) fsidp;
117 syscallarg(struct block_info *) blkiov;
118 syscallarg(int) blkcnt;
119 } */
120 BLOCK_INFO *blkiov;
121 int blkcnt, error;
122 fsid_t fsid;
123 struct lfs *fs;
124 struct mount *mntp;
125
126 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
127 NULL)) != 0)
128 return (error);
129
130 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
131 return (error);
132
133 if ((mntp = vfs_getvfs(fsidp)) == NULL)
134 return (ENOENT);
135 fs = VFSTOUFS(mntp)->um_lfs;
136
137 blkcnt = SCARG(uap, blkcnt);
138 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
139 return (EINVAL);
140
141 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
142 if ((error = copyin(SCARG(uap, blkiov), blkiov,
143 blkcnt * sizeof(BLOCK_INFO))) != 0)
144 goto out;
145
146 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
147 copyout(blkiov, SCARG(uap, blkiov),
148 blkcnt * sizeof(BLOCK_INFO));
149 out:
150 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
151 return error;
152 }
153 #else
154 int
155 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
156 {
157 /* {
158 syscallarg(fsid_t *) fsidp;
159 syscallarg(struct block_info *) blkiov;
160 syscallarg(int) blkcnt;
161 } */
162 BLOCK_INFO *blkiov;
163 BLOCK_INFO_15 *blkiov15;
164 int i, blkcnt, error;
165 fsid_t fsid;
166 struct lfs *fs;
167 struct mount *mntp;
168
169 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
170 NULL)) != 0)
171 return (error);
172
173 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
174 return (error);
175
176 if ((mntp = vfs_getvfs(&fsid)) == NULL)
177 return (ENOENT);
178 fs = VFSTOUFS(mntp)->um_lfs;
179
180 blkcnt = SCARG(uap, blkcnt);
181 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
182 return (EINVAL);
183
184 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
185 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
186 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
187 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
188 goto out;
189
190 for (i = 0; i < blkcnt; i++) {
191 blkiov[i].bi_inode = blkiov15[i].bi_inode;
192 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
193 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
194 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
195 blkiov[i].bi_version = blkiov15[i].bi_version;
196 blkiov[i].bi_bp = blkiov15[i].bi_bp;
197 blkiov[i].bi_size = blkiov15[i].bi_size;
198 }
199
200 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
201 for (i = 0; i < blkcnt; i++) {
202 blkiov15[i].bi_inode = blkiov[i].bi_inode;
203 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
204 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
205 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
206 blkiov15[i].bi_version = blkiov[i].bi_version;
207 blkiov15[i].bi_bp = blkiov[i].bi_bp;
208 blkiov15[i].bi_size = blkiov[i].bi_size;
209 }
210 copyout(blkiov15, SCARG(uap, blkiov),
211 blkcnt * sizeof(BLOCK_INFO_15));
212 }
213 out:
214 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
215 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
216 return error;
217 }
218 #endif
219
220 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
221
222 int
223 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
224 int blkcnt)
225 {
226 BLOCK_INFO *blkp;
227 IFILE *ifp;
228 struct buf *bp;
229 struct inode *ip = NULL;
230 struct lfs *fs;
231 struct mount *mntp;
232 struct vnode *vp = NULL;
233 ino_t lastino;
234 daddr_t b_daddr, v_daddr;
235 int cnt, error;
236 int do_again = 0;
237 int numrefed = 0;
238 ino_t maxino;
239 size_t obsize;
240
241 /* number of blocks/inodes that we have already bwrite'ed */
242 int nblkwritten, ninowritten;
243
244 if ((mntp = vfs_getvfs(fsidp)) == NULL)
245 return (ENOENT);
246
247 fs = VFSTOUFS(mntp)->um_lfs;
248
249 if (fs->lfs_ronly)
250 return EROFS;
251
252 maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
253 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
254
255 cnt = blkcnt;
256
257 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
258 return (error);
259
260 /*
261 * This seglock is just to prevent the fact that we might have to sleep
262 * from allowing the possibility that our blocks might become
263 * invalid.
264 *
265 * It is also important to note here that unless we specify SEGM_CKP,
266 * any Ifile blocks that we might be asked to clean will never get
267 * to the disk.
268 */
269 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
270
271 /* Mark blocks/inodes dirty. */
272 error = 0;
273
274 /* these were inside the initialization for the for loop */
275 v_daddr = LFS_UNUSED_DADDR;
276 lastino = LFS_UNUSED_INUM;
277 nblkwritten = ninowritten = 0;
278 for (blkp = blkiov; cnt--; ++blkp)
279 {
280 /* Bounds-check incoming data, avoid panic for failed VGET */
281 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
282 error = EINVAL;
283 goto err3;
284 }
285 /*
286 * Get the IFILE entry (only once) and see if the file still
287 * exists.
288 */
289 if (lastino != blkp->bi_inode) {
290 /*
291 * Finish the old file, if there was one. The presence
292 * of a usable vnode in vp is signaled by a valid v_daddr.
293 */
294 if (v_daddr != LFS_UNUSED_DADDR) {
295 lfs_vunref(vp);
296 numrefed--;
297 }
298
299 /*
300 * Start a new file
301 */
302 lastino = blkp->bi_inode;
303 if (blkp->bi_inode == LFS_IFILE_INUM)
304 v_daddr = fs->lfs_idaddr;
305 else {
306 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
307 /* XXX fix for force write */
308 v_daddr = ifp->if_daddr;
309 brelse(bp, 0);
310 }
311 if (v_daddr == LFS_UNUSED_DADDR)
312 continue;
313
314 /* Get the vnode/inode. */
315 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
316 &vp,
317 (blkp->bi_lbn == LFS_UNUSED_LBN
318 ? blkp->bi_bp
319 : NULL));
320
321 if (!error) {
322 numrefed++;
323 }
324 if (error) {
325 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
326 " failed with %d (ino %d, segment %d)\n",
327 error, blkp->bi_inode,
328 dtosn(fs, blkp->bi_daddr)));
329 /*
330 * If we got EAGAIN, that means that the
331 * Inode was locked. This is
332 * recoverable: just clean the rest of
333 * this segment, and let the cleaner try
334 * again with another. (When the
335 * cleaner runs again, this segment will
336 * sort high on the list, since it is
337 * now almost entirely empty.) But, we
338 * still set v_daddr = LFS_UNUSED_ADDR
339 * so as not to test this over and over
340 * again.
341 */
342 if (error == EAGAIN) {
343 error = 0;
344 do_again++;
345 }
346 #ifdef DIAGNOSTIC
347 else if (error != ENOENT)
348 panic("lfs_markv VFS_VGET FAILED");
349 #endif
350 /* lastino = LFS_UNUSED_INUM; */
351 v_daddr = LFS_UNUSED_DADDR;
352 vp = NULL;
353 ip = NULL;
354 continue;
355 }
356 ip = VTOI(vp);
357 ninowritten++;
358 } else if (v_daddr == LFS_UNUSED_DADDR) {
359 /*
360 * This can only happen if the vnode is dead (or
361 * in any case we can't get it...e.g., it is
362 * inlocked). Keep going.
363 */
364 continue;
365 }
366
367 /* Past this point we are guaranteed that vp, ip are valid. */
368
369 /* Can't clean VU_DIROP directories in case of truncation */
370 /* XXX - maybe we should mark removed dirs specially? */
371 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
372 do_again++;
373 continue;
374 }
375
376 /* If this BLOCK_INFO didn't contain a block, keep going. */
377 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
378 /* XXX need to make sure that the inode gets written in this case */
379 /* XXX but only write the inode if it's the right one */
380 if (blkp->bi_inode != LFS_IFILE_INUM) {
381 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
382 if (ifp->if_daddr == blkp->bi_daddr)
383 LFS_SET_UINO(ip, IN_CLEANING);
384 brelse(bp, 0);
385 }
386 continue;
387 }
388
389 b_daddr = 0;
390 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
391 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
392 {
393 if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
394 dtosn(fs, blkp->bi_daddr))
395 {
396 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
397 (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
398 }
399 do_again++;
400 continue;
401 }
402
403 /*
404 * Check block sizes. The blocks being cleaned come from
405 * disk, so they should have the same size as their on-disk
406 * counterparts.
407 */
408 if (blkp->bi_lbn >= 0)
409 obsize = blksize(fs, ip, blkp->bi_lbn);
410 else
411 obsize = fs->lfs_bsize;
412 /* Check for fragment size change */
413 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
414 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
415 }
416 if (obsize != blkp->bi_size) {
417 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
418 " size (%ld != %d), try again\n",
419 blkp->bi_inode, (long long)blkp->bi_lbn,
420 (long) obsize, blkp->bi_size));
421 do_again++;
422 continue;
423 }
424
425 /*
426 * If we get to here, then we are keeping the block. If
427 * it is an indirect block, we want to actually put it
428 * in the buffer cache so that it can be updated in the
429 * finish_meta section. If it's not, we need to
430 * allocate a fake buffer so that writeseg can perform
431 * the copyin and write the buffer.
432 */
433 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
434 /* Data Block */
435 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
436 blkp->bi_size, blkp->bi_bp);
437 /* Pretend we used bread() to get it */
438 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
439 } else {
440 /* Indirect block or ifile */
441 if (blkp->bi_size != fs->lfs_bsize &&
442 ip->i_number != LFS_IFILE_INUM)
443 panic("lfs_markv: partial indirect block?"
444 " size=%d\n", blkp->bi_size);
445 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
446 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
447 /*
448 * The block in question was not found
449 * in the cache; i.e., the block that
450 * getblk() returned is empty. So, we
451 * can (and should) copy in the
452 * contents, because we've already
453 * determined that this was the right
454 * version of this block on disk.
455 *
456 * And, it can't have changed underneath
457 * us, because we have the segment lock.
458 */
459 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
460 if (error)
461 goto err2;
462 }
463 }
464 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
465 goto err2;
466
467 nblkwritten++;
468 /*
469 * XXX should account indirect blocks and ifile pages as well
470 */
471 if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
472 > LFS_MARKV_MAX_BLOCKS) {
473 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
474 nblkwritten, ninowritten));
475 lfs_segwrite(mntp, SEGM_CLEAN);
476 nblkwritten = ninowritten = 0;
477 }
478 }
479
480 /*
481 * Finish the old file, if there was one
482 */
483 if (v_daddr != LFS_UNUSED_DADDR) {
484 lfs_vunref(vp);
485 numrefed--;
486 }
487
488 #ifdef DIAGNOSTIC
489 if (numrefed != 0)
490 panic("lfs_markv: numrefed=%d", numrefed);
491 #endif
492 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
493 nblkwritten, ninowritten));
494
495 /*
496 * The last write has to be SEGM_SYNC, because of calling semantics.
497 * It also has to be SEGM_CKP, because otherwise we could write
498 * over the newly cleaned data contained in a checkpoint, and then
499 * we'd be unhappy at recovery time.
500 */
501 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
502
503 lfs_segunlock(fs);
504
505 vfs_unbusy(mntp);
506 if (error)
507 return (error);
508 else if (do_again)
509 return EAGAIN;
510
511 return 0;
512
513 err2:
514 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
515
516 /*
517 * XXX we're here because copyin() failed.
518 * XXX it means that we can't trust the cleanerd. too bad.
519 * XXX how can we recover from this?
520 */
521
522 err3:
523 /*
524 * XXX should do segwrite here anyway?
525 */
526
527 if (v_daddr != LFS_UNUSED_DADDR) {
528 lfs_vunref(vp);
529 --numrefed;
530 }
531
532 lfs_segunlock(fs);
533 vfs_unbusy(mntp);
534 #ifdef DIAGNOSTIC
535 if (numrefed != 0)
536 panic("lfs_markv: numrefed=%d", numrefed);
537 #endif
538
539 return (error);
540 }
541
542 /*
543 * sys_lfs_bmapv:
544 *
545 * This will fill in the current disk address for arrays of blocks.
546 *
547 * 0 on success
548 * -1/errno is return on error.
549 */
550 #ifdef USE_64BIT_SYSCALLS
551 int
552 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
553 {
554 /* {
555 syscallarg(fsid_t *) fsidp;
556 syscallarg(struct block_info *) blkiov;
557 syscallarg(int) blkcnt;
558 } */
559 BLOCK_INFO *blkiov;
560 int blkcnt, error;
561 fsid_t fsid;
562 struct lfs *fs;
563 struct mount *mntp;
564
565 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
566 NULL)) != 0)
567 return (error);
568
569 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
570 return (error);
571
572 if ((mntp = vfs_getvfs(&fsid)) == NULL)
573 return (ENOENT);
574 fs = VFSTOUFS(mntp)->um_lfs;
575
576 blkcnt = SCARG(uap, blkcnt);
577 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
578 return (EINVAL);
579 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
580 if ((error = copyin(SCARG(uap, blkiov), blkiov,
581 blkcnt * sizeof(BLOCK_INFO))) != 0)
582 goto out;
583
584 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
585 copyout(blkiov, SCARG(uap, blkiov),
586 blkcnt * sizeof(BLOCK_INFO));
587 out:
588 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
589 return error;
590 }
591 #else
592 int
593 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
594 {
595 /* {
596 syscallarg(fsid_t *) fsidp;
597 syscallarg(struct block_info *) blkiov;
598 syscallarg(int) blkcnt;
599 } */
600 BLOCK_INFO *blkiov;
601 BLOCK_INFO_15 *blkiov15;
602 int i, blkcnt, error;
603 fsid_t fsid;
604 struct lfs *fs;
605 struct mount *mntp;
606
607 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
608 NULL)) != 0)
609 return (error);
610
611 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
612 return (error);
613
614 if ((mntp = vfs_getvfs(&fsid)) == NULL)
615 return (ENOENT);
616 fs = VFSTOUFS(mntp)->um_lfs;
617
618 blkcnt = SCARG(uap, blkcnt);
619 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
620 return (EINVAL);
621 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
622 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
623 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
624 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
625 goto out;
626
627 for (i = 0; i < blkcnt; i++) {
628 blkiov[i].bi_inode = blkiov15[i].bi_inode;
629 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
630 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
631 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
632 blkiov[i].bi_version = blkiov15[i].bi_version;
633 blkiov[i].bi_bp = blkiov15[i].bi_bp;
634 blkiov[i].bi_size = blkiov15[i].bi_size;
635 }
636
637 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
638 for (i = 0; i < blkcnt; i++) {
639 blkiov15[i].bi_inode = blkiov[i].bi_inode;
640 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
641 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
642 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
643 blkiov15[i].bi_version = blkiov[i].bi_version;
644 blkiov15[i].bi_bp = blkiov[i].bi_bp;
645 blkiov15[i].bi_size = blkiov[i].bi_size;
646 }
647 copyout(blkiov15, SCARG(uap, blkiov),
648 blkcnt * sizeof(BLOCK_INFO_15));
649 }
650 out:
651 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
652 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
653 return error;
654 }
655 #endif
656
657 int
658 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
659 {
660 BLOCK_INFO *blkp;
661 IFILE *ifp;
662 struct buf *bp;
663 struct inode *ip = NULL;
664 struct lfs *fs;
665 struct mount *mntp;
666 struct ufsmount *ump;
667 struct vnode *vp;
668 ino_t lastino;
669 daddr_t v_daddr;
670 int cnt, error;
671 int numrefed = 0;
672
673 lfs_cleaner_pid = p->p_pid;
674
675 if ((mntp = vfs_getvfs(fsidp)) == NULL)
676 return (ENOENT);
677
678 ump = VFSTOUFS(mntp);
679 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
680 return (error);
681
682 cnt = blkcnt;
683
684 fs = VFSTOUFS(mntp)->um_lfs;
685
686 error = 0;
687
688 /* these were inside the initialization for the for loop */
689 v_daddr = LFS_UNUSED_DADDR;
690 lastino = LFS_UNUSED_INUM;
691 for (blkp = blkiov; cnt--; ++blkp)
692 {
693 /*
694 * Get the IFILE entry (only once) and see if the file still
695 * exists.
696 */
697 if (lastino != blkp->bi_inode) {
698 /*
699 * Finish the old file, if there was one. The presence
700 * of a usable vnode in vp is signaled by a valid
701 * v_daddr.
702 */
703 if (v_daddr != LFS_UNUSED_DADDR) {
704 lfs_vunref(vp);
705 numrefed--;
706 }
707
708 /*
709 * Start a new file
710 */
711 lastino = blkp->bi_inode;
712 if (blkp->bi_inode == LFS_IFILE_INUM)
713 v_daddr = fs->lfs_idaddr;
714 else {
715 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
716 v_daddr = ifp->if_daddr;
717 brelse(bp, 0);
718 }
719 if (v_daddr == LFS_UNUSED_DADDR) {
720 blkp->bi_daddr = LFS_UNUSED_DADDR;
721 continue;
722 }
723 /*
724 * A regular call to VFS_VGET could deadlock
725 * here. Instead, we try an unlocked access.
726 */
727 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
728 if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
729 ip = VTOI(vp);
730 if (lfs_vref(vp)) {
731 v_daddr = LFS_UNUSED_DADDR;
732 continue;
733 }
734 numrefed++;
735 } else {
736 /*
737 * Don't VFS_VGET if we're being unmounted,
738 * since we hold vfs_busy().
739 */
740 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
741 v_daddr = LFS_UNUSED_DADDR;
742 continue;
743 }
744 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
745 if (error) {
746 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
747 "%d failed with %d",
748 blkp->bi_inode,error));
749 v_daddr = LFS_UNUSED_DADDR;
750 continue;
751 } else {
752 KASSERT(VOP_ISLOCKED(vp));
753 VOP_UNLOCK(vp, 0);
754 numrefed++;
755 }
756 }
757 ip = VTOI(vp);
758 } else if (v_daddr == LFS_UNUSED_DADDR) {
759 /*
760 * This can only happen if the vnode is dead.
761 * Keep going. Note that we DO NOT set the
762 * bi_addr to anything -- if we failed to get
763 * the vnode, for example, we want to assume
764 * conservatively that all of its blocks *are*
765 * located in the segment in question.
766 * lfs_markv will throw them out if we are
767 * wrong.
768 */
769 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
770 continue;
771 }
772
773 /* Past this point we are guaranteed that vp, ip are valid. */
774
775 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
776 /*
777 * We just want the inode address, which is
778 * conveniently in v_daddr.
779 */
780 blkp->bi_daddr = v_daddr;
781 } else {
782 daddr_t bi_daddr;
783
784 /* XXX ondisk32 */
785 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
786 &bi_daddr, NULL);
787 if (error)
788 {
789 blkp->bi_daddr = LFS_UNUSED_DADDR;
790 continue;
791 }
792 blkp->bi_daddr = dbtofsb(fs, bi_daddr);
793 /* Fill in the block size, too */
794 if (blkp->bi_lbn >= 0)
795 blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
796 else
797 blkp->bi_size = fs->lfs_bsize;
798 }
799 }
800
801 /*
802 * Finish the old file, if there was one. The presence
803 * of a usable vnode in vp is signaled by a valid v_daddr.
804 */
805 if (v_daddr != LFS_UNUSED_DADDR) {
806 lfs_vunref(vp);
807 numrefed--;
808 }
809
810 #ifdef DIAGNOSTIC
811 if (numrefed != 0)
812 panic("lfs_bmapv: numrefed=%d", numrefed);
813 #endif
814
815 vfs_unbusy(mntp);
816
817 return 0;
818 }
819
820 /*
821 * sys_lfs_segclean:
822 *
823 * Mark the segment clean.
824 *
825 * 0 on success
826 * -1/errno is return on error.
827 */
828 int
829 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
830 {
831 /* {
832 syscallarg(fsid_t *) fsidp;
833 syscallarg(u_long) segment;
834 } */
835 struct lfs *fs;
836 struct mount *mntp;
837 fsid_t fsid;
838 int error;
839 unsigned long segnum;
840
841 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
842 NULL)) != 0)
843 return (error);
844
845 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
846 return (error);
847 if ((mntp = vfs_getvfs(&fsid)) == NULL)
848 return (ENOENT);
849
850 fs = VFSTOUFS(mntp)->um_lfs;
851 segnum = SCARG(uap, segment);
852
853 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
854 return (error);
855
856 lfs_seglock(fs, SEGM_PROT);
857 error = lfs_do_segclean(fs, segnum);
858 lfs_segunlock(fs);
859 vfs_unbusy(mntp);
860 return error;
861 }
862
863 /*
864 * Actually mark the segment clean.
865 * Must be called with the segment lock held.
866 */
867 int
868 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
869 {
870 extern int lfs_dostats;
871 struct buf *bp;
872 CLEANERINFO *cip;
873 SEGUSE *sup;
874
875 if (dtosn(fs, fs->lfs_curseg) == segnum) {
876 return (EBUSY);
877 }
878
879 LFS_SEGENTRY(sup, fs, segnum, bp);
880 if (sup->su_nbytes) {
881 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
882 " %d live bytes\n", segnum, sup->su_nbytes));
883 brelse(bp, 0);
884 return (EBUSY);
885 }
886 if (sup->su_flags & SEGUSE_ACTIVE) {
887 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
888 " segment is active\n", segnum));
889 brelse(bp, 0);
890 return (EBUSY);
891 }
892 if (!(sup->su_flags & SEGUSE_DIRTY)) {
893 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
894 " segment is already clean\n", segnum));
895 brelse(bp, 0);
896 return (EALREADY);
897 }
898
899 fs->lfs_avail += segtod(fs, 1);
900 if (sup->su_flags & SEGUSE_SUPERBLOCK)
901 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
902 if (fs->lfs_version > 1 && segnum == 0 &&
903 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
904 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
905 simple_lock(&fs->lfs_interlock);
906 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
907 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
908 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
909 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
910 if (fs->lfs_dmeta < 0)
911 fs->lfs_dmeta = 0;
912 simple_unlock(&fs->lfs_interlock);
913 sup->su_flags &= ~SEGUSE_DIRTY;
914 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
915
916 LFS_CLEANERINFO(cip, fs, bp);
917 ++cip->clean;
918 --cip->dirty;
919 fs->lfs_nclean = cip->clean;
920 cip->bfree = fs->lfs_bfree;
921 simple_lock(&fs->lfs_interlock);
922 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
923 wakeup(&fs->lfs_avail);
924 simple_unlock(&fs->lfs_interlock);
925 (void) LFS_BWRITE_LOG(bp);
926
927 if (lfs_dostats)
928 ++lfs_stats.segs_reclaimed;
929
930 return (0);
931 }
932
933 /*
934 * This will block until a segment in file system fsid is written. A timeout
935 * in milliseconds may be specified which will awake the cleaner automatically.
936 * An fsid of -1 means any file system, and a timeout of 0 means forever.
937 */
938 int
939 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
940 {
941 struct mount *mntp;
942 void *addr;
943 u_long timeout;
944 int error;
945
946 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
947 addr = &lfs_allclean_wakeup;
948 else
949 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
950 /*
951 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
952 * XXX IS THAT WHAT IS INTENDED?
953 */
954 timeout = tvtohz(tv);
955 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
956 return (error == ERESTART ? EINTR : 0);
957 }
958
959 /*
960 * sys_lfs_segwait:
961 *
962 * System call wrapper around lfs_segwait().
963 *
964 * 0 on success
965 * 1 on timeout
966 * -1/errno is return on error.
967 */
968 int
969 sys_lfs_segwait(struct lwp *l, const struct sys_lfs_segwait_args *uap, register_t *retval)
970 {
971 /* {
972 syscallarg(fsid_t *) fsidp;
973 syscallarg(struct timeval *) tv;
974 } */
975 struct timeval atv;
976 fsid_t fsid;
977 int error;
978
979 /* XXX need we be su to segwait? */
980 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
981 NULL)) != 0)
982 return (error);
983 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
984 return (error);
985
986 if (SCARG(uap, tv)) {
987 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
988 if (error)
989 return (error);
990 if (itimerfix(&atv))
991 return (EINVAL);
992 } else /* NULL or invalid */
993 atv.tv_sec = atv.tv_usec = 0;
994 return lfs_segwait(&fsid, &atv);
995 }
996
997 /*
998 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
999 * daddr from the ifile, so don't look it up again. If the cleaner is
1000 * processing IINFO structures, it may have the ondisk inode already, so
1001 * don't go retrieving it again.
1002 *
1003 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1004 * when finished.
1005 */
1006 extern kmutex_t ufs_hashlock;
1007
1008 int
1009 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1010 {
1011 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
1012 if ((*vpp)->v_iflag & VI_XLOCK) {
1013 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
1014 ino));
1015 lfs_stats.clean_vnlocked++;
1016 return EAGAIN;
1017 }
1018 if (lfs_vref(*vpp)) {
1019 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1020 " for ino %d\n", ino));
1021 lfs_stats.clean_inlocked++;
1022 return EAGAIN;
1023 }
1024 } else
1025 *vpp = NULL;
1026
1027 return (0);
1028 }
1029
1030 int
1031 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
1032 struct ufs1_dinode *dinp)
1033 {
1034 struct inode *ip;
1035 struct ufs1_dinode *dip;
1036 struct vnode *vp;
1037 struct ufsmount *ump;
1038 dev_t dev;
1039 int error, retries;
1040 struct buf *bp;
1041 struct lfs *fs;
1042
1043 ump = VFSTOUFS(mp);
1044 dev = ump->um_dev;
1045 fs = ump->um_lfs;
1046
1047 /*
1048 * Wait until the filesystem is fully mounted before allowing vget
1049 * to complete. This prevents possible problems with roll-forward.
1050 */
1051 simple_lock(&fs->lfs_interlock);
1052 while (fs->lfs_flags & LFS_NOTYET) {
1053 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1054 &fs->lfs_interlock);
1055 }
1056 simple_unlock(&fs->lfs_interlock);
1057
1058 /*
1059 * This is playing fast and loose. Someone may have the inode
1060 * locked, in which case they are going to be distinctly unhappy
1061 * if we trash something.
1062 */
1063
1064 error = lfs_fasthashget(dev, ino, vpp);
1065 if (error != 0 || *vpp != NULL)
1066 return (error);
1067
1068 /*
1069 * getnewvnode(9) will call vfs_busy, which will block if the
1070 * filesystem is being unmounted; but umount(9) is waiting for
1071 * us because we're already holding the fs busy.
1072 * XXXMP
1073 */
1074 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1075 *vpp = NULL;
1076 return EDEADLK;
1077 }
1078 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1079 *vpp = NULL;
1080 return (error);
1081 }
1082
1083 mutex_enter(&ufs_hashlock);
1084 error = lfs_fasthashget(dev, ino, vpp);
1085 if (error != 0 || *vpp != NULL) {
1086 mutex_exit(&ufs_hashlock);
1087 ungetnewvnode(vp);
1088 return (error);
1089 }
1090
1091 /* Allocate new vnode/inode. */
1092 lfs_vcreate(mp, ino, vp);
1093
1094 /*
1095 * Put it onto its hash chain and lock it so that other requests for
1096 * this inode will block if they arrive while we are sleeping waiting
1097 * for old data structures to be purged or for the contents of the
1098 * disk portion of this inode to be read.
1099 */
1100 ip = VTOI(vp);
1101 ufs_ihashins(ip);
1102 mutex_exit(&ufs_hashlock);
1103
1104 /*
1105 * XXX
1106 * This may not need to be here, logically it should go down with
1107 * the i_devvp initialization.
1108 * Ask Kirk.
1109 */
1110 ip->i_lfs = fs;
1111
1112 /* Read in the disk contents for the inode, copy into the inode. */
1113 if (dinp) {
1114 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
1115 if (error) {
1116 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1117 " for ino %d\n", ino));
1118 ufs_ihashrem(ip);
1119
1120 /* Unlock and discard unneeded inode. */
1121 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1122 lfs_vunref(vp);
1123 *vpp = NULL;
1124 return (error);
1125 }
1126 if (ip->i_number != ino)
1127 panic("lfs_fastvget: I was fed the wrong inode!");
1128 } else {
1129 retries = 0;
1130 again:
1131 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1132 NOCRED, &bp);
1133 if (error) {
1134 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1135 error));
1136 /*
1137 * The inode does not contain anything useful, so it
1138 * would be misleading to leave it on its hash chain.
1139 * Iput() will return it to the free list.
1140 */
1141 ufs_ihashrem(ip);
1142
1143 /* Unlock and discard unneeded inode. */
1144 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1145 lfs_vunref(vp);
1146 brelse(bp, 0);
1147 *vpp = NULL;
1148 return (error);
1149 }
1150 dip = lfs_ifind(ump->um_lfs, ino, bp);
1151 if (dip == NULL) {
1152 /* Assume write has not completed yet; try again */
1153 brelse(bp, BC_INVAL);
1154 ++retries;
1155 if (retries > LFS_IFIND_RETRIES)
1156 panic("lfs_fastvget: dinode not found");
1157 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1158 " retrying...\n"));
1159 goto again;
1160 }
1161 *ip->i_din.ffs1_din = *dip;
1162 brelse(bp, 0);
1163 }
1164 lfs_vinit(mp, &vp);
1165
1166 *vpp = vp;
1167
1168 KASSERT(VOP_ISLOCKED(vp));
1169 VOP_UNLOCK(vp, 0);
1170
1171 return (0);
1172 }
1173
1174 /*
1175 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1176 */
1177 struct buf *
1178 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
1179 {
1180 struct buf *bp;
1181 int error;
1182
1183 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1184
1185 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1186 error = copyin(uaddr, bp->b_data, size);
1187 if (error) {
1188 lfs_freebuf(fs, bp);
1189 return NULL;
1190 }
1191 KDASSERT(bp->b_iodone == lfs_callback);
1192
1193 #if 0
1194 simple_lock(&fs->lfs_interlock);
1195 ++fs->lfs_iocount;
1196 simple_unlock(&fs->lfs_interlock);
1197 #endif
1198 bp->b_bufsize = size;
1199 bp->b_bcount = size;
1200 return (bp);
1201 }
1202