Home | History | Annotate | Line # | Download | only in lfs
lfs_syscalls.c revision 1.127
      1 /*	$NetBSD: lfs_syscalls.c,v 1.127 2008/01/30 09:50:27 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*-
     39  * Copyright (c) 1991, 1993, 1994
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_syscalls.c	8.10 (Berkeley) 5/14/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.127 2008/01/30 09:50:27 ad Exp $");
     71 
     72 #ifndef LFS
     73 # define LFS		/* for prototypes in syscallargs.h */
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/proc.h>
     79 #include <sys/buf.h>
     80 #include <sys/mount.h>
     81 #include <sys/vnode.h>
     82 #include <sys/kernel.h>
     83 #include <sys/kauth.h>
     84 #include <sys/syscallargs.h>
     85 
     86 #include <ufs/ufs/inode.h>
     87 #include <ufs/ufs/ufsmount.h>
     88 #include <ufs/ufs/ufs_extern.h>
     89 
     90 #include <ufs/lfs/lfs.h>
     91 #include <ufs/lfs/lfs_extern.h>
     92 
     93 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
     94 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
     95 
     96 pid_t lfs_cleaner_pid = 0;
     97 
     98 /*
     99  * sys_lfs_markv:
    100  *
    101  * This will mark inodes and blocks dirty, so they are written into the log.
    102  * It will block until all the blocks have been written.  The segment create
    103  * time passed in the block_info and inode_info structures is used to decide
    104  * if the data is valid for each block (in case some process dirtied a block
    105  * or inode that is being cleaned between the determination that a block is
    106  * live and the lfs_markv call).
    107  *
    108  *  0 on success
    109  * -1/errno is return on error.
    110  */
    111 #ifdef USE_64BIT_SYSCALLS
    112 int
    113 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
    114 {
    115 	/* {
    116 		syscallarg(fsid_t *) fsidp;
    117 		syscallarg(struct block_info *) blkiov;
    118 		syscallarg(int) blkcnt;
    119 	} */
    120 	BLOCK_INFO *blkiov;
    121 	int blkcnt, error;
    122 	fsid_t fsid;
    123 	struct lfs *fs;
    124 	struct mount *mntp;
    125 
    126 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    127 	    NULL)) != 0)
    128 		return (error);
    129 
    130 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    131 		return (error);
    132 
    133 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    134 		return (ENOENT);
    135 	fs = VFSTOUFS(mntp)->um_lfs;
    136 
    137 	blkcnt = SCARG(uap, blkcnt);
    138 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    139 		return (EINVAL);
    140 
    141 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    142 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    143 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    144 		goto out;
    145 
    146 	if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
    147 		copyout(blkiov, SCARG(uap, blkiov),
    148 			blkcnt * sizeof(BLOCK_INFO));
    149     out:
    150 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    151 	return error;
    152 }
    153 #else
    154 int
    155 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
    156 {
    157 	/* {
    158 		syscallarg(fsid_t *) fsidp;
    159 		syscallarg(struct block_info *) blkiov;
    160 		syscallarg(int) blkcnt;
    161 	} */
    162 	BLOCK_INFO *blkiov;
    163 	BLOCK_INFO_15 *blkiov15;
    164 	int i, blkcnt, error;
    165 	fsid_t fsid;
    166 	struct lfs *fs;
    167 	struct mount *mntp;
    168 
    169 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    170 	    NULL)) != 0)
    171 		return (error);
    172 
    173 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    174 		return (error);
    175 
    176 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    177 		return (ENOENT);
    178 	fs = VFSTOUFS(mntp)->um_lfs;
    179 
    180 	blkcnt = SCARG(uap, blkcnt);
    181 	if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
    182 		return (EINVAL);
    183 
    184 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    185 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    186 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    187 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    188 		goto out;
    189 
    190 	for (i = 0; i < blkcnt; i++) {
    191 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    192 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    193 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    194 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    195 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    196 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    197 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    198 	}
    199 
    200 	if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    201 		for (i = 0; i < blkcnt; i++) {
    202 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    203 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    204 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    205 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    206 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    207 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    208 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    209 		}
    210 		copyout(blkiov15, SCARG(uap, blkiov),
    211 			blkcnt * sizeof(BLOCK_INFO_15));
    212 	}
    213     out:
    214 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    215 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    216 	return error;
    217 }
    218 #endif
    219 
    220 #define	LFS_MARKV_MAX_BLOCKS	(LFS_MAX_BUFS)
    221 
    222 int
    223 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
    224     int blkcnt)
    225 {
    226 	BLOCK_INFO *blkp;
    227 	IFILE *ifp;
    228 	struct buf *bp;
    229 	struct inode *ip = NULL;
    230 	struct lfs *fs;
    231 	struct mount *mntp;
    232 	struct vnode *vp = NULL;
    233 	ino_t lastino;
    234 	daddr_t b_daddr, v_daddr;
    235 	int cnt, error;
    236 	int do_again = 0;
    237 	int numrefed = 0;
    238 	ino_t maxino;
    239 	size_t obsize;
    240 
    241 	/* number of blocks/inodes that we have already bwrite'ed */
    242 	int nblkwritten, ninowritten;
    243 
    244 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    245 		return (ENOENT);
    246 
    247 	fs = VFSTOUFS(mntp)->um_lfs;
    248 
    249 	if (fs->lfs_ronly)
    250 		return EROFS;
    251 
    252 	maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks)) -
    253 		      fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
    254 
    255 	cnt = blkcnt;
    256 
    257 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    258 		return (error);
    259 
    260 	/*
    261 	 * This seglock is just to prevent the fact that we might have to sleep
    262 	 * from allowing the possibility that our blocks might become
    263 	 * invalid.
    264 	 *
    265 	 * It is also important to note here that unless we specify SEGM_CKP,
    266 	 * any Ifile blocks that we might be asked to clean will never get
    267 	 * to the disk.
    268 	 */
    269 	lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    270 
    271 	/* Mark blocks/inodes dirty.  */
    272 	error = 0;
    273 
    274 	/* these were inside the initialization for the for loop */
    275 	v_daddr = LFS_UNUSED_DADDR;
    276 	lastino = LFS_UNUSED_INUM;
    277 	nblkwritten = ninowritten = 0;
    278 	for (blkp = blkiov; cnt--; ++blkp)
    279 	{
    280 		/* Bounds-check incoming data, avoid panic for failed VGET */
    281 		if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
    282 			error = EINVAL;
    283 			goto err3;
    284 		}
    285 		/*
    286 		 * Get the IFILE entry (only once) and see if the file still
    287 		 * exists.
    288 		 */
    289 		if (lastino != blkp->bi_inode) {
    290 			/*
    291 			 * Finish the old file, if there was one.  The presence
    292 			 * of a usable vnode in vp is signaled by a valid v_daddr.
    293 			 */
    294 			if (v_daddr != LFS_UNUSED_DADDR) {
    295 				lfs_vunref(vp);
    296 				numrefed--;
    297 			}
    298 
    299 			/*
    300 			 * Start a new file
    301 			 */
    302 			lastino = blkp->bi_inode;
    303 			if (blkp->bi_inode == LFS_IFILE_INUM)
    304 				v_daddr = fs->lfs_idaddr;
    305 			else {
    306 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    307 				/* XXX fix for force write */
    308 				v_daddr = ifp->if_daddr;
    309 				brelse(bp, 0);
    310 			}
    311 			if (v_daddr == LFS_UNUSED_DADDR)
    312 				continue;
    313 
    314 			/* Get the vnode/inode. */
    315 			error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
    316 					   &vp,
    317 					   (blkp->bi_lbn == LFS_UNUSED_LBN
    318 					    ? blkp->bi_bp
    319 					    : NULL));
    320 
    321 			if (!error) {
    322 				numrefed++;
    323 			}
    324 			if (error) {
    325 				DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
    326 				      " failed with %d (ino %d, segment %d)\n",
    327 				      error, blkp->bi_inode,
    328 				      dtosn(fs, blkp->bi_daddr)));
    329 				/*
    330 				 * If we got EAGAIN, that means that the
    331 				 * Inode was locked.  This is
    332 				 * recoverable: just clean the rest of
    333 				 * this segment, and let the cleaner try
    334 				 * again with another.	(When the
    335 				 * cleaner runs again, this segment will
    336 				 * sort high on the list, since it is
    337 				 * now almost entirely empty.) But, we
    338 				 * still set v_daddr = LFS_UNUSED_ADDR
    339 				 * so as not to test this over and over
    340 				 * again.
    341 				 */
    342 				if (error == EAGAIN) {
    343 					error = 0;
    344 					do_again++;
    345 				}
    346 #ifdef DIAGNOSTIC
    347 				else if (error != ENOENT)
    348 					panic("lfs_markv VFS_VGET FAILED");
    349 #endif
    350 				/* lastino = LFS_UNUSED_INUM; */
    351 				v_daddr = LFS_UNUSED_DADDR;
    352 				vp = NULL;
    353 				ip = NULL;
    354 				continue;
    355 			}
    356 			ip = VTOI(vp);
    357 			ninowritten++;
    358 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    359 			/*
    360 			 * This can only happen if the vnode is dead (or
    361 			 * in any case we can't get it...e.g., it is
    362 			 * inlocked).  Keep going.
    363 			 */
    364 			continue;
    365 		}
    366 
    367 		/* Past this point we are guaranteed that vp, ip are valid. */
    368 
    369 		/* Can't clean VU_DIROP directories in case of truncation */
    370 		/* XXX - maybe we should mark removed dirs specially? */
    371 		if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
    372 			do_again++;
    373 			continue;
    374 		}
    375 
    376 		/* If this BLOCK_INFO didn't contain a block, keep going. */
    377 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    378 			/* XXX need to make sure that the inode gets written in this case */
    379 			/* XXX but only write the inode if it's the right one */
    380 			if (blkp->bi_inode != LFS_IFILE_INUM) {
    381 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    382 				if (ifp->if_daddr == blkp->bi_daddr) {
    383 					mutex_enter(&lfs_lock);
    384 					LFS_SET_UINO(ip, IN_CLEANING);
    385 					mutex_exit(&lfs_lock);
    386 				}
    387 				brelse(bp, 0);
    388 			}
    389 			continue;
    390 		}
    391 
    392 		b_daddr = 0;
    393 		if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
    394 		    dbtofsb(fs, b_daddr) != blkp->bi_daddr)
    395 		{
    396 			if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
    397 			    dtosn(fs, blkp->bi_daddr))
    398 			{
    399 				DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
    400 				      (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
    401 			}
    402 			do_again++;
    403 			continue;
    404 		}
    405 
    406 		/*
    407 		 * Check block sizes.  The blocks being cleaned come from
    408 		 * disk, so they should have the same size as their on-disk
    409 		 * counterparts.
    410 		 */
    411 		if (blkp->bi_lbn >= 0)
    412 			obsize = blksize(fs, ip, blkp->bi_lbn);
    413 		else
    414 			obsize = fs->lfs_bsize;
    415 		/* Check for fragment size change */
    416 		if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
    417 			obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
    418 		}
    419 		if (obsize != blkp->bi_size) {
    420 			DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
    421 			      " size (%ld != %d), try again\n",
    422 			      blkp->bi_inode, (long long)blkp->bi_lbn,
    423 			      (long) obsize, blkp->bi_size));
    424 			do_again++;
    425 			continue;
    426 		}
    427 
    428 		/*
    429 		 * If we get to here, then we are keeping the block.  If
    430 		 * it is an indirect block, we want to actually put it
    431 		 * in the buffer cache so that it can be updated in the
    432 		 * finish_meta section.	 If it's not, we need to
    433 		 * allocate a fake buffer so that writeseg can perform
    434 		 * the copyin and write the buffer.
    435 		 */
    436 		if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
    437 			/* Data Block */
    438 			bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
    439 					 blkp->bi_size, blkp->bi_bp);
    440 			/* Pretend we used bread() to get it */
    441 			bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
    442 		} else {
    443 			/* Indirect block or ifile */
    444 			if (blkp->bi_size != fs->lfs_bsize &&
    445 			    ip->i_number != LFS_IFILE_INUM)
    446 				panic("lfs_markv: partial indirect block?"
    447 				    " size=%d\n", blkp->bi_size);
    448 			bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
    449 			if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
    450 				/*
    451 				 * The block in question was not found
    452 				 * in the cache; i.e., the block that
    453 				 * getblk() returned is empty.	So, we
    454 				 * can (and should) copy in the
    455 				 * contents, because we've already
    456 				 * determined that this was the right
    457 				 * version of this block on disk.
    458 				 *
    459 				 * And, it can't have changed underneath
    460 				 * us, because we have the segment lock.
    461 				 */
    462 				error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
    463 				if (error)
    464 					goto err2;
    465 			}
    466 		}
    467 		if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
    468 			goto err2;
    469 
    470 		nblkwritten++;
    471 		/*
    472 		 * XXX should account indirect blocks and ifile pages as well
    473 		 */
    474 		if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
    475 		    > LFS_MARKV_MAX_BLOCKS) {
    476 			DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
    477 			      nblkwritten, ninowritten));
    478 			lfs_segwrite(mntp, SEGM_CLEAN);
    479 			nblkwritten = ninowritten = 0;
    480 		}
    481 	}
    482 
    483 	/*
    484 	 * Finish the old file, if there was one
    485 	 */
    486 	if (v_daddr != LFS_UNUSED_DADDR) {
    487 		lfs_vunref(vp);
    488 		numrefed--;
    489 	}
    490 
    491 #ifdef DIAGNOSTIC
    492 	if (numrefed != 0)
    493 		panic("lfs_markv: numrefed=%d", numrefed);
    494 #endif
    495 	DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
    496 	      nblkwritten, ninowritten));
    497 
    498 	/*
    499 	 * The last write has to be SEGM_SYNC, because of calling semantics.
    500 	 * It also has to be SEGM_CKP, because otherwise we could write
    501 	 * over the newly cleaned data contained in a checkpoint, and then
    502 	 * we'd be unhappy at recovery time.
    503 	 */
    504 	lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
    505 
    506 	lfs_segunlock(fs);
    507 
    508 	vfs_unbusy(mntp);
    509 	if (error)
    510 		return (error);
    511 	else if (do_again)
    512 		return EAGAIN;
    513 
    514 	return 0;
    515 
    516 err2:
    517 	DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
    518 
    519 	/*
    520 	 * XXX we're here because copyin() failed.
    521 	 * XXX it means that we can't trust the cleanerd.  too bad.
    522 	 * XXX how can we recover from this?
    523 	 */
    524 
    525 err3:
    526 	/*
    527 	 * XXX should do segwrite here anyway?
    528 	 */
    529 
    530 	if (v_daddr != LFS_UNUSED_DADDR) {
    531 		lfs_vunref(vp);
    532 		--numrefed;
    533 	}
    534 
    535 	lfs_segunlock(fs);
    536 	vfs_unbusy(mntp);
    537 #ifdef DIAGNOSTIC
    538 	if (numrefed != 0)
    539 		panic("lfs_markv: numrefed=%d", numrefed);
    540 #endif
    541 
    542 	return (error);
    543 }
    544 
    545 /*
    546  * sys_lfs_bmapv:
    547  *
    548  * This will fill in the current disk address for arrays of blocks.
    549  *
    550  *  0 on success
    551  * -1/errno is return on error.
    552  */
    553 #ifdef USE_64BIT_SYSCALLS
    554 int
    555 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
    556 {
    557 	/* {
    558 		syscallarg(fsid_t *) fsidp;
    559 		syscallarg(struct block_info *) blkiov;
    560 		syscallarg(int) blkcnt;
    561 	} */
    562 	BLOCK_INFO *blkiov;
    563 	int blkcnt, error;
    564 	fsid_t fsid;
    565 	struct lfs *fs;
    566 	struct mount *mntp;
    567 
    568 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    569 	    NULL)) != 0)
    570 		return (error);
    571 
    572 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    573 		return (error);
    574 
    575 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    576 		return (ENOENT);
    577 	fs = VFSTOUFS(mntp)->um_lfs;
    578 
    579 	blkcnt = SCARG(uap, blkcnt);
    580 	if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    581 		return (EINVAL);
    582 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    583 	if ((error = copyin(SCARG(uap, blkiov), blkiov,
    584 			    blkcnt * sizeof(BLOCK_INFO))) != 0)
    585 		goto out;
    586 
    587 	if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
    588 		copyout(blkiov, SCARG(uap, blkiov),
    589 			blkcnt * sizeof(BLOCK_INFO));
    590     out:
    591 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    592 	return error;
    593 }
    594 #else
    595 int
    596 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
    597 {
    598 	/* {
    599 		syscallarg(fsid_t *) fsidp;
    600 		syscallarg(struct block_info *) blkiov;
    601 		syscallarg(int) blkcnt;
    602 	} */
    603 	BLOCK_INFO *blkiov;
    604 	BLOCK_INFO_15 *blkiov15;
    605 	int i, blkcnt, error;
    606 	fsid_t fsid;
    607 	struct lfs *fs;
    608 	struct mount *mntp;
    609 
    610 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    611 	    NULL)) != 0)
    612 		return (error);
    613 
    614 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    615 		return (error);
    616 
    617 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    618 		return (ENOENT);
    619 	fs = VFSTOUFS(mntp)->um_lfs;
    620 
    621 	blkcnt = SCARG(uap, blkcnt);
    622 	if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
    623 		return (EINVAL);
    624 	blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
    625 	blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
    626 	if ((error = copyin(SCARG(uap, blkiov), blkiov15,
    627 			    blkcnt * sizeof(BLOCK_INFO_15))) != 0)
    628 		goto out;
    629 
    630 	for (i = 0; i < blkcnt; i++) {
    631 		blkiov[i].bi_inode     = blkiov15[i].bi_inode;
    632 		blkiov[i].bi_lbn       = blkiov15[i].bi_lbn;
    633 		blkiov[i].bi_daddr     = blkiov15[i].bi_daddr;
    634 		blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
    635 		blkiov[i].bi_version   = blkiov15[i].bi_version;
    636 		blkiov[i].bi_bp	       = blkiov15[i].bi_bp;
    637 		blkiov[i].bi_size      = blkiov15[i].bi_size;
    638 	}
    639 
    640 	if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
    641 		for (i = 0; i < blkcnt; i++) {
    642 			blkiov15[i].bi_inode	 = blkiov[i].bi_inode;
    643 			blkiov15[i].bi_lbn	 = blkiov[i].bi_lbn;
    644 			blkiov15[i].bi_daddr	 = blkiov[i].bi_daddr;
    645 			blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
    646 			blkiov15[i].bi_version	 = blkiov[i].bi_version;
    647 			blkiov15[i].bi_bp	 = blkiov[i].bi_bp;
    648 			blkiov15[i].bi_size	 = blkiov[i].bi_size;
    649 		}
    650 		copyout(blkiov15, SCARG(uap, blkiov),
    651 			blkcnt * sizeof(BLOCK_INFO_15));
    652 	}
    653     out:
    654 	lfs_free(fs, blkiov, LFS_NB_BLKIOV);
    655 	lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
    656 	return error;
    657 }
    658 #endif
    659 
    660 int
    661 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
    662 {
    663 	BLOCK_INFO *blkp;
    664 	IFILE *ifp;
    665 	struct buf *bp;
    666 	struct inode *ip = NULL;
    667 	struct lfs *fs;
    668 	struct mount *mntp;
    669 	struct ufsmount *ump;
    670 	struct vnode *vp;
    671 	ino_t lastino;
    672 	daddr_t v_daddr;
    673 	int cnt, error;
    674 	int numrefed = 0;
    675 
    676 	lfs_cleaner_pid = p->p_pid;
    677 
    678 	if ((mntp = vfs_getvfs(fsidp)) == NULL)
    679 		return (ENOENT);
    680 
    681 	ump = VFSTOUFS(mntp);
    682 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    683 		return (error);
    684 
    685 	cnt = blkcnt;
    686 
    687 	fs = VFSTOUFS(mntp)->um_lfs;
    688 
    689 	error = 0;
    690 
    691 	/* these were inside the initialization for the for loop */
    692 	v_daddr = LFS_UNUSED_DADDR;
    693 	lastino = LFS_UNUSED_INUM;
    694 	for (blkp = blkiov; cnt--; ++blkp)
    695 	{
    696 		/*
    697 		 * Get the IFILE entry (only once) and see if the file still
    698 		 * exists.
    699 		 */
    700 		if (lastino != blkp->bi_inode) {
    701 			/*
    702 			 * Finish the old file, if there was one.  The presence
    703 			 * of a usable vnode in vp is signaled by a valid
    704 			 * v_daddr.
    705 			 */
    706 			if (v_daddr != LFS_UNUSED_DADDR) {
    707 				lfs_vunref(vp);
    708 				numrefed--;
    709 			}
    710 
    711 			/*
    712 			 * Start a new file
    713 			 */
    714 			lastino = blkp->bi_inode;
    715 			if (blkp->bi_inode == LFS_IFILE_INUM)
    716 				v_daddr = fs->lfs_idaddr;
    717 			else {
    718 				LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
    719 				v_daddr = ifp->if_daddr;
    720 				brelse(bp, 0);
    721 			}
    722 			if (v_daddr == LFS_UNUSED_DADDR) {
    723 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    724 				continue;
    725 			}
    726 			/*
    727 			 * A regular call to VFS_VGET could deadlock
    728 			 * here.  Instead, we try an unlocked access.
    729 			 */
    730 			mutex_enter(&ufs_ihash_lock);
    731 			vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
    732 			if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
    733 				ip = VTOI(vp);
    734 				mutex_enter(&vp->v_interlock);
    735 				mutex_exit(&ufs_ihash_lock);
    736 				if (lfs_vref(vp)) {
    737 					v_daddr = LFS_UNUSED_DADDR;
    738 					continue;
    739 				}
    740 				numrefed++;
    741 			} else {
    742 				mutex_exit(&ufs_ihash_lock);
    743 				/*
    744 				 * Don't VFS_VGET if we're being unmounted,
    745 				 * since we hold vfs_busy().
    746 				 */
    747 				if (mntp->mnt_iflag & IMNT_UNMOUNT) {
    748 					v_daddr = LFS_UNUSED_DADDR;
    749 					continue;
    750 				}
    751 				error = VFS_VGET(mntp, blkp->bi_inode, &vp);
    752 				if (error) {
    753 					DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
    754 					      "%d failed with %d",
    755 					      blkp->bi_inode,error));
    756 					v_daddr = LFS_UNUSED_DADDR;
    757 					continue;
    758 				} else {
    759 					KASSERT(VOP_ISLOCKED(vp));
    760 					VOP_UNLOCK(vp, 0);
    761 					numrefed++;
    762 				}
    763 			}
    764 			ip = VTOI(vp);
    765 		} else if (v_daddr == LFS_UNUSED_DADDR) {
    766 			/*
    767 			 * This can only happen if the vnode is dead.
    768 			 * Keep going.	Note that we DO NOT set the
    769 			 * bi_addr to anything -- if we failed to get
    770 			 * the vnode, for example, we want to assume
    771 			 * conservatively that all of its blocks *are*
    772 			 * located in the segment in question.
    773 			 * lfs_markv will throw them out if we are
    774 			 * wrong.
    775 			 */
    776 			/* blkp->bi_daddr = LFS_UNUSED_DADDR; */
    777 			continue;
    778 		}
    779 
    780 		/* Past this point we are guaranteed that vp, ip are valid. */
    781 
    782 		if (blkp->bi_lbn == LFS_UNUSED_LBN) {
    783 			/*
    784 			 * We just want the inode address, which is
    785 			 * conveniently in v_daddr.
    786 			 */
    787 			blkp->bi_daddr = v_daddr;
    788 		} else {
    789 			daddr_t bi_daddr;
    790 
    791 			/* XXX ondisk32 */
    792 			error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
    793 					 &bi_daddr, NULL);
    794 			if (error)
    795 			{
    796 				blkp->bi_daddr = LFS_UNUSED_DADDR;
    797 				continue;
    798 			}
    799 			blkp->bi_daddr = dbtofsb(fs, bi_daddr);
    800 			/* Fill in the block size, too */
    801 			if (blkp->bi_lbn >= 0)
    802 				blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
    803 			else
    804 				blkp->bi_size = fs->lfs_bsize;
    805 		}
    806 	}
    807 
    808 	/*
    809 	 * Finish the old file, if there was one.  The presence
    810 	 * of a usable vnode in vp is signaled by a valid v_daddr.
    811 	 */
    812 	if (v_daddr != LFS_UNUSED_DADDR) {
    813 		lfs_vunref(vp);
    814 		numrefed--;
    815 	}
    816 
    817 #ifdef DIAGNOSTIC
    818 	if (numrefed != 0)
    819 		panic("lfs_bmapv: numrefed=%d", numrefed);
    820 #endif
    821 
    822 	vfs_unbusy(mntp);
    823 
    824 	return 0;
    825 }
    826 
    827 /*
    828  * sys_lfs_segclean:
    829  *
    830  * Mark the segment clean.
    831  *
    832  *  0 on success
    833  * -1/errno is return on error.
    834  */
    835 int
    836 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
    837 {
    838 	/* {
    839 		syscallarg(fsid_t *) fsidp;
    840 		syscallarg(u_long) segment;
    841 	} */
    842 	struct lfs *fs;
    843 	struct mount *mntp;
    844 	fsid_t fsid;
    845 	int error;
    846 	unsigned long segnum;
    847 
    848 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    849 	    NULL)) != 0)
    850 		return (error);
    851 
    852 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    853 		return (error);
    854 	if ((mntp = vfs_getvfs(&fsid)) == NULL)
    855 		return (ENOENT);
    856 
    857 	fs = VFSTOUFS(mntp)->um_lfs;
    858 	segnum = SCARG(uap, segment);
    859 
    860 	if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
    861 		return (error);
    862 
    863 	lfs_seglock(fs, SEGM_PROT);
    864 	error = lfs_do_segclean(fs, segnum);
    865 	lfs_segunlock(fs);
    866 	vfs_unbusy(mntp);
    867 	return error;
    868 }
    869 
    870 /*
    871  * Actually mark the segment clean.
    872  * Must be called with the segment lock held.
    873  */
    874 int
    875 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
    876 {
    877 	extern int lfs_dostats;
    878 	struct buf *bp;
    879 	CLEANERINFO *cip;
    880 	SEGUSE *sup;
    881 
    882 	if (dtosn(fs, fs->lfs_curseg) == segnum) {
    883 		return (EBUSY);
    884 	}
    885 
    886 	LFS_SEGENTRY(sup, fs, segnum, bp);
    887 	if (sup->su_nbytes) {
    888 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    889 		      " %d live bytes\n", segnum, sup->su_nbytes));
    890 		brelse(bp, 0);
    891 		return (EBUSY);
    892 	}
    893 	if (sup->su_flags & SEGUSE_ACTIVE) {
    894 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    895 		      " segment is active\n", segnum));
    896 		brelse(bp, 0);
    897 		return (EBUSY);
    898 	}
    899 	if (!(sup->su_flags & SEGUSE_DIRTY)) {
    900 		DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
    901 		      " segment is already clean\n", segnum));
    902 		brelse(bp, 0);
    903 		return (EALREADY);
    904 	}
    905 
    906 	fs->lfs_avail += segtod(fs, 1);
    907 	if (sup->su_flags & SEGUSE_SUPERBLOCK)
    908 		fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
    909 	if (fs->lfs_version > 1 && segnum == 0 &&
    910 	    fs->lfs_start < btofsb(fs, LFS_LABELPAD))
    911 		fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
    912 	mutex_enter(&lfs_lock);
    913 	fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    914 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    915 	fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
    916 		btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
    917 	if (fs->lfs_dmeta < 0)
    918 		fs->lfs_dmeta = 0;
    919 	mutex_exit(&lfs_lock);
    920 	sup->su_flags &= ~SEGUSE_DIRTY;
    921 	LFS_WRITESEGENTRY(sup, fs, segnum, bp);
    922 
    923 	LFS_CLEANERINFO(cip, fs, bp);
    924 	++cip->clean;
    925 	--cip->dirty;
    926 	fs->lfs_nclean = cip->clean;
    927 	cip->bfree = fs->lfs_bfree;
    928 	mutex_enter(&lfs_lock);
    929 	cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
    930 	wakeup(&fs->lfs_avail);
    931 	mutex_exit(&lfs_lock);
    932 	(void) LFS_BWRITE_LOG(bp);
    933 
    934 	if (lfs_dostats)
    935 		++lfs_stats.segs_reclaimed;
    936 
    937 	return (0);
    938 }
    939 
    940 /*
    941  * This will block until a segment in file system fsid is written.  A timeout
    942  * in milliseconds may be specified which will awake the cleaner automatically.
    943  * An fsid of -1 means any file system, and a timeout of 0 means forever.
    944  */
    945 int
    946 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
    947 {
    948 	struct mount *mntp;
    949 	void *addr;
    950 	u_long timeout;
    951 	int error;
    952 
    953 	if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
    954 		addr = &lfs_allclean_wakeup;
    955 	else
    956 		addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
    957 	/*
    958 	 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
    959 	 * XXX IS THAT WHAT IS INTENDED?
    960 	 */
    961 	timeout = tvtohz(tv);
    962 	error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
    963 	return (error == ERESTART ? EINTR : 0);
    964 }
    965 
    966 /*
    967  * sys_lfs_segwait:
    968  *
    969  * System call wrapper around lfs_segwait().
    970  *
    971  *  0 on success
    972  *  1 on timeout
    973  * -1/errno is return on error.
    974  */
    975 int
    976 sys_lfs_segwait(struct lwp *l, const struct sys_lfs_segwait_args *uap, register_t *retval)
    977 {
    978 	/* {
    979 		syscallarg(fsid_t *) fsidp;
    980 		syscallarg(struct timeval *) tv;
    981 	} */
    982 	struct timeval atv;
    983 	fsid_t fsid;
    984 	int error;
    985 
    986 	/* XXX need we be su to segwait? */
    987 	if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
    988 	    NULL)) != 0)
    989 		return (error);
    990 	if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
    991 		return (error);
    992 
    993 	if (SCARG(uap, tv)) {
    994 		error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
    995 		if (error)
    996 			return (error);
    997 		if (itimerfix(&atv))
    998 			return (EINVAL);
    999 	} else /* NULL or invalid */
   1000 		atv.tv_sec = atv.tv_usec = 0;
   1001 	return lfs_segwait(&fsid, &atv);
   1002 }
   1003 
   1004 /*
   1005  * VFS_VGET call specialized for the cleaner.  The cleaner already knows the
   1006  * daddr from the ifile, so don't look it up again.  If the cleaner is
   1007  * processing IINFO structures, it may have the ondisk inode already, so
   1008  * don't go retrieving it again.
   1009  *
   1010  * we lfs_vref, and it is the caller's responsibility to lfs_vunref
   1011  * when finished.
   1012  */
   1013 extern kmutex_t ufs_hashlock;
   1014 
   1015 int
   1016 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
   1017 {
   1018 	struct vnode *vp;
   1019 
   1020 	mutex_enter(&ufs_ihash_lock);
   1021 	if ((vp = ufs_ihashlookup(dev, ino)) != NULL) {
   1022 		mutex_enter(&vp->v_interlock);
   1023 		mutex_exit(&ufs_ihash_lock);
   1024 		if (vp->v_iflag & VI_XLOCK) {
   1025 			DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
   1026 			      ino));
   1027 			lfs_stats.clean_vnlocked++;
   1028 			mutex_exit(&vp->v_interlock);
   1029 			return EAGAIN;
   1030 		}
   1031 		if (lfs_vref(vp)) {
   1032 			DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
   1033 			      " for ino %d\n", ino));
   1034 			lfs_stats.clean_inlocked++;
   1035 			return EAGAIN;
   1036 		}
   1037 	} else {
   1038 		mutex_exit(&ufs_ihash_lock);
   1039 	}
   1040 	*vpp = vp;
   1041 
   1042 	return (0);
   1043 }
   1044 
   1045 int
   1046 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
   1047 	     struct ufs1_dinode *dinp)
   1048 {
   1049 	struct inode *ip;
   1050 	struct ufs1_dinode *dip;
   1051 	struct vnode *vp;
   1052 	struct ufsmount *ump;
   1053 	dev_t dev;
   1054 	int error, retries;
   1055 	struct buf *bp;
   1056 	struct lfs *fs;
   1057 
   1058 	ump = VFSTOUFS(mp);
   1059 	dev = ump->um_dev;
   1060 	fs = ump->um_lfs;
   1061 
   1062 	/*
   1063 	 * Wait until the filesystem is fully mounted before allowing vget
   1064 	 * to complete.	 This prevents possible problems with roll-forward.
   1065 	 */
   1066 	mutex_enter(&lfs_lock);
   1067 	while (fs->lfs_flags & LFS_NOTYET) {
   1068 		mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
   1069 			&lfs_lock);
   1070 	}
   1071 	mutex_exit(&lfs_lock);
   1072 
   1073 	/*
   1074 	 * This is playing fast and loose.  Someone may have the inode
   1075 	 * locked, in which case they are going to be distinctly unhappy
   1076 	 * if we trash something.
   1077 	 */
   1078 
   1079 	error = lfs_fasthashget(dev, ino, vpp);
   1080 	if (error != 0 || *vpp != NULL)
   1081 		return (error);
   1082 
   1083 	/*
   1084 	 * getnewvnode(9) will call vfs_busy, which will block if the
   1085 	 * filesystem is being unmounted; but umount(9) is waiting for
   1086 	 * us because we're already holding the fs busy.
   1087 	 * XXXMP
   1088 	 */
   1089 	if (mp->mnt_iflag & IMNT_UNMOUNT) {
   1090 		*vpp = NULL;
   1091 		return EDEADLK;
   1092 	}
   1093 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1094 		*vpp = NULL;
   1095 		return (error);
   1096 	}
   1097 
   1098 	mutex_enter(&ufs_hashlock);
   1099 	error = lfs_fasthashget(dev, ino, vpp);
   1100 	if (error != 0 || *vpp != NULL) {
   1101 		mutex_exit(&ufs_hashlock);
   1102 		ungetnewvnode(vp);
   1103 		return (error);
   1104 	}
   1105 
   1106 	/* Allocate new vnode/inode. */
   1107 	lfs_vcreate(mp, ino, vp);
   1108 
   1109 	/*
   1110 	 * Put it onto its hash chain and lock it so that other requests for
   1111 	 * this inode will block if they arrive while we are sleeping waiting
   1112 	 * for old data structures to be purged or for the contents of the
   1113 	 * disk portion of this inode to be read.
   1114 	 */
   1115 	ip = VTOI(vp);
   1116 	ufs_ihashins(ip);
   1117 	mutex_exit(&ufs_hashlock);
   1118 
   1119 	/*
   1120 	 * XXX
   1121 	 * This may not need to be here, logically it should go down with
   1122 	 * the i_devvp initialization.
   1123 	 * Ask Kirk.
   1124 	 */
   1125 	ip->i_lfs = fs;
   1126 
   1127 	/* Read in the disk contents for the inode, copy into the inode. */
   1128 	if (dinp) {
   1129 		error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
   1130 		if (error) {
   1131 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
   1132 			      " for ino %d\n", ino));
   1133 			ufs_ihashrem(ip);
   1134 
   1135 			/* Unlock and discard unneeded inode. */
   1136 			vlockmgr(&vp->v_lock, LK_RELEASE);
   1137 			lfs_vunref(vp);
   1138 			*vpp = NULL;
   1139 			return (error);
   1140 		}
   1141 		if (ip->i_number != ino)
   1142 			panic("lfs_fastvget: I was fed the wrong inode!");
   1143 	} else {
   1144 		retries = 0;
   1145 	    again:
   1146 		error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
   1147 			      NOCRED, &bp);
   1148 		if (error) {
   1149 			DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
   1150 			      error));
   1151 			/*
   1152 			 * The inode does not contain anything useful, so it
   1153 			 * would be misleading to leave it on its hash chain.
   1154 			 * Iput() will return it to the free list.
   1155 			 */
   1156 			ufs_ihashrem(ip);
   1157 
   1158 			/* Unlock and discard unneeded inode. */
   1159 			vlockmgr(&vp->v_lock, LK_RELEASE);
   1160 			lfs_vunref(vp);
   1161 			brelse(bp, 0);
   1162 			*vpp = NULL;
   1163 			return (error);
   1164 		}
   1165 		dip = lfs_ifind(ump->um_lfs, ino, bp);
   1166 		if (dip == NULL) {
   1167 			/* Assume write has not completed yet; try again */
   1168 			brelse(bp, BC_INVAL);
   1169 			++retries;
   1170 			if (retries > LFS_IFIND_RETRIES)
   1171 				panic("lfs_fastvget: dinode not found");
   1172 			DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
   1173 			      " retrying...\n"));
   1174 			goto again;
   1175 		}
   1176 		*ip->i_din.ffs1_din = *dip;
   1177 		brelse(bp, 0);
   1178 	}
   1179 	lfs_vinit(mp, &vp);
   1180 
   1181 	*vpp = vp;
   1182 
   1183 	KASSERT(VOP_ISLOCKED(vp));
   1184 	VOP_UNLOCK(vp, 0);
   1185 
   1186 	return (0);
   1187 }
   1188 
   1189 /*
   1190  * Make up a "fake" cleaner buffer, copy the data from userland into it.
   1191  */
   1192 struct buf *
   1193 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
   1194 {
   1195 	struct buf *bp;
   1196 	int error;
   1197 
   1198 	KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
   1199 
   1200 	bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
   1201 	error = copyin(uaddr, bp->b_data, size);
   1202 	if (error) {
   1203 		lfs_freebuf(fs, bp);
   1204 		return NULL;
   1205 	}
   1206 	KDASSERT(bp->b_iodone == lfs_callback);
   1207 
   1208 #if 0
   1209 	mutex_enter(&lfs_lock);
   1210 	++fs->lfs_iocount;
   1211 	mutex_exit(&lfs_lock);
   1212 #endif
   1213 	bp->b_bufsize = size;
   1214 	bp->b_bcount = size;
   1215 	return (bp);
   1216 }
   1217