lfs_syscalls.c revision 1.141 1 /* $NetBSD: lfs_syscalls.c,v 1.141 2012/01/15 04:42:04 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.141 2012/01/15 04:42:04 perseant Exp $");
65
66 #ifndef LFS
67 # define LFS /* for prototypes in syscallargs.h */
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/buf.h>
74 #include <sys/mount.h>
75 #include <sys/vnode.h>
76 #include <sys/kernel.h>
77 #include <sys/kauth.h>
78 #include <sys/syscallargs.h>
79
80 #include <ufs/ufs/inode.h>
81 #include <ufs/ufs/ufsmount.h>
82 #include <ufs/ufs/ufs_extern.h>
83
84 #include <ufs/lfs/lfs.h>
85 #include <ufs/lfs/lfs_extern.h>
86
87 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
88 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
89
90 pid_t lfs_cleaner_pid = 0;
91
92 /*
93 * sys_lfs_markv:
94 *
95 * This will mark inodes and blocks dirty, so they are written into the log.
96 * It will block until all the blocks have been written. The segment create
97 * time passed in the block_info and inode_info structures is used to decide
98 * if the data is valid for each block (in case some process dirtied a block
99 * or inode that is being cleaned between the determination that a block is
100 * live and the lfs_markv call).
101 *
102 * 0 on success
103 * -1/errno is return on error.
104 */
105 #ifdef USE_64BIT_SYSCALLS
106 int
107 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
108 {
109 /* {
110 syscallarg(fsid_t *) fsidp;
111 syscallarg(struct block_info *) blkiov;
112 syscallarg(int) blkcnt;
113 } */
114 BLOCK_INFO *blkiov;
115 int blkcnt, error;
116 fsid_t fsid;
117 struct lfs *fs;
118 struct mount *mntp;
119
120 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
121 NULL)) != 0)
122 return (error);
123
124 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
125 return (error);
126
127 if ((mntp = vfs_getvfs(fsidp)) == NULL)
128 return (ENOENT);
129 fs = VFSTOUFS(mntp)->um_lfs;
130
131 blkcnt = SCARG(uap, blkcnt);
132 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
133 return (EINVAL);
134
135 KERNEL_LOCK(1, NULL);
136 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
137 if ((error = copyin(SCARG(uap, blkiov), blkiov,
138 blkcnt * sizeof(BLOCK_INFO))) != 0)
139 goto out;
140
141 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
142 copyout(blkiov, SCARG(uap, blkiov),
143 blkcnt * sizeof(BLOCK_INFO));
144 out:
145 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
146 KERNEL_UNLOCK_ONE(NULL);
147 return error;
148 }
149 #else
150 int
151 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
152 {
153 /* {
154 syscallarg(fsid_t *) fsidp;
155 syscallarg(struct block_info *) blkiov;
156 syscallarg(int) blkcnt;
157 } */
158 BLOCK_INFO *blkiov;
159 BLOCK_INFO_15 *blkiov15;
160 int i, blkcnt, error;
161 fsid_t fsid;
162 struct lfs *fs;
163 struct mount *mntp;
164
165 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
166 NULL)) != 0)
167 return (error);
168
169 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
170 return (error);
171
172 if ((mntp = vfs_getvfs(&fsid)) == NULL)
173 return (ENOENT);
174 fs = VFSTOUFS(mntp)->um_lfs;
175
176 blkcnt = SCARG(uap, blkcnt);
177 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
178 return (EINVAL);
179
180 KERNEL_LOCK(1, NULL);
181 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
182 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
183 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
184 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
185 goto out;
186
187 for (i = 0; i < blkcnt; i++) {
188 blkiov[i].bi_inode = blkiov15[i].bi_inode;
189 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
190 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
191 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
192 blkiov[i].bi_version = blkiov15[i].bi_version;
193 blkiov[i].bi_bp = blkiov15[i].bi_bp;
194 blkiov[i].bi_size = blkiov15[i].bi_size;
195 }
196
197 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
198 for (i = 0; i < blkcnt; i++) {
199 blkiov15[i].bi_inode = blkiov[i].bi_inode;
200 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
201 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
202 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
203 blkiov15[i].bi_version = blkiov[i].bi_version;
204 blkiov15[i].bi_bp = blkiov[i].bi_bp;
205 blkiov15[i].bi_size = blkiov[i].bi_size;
206 }
207 copyout(blkiov15, SCARG(uap, blkiov),
208 blkcnt * sizeof(BLOCK_INFO_15));
209 }
210 out:
211 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
212 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
213 KERNEL_UNLOCK_ONE(NULL);
214 return error;
215 }
216 #endif
217
218 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
219
220 int
221 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
222 int blkcnt)
223 {
224 BLOCK_INFO *blkp;
225 IFILE *ifp;
226 struct buf *bp;
227 struct inode *ip = NULL;
228 struct lfs *fs;
229 struct mount *mntp;
230 struct vnode *vp = NULL;
231 ino_t lastino;
232 daddr_t b_daddr, v_daddr;
233 int cnt, error;
234 int do_again = 0;
235 int numrefed = 0;
236 ino_t maxino;
237 size_t obsize;
238
239 /* number of blocks/inodes that we have already bwrite'ed */
240 int nblkwritten, ninowritten;
241
242 if ((mntp = vfs_getvfs(fsidp)) == NULL)
243 return (ENOENT);
244
245 fs = VFSTOUFS(mntp)->um_lfs;
246
247 if (fs->lfs_ronly)
248 return EROFS;
249
250 maxino = (fragstoblks(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks) -
251 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
252
253 cnt = blkcnt;
254
255 if ((error = vfs_busy(mntp, NULL)) != 0)
256 return (error);
257
258 /*
259 * This seglock is just to prevent the fact that we might have to sleep
260 * from allowing the possibility that our blocks might become
261 * invalid.
262 *
263 * It is also important to note here that unless we specify SEGM_CKP,
264 * any Ifile blocks that we might be asked to clean will never get
265 * to the disk.
266 */
267 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
268
269 /* Mark blocks/inodes dirty. */
270 error = 0;
271
272 /* these were inside the initialization for the for loop */
273 v_daddr = LFS_UNUSED_DADDR;
274 lastino = LFS_UNUSED_INUM;
275 nblkwritten = ninowritten = 0;
276 for (blkp = blkiov; cnt--; ++blkp)
277 {
278 /* Bounds-check incoming data, avoid panic for failed VGET */
279 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
280 error = EINVAL;
281 goto err3;
282 }
283 /*
284 * Get the IFILE entry (only once) and see if the file still
285 * exists.
286 */
287 if (lastino != blkp->bi_inode) {
288 /*
289 * Finish the old file, if there was one. The presence
290 * of a usable vnode in vp is signaled by a valid v_daddr.
291 */
292 if (v_daddr != LFS_UNUSED_DADDR) {
293 lfs_vunref(vp);
294 numrefed--;
295 }
296
297 /*
298 * Start a new file
299 */
300 lastino = blkp->bi_inode;
301 if (blkp->bi_inode == LFS_IFILE_INUM)
302 v_daddr = fs->lfs_idaddr;
303 else {
304 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
305 /* XXX fix for force write */
306 v_daddr = ifp->if_daddr;
307 brelse(bp, 0);
308 }
309 if (v_daddr == LFS_UNUSED_DADDR)
310 continue;
311
312 /* Get the vnode/inode. */
313 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
314 &vp,
315 (blkp->bi_lbn == LFS_UNUSED_LBN
316 ? blkp->bi_bp
317 : NULL));
318
319 if (!error) {
320 numrefed++;
321 }
322 if (error) {
323 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
324 " failed with %d (ino %d, segment %d)\n",
325 error, blkp->bi_inode,
326 dtosn(fs, blkp->bi_daddr)));
327 /*
328 * If we got EAGAIN, that means that the
329 * Inode was locked. This is
330 * recoverable: just clean the rest of
331 * this segment, and let the cleaner try
332 * again with another. (When the
333 * cleaner runs again, this segment will
334 * sort high on the list, since it is
335 * now almost entirely empty.) But, we
336 * still set v_daddr = LFS_UNUSED_ADDR
337 * so as not to test this over and over
338 * again.
339 */
340 if (error == EAGAIN) {
341 error = 0;
342 do_again++;
343 }
344 #ifdef DIAGNOSTIC
345 else if (error != ENOENT)
346 panic("lfs_markv VFS_VGET FAILED");
347 #endif
348 /* lastino = LFS_UNUSED_INUM; */
349 v_daddr = LFS_UNUSED_DADDR;
350 vp = NULL;
351 ip = NULL;
352 continue;
353 }
354 ip = VTOI(vp);
355 ninowritten++;
356 } else if (v_daddr == LFS_UNUSED_DADDR) {
357 /*
358 * This can only happen if the vnode is dead (or
359 * in any case we can't get it...e.g., it is
360 * inlocked). Keep going.
361 */
362 continue;
363 }
364
365 /* Past this point we are guaranteed that vp, ip are valid. */
366
367 /* Can't clean VU_DIROP directories in case of truncation */
368 /* XXX - maybe we should mark removed dirs specially? */
369 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
370 do_again++;
371 continue;
372 }
373
374 /* If this BLOCK_INFO didn't contain a block, keep going. */
375 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
376 /* XXX need to make sure that the inode gets written in this case */
377 /* XXX but only write the inode if it's the right one */
378 if (blkp->bi_inode != LFS_IFILE_INUM) {
379 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
380 if (ifp->if_daddr == blkp->bi_daddr) {
381 mutex_enter(&lfs_lock);
382 LFS_SET_UINO(ip, IN_CLEANING);
383 mutex_exit(&lfs_lock);
384 }
385 brelse(bp, 0);
386 }
387 continue;
388 }
389
390 b_daddr = 0;
391 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
392 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
393 {
394 if (dtosn(fs, dbtofsb(fs, b_daddr)) ==
395 dtosn(fs, blkp->bi_daddr))
396 {
397 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
398 (long long)blkp->bi_daddr, (long long)dbtofsb(fs, b_daddr)));
399 }
400 do_again++;
401 continue;
402 }
403
404 /*
405 * Check block sizes. The blocks being cleaned come from
406 * disk, so they should have the same size as their on-disk
407 * counterparts.
408 */
409 if (blkp->bi_lbn >= 0)
410 obsize = blksize(fs, ip, blkp->bi_lbn);
411 else
412 obsize = fs->lfs_bsize;
413 /* Check for fragment size change */
414 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < NDADDR) {
415 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
416 }
417 if (obsize != blkp->bi_size) {
418 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
419 " size (%ld != %d), try again\n",
420 blkp->bi_inode, (long long)blkp->bi_lbn,
421 (long) obsize, blkp->bi_size));
422 do_again++;
423 continue;
424 }
425
426 /*
427 * If we get to here, then we are keeping the block. If
428 * it is an indirect block, we want to actually put it
429 * in the buffer cache so that it can be updated in the
430 * finish_meta section. If it's not, we need to
431 * allocate a fake buffer so that writeseg can perform
432 * the copyin and write the buffer.
433 */
434 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
435 /* Data Block */
436 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
437 blkp->bi_size, blkp->bi_bp);
438 /* Pretend we used bread() to get it */
439 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
440 } else {
441 /* Indirect block or ifile */
442 if (blkp->bi_size != fs->lfs_bsize &&
443 ip->i_number != LFS_IFILE_INUM)
444 panic("lfs_markv: partial indirect block?"
445 " size=%d\n", blkp->bi_size);
446 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
447 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
448 /*
449 * The block in question was not found
450 * in the cache; i.e., the block that
451 * getblk() returned is empty. So, we
452 * can (and should) copy in the
453 * contents, because we've already
454 * determined that this was the right
455 * version of this block on disk.
456 *
457 * And, it can't have changed underneath
458 * us, because we have the segment lock.
459 */
460 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
461 if (error)
462 goto err2;
463 }
464 }
465 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
466 goto err2;
467
468 nblkwritten++;
469 /*
470 * XXX should account indirect blocks and ifile pages as well
471 */
472 if (nblkwritten + lblkno(fs, ninowritten * sizeof (struct ufs1_dinode))
473 > LFS_MARKV_MAX_BLOCKS) {
474 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
475 nblkwritten, ninowritten));
476 lfs_segwrite(mntp, SEGM_CLEAN);
477 nblkwritten = ninowritten = 0;
478 }
479 }
480
481 /*
482 * Finish the old file, if there was one
483 */
484 if (v_daddr != LFS_UNUSED_DADDR) {
485 lfs_vunref(vp);
486 numrefed--;
487 }
488
489 #ifdef DIAGNOSTIC
490 if (numrefed != 0)
491 panic("lfs_markv: numrefed=%d", numrefed);
492 #endif
493 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
494 nblkwritten, ninowritten));
495
496 /*
497 * The last write has to be SEGM_SYNC, because of calling semantics.
498 * It also has to be SEGM_CKP, because otherwise we could write
499 * over the newly cleaned data contained in a checkpoint, and then
500 * we'd be unhappy at recovery time.
501 */
502 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
503
504 lfs_segunlock(fs);
505
506 vfs_unbusy(mntp, false, NULL);
507 if (error)
508 return (error);
509 else if (do_again)
510 return EAGAIN;
511
512 return 0;
513
514 err2:
515 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
516
517 /*
518 * XXX we're here because copyin() failed.
519 * XXX it means that we can't trust the cleanerd. too bad.
520 * XXX how can we recover from this?
521 */
522
523 err3:
524 KERNEL_UNLOCK_ONE(NULL);
525 /*
526 * XXX should do segwrite here anyway?
527 */
528
529 if (v_daddr != LFS_UNUSED_DADDR) {
530 lfs_vunref(vp);
531 --numrefed;
532 }
533
534 lfs_segunlock(fs);
535 vfs_unbusy(mntp, false, NULL);
536 #ifdef DIAGNOSTIC
537 if (numrefed != 0)
538 panic("lfs_markv: numrefed=%d", numrefed);
539 #endif
540
541 return (error);
542 }
543
544 /*
545 * sys_lfs_bmapv:
546 *
547 * This will fill in the current disk address for arrays of blocks.
548 *
549 * 0 on success
550 * -1/errno is return on error.
551 */
552 #ifdef USE_64BIT_SYSCALLS
553 int
554 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
555 {
556 /* {
557 syscallarg(fsid_t *) fsidp;
558 syscallarg(struct block_info *) blkiov;
559 syscallarg(int) blkcnt;
560 } */
561 BLOCK_INFO *blkiov;
562 int blkcnt, error;
563 fsid_t fsid;
564 struct lfs *fs;
565 struct mount *mntp;
566
567 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
568 NULL)) != 0)
569 return (error);
570
571 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
572 return (error);
573
574 if ((mntp = vfs_getvfs(&fsid)) == NULL)
575 return (ENOENT);
576 fs = VFSTOUFS(mntp)->um_lfs;
577
578 blkcnt = SCARG(uap, blkcnt);
579 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
580 return (EINVAL);
581 KERNEL_LOCK(1, NULL);
582 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
583 if ((error = copyin(SCARG(uap, blkiov), blkiov,
584 blkcnt * sizeof(BLOCK_INFO))) != 0)
585 goto out;
586
587 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
588 copyout(blkiov, SCARG(uap, blkiov),
589 blkcnt * sizeof(BLOCK_INFO));
590 out:
591 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
592 KERNEL_UNLOCK_ONE(NULL);
593 return error;
594 }
595 #else
596 int
597 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
598 {
599 /* {
600 syscallarg(fsid_t *) fsidp;
601 syscallarg(struct block_info *) blkiov;
602 syscallarg(int) blkcnt;
603 } */
604 BLOCK_INFO *blkiov;
605 BLOCK_INFO_15 *blkiov15;
606 int i, blkcnt, error;
607 fsid_t fsid;
608 struct lfs *fs;
609 struct mount *mntp;
610
611 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
612 NULL)) != 0)
613 return (error);
614
615 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
616 return (error);
617
618 if ((mntp = vfs_getvfs(&fsid)) == NULL)
619 return (ENOENT);
620 fs = VFSTOUFS(mntp)->um_lfs;
621
622 blkcnt = SCARG(uap, blkcnt);
623 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
624 return (EINVAL);
625 KERNEL_LOCK(1, NULL);
626 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
627 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
628 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
629 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
630 goto out;
631
632 for (i = 0; i < blkcnt; i++) {
633 blkiov[i].bi_inode = blkiov15[i].bi_inode;
634 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
635 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
636 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
637 blkiov[i].bi_version = blkiov15[i].bi_version;
638 blkiov[i].bi_bp = blkiov15[i].bi_bp;
639 blkiov[i].bi_size = blkiov15[i].bi_size;
640 }
641
642 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
643 for (i = 0; i < blkcnt; i++) {
644 blkiov15[i].bi_inode = blkiov[i].bi_inode;
645 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
646 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
647 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
648 blkiov15[i].bi_version = blkiov[i].bi_version;
649 blkiov15[i].bi_bp = blkiov[i].bi_bp;
650 blkiov15[i].bi_size = blkiov[i].bi_size;
651 }
652 copyout(blkiov15, SCARG(uap, blkiov),
653 blkcnt * sizeof(BLOCK_INFO_15));
654 }
655 out:
656 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
657 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
658 KERNEL_UNLOCK_ONE(NULL);
659 return error;
660 }
661 #endif
662
663 int
664 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
665 {
666 BLOCK_INFO *blkp;
667 IFILE *ifp;
668 struct buf *bp;
669 struct inode *ip = NULL;
670 struct lfs *fs;
671 struct mount *mntp;
672 struct ufsmount *ump;
673 struct vnode *vp;
674 ino_t lastino;
675 daddr_t v_daddr;
676 int cnt, error;
677 int numrefed = 0;
678
679 lfs_cleaner_pid = p->p_pid;
680
681 if ((mntp = vfs_getvfs(fsidp)) == NULL)
682 return (ENOENT);
683
684 ump = VFSTOUFS(mntp);
685 if ((error = vfs_busy(mntp, NULL)) != 0)
686 return (error);
687
688 cnt = blkcnt;
689
690 fs = VFSTOUFS(mntp)->um_lfs;
691
692 error = 0;
693
694 /* these were inside the initialization for the for loop */
695 v_daddr = LFS_UNUSED_DADDR;
696 lastino = LFS_UNUSED_INUM;
697 for (blkp = blkiov; cnt--; ++blkp)
698 {
699 /*
700 * Get the IFILE entry (only once) and see if the file still
701 * exists.
702 */
703 if (lastino != blkp->bi_inode) {
704 /*
705 * Finish the old file, if there was one. The presence
706 * of a usable vnode in vp is signaled by a valid
707 * v_daddr.
708 */
709 if (v_daddr != LFS_UNUSED_DADDR) {
710 lfs_vunref(vp);
711 if (VTOI(vp)->i_lfs_iflags & LFSI_BMAP)
712 vrecycle(vp, NULL, NULL);
713 numrefed--;
714 }
715
716 /*
717 * Start a new file
718 */
719 lastino = blkp->bi_inode;
720 if (blkp->bi_inode == LFS_IFILE_INUM)
721 v_daddr = fs->lfs_idaddr;
722 else {
723 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
724 v_daddr = ifp->if_daddr;
725 brelse(bp, 0);
726 }
727 if (v_daddr == LFS_UNUSED_DADDR) {
728 blkp->bi_daddr = LFS_UNUSED_DADDR;
729 continue;
730 }
731 /*
732 * A regular call to VFS_VGET could deadlock
733 * here. Instead, we try an unlocked access.
734 */
735 mutex_enter(&ufs_ihash_lock);
736 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
737 if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
738 ip = VTOI(vp);
739 mutex_enter(vp->v_interlock);
740 mutex_exit(&ufs_ihash_lock);
741 if (lfs_vref(vp)) {
742 v_daddr = LFS_UNUSED_DADDR;
743 continue;
744 }
745 numrefed++;
746 } else {
747 mutex_exit(&ufs_ihash_lock);
748 /*
749 * Don't VFS_VGET if we're being unmounted,
750 * since we hold vfs_busy().
751 */
752 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
753 v_daddr = LFS_UNUSED_DADDR;
754 continue;
755 }
756 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
757 if (error) {
758 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
759 "%d failed with %d",
760 blkp->bi_inode,error));
761 v_daddr = LFS_UNUSED_DADDR;
762 continue;
763 } else {
764 KASSERT(VOP_ISLOCKED(vp));
765 VTOI(vp)->i_lfs_iflags |= LFSI_BMAP;
766 VOP_UNLOCK(vp);
767 numrefed++;
768 }
769 }
770 ip = VTOI(vp);
771 } else if (v_daddr == LFS_UNUSED_DADDR) {
772 /*
773 * This can only happen if the vnode is dead.
774 * Keep going. Note that we DO NOT set the
775 * bi_addr to anything -- if we failed to get
776 * the vnode, for example, we want to assume
777 * conservatively that all of its blocks *are*
778 * located in the segment in question.
779 * lfs_markv will throw them out if we are
780 * wrong.
781 */
782 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
783 continue;
784 }
785
786 /* Past this point we are guaranteed that vp, ip are valid. */
787
788 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
789 /*
790 * We just want the inode address, which is
791 * conveniently in v_daddr.
792 */
793 blkp->bi_daddr = v_daddr;
794 } else {
795 daddr_t bi_daddr;
796
797 /* XXX ondisk32 */
798 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
799 &bi_daddr, NULL);
800 if (error)
801 {
802 blkp->bi_daddr = LFS_UNUSED_DADDR;
803 continue;
804 }
805 blkp->bi_daddr = dbtofsb(fs, bi_daddr);
806 /* Fill in the block size, too */
807 if (blkp->bi_lbn >= 0)
808 blkp->bi_size = blksize(fs, ip, blkp->bi_lbn);
809 else
810 blkp->bi_size = fs->lfs_bsize;
811 }
812 }
813
814 /*
815 * Finish the old file, if there was one. The presence
816 * of a usable vnode in vp is signaled by a valid v_daddr.
817 */
818 if (v_daddr != LFS_UNUSED_DADDR) {
819 lfs_vunref(vp);
820 /* Recycle as above. */
821 if (ip->i_lfs_iflags & LFSI_BMAP)
822 vrecycle(vp, NULL, NULL);
823 numrefed--;
824 }
825
826 #ifdef DIAGNOSTIC
827 if (numrefed != 0)
828 panic("lfs_bmapv: numrefed=%d", numrefed);
829 #endif
830
831 vfs_unbusy(mntp, false, NULL);
832
833 return 0;
834 }
835
836 /*
837 * sys_lfs_segclean:
838 *
839 * Mark the segment clean.
840 *
841 * 0 on success
842 * -1/errno is return on error.
843 */
844 int
845 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
846 {
847 /* {
848 syscallarg(fsid_t *) fsidp;
849 syscallarg(u_long) segment;
850 } */
851 struct lfs *fs;
852 struct mount *mntp;
853 fsid_t fsid;
854 int error;
855 unsigned long segnum;
856
857 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
858 NULL)) != 0)
859 return (error);
860
861 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
862 return (error);
863 if ((mntp = vfs_getvfs(&fsid)) == NULL)
864 return (ENOENT);
865
866 fs = VFSTOUFS(mntp)->um_lfs;
867 segnum = SCARG(uap, segment);
868
869 if ((error = vfs_busy(mntp, NULL)) != 0)
870 return (error);
871
872 KERNEL_LOCK(1, NULL);
873 lfs_seglock(fs, SEGM_PROT);
874 error = lfs_do_segclean(fs, segnum);
875 lfs_segunlock(fs);
876 KERNEL_UNLOCK_ONE(NULL);
877 vfs_unbusy(mntp, false, NULL);
878 return error;
879 }
880
881 /*
882 * Actually mark the segment clean.
883 * Must be called with the segment lock held.
884 */
885 int
886 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
887 {
888 extern int lfs_dostats;
889 struct buf *bp;
890 CLEANERINFO *cip;
891 SEGUSE *sup;
892
893 if (dtosn(fs, fs->lfs_curseg) == segnum) {
894 return (EBUSY);
895 }
896
897 LFS_SEGENTRY(sup, fs, segnum, bp);
898 if (sup->su_nbytes) {
899 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
900 " %d live bytes\n", segnum, sup->su_nbytes));
901 brelse(bp, 0);
902 return (EBUSY);
903 }
904 if (sup->su_flags & SEGUSE_ACTIVE) {
905 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
906 " segment is active\n", segnum));
907 brelse(bp, 0);
908 return (EBUSY);
909 }
910 if (!(sup->su_flags & SEGUSE_DIRTY)) {
911 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
912 " segment is already clean\n", segnum));
913 brelse(bp, 0);
914 return (EALREADY);
915 }
916
917 fs->lfs_avail += segtod(fs, 1);
918 if (sup->su_flags & SEGUSE_SUPERBLOCK)
919 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
920 if (fs->lfs_version > 1 && segnum == 0 &&
921 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
922 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
923 mutex_enter(&lfs_lock);
924 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
925 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
926 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
927 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
928 if (fs->lfs_dmeta < 0)
929 fs->lfs_dmeta = 0;
930 mutex_exit(&lfs_lock);
931 sup->su_flags &= ~SEGUSE_DIRTY;
932 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
933
934 LFS_CLEANERINFO(cip, fs, bp);
935 ++cip->clean;
936 --cip->dirty;
937 fs->lfs_nclean = cip->clean;
938 cip->bfree = fs->lfs_bfree;
939 mutex_enter(&lfs_lock);
940 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
941 wakeup(&fs->lfs_avail);
942 mutex_exit(&lfs_lock);
943 (void) LFS_BWRITE_LOG(bp);
944
945 if (lfs_dostats)
946 ++lfs_stats.segs_reclaimed;
947
948 return (0);
949 }
950
951 /*
952 * This will block until a segment in file system fsid is written. A timeout
953 * in milliseconds may be specified which will awake the cleaner automatically.
954 * An fsid of -1 means any file system, and a timeout of 0 means forever.
955 */
956 int
957 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
958 {
959 struct mount *mntp;
960 void *addr;
961 u_long timeout;
962 int error;
963
964 KERNEL_LOCK(1, NULL);
965 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
966 addr = &lfs_allclean_wakeup;
967 else
968 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
969 /*
970 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
971 * XXX IS THAT WHAT IS INTENDED?
972 */
973 timeout = tvtohz(tv);
974 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
975 KERNEL_UNLOCK_ONE(NULL);
976 return (error == ERESTART ? EINTR : 0);
977 }
978
979 /*
980 * sys_lfs_segwait:
981 *
982 * System call wrapper around lfs_segwait().
983 *
984 * 0 on success
985 * 1 on timeout
986 * -1/errno is return on error.
987 */
988 int
989 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
990 register_t *retval)
991 {
992 /* {
993 syscallarg(fsid_t *) fsidp;
994 syscallarg(struct timeval *) tv;
995 } */
996 struct timeval atv;
997 fsid_t fsid;
998 int error;
999
1000 /* XXX need we be su to segwait? */
1001 if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1002 NULL)) != 0)
1003 return (error);
1004 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
1005 return (error);
1006
1007 if (SCARG(uap, tv)) {
1008 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
1009 if (error)
1010 return (error);
1011 if (itimerfix(&atv))
1012 return (EINVAL);
1013 } else /* NULL or invalid */
1014 atv.tv_sec = atv.tv_usec = 0;
1015 return lfs_segwait(&fsid, &atv);
1016 }
1017
1018 /*
1019 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1020 * daddr from the ifile, so don't look it up again. If the cleaner is
1021 * processing IINFO structures, it may have the ondisk inode already, so
1022 * don't go retrieving it again.
1023 *
1024 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1025 * when finished.
1026 */
1027
1028 int
1029 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1030 {
1031 struct vnode *vp;
1032
1033 mutex_enter(&ufs_ihash_lock);
1034 if ((vp = ufs_ihashlookup(dev, ino)) != NULL) {
1035 mutex_enter(vp->v_interlock);
1036 mutex_exit(&ufs_ihash_lock);
1037 if (vp->v_iflag & VI_XLOCK) {
1038 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
1039 ino));
1040 lfs_stats.clean_vnlocked++;
1041 mutex_exit(vp->v_interlock);
1042 return EAGAIN;
1043 }
1044 if (lfs_vref(vp)) {
1045 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1046 " for ino %d\n", ino));
1047 lfs_stats.clean_inlocked++;
1048 return EAGAIN;
1049 }
1050 } else {
1051 mutex_exit(&ufs_ihash_lock);
1052 }
1053 *vpp = vp;
1054
1055 return (0);
1056 }
1057
1058 int
1059 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
1060 struct ufs1_dinode *dinp)
1061 {
1062 struct inode *ip;
1063 struct ufs1_dinode *dip;
1064 struct vnode *vp;
1065 struct ufsmount *ump;
1066 dev_t dev;
1067 int error, retries;
1068 struct buf *bp;
1069 struct lfs *fs;
1070
1071 ump = VFSTOUFS(mp);
1072 dev = ump->um_dev;
1073 fs = ump->um_lfs;
1074
1075 /*
1076 * Wait until the filesystem is fully mounted before allowing vget
1077 * to complete. This prevents possible problems with roll-forward.
1078 */
1079 mutex_enter(&lfs_lock);
1080 while (fs->lfs_flags & LFS_NOTYET) {
1081 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1082 &lfs_lock);
1083 }
1084 mutex_exit(&lfs_lock);
1085
1086 /*
1087 * This is playing fast and loose. Someone may have the inode
1088 * locked, in which case they are going to be distinctly unhappy
1089 * if we trash something.
1090 */
1091
1092 error = lfs_fasthashget(dev, ino, vpp);
1093 if (error != 0 || *vpp != NULL)
1094 return (error);
1095
1096 /*
1097 * getnewvnode(9) will call vfs_busy, which will block if the
1098 * filesystem is being unmounted; but umount(9) is waiting for
1099 * us because we're already holding the fs busy.
1100 * XXXMP
1101 */
1102 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1103 *vpp = NULL;
1104 return EDEADLK;
1105 }
1106 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1107 if (error) {
1108 *vpp = NULL;
1109 return (error);
1110 }
1111
1112 mutex_enter(&ufs_hashlock);
1113 error = lfs_fasthashget(dev, ino, vpp);
1114 if (error != 0 || *vpp != NULL) {
1115 mutex_exit(&ufs_hashlock);
1116 ungetnewvnode(vp);
1117 return (error);
1118 }
1119
1120 /* Allocate new vnode/inode. */
1121 lfs_vcreate(mp, ino, vp);
1122
1123 /*
1124 * Put it onto its hash chain and lock it so that other requests for
1125 * this inode will block if they arrive while we are sleeping waiting
1126 * for old data structures to be purged or for the contents of the
1127 * disk portion of this inode to be read.
1128 */
1129 ip = VTOI(vp);
1130 ufs_ihashins(ip);
1131 mutex_exit(&ufs_hashlock);
1132
1133 #ifdef notyet
1134 /* Not found in the cache => this vnode was loaded only for cleaning. */
1135 ip->i_lfs_iflags |= LFSI_BMAP;
1136 #endif
1137
1138 /*
1139 * XXX
1140 * This may not need to be here, logically it should go down with
1141 * the i_devvp initialization.
1142 * Ask Kirk.
1143 */
1144 ip->i_lfs = fs;
1145
1146 /* Read in the disk contents for the inode, copy into the inode. */
1147 if (dinp) {
1148 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ufs1_dinode));
1149 if (error) {
1150 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1151 " for ino %d\n", ino));
1152 ufs_ihashrem(ip);
1153
1154 /* Unlock and discard unneeded inode. */
1155 VOP_UNLOCK(vp);
1156 lfs_vunref(vp);
1157 *vpp = NULL;
1158 return (error);
1159 }
1160 if (ip->i_number != ino)
1161 panic("lfs_fastvget: I was fed the wrong inode!");
1162 } else {
1163 retries = 0;
1164 again:
1165 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1166 NOCRED, 0, &bp);
1167 if (error) {
1168 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1169 error));
1170 /*
1171 * The inode does not contain anything useful, so it
1172 * would be misleading to leave it on its hash chain.
1173 * Iput() will return it to the free list.
1174 */
1175 ufs_ihashrem(ip);
1176
1177 /* Unlock and discard unneeded inode. */
1178 VOP_UNLOCK(vp);
1179 lfs_vunref(vp);
1180 brelse(bp, 0);
1181 *vpp = NULL;
1182 return (error);
1183 }
1184 dip = lfs_ifind(ump->um_lfs, ino, bp);
1185 if (dip == NULL) {
1186 /* Assume write has not completed yet; try again */
1187 brelse(bp, BC_INVAL);
1188 ++retries;
1189 if (retries > LFS_IFIND_RETRIES)
1190 panic("lfs_fastvget: dinode not found");
1191 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1192 " retrying...\n"));
1193 goto again;
1194 }
1195 *ip->i_din.ffs1_din = *dip;
1196 brelse(bp, 0);
1197 }
1198 lfs_vinit(mp, &vp);
1199
1200 *vpp = vp;
1201
1202 KASSERT(VOP_ISLOCKED(vp));
1203 VOP_UNLOCK(vp);
1204
1205 return (0);
1206 }
1207
1208 /*
1209 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1210 */
1211 struct buf *
1212 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
1213 {
1214 struct buf *bp;
1215 int error;
1216
1217 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1218
1219 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1220 error = copyin(uaddr, bp->b_data, size);
1221 if (error) {
1222 lfs_freebuf(fs, bp);
1223 return NULL;
1224 }
1225 KDASSERT(bp->b_iodone == lfs_callback);
1226
1227 #if 0
1228 mutex_enter(&lfs_lock);
1229 ++fs->lfs_iocount;
1230 mutex_exit(&lfs_lock);
1231 #endif
1232 bp->b_bufsize = size;
1233 bp->b_bcount = size;
1234 return (bp);
1235 }
1236