lfs_syscalls.c revision 1.148 1 /* $NetBSD: lfs_syscalls.c,v 1.148 2013/07/28 01:05:52 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.148 2013/07/28 01:05:52 dholland Exp $");
65
66 #ifndef LFS
67 # define LFS /* for prototypes in syscallargs.h */
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/buf.h>
74 #include <sys/mount.h>
75 #include <sys/vnode.h>
76 #include <sys/kernel.h>
77 #include <sys/kauth.h>
78 #include <sys/syscallargs.h>
79
80 #include <ufs/lfs/ulfs_inode.h>
81 #include <ufs/lfs/ulfsmount.h>
82 #include <ufs/lfs/ulfs_extern.h>
83
84 #include <ufs/lfs/lfs.h>
85 #include <ufs/lfs/lfs_kernel.h>
86 #include <ufs/lfs/lfs_extern.h>
87
88 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
89 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
90
91 pid_t lfs_cleaner_pid = 0;
92
93 /*
94 * sys_lfs_markv:
95 *
96 * This will mark inodes and blocks dirty, so they are written into the log.
97 * It will block until all the blocks have been written. The segment create
98 * time passed in the block_info and inode_info structures is used to decide
99 * if the data is valid for each block (in case some process dirtied a block
100 * or inode that is being cleaned between the determination that a block is
101 * live and the lfs_markv call).
102 *
103 * 0 on success
104 * -1/errno is return on error.
105 */
106 #ifdef USE_64BIT_SYSCALLS
107 int
108 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
109 {
110 /* {
111 syscallarg(fsid_t *) fsidp;
112 syscallarg(struct block_info *) blkiov;
113 syscallarg(int) blkcnt;
114 } */
115 BLOCK_INFO *blkiov;
116 int blkcnt, error;
117 fsid_t fsid;
118 struct lfs *fs;
119 struct mount *mntp;
120
121 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
122 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
123 if (error)
124 return (error);
125
126 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
127 return (error);
128
129 if ((mntp = vfs_getvfs(fsidp)) == NULL)
130 return (ENOENT);
131 fs = VFSTOULFS(mntp)->um_lfs;
132
133 blkcnt = SCARG(uap, blkcnt);
134 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
135 return (EINVAL);
136
137 KERNEL_LOCK(1, NULL);
138 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
139 if ((error = copyin(SCARG(uap, blkiov), blkiov,
140 blkcnt * sizeof(BLOCK_INFO))) != 0)
141 goto out;
142
143 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
144 copyout(blkiov, SCARG(uap, blkiov),
145 blkcnt * sizeof(BLOCK_INFO));
146 out:
147 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
148 KERNEL_UNLOCK_ONE(NULL);
149 return error;
150 }
151 #else
152 int
153 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
154 {
155 /* {
156 syscallarg(fsid_t *) fsidp;
157 syscallarg(struct block_info *) blkiov;
158 syscallarg(int) blkcnt;
159 } */
160 BLOCK_INFO *blkiov;
161 BLOCK_INFO_15 *blkiov15;
162 int i, blkcnt, error;
163 fsid_t fsid;
164 struct lfs *fs;
165 struct mount *mntp;
166
167 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
168 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
169 if (error)
170 return (error);
171
172 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
173 return (error);
174
175 if ((mntp = vfs_getvfs(&fsid)) == NULL)
176 return (ENOENT);
177 fs = VFSTOULFS(mntp)->um_lfs;
178
179 blkcnt = SCARG(uap, blkcnt);
180 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
181 return (EINVAL);
182
183 KERNEL_LOCK(1, NULL);
184 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
185 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
186 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
187 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
188 goto out;
189
190 for (i = 0; i < blkcnt; i++) {
191 blkiov[i].bi_inode = blkiov15[i].bi_inode;
192 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
193 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
194 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
195 blkiov[i].bi_version = blkiov15[i].bi_version;
196 blkiov[i].bi_bp = blkiov15[i].bi_bp;
197 blkiov[i].bi_size = blkiov15[i].bi_size;
198 }
199
200 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
201 for (i = 0; i < blkcnt; i++) {
202 blkiov15[i].bi_inode = blkiov[i].bi_inode;
203 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
204 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
205 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
206 blkiov15[i].bi_version = blkiov[i].bi_version;
207 blkiov15[i].bi_bp = blkiov[i].bi_bp;
208 blkiov15[i].bi_size = blkiov[i].bi_size;
209 }
210 copyout(blkiov15, SCARG(uap, blkiov),
211 blkcnt * sizeof(BLOCK_INFO_15));
212 }
213 out:
214 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
215 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
216 KERNEL_UNLOCK_ONE(NULL);
217 return error;
218 }
219 #endif
220
221 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
222
223 int
224 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
225 int blkcnt)
226 {
227 BLOCK_INFO *blkp;
228 IFILE *ifp;
229 struct buf *bp;
230 struct inode *ip = NULL;
231 struct lfs *fs;
232 struct mount *mntp;
233 struct vnode *vp = NULL;
234 ino_t lastino;
235 daddr_t b_daddr, v_daddr;
236 int cnt, error;
237 int do_again = 0;
238 int numrefed = 0;
239 ino_t maxino;
240 size_t obsize;
241
242 /* number of blocks/inodes that we have already bwrite'ed */
243 int nblkwritten, ninowritten;
244
245 if ((mntp = vfs_getvfs(fsidp)) == NULL)
246 return (ENOENT);
247
248 fs = VFSTOULFS(mntp)->um_lfs;
249
250 if (fs->lfs_ronly)
251 return EROFS;
252
253 maxino = (lfs_fragstoblks(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks) -
254 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
255
256 cnt = blkcnt;
257
258 if ((error = vfs_busy(mntp, NULL)) != 0)
259 return (error);
260
261 /*
262 * This seglock is just to prevent the fact that we might have to sleep
263 * from allowing the possibility that our blocks might become
264 * invalid.
265 *
266 * It is also important to note here that unless we specify SEGM_CKP,
267 * any Ifile blocks that we might be asked to clean will never get
268 * to the disk.
269 */
270 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
271
272 /* Mark blocks/inodes dirty. */
273 error = 0;
274
275 /* these were inside the initialization for the for loop */
276 v_daddr = LFS_UNUSED_DADDR;
277 lastino = LFS_UNUSED_INUM;
278 nblkwritten = ninowritten = 0;
279 for (blkp = blkiov; cnt--; ++blkp)
280 {
281 /* Bounds-check incoming data, avoid panic for failed VGET */
282 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
283 error = EINVAL;
284 goto err3;
285 }
286 /*
287 * Get the IFILE entry (only once) and see if the file still
288 * exists.
289 */
290 if (lastino != blkp->bi_inode) {
291 /*
292 * Finish the old file, if there was one. The presence
293 * of a usable vnode in vp is signaled by a valid v_daddr.
294 */
295 if (v_daddr != LFS_UNUSED_DADDR) {
296 lfs_vunref(vp);
297 numrefed--;
298 }
299
300 /*
301 * Start a new file
302 */
303 lastino = blkp->bi_inode;
304 if (blkp->bi_inode == LFS_IFILE_INUM)
305 v_daddr = fs->lfs_idaddr;
306 else {
307 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
308 /* XXX fix for force write */
309 v_daddr = ifp->if_daddr;
310 brelse(bp, 0);
311 }
312 if (v_daddr == LFS_UNUSED_DADDR)
313 continue;
314
315 /* Get the vnode/inode. */
316 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
317 &vp,
318 (blkp->bi_lbn == LFS_UNUSED_LBN
319 ? blkp->bi_bp
320 : NULL));
321
322 if (!error) {
323 numrefed++;
324 }
325 if (error) {
326 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
327 " failed with %d (ino %d, segment %d)\n",
328 error, blkp->bi_inode,
329 lfs_dtosn(fs, blkp->bi_daddr)));
330 /*
331 * If we got EAGAIN, that means that the
332 * Inode was locked. This is
333 * recoverable: just clean the rest of
334 * this segment, and let the cleaner try
335 * again with another. (When the
336 * cleaner runs again, this segment will
337 * sort high on the list, since it is
338 * now almost entirely empty.) But, we
339 * still set v_daddr = LFS_UNUSED_ADDR
340 * so as not to test this over and over
341 * again.
342 */
343 if (error == EAGAIN) {
344 error = 0;
345 do_again++;
346 }
347 #ifdef DIAGNOSTIC
348 else if (error != ENOENT)
349 panic("lfs_markv VFS_VGET FAILED");
350 #endif
351 /* lastino = LFS_UNUSED_INUM; */
352 v_daddr = LFS_UNUSED_DADDR;
353 vp = NULL;
354 ip = NULL;
355 continue;
356 }
357 ip = VTOI(vp);
358 ninowritten++;
359 } else if (v_daddr == LFS_UNUSED_DADDR) {
360 /*
361 * This can only happen if the vnode is dead (or
362 * in any case we can't get it...e.g., it is
363 * inlocked). Keep going.
364 */
365 continue;
366 }
367
368 /* Past this point we are guaranteed that vp, ip are valid. */
369
370 /* Can't clean VU_DIROP directories in case of truncation */
371 /* XXX - maybe we should mark removed dirs specially? */
372 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
373 do_again++;
374 continue;
375 }
376
377 /* If this BLOCK_INFO didn't contain a block, keep going. */
378 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
379 /* XXX need to make sure that the inode gets written in this case */
380 /* XXX but only write the inode if it's the right one */
381 if (blkp->bi_inode != LFS_IFILE_INUM) {
382 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
383 if (ifp->if_daddr == blkp->bi_daddr) {
384 mutex_enter(&lfs_lock);
385 LFS_SET_UINO(ip, IN_CLEANING);
386 mutex_exit(&lfs_lock);
387 }
388 brelse(bp, 0);
389 }
390 continue;
391 }
392
393 b_daddr = 0;
394 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
395 LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr)
396 {
397 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) ==
398 lfs_dtosn(fs, blkp->bi_daddr))
399 {
400 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
401 (long long)blkp->bi_daddr, (long long)LFS_DBTOFSB(fs, b_daddr)));
402 }
403 do_again++;
404 continue;
405 }
406
407 /*
408 * Check block sizes. The blocks being cleaned come from
409 * disk, so they should have the same size as their on-disk
410 * counterparts.
411 */
412 if (blkp->bi_lbn >= 0)
413 obsize = lfs_blksize(fs, ip, blkp->bi_lbn);
414 else
415 obsize = fs->lfs_bsize;
416 /* Check for fragment size change */
417 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) {
418 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
419 }
420 if (obsize != blkp->bi_size) {
421 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
422 " size (%ld != %d), try again\n",
423 blkp->bi_inode, (long long)blkp->bi_lbn,
424 (long) obsize, blkp->bi_size));
425 do_again++;
426 continue;
427 }
428
429 /*
430 * If we get to here, then we are keeping the block. If
431 * it is an indirect block, we want to actually put it
432 * in the buffer cache so that it can be updated in the
433 * finish_meta section. If it's not, we need to
434 * allocate a fake buffer so that writeseg can perform
435 * the copyin and write the buffer.
436 */
437 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
438 /* Data Block */
439 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
440 blkp->bi_size, blkp->bi_bp);
441 /* Pretend we used bread() to get it */
442 bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr);
443 } else {
444 /* Indirect block or ifile */
445 if (blkp->bi_size != fs->lfs_bsize &&
446 ip->i_number != LFS_IFILE_INUM)
447 panic("lfs_markv: partial indirect block?"
448 " size=%d\n", blkp->bi_size);
449 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
450 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
451 /*
452 * The block in question was not found
453 * in the cache; i.e., the block that
454 * getblk() returned is empty. So, we
455 * can (and should) copy in the
456 * contents, because we've already
457 * determined that this was the right
458 * version of this block on disk.
459 *
460 * And, it can't have changed underneath
461 * us, because we have the segment lock.
462 */
463 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
464 if (error)
465 goto err2;
466 }
467 }
468 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
469 goto err2;
470
471 nblkwritten++;
472 /*
473 * XXX should account indirect blocks and ifile pages as well
474 */
475 if (nblkwritten + lfs_lblkno(fs, ninowritten * sizeof (struct ulfs1_dinode))
476 > LFS_MARKV_MAX_BLOCKS) {
477 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
478 nblkwritten, ninowritten));
479 lfs_segwrite(mntp, SEGM_CLEAN);
480 nblkwritten = ninowritten = 0;
481 }
482 }
483
484 /*
485 * Finish the old file, if there was one
486 */
487 if (v_daddr != LFS_UNUSED_DADDR) {
488 lfs_vunref(vp);
489 numrefed--;
490 }
491
492 #ifdef DIAGNOSTIC
493 if (numrefed != 0)
494 panic("lfs_markv: numrefed=%d", numrefed);
495 #endif
496 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
497 nblkwritten, ninowritten));
498
499 /*
500 * The last write has to be SEGM_SYNC, because of calling semantics.
501 * It also has to be SEGM_CKP, because otherwise we could write
502 * over the newly cleaned data contained in a checkpoint, and then
503 * we'd be unhappy at recovery time.
504 */
505 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
506
507 lfs_segunlock(fs);
508
509 vfs_unbusy(mntp, false, NULL);
510 if (error)
511 return (error);
512 else if (do_again)
513 return EAGAIN;
514
515 return 0;
516
517 err2:
518 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
519
520 /*
521 * XXX we're here because copyin() failed.
522 * XXX it means that we can't trust the cleanerd. too bad.
523 * XXX how can we recover from this?
524 */
525
526 err3:
527 KERNEL_UNLOCK_ONE(NULL);
528 /*
529 * XXX should do segwrite here anyway?
530 */
531
532 if (v_daddr != LFS_UNUSED_DADDR) {
533 lfs_vunref(vp);
534 --numrefed;
535 }
536
537 lfs_segunlock(fs);
538 vfs_unbusy(mntp, false, NULL);
539 #ifdef DIAGNOSTIC
540 if (numrefed != 0)
541 panic("lfs_markv: numrefed=%d", numrefed);
542 #endif
543
544 return (error);
545 }
546
547 /*
548 * sys_lfs_bmapv:
549 *
550 * This will fill in the current disk address for arrays of blocks.
551 *
552 * 0 on success
553 * -1/errno is return on error.
554 */
555 #ifdef USE_64BIT_SYSCALLS
556 int
557 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
558 {
559 /* {
560 syscallarg(fsid_t *) fsidp;
561 syscallarg(struct block_info *) blkiov;
562 syscallarg(int) blkcnt;
563 } */
564 BLOCK_INFO *blkiov;
565 int blkcnt, error;
566 fsid_t fsid;
567 struct lfs *fs;
568 struct mount *mntp;
569
570 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
571 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
572 if (error)
573 return (error);
574
575 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
576 return (error);
577
578 if ((mntp = vfs_getvfs(&fsid)) == NULL)
579 return (ENOENT);
580 fs = VFSTOULFS(mntp)->um_lfs;
581
582 blkcnt = SCARG(uap, blkcnt);
583 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
584 return (EINVAL);
585 KERNEL_LOCK(1, NULL);
586 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
587 if ((error = copyin(SCARG(uap, blkiov), blkiov,
588 blkcnt * sizeof(BLOCK_INFO))) != 0)
589 goto out;
590
591 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
592 copyout(blkiov, SCARG(uap, blkiov),
593 blkcnt * sizeof(BLOCK_INFO));
594 out:
595 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
596 KERNEL_UNLOCK_ONE(NULL);
597 return error;
598 }
599 #else
600 int
601 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
602 {
603 /* {
604 syscallarg(fsid_t *) fsidp;
605 syscallarg(struct block_info *) blkiov;
606 syscallarg(int) blkcnt;
607 } */
608 BLOCK_INFO *blkiov;
609 BLOCK_INFO_15 *blkiov15;
610 int i, blkcnt, error;
611 fsid_t fsid;
612 struct lfs *fs;
613 struct mount *mntp;
614
615 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
616 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
617 if (error)
618 return (error);
619
620 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
621 return (error);
622
623 if ((mntp = vfs_getvfs(&fsid)) == NULL)
624 return (ENOENT);
625 fs = VFSTOULFS(mntp)->um_lfs;
626
627 blkcnt = SCARG(uap, blkcnt);
628 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
629 return (EINVAL);
630 KERNEL_LOCK(1, NULL);
631 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
632 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
633 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
634 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
635 goto out;
636
637 for (i = 0; i < blkcnt; i++) {
638 blkiov[i].bi_inode = blkiov15[i].bi_inode;
639 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
640 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
641 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
642 blkiov[i].bi_version = blkiov15[i].bi_version;
643 blkiov[i].bi_bp = blkiov15[i].bi_bp;
644 blkiov[i].bi_size = blkiov15[i].bi_size;
645 }
646
647 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
648 for (i = 0; i < blkcnt; i++) {
649 blkiov15[i].bi_inode = blkiov[i].bi_inode;
650 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
651 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
652 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
653 blkiov15[i].bi_version = blkiov[i].bi_version;
654 blkiov15[i].bi_bp = blkiov[i].bi_bp;
655 blkiov15[i].bi_size = blkiov[i].bi_size;
656 }
657 copyout(blkiov15, SCARG(uap, blkiov),
658 blkcnt * sizeof(BLOCK_INFO_15));
659 }
660 out:
661 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
662 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
663 KERNEL_UNLOCK_ONE(NULL);
664 return error;
665 }
666 #endif
667
668 int
669 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
670 {
671 BLOCK_INFO *blkp;
672 IFILE *ifp;
673 struct buf *bp;
674 struct inode *ip = NULL;
675 struct lfs *fs;
676 struct mount *mntp;
677 struct ulfsmount *ump;
678 struct vnode *vp;
679 ino_t lastino;
680 daddr_t v_daddr;
681 int cnt, error;
682 int numrefed = 0;
683
684 lfs_cleaner_pid = p->p_pid;
685
686 if ((mntp = vfs_getvfs(fsidp)) == NULL)
687 return (ENOENT);
688
689 ump = VFSTOULFS(mntp);
690 if ((error = vfs_busy(mntp, NULL)) != 0)
691 return (error);
692
693 cnt = blkcnt;
694
695 fs = VFSTOULFS(mntp)->um_lfs;
696
697 error = 0;
698
699 /* these were inside the initialization for the for loop */
700 v_daddr = LFS_UNUSED_DADDR;
701 lastino = LFS_UNUSED_INUM;
702 for (blkp = blkiov; cnt--; ++blkp)
703 {
704 /*
705 * Get the IFILE entry (only once) and see if the file still
706 * exists.
707 */
708 if (lastino != blkp->bi_inode) {
709 /*
710 * Finish the old file, if there was one. The presence
711 * of a usable vnode in vp is signaled by a valid
712 * v_daddr.
713 */
714 if (v_daddr != LFS_UNUSED_DADDR) {
715 lfs_vunref(vp);
716 if (VTOI(vp)->i_lfs_iflags & LFSI_BMAP)
717 vrecycle(vp, NULL, NULL);
718 numrefed--;
719 }
720
721 /*
722 * Start a new file
723 */
724 lastino = blkp->bi_inode;
725 if (blkp->bi_inode == LFS_IFILE_INUM)
726 v_daddr = fs->lfs_idaddr;
727 else {
728 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
729 v_daddr = ifp->if_daddr;
730 brelse(bp, 0);
731 }
732 if (v_daddr == LFS_UNUSED_DADDR) {
733 blkp->bi_daddr = LFS_UNUSED_DADDR;
734 continue;
735 }
736 /*
737 * A regular call to VFS_VGET could deadlock
738 * here. Instead, we try an unlocked access.
739 */
740 mutex_enter(&ulfs_ihash_lock);
741 vp = ulfs_ihashlookup(ump->um_dev, blkp->bi_inode);
742 if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
743 ip = VTOI(vp);
744 mutex_enter(vp->v_interlock);
745 mutex_exit(&ulfs_ihash_lock);
746 if (lfs_vref(vp)) {
747 v_daddr = LFS_UNUSED_DADDR;
748 continue;
749 }
750 numrefed++;
751 } else {
752 mutex_exit(&ulfs_ihash_lock);
753 /*
754 * Don't VFS_VGET if we're being unmounted,
755 * since we hold vfs_busy().
756 */
757 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
758 v_daddr = LFS_UNUSED_DADDR;
759 continue;
760 }
761 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
762 if (error) {
763 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
764 "%d failed with %d",
765 blkp->bi_inode,error));
766 v_daddr = LFS_UNUSED_DADDR;
767 continue;
768 } else {
769 KASSERT(VOP_ISLOCKED(vp));
770 VTOI(vp)->i_lfs_iflags |= LFSI_BMAP;
771 VOP_UNLOCK(vp);
772 numrefed++;
773 }
774 }
775 ip = VTOI(vp);
776 } else if (v_daddr == LFS_UNUSED_DADDR) {
777 /*
778 * This can only happen if the vnode is dead.
779 * Keep going. Note that we DO NOT set the
780 * bi_addr to anything -- if we failed to get
781 * the vnode, for example, we want to assume
782 * conservatively that all of its blocks *are*
783 * located in the segment in question.
784 * lfs_markv will throw them out if we are
785 * wrong.
786 */
787 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
788 continue;
789 }
790
791 /* Past this point we are guaranteed that vp, ip are valid. */
792
793 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
794 /*
795 * We just want the inode address, which is
796 * conveniently in v_daddr.
797 */
798 blkp->bi_daddr = v_daddr;
799 } else {
800 daddr_t bi_daddr;
801
802 /* XXX ondisk32 */
803 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
804 &bi_daddr, NULL);
805 if (error)
806 {
807 blkp->bi_daddr = LFS_UNUSED_DADDR;
808 continue;
809 }
810 blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr);
811 /* Fill in the block size, too */
812 if (blkp->bi_lbn >= 0)
813 blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn);
814 else
815 blkp->bi_size = fs->lfs_bsize;
816 }
817 }
818
819 /*
820 * Finish the old file, if there was one. The presence
821 * of a usable vnode in vp is signaled by a valid v_daddr.
822 */
823 if (v_daddr != LFS_UNUSED_DADDR) {
824 lfs_vunref(vp);
825 /* Recycle as above. */
826 if (ip->i_lfs_iflags & LFSI_BMAP)
827 vrecycle(vp, NULL, NULL);
828 numrefed--;
829 }
830
831 #ifdef DIAGNOSTIC
832 if (numrefed != 0)
833 panic("lfs_bmapv: numrefed=%d", numrefed);
834 #endif
835
836 vfs_unbusy(mntp, false, NULL);
837
838 return 0;
839 }
840
841 /*
842 * sys_lfs_segclean:
843 *
844 * Mark the segment clean.
845 *
846 * 0 on success
847 * -1/errno is return on error.
848 */
849 int
850 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
851 {
852 /* {
853 syscallarg(fsid_t *) fsidp;
854 syscallarg(u_long) segment;
855 } */
856 struct lfs *fs;
857 struct mount *mntp;
858 fsid_t fsid;
859 int error;
860 unsigned long segnum;
861
862 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
863 KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL);
864 if (error)
865 return (error);
866
867 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
868 return (error);
869 if ((mntp = vfs_getvfs(&fsid)) == NULL)
870 return (ENOENT);
871
872 fs = VFSTOULFS(mntp)->um_lfs;
873 segnum = SCARG(uap, segment);
874
875 if ((error = vfs_busy(mntp, NULL)) != 0)
876 return (error);
877
878 KERNEL_LOCK(1, NULL);
879 lfs_seglock(fs, SEGM_PROT);
880 error = lfs_do_segclean(fs, segnum);
881 lfs_segunlock(fs);
882 KERNEL_UNLOCK_ONE(NULL);
883 vfs_unbusy(mntp, false, NULL);
884 return error;
885 }
886
887 /*
888 * Actually mark the segment clean.
889 * Must be called with the segment lock held.
890 */
891 int
892 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
893 {
894 extern int lfs_dostats;
895 struct buf *bp;
896 CLEANERINFO *cip;
897 SEGUSE *sup;
898
899 if (lfs_dtosn(fs, fs->lfs_curseg) == segnum) {
900 return (EBUSY);
901 }
902
903 LFS_SEGENTRY(sup, fs, segnum, bp);
904 if (sup->su_nbytes) {
905 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
906 " %d live bytes\n", segnum, sup->su_nbytes));
907 brelse(bp, 0);
908 return (EBUSY);
909 }
910 if (sup->su_flags & SEGUSE_ACTIVE) {
911 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
912 " segment is active\n", segnum));
913 brelse(bp, 0);
914 return (EBUSY);
915 }
916 if (!(sup->su_flags & SEGUSE_DIRTY)) {
917 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
918 " segment is already clean\n", segnum));
919 brelse(bp, 0);
920 return (EALREADY);
921 }
922
923 fs->lfs_avail += lfs_segtod(fs, 1);
924 if (sup->su_flags & SEGUSE_SUPERBLOCK)
925 fs->lfs_avail -= lfs_btofsb(fs, LFS_SBPAD);
926 if (fs->lfs_version > 1 && segnum == 0 &&
927 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD))
928 fs->lfs_avail -= lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
929 mutex_enter(&lfs_lock);
930 fs->lfs_bfree += sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
931 lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
932 fs->lfs_dmeta -= sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
933 lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
934 if (fs->lfs_dmeta < 0)
935 fs->lfs_dmeta = 0;
936 mutex_exit(&lfs_lock);
937 sup->su_flags &= ~SEGUSE_DIRTY;
938 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
939
940 LFS_CLEANERINFO(cip, fs, bp);
941 ++cip->clean;
942 --cip->dirty;
943 fs->lfs_nclean = cip->clean;
944 cip->bfree = fs->lfs_bfree;
945 mutex_enter(&lfs_lock);
946 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
947 wakeup(&fs->lfs_avail);
948 mutex_exit(&lfs_lock);
949 (void) LFS_BWRITE_LOG(bp);
950
951 if (lfs_dostats)
952 ++lfs_stats.segs_reclaimed;
953
954 return (0);
955 }
956
957 /*
958 * This will block until a segment in file system fsid is written. A timeout
959 * in milliseconds may be specified which will awake the cleaner automatically.
960 * An fsid of -1 means any file system, and a timeout of 0 means forever.
961 */
962 int
963 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
964 {
965 struct mount *mntp;
966 void *addr;
967 u_long timeout;
968 int error;
969
970 KERNEL_LOCK(1, NULL);
971 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
972 addr = &lfs_allclean_wakeup;
973 else
974 addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextseg;
975 /*
976 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
977 * XXX IS THAT WHAT IS INTENDED?
978 */
979 timeout = tvtohz(tv);
980 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
981 KERNEL_UNLOCK_ONE(NULL);
982 return (error == ERESTART ? EINTR : 0);
983 }
984
985 /*
986 * sys_lfs_segwait:
987 *
988 * System call wrapper around lfs_segwait().
989 *
990 * 0 on success
991 * 1 on timeout
992 * -1/errno is return on error.
993 */
994 int
995 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
996 register_t *retval)
997 {
998 /* {
999 syscallarg(fsid_t *) fsidp;
1000 syscallarg(struct timeval *) tv;
1001 } */
1002 struct timeval atv;
1003 fsid_t fsid;
1004 int error;
1005
1006 /* XXX need we be su to segwait? */
1007 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
1008 KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL);
1009 if (error)
1010 return (error);
1011 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
1012 return (error);
1013
1014 if (SCARG(uap, tv)) {
1015 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
1016 if (error)
1017 return (error);
1018 if (itimerfix(&atv))
1019 return (EINVAL);
1020 } else /* NULL or invalid */
1021 atv.tv_sec = atv.tv_usec = 0;
1022 return lfs_segwait(&fsid, &atv);
1023 }
1024
1025 /*
1026 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1027 * daddr from the ifile, so don't look it up again. If the cleaner is
1028 * processing IINFO structures, it may have the ondisk inode already, so
1029 * don't go retrieving it again.
1030 *
1031 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1032 * when finished.
1033 */
1034
1035 int
1036 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1037 {
1038 struct vnode *vp;
1039
1040 mutex_enter(&ulfs_ihash_lock);
1041 if ((vp = ulfs_ihashlookup(dev, ino)) != NULL) {
1042 mutex_enter(vp->v_interlock);
1043 mutex_exit(&ulfs_ihash_lock);
1044 if (vp->v_iflag & VI_XLOCK) {
1045 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
1046 ino));
1047 lfs_stats.clean_vnlocked++;
1048 mutex_exit(vp->v_interlock);
1049 return EAGAIN;
1050 }
1051 if (lfs_vref(vp)) {
1052 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1053 " for ino %d\n", ino));
1054 lfs_stats.clean_inlocked++;
1055 return EAGAIN;
1056 }
1057 } else {
1058 mutex_exit(&ulfs_ihash_lock);
1059 }
1060 *vpp = vp;
1061
1062 return (0);
1063 }
1064
1065 int
1066 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
1067 struct ulfs1_dinode *dinp)
1068 {
1069 struct inode *ip;
1070 struct ulfs1_dinode *dip;
1071 struct vnode *vp;
1072 struct ulfsmount *ump;
1073 dev_t dev;
1074 int error, retries;
1075 struct buf *bp;
1076 struct lfs *fs;
1077
1078 ump = VFSTOULFS(mp);
1079 dev = ump->um_dev;
1080 fs = ump->um_lfs;
1081
1082 /*
1083 * Wait until the filesystem is fully mounted before allowing vget
1084 * to complete. This prevents possible problems with roll-forward.
1085 */
1086 mutex_enter(&lfs_lock);
1087 while (fs->lfs_flags & LFS_NOTYET) {
1088 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1089 &lfs_lock);
1090 }
1091 mutex_exit(&lfs_lock);
1092
1093 /*
1094 * This is playing fast and loose. Someone may have the inode
1095 * locked, in which case they are going to be distinctly unhappy
1096 * if we trash something.
1097 */
1098
1099 error = lfs_fasthashget(dev, ino, vpp);
1100 if (error != 0 || *vpp != NULL)
1101 return (error);
1102
1103 /*
1104 * getnewvnode(9) will call vfs_busy, which will block if the
1105 * filesystem is being unmounted; but umount(9) is waiting for
1106 * us because we're already holding the fs busy.
1107 * XXXMP
1108 */
1109 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1110 *vpp = NULL;
1111 return EDEADLK;
1112 }
1113 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1114 if (error) {
1115 *vpp = NULL;
1116 return (error);
1117 }
1118
1119 mutex_enter(&ulfs_hashlock);
1120 error = lfs_fasthashget(dev, ino, vpp);
1121 if (error != 0 || *vpp != NULL) {
1122 mutex_exit(&ulfs_hashlock);
1123 ungetnewvnode(vp);
1124 return (error);
1125 }
1126
1127 /* Allocate new vnode/inode. */
1128 lfs_vcreate(mp, ino, vp);
1129
1130 /*
1131 * Put it onto its hash chain and lock it so that other requests for
1132 * this inode will block if they arrive while we are sleeping waiting
1133 * for old data structures to be purged or for the contents of the
1134 * disk portion of this inode to be read.
1135 */
1136 ip = VTOI(vp);
1137 ulfs_ihashins(ip);
1138 mutex_exit(&ulfs_hashlock);
1139
1140 #ifdef notyet
1141 /* Not found in the cache => this vnode was loaded only for cleaning. */
1142 ip->i_lfs_iflags |= LFSI_BMAP;
1143 #endif
1144
1145 /*
1146 * XXX
1147 * This may not need to be here, logically it should go down with
1148 * the i_devvp initialization.
1149 * Ask Kirk.
1150 */
1151 ip->i_lfs = fs;
1152
1153 /* Read in the disk contents for the inode, copy into the inode. */
1154 if (dinp) {
1155 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ulfs1_dinode));
1156 if (error) {
1157 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1158 " for ino %d\n", ino));
1159 ulfs_ihashrem(ip);
1160
1161 /* Unlock and discard unneeded inode. */
1162 VOP_UNLOCK(vp);
1163 lfs_vunref(vp);
1164 *vpp = NULL;
1165 return (error);
1166 }
1167 if (ip->i_number != ino)
1168 panic("lfs_fastvget: I was fed the wrong inode!");
1169 } else {
1170 retries = 0;
1171 again:
1172 error = bread(ump->um_devvp, LFS_FSBTODB(fs, daddr), fs->lfs_ibsize,
1173 NOCRED, 0, &bp);
1174 if (error) {
1175 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1176 error));
1177 /*
1178 * The inode does not contain anything useful, so it
1179 * would be misleading to leave it on its hash chain.
1180 * Iput() will return it to the free list.
1181 */
1182 ulfs_ihashrem(ip);
1183
1184 /* Unlock and discard unneeded inode. */
1185 VOP_UNLOCK(vp);
1186 lfs_vunref(vp);
1187 *vpp = NULL;
1188 return (error);
1189 }
1190 dip = lfs_ifind(ump->um_lfs, ino, bp);
1191 if (dip == NULL) {
1192 /* Assume write has not completed yet; try again */
1193 brelse(bp, BC_INVAL);
1194 ++retries;
1195 if (retries > LFS_IFIND_RETRIES)
1196 panic("lfs_fastvget: dinode not found");
1197 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1198 " retrying...\n"));
1199 goto again;
1200 }
1201 *ip->i_din.ffs1_din = *dip;
1202 brelse(bp, 0);
1203 }
1204 lfs_vinit(mp, &vp);
1205
1206 *vpp = vp;
1207
1208 KASSERT(VOP_ISLOCKED(vp));
1209 VOP_UNLOCK(vp);
1210
1211 return (0);
1212 }
1213
1214 /*
1215 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1216 */
1217 struct buf *
1218 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
1219 {
1220 struct buf *bp;
1221 int error;
1222
1223 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1224
1225 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1226 error = copyin(uaddr, bp->b_data, size);
1227 if (error) {
1228 lfs_freebuf(fs, bp);
1229 return NULL;
1230 }
1231 KDASSERT(bp->b_iodone == lfs_callback);
1232
1233 #if 0
1234 mutex_enter(&lfs_lock);
1235 ++fs->lfs_iocount;
1236 mutex_exit(&lfs_lock);
1237 #endif
1238 bp->b_bufsize = size;
1239 bp->b_bcount = size;
1240 return (bp);
1241 }
1242