lfs_syscalls.c revision 1.155 1 /* $NetBSD: lfs_syscalls.c,v 1.155 2014/04/17 18:15:49 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.155 2014/04/17 18:15:49 pgoyette Exp $");
65
66 #ifndef LFS
67 # define LFS /* for prototypes in syscallargs.h */
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/buf.h>
74 #include <sys/mount.h>
75 #include <sys/vnode.h>
76 #include <sys/kernel.h>
77 #include <sys/kauth.h>
78 #include <sys/syscallargs.h>
79
80 #include <ufs/lfs/ulfs_inode.h>
81 #include <ufs/lfs/ulfsmount.h>
82 #include <ufs/lfs/ulfs_extern.h>
83
84 #include <ufs/lfs/lfs.h>
85 #include <ufs/lfs/lfs_kernel.h>
86 #include <ufs/lfs/lfs_extern.h>
87
88 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
89 int lfs_fasthashget(dev_t, ino_t, struct vnode **);
90
91 pid_t lfs_cleaner_pid = 0;
92
93 /*
94 * sys_lfs_markv:
95 *
96 * This will mark inodes and blocks dirty, so they are written into the log.
97 * It will block until all the blocks have been written. The segment create
98 * time passed in the block_info and inode_info structures is used to decide
99 * if the data is valid for each block (in case some process dirtied a block
100 * or inode that is being cleaned between the determination that a block is
101 * live and the lfs_markv call).
102 *
103 * 0 on success
104 * -1/errno is return on error.
105 */
106 #ifdef USE_64BIT_SYSCALLS
107 int
108 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
109 {
110 /* {
111 syscallarg(fsid_t *) fsidp;
112 syscallarg(struct block_info *) blkiov;
113 syscallarg(int) blkcnt;
114 } */
115 BLOCK_INFO *blkiov;
116 int blkcnt, error;
117 fsid_t fsid;
118 struct lfs *fs;
119 struct mount *mntp;
120
121 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
122 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
123 if (error)
124 return (error);
125
126 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
127 return (error);
128
129 if ((mntp = vfs_getvfs(fsidp)) == NULL)
130 return (ENOENT);
131 fs = VFSTOULFS(mntp)->um_lfs;
132
133 blkcnt = SCARG(uap, blkcnt);
134 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
135 return (EINVAL);
136
137 KERNEL_LOCK(1, NULL);
138 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
139 if ((error = copyin(SCARG(uap, blkiov), blkiov,
140 blkcnt * sizeof(BLOCK_INFO))) != 0)
141 goto out;
142
143 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
144 copyout(blkiov, SCARG(uap, blkiov),
145 blkcnt * sizeof(BLOCK_INFO));
146 out:
147 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
148 KERNEL_UNLOCK_ONE(NULL);
149 return error;
150 }
151 #else
152 int
153 sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
154 {
155 /* {
156 syscallarg(fsid_t *) fsidp;
157 syscallarg(struct block_info *) blkiov;
158 syscallarg(int) blkcnt;
159 } */
160 BLOCK_INFO *blkiov;
161 BLOCK_INFO_15 *blkiov15;
162 int i, blkcnt, error;
163 fsid_t fsid;
164 struct lfs *fs;
165 struct mount *mntp;
166
167 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
168 KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
169 if (error)
170 return (error);
171
172 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
173 return (error);
174
175 if ((mntp = vfs_getvfs(&fsid)) == NULL)
176 return (ENOENT);
177 fs = VFSTOULFS(mntp)->um_lfs;
178
179 blkcnt = SCARG(uap, blkcnt);
180 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
181 return (EINVAL);
182
183 KERNEL_LOCK(1, NULL);
184 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
185 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
186 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
187 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
188 goto out;
189
190 for (i = 0; i < blkcnt; i++) {
191 blkiov[i].bi_inode = blkiov15[i].bi_inode;
192 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
193 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
194 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
195 blkiov[i].bi_version = blkiov15[i].bi_version;
196 blkiov[i].bi_bp = blkiov15[i].bi_bp;
197 blkiov[i].bi_size = blkiov15[i].bi_size;
198 }
199
200 if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
201 for (i = 0; i < blkcnt; i++) {
202 blkiov15[i].bi_inode = blkiov[i].bi_inode;
203 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
204 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
205 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
206 blkiov15[i].bi_version = blkiov[i].bi_version;
207 blkiov15[i].bi_bp = blkiov[i].bi_bp;
208 blkiov15[i].bi_size = blkiov[i].bi_size;
209 }
210 copyout(blkiov15, SCARG(uap, blkiov),
211 blkcnt * sizeof(BLOCK_INFO_15));
212 }
213 out:
214 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
215 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
216 KERNEL_UNLOCK_ONE(NULL);
217 return error;
218 }
219 #endif
220
221 #define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
222
223 int
224 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
225 int blkcnt)
226 {
227 BLOCK_INFO *blkp;
228 IFILE *ifp;
229 struct buf *bp;
230 struct inode *ip = NULL;
231 struct lfs *fs;
232 struct mount *mntp;
233 struct vnode *vp = NULL;
234 ino_t lastino;
235 daddr_t b_daddr, v_daddr;
236 int cnt, error;
237 int do_again = 0;
238 int numrefed = 0;
239 ino_t maxino;
240 size_t obsize;
241
242 /* number of blocks/inodes that we have already bwrite'ed */
243 int nblkwritten, ninowritten;
244
245 if ((mntp = vfs_getvfs(fsidp)) == NULL)
246 return (ENOENT);
247
248 fs = VFSTOULFS(mntp)->um_lfs;
249
250 if (fs->lfs_ronly)
251 return EROFS;
252
253 maxino = (lfs_fragstoblks(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks) -
254 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
255
256 cnt = blkcnt;
257
258 if ((error = vfs_busy(mntp, NULL)) != 0)
259 return (error);
260
261 /*
262 * This seglock is just to prevent the fact that we might have to sleep
263 * from allowing the possibility that our blocks might become
264 * invalid.
265 *
266 * It is also important to note here that unless we specify SEGM_CKP,
267 * any Ifile blocks that we might be asked to clean will never get
268 * to the disk.
269 */
270 lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
271
272 /* Mark blocks/inodes dirty. */
273 error = 0;
274
275 /* these were inside the initialization for the for loop */
276 v_daddr = LFS_UNUSED_DADDR;
277 lastino = LFS_UNUSED_INUM;
278 nblkwritten = ninowritten = 0;
279 for (blkp = blkiov; cnt--; ++blkp)
280 {
281 /* Bounds-check incoming data, avoid panic for failed VGET */
282 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
283 error = EINVAL;
284 goto err3;
285 }
286 /*
287 * Get the IFILE entry (only once) and see if the file still
288 * exists.
289 */
290 if (lastino != blkp->bi_inode) {
291 /*
292 * Finish the old file, if there was one. The presence
293 * of a usable vnode in vp is signaled by a valid v_daddr.
294 */
295 if (v_daddr != LFS_UNUSED_DADDR) {
296 lfs_vunref(vp);
297 numrefed--;
298 }
299
300 /*
301 * Start a new file
302 */
303 lastino = blkp->bi_inode;
304 if (blkp->bi_inode == LFS_IFILE_INUM)
305 v_daddr = fs->lfs_idaddr;
306 else {
307 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
308 /* XXX fix for force write */
309 v_daddr = ifp->if_daddr;
310 brelse(bp, 0);
311 }
312 if (v_daddr == LFS_UNUSED_DADDR)
313 continue;
314
315 /* Get the vnode/inode. */
316 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
317 &vp,
318 (blkp->bi_lbn == LFS_UNUSED_LBN
319 ? blkp->bi_bp
320 : NULL));
321
322 if (!error) {
323 numrefed++;
324 }
325 if (error) {
326 DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
327 " failed with %d (ino %d, segment %d)\n",
328 error, blkp->bi_inode,
329 lfs_dtosn(fs, blkp->bi_daddr)));
330 /*
331 * If we got EAGAIN, that means that the
332 * Inode was locked. This is
333 * recoverable: just clean the rest of
334 * this segment, and let the cleaner try
335 * again with another. (When the
336 * cleaner runs again, this segment will
337 * sort high on the list, since it is
338 * now almost entirely empty.) But, we
339 * still set v_daddr = LFS_UNUSED_ADDR
340 * so as not to test this over and over
341 * again.
342 */
343 if (error == EAGAIN) {
344 error = 0;
345 do_again++;
346 }
347 #ifdef DIAGNOSTIC
348 else if (error != ENOENT)
349 panic("lfs_markv VFS_VGET FAILED");
350 #endif
351 /* lastino = LFS_UNUSED_INUM; */
352 v_daddr = LFS_UNUSED_DADDR;
353 vp = NULL;
354 ip = NULL;
355 continue;
356 }
357 ip = VTOI(vp);
358 ninowritten++;
359 } else if (v_daddr == LFS_UNUSED_DADDR) {
360 /*
361 * This can only happen if the vnode is dead (or
362 * in any case we can't get it...e.g., it is
363 * inlocked). Keep going.
364 */
365 continue;
366 }
367
368 /* Past this point we are guaranteed that vp, ip are valid. */
369
370 /* Can't clean VU_DIROP directories in case of truncation */
371 /* XXX - maybe we should mark removed dirs specially? */
372 if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
373 do_again++;
374 continue;
375 }
376
377 /* If this BLOCK_INFO didn't contain a block, keep going. */
378 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
379 /* XXX need to make sure that the inode gets written in this case */
380 /* XXX but only write the inode if it's the right one */
381 if (blkp->bi_inode != LFS_IFILE_INUM) {
382 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
383 if (ifp->if_daddr == blkp->bi_daddr) {
384 mutex_enter(&lfs_lock);
385 LFS_SET_UINO(ip, IN_CLEANING);
386 mutex_exit(&lfs_lock);
387 }
388 brelse(bp, 0);
389 }
390 continue;
391 }
392
393 b_daddr = 0;
394 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
395 LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr)
396 {
397 if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) ==
398 lfs_dtosn(fs, blkp->bi_daddr))
399 {
400 DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
401 (long long)blkp->bi_daddr, (long long)LFS_DBTOFSB(fs, b_daddr)));
402 }
403 do_again++;
404 continue;
405 }
406
407 /*
408 * Check block sizes. The blocks being cleaned come from
409 * disk, so they should have the same size as their on-disk
410 * counterparts.
411 */
412 if (blkp->bi_lbn >= 0)
413 obsize = lfs_blksize(fs, ip, blkp->bi_lbn);
414 else
415 obsize = fs->lfs_bsize;
416 /* Check for fragment size change */
417 if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) {
418 obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
419 }
420 if (obsize != blkp->bi_size) {
421 DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
422 " size (%ld != %d), try again\n",
423 blkp->bi_inode, (long long)blkp->bi_lbn,
424 (long) obsize, blkp->bi_size));
425 do_again++;
426 continue;
427 }
428
429 /*
430 * If we get to here, then we are keeping the block. If
431 * it is an indirect block, we want to actually put it
432 * in the buffer cache so that it can be updated in the
433 * finish_meta section. If it's not, we need to
434 * allocate a fake buffer so that writeseg can perform
435 * the copyin and write the buffer.
436 */
437 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
438 /* Data Block */
439 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
440 blkp->bi_size, blkp->bi_bp);
441 /* Pretend we used bread() to get it */
442 bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr);
443 } else {
444 /* Indirect block or ifile */
445 if (blkp->bi_size != fs->lfs_bsize &&
446 ip->i_number != LFS_IFILE_INUM)
447 panic("lfs_markv: partial indirect block?"
448 " size=%d\n", blkp->bi_size);
449 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
450 if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
451 /*
452 * The block in question was not found
453 * in the cache; i.e., the block that
454 * getblk() returned is empty. So, we
455 * can (and should) copy in the
456 * contents, because we've already
457 * determined that this was the right
458 * version of this block on disk.
459 *
460 * And, it can't have changed underneath
461 * us, because we have the segment lock.
462 */
463 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
464 if (error)
465 goto err2;
466 }
467 }
468 if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
469 goto err2;
470
471 nblkwritten++;
472 /*
473 * XXX should account indirect blocks and ifile pages as well
474 */
475 if (nblkwritten + lfs_lblkno(fs, ninowritten * sizeof (struct ulfs1_dinode))
476 > LFS_MARKV_MAX_BLOCKS) {
477 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
478 nblkwritten, ninowritten));
479 lfs_segwrite(mntp, SEGM_CLEAN);
480 nblkwritten = ninowritten = 0;
481 }
482 }
483
484 /*
485 * Finish the old file, if there was one
486 */
487 if (v_daddr != LFS_UNUSED_DADDR) {
488 lfs_vunref(vp);
489 numrefed--;
490 }
491
492 #ifdef DIAGNOSTIC
493 if (numrefed != 0)
494 panic("lfs_markv: numrefed=%d", numrefed);
495 #endif
496 DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
497 nblkwritten, ninowritten));
498
499 /*
500 * The last write has to be SEGM_SYNC, because of calling semantics.
501 * It also has to be SEGM_CKP, because otherwise we could write
502 * over the newly cleaned data contained in a checkpoint, and then
503 * we'd be unhappy at recovery time.
504 */
505 lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
506
507 lfs_segunlock(fs);
508
509 vfs_unbusy(mntp, false, NULL);
510 if (error)
511 return (error);
512 else if (do_again)
513 return EAGAIN;
514
515 return 0;
516
517 err2:
518 DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
519
520 /*
521 * XXX we're here because copyin() failed.
522 * XXX it means that we can't trust the cleanerd. too bad.
523 * XXX how can we recover from this?
524 */
525
526 err3:
527 /*
528 * XXX should do segwrite here anyway?
529 */
530
531 if (v_daddr != LFS_UNUSED_DADDR) {
532 lfs_vunref(vp);
533 --numrefed;
534 }
535
536 lfs_segunlock(fs);
537 vfs_unbusy(mntp, false, NULL);
538 #ifdef DIAGNOSTIC
539 if (numrefed != 0)
540 panic("lfs_markv: numrefed=%d", numrefed);
541 #endif
542
543 return (error);
544 }
545
546 /*
547 * sys_lfs_bmapv:
548 *
549 * This will fill in the current disk address for arrays of blocks.
550 *
551 * 0 on success
552 * -1/errno is return on error.
553 */
554 #ifdef USE_64BIT_SYSCALLS
555 int
556 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
557 {
558 /* {
559 syscallarg(fsid_t *) fsidp;
560 syscallarg(struct block_info *) blkiov;
561 syscallarg(int) blkcnt;
562 } */
563 BLOCK_INFO *blkiov;
564 int blkcnt, error;
565 fsid_t fsid;
566 struct lfs *fs;
567 struct mount *mntp;
568
569 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
570 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
571 if (error)
572 return (error);
573
574 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
575 return (error);
576
577 if ((mntp = vfs_getvfs(&fsid)) == NULL)
578 return (ENOENT);
579 fs = VFSTOULFS(mntp)->um_lfs;
580
581 blkcnt = SCARG(uap, blkcnt);
582 if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
583 return (EINVAL);
584 KERNEL_LOCK(1, NULL);
585 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
586 if ((error = copyin(SCARG(uap, blkiov), blkiov,
587 blkcnt * sizeof(BLOCK_INFO))) != 0)
588 goto out;
589
590 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
591 copyout(blkiov, SCARG(uap, blkiov),
592 blkcnt * sizeof(BLOCK_INFO));
593 out:
594 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
595 KERNEL_UNLOCK_ONE(NULL);
596 return error;
597 }
598 #else
599 int
600 sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
601 {
602 /* {
603 syscallarg(fsid_t *) fsidp;
604 syscallarg(struct block_info *) blkiov;
605 syscallarg(int) blkcnt;
606 } */
607 BLOCK_INFO *blkiov;
608 BLOCK_INFO_15 *blkiov15;
609 int i, blkcnt, error;
610 fsid_t fsid;
611 struct lfs *fs;
612 struct mount *mntp;
613
614 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
615 KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
616 if (error)
617 return (error);
618
619 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
620 return (error);
621
622 if ((mntp = vfs_getvfs(&fsid)) == NULL)
623 return (ENOENT);
624 fs = VFSTOULFS(mntp)->um_lfs;
625
626 blkcnt = SCARG(uap, blkcnt);
627 if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
628 return (EINVAL);
629 KERNEL_LOCK(1, NULL);
630 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
631 blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
632 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
633 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
634 goto out;
635
636 for (i = 0; i < blkcnt; i++) {
637 blkiov[i].bi_inode = blkiov15[i].bi_inode;
638 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
639 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
640 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
641 blkiov[i].bi_version = blkiov15[i].bi_version;
642 blkiov[i].bi_bp = blkiov15[i].bi_bp;
643 blkiov[i].bi_size = blkiov15[i].bi_size;
644 }
645
646 if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
647 for (i = 0; i < blkcnt; i++) {
648 blkiov15[i].bi_inode = blkiov[i].bi_inode;
649 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
650 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
651 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
652 blkiov15[i].bi_version = blkiov[i].bi_version;
653 blkiov15[i].bi_bp = blkiov[i].bi_bp;
654 blkiov15[i].bi_size = blkiov[i].bi_size;
655 }
656 copyout(blkiov15, SCARG(uap, blkiov),
657 blkcnt * sizeof(BLOCK_INFO_15));
658 }
659 out:
660 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
661 lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
662 KERNEL_UNLOCK_ONE(NULL);
663 return error;
664 }
665 #endif
666
667 int
668 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
669 {
670 BLOCK_INFO *blkp;
671 IFILE *ifp;
672 struct buf *bp;
673 struct inode *ip = NULL;
674 struct lfs *fs;
675 struct mount *mntp;
676 struct ulfsmount *ump;
677 struct vnode *vp;
678 ino_t lastino;
679 daddr_t v_daddr;
680 int cnt, error;
681 int numrefed = 0;
682
683 lfs_cleaner_pid = p->p_pid;
684
685 if ((mntp = vfs_getvfs(fsidp)) == NULL)
686 return (ENOENT);
687
688 ump = VFSTOULFS(mntp);
689 if ((error = vfs_busy(mntp, NULL)) != 0)
690 return (error);
691
692 cnt = blkcnt;
693
694 fs = VFSTOULFS(mntp)->um_lfs;
695
696 error = 0;
697
698 /* these were inside the initialization for the for loop */
699 v_daddr = LFS_UNUSED_DADDR;
700 lastino = LFS_UNUSED_INUM;
701 for (blkp = blkiov; cnt--; ++blkp)
702 {
703 /*
704 * Get the IFILE entry (only once) and see if the file still
705 * exists.
706 */
707 if (lastino != blkp->bi_inode) {
708 /*
709 * Finish the old file, if there was one. The presence
710 * of a usable vnode in vp is signaled by a valid
711 * v_daddr.
712 */
713 if (v_daddr != LFS_UNUSED_DADDR) {
714 lfs_vunref(vp);
715 if (VTOI(vp)->i_lfs_iflags & LFSI_BMAP) {
716 mutex_enter(vp->v_interlock);
717 if (vget(vp, LK_NOWAIT) == 0) {
718 if (! vrecycle(vp))
719 vrele(vp);
720 }
721 }
722 numrefed--;
723 }
724
725 /*
726 * Start a new file
727 */
728 lastino = blkp->bi_inode;
729 if (blkp->bi_inode == LFS_IFILE_INUM)
730 v_daddr = fs->lfs_idaddr;
731 else {
732 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
733 v_daddr = ifp->if_daddr;
734 brelse(bp, 0);
735 }
736 if (v_daddr == LFS_UNUSED_DADDR) {
737 blkp->bi_daddr = LFS_UNUSED_DADDR;
738 continue;
739 }
740 /*
741 * A regular call to VFS_VGET could deadlock
742 * here. Instead, we try an unlocked access.
743 */
744 mutex_enter(&ulfs_ihash_lock);
745 vp = ulfs_ihashlookup(ump->um_dev, blkp->bi_inode);
746 if (vp != NULL)
747 mutex_enter(vp->v_interlock);
748 if (vp != NULL && vdead_check(vp, VDEAD_NOWAIT) == 0) {
749 ip = VTOI(vp);
750 mutex_exit(&ulfs_ihash_lock);
751 if (lfs_vref(vp)) {
752 v_daddr = LFS_UNUSED_DADDR;
753 continue;
754 }
755 numrefed++;
756 } else {
757 if (vp != NULL)
758 mutex_exit(vp->v_interlock);
759 mutex_exit(&ulfs_ihash_lock);
760 /*
761 * Don't VFS_VGET if we're being unmounted,
762 * since we hold vfs_busy().
763 */
764 if (mntp->mnt_iflag & IMNT_UNMOUNT) {
765 v_daddr = LFS_UNUSED_DADDR;
766 continue;
767 }
768 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
769 if (error) {
770 DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
771 "%d failed with %d",
772 blkp->bi_inode,error));
773 v_daddr = LFS_UNUSED_DADDR;
774 continue;
775 } else {
776 KASSERT(VOP_ISLOCKED(vp));
777 VTOI(vp)->i_lfs_iflags |= LFSI_BMAP;
778 VOP_UNLOCK(vp);
779 numrefed++;
780 }
781 }
782 ip = VTOI(vp);
783 } else if (v_daddr == LFS_UNUSED_DADDR) {
784 /*
785 * This can only happen if the vnode is dead.
786 * Keep going. Note that we DO NOT set the
787 * bi_addr to anything -- if we failed to get
788 * the vnode, for example, we want to assume
789 * conservatively that all of its blocks *are*
790 * located in the segment in question.
791 * lfs_markv will throw them out if we are
792 * wrong.
793 */
794 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
795 continue;
796 }
797
798 /* Past this point we are guaranteed that vp, ip are valid. */
799
800 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
801 /*
802 * We just want the inode address, which is
803 * conveniently in v_daddr.
804 */
805 blkp->bi_daddr = v_daddr;
806 } else {
807 daddr_t bi_daddr;
808
809 /* XXX ondisk32 */
810 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
811 &bi_daddr, NULL);
812 if (error)
813 {
814 blkp->bi_daddr = LFS_UNUSED_DADDR;
815 continue;
816 }
817 blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr);
818 /* Fill in the block size, too */
819 if (blkp->bi_lbn >= 0)
820 blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn);
821 else
822 blkp->bi_size = fs->lfs_bsize;
823 }
824 }
825
826 /*
827 * Finish the old file, if there was one. The presence
828 * of a usable vnode in vp is signaled by a valid v_daddr.
829 */
830 if (v_daddr != LFS_UNUSED_DADDR) {
831 lfs_vunref(vp);
832 /* Recycle as above. */
833 if (ip->i_lfs_iflags & LFSI_BMAP) {
834 mutex_enter(vp->v_interlock);
835 if (vget(vp, LK_NOWAIT) == 0) {
836 if (! vrecycle(vp))
837 vrele(vp);
838 }
839 }
840 numrefed--;
841 }
842
843 #ifdef DIAGNOSTIC
844 if (numrefed != 0)
845 panic("lfs_bmapv: numrefed=%d", numrefed);
846 #endif
847
848 vfs_unbusy(mntp, false, NULL);
849
850 return 0;
851 }
852
853 /*
854 * sys_lfs_segclean:
855 *
856 * Mark the segment clean.
857 *
858 * 0 on success
859 * -1/errno is return on error.
860 */
861 int
862 sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
863 {
864 /* {
865 syscallarg(fsid_t *) fsidp;
866 syscallarg(u_long) segment;
867 } */
868 struct lfs *fs;
869 struct mount *mntp;
870 fsid_t fsid;
871 int error;
872 unsigned long segnum;
873
874 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
875 KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL);
876 if (error)
877 return (error);
878
879 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
880 return (error);
881 if ((mntp = vfs_getvfs(&fsid)) == NULL)
882 return (ENOENT);
883
884 fs = VFSTOULFS(mntp)->um_lfs;
885 segnum = SCARG(uap, segment);
886
887 if ((error = vfs_busy(mntp, NULL)) != 0)
888 return (error);
889
890 KERNEL_LOCK(1, NULL);
891 lfs_seglock(fs, SEGM_PROT);
892 error = lfs_do_segclean(fs, segnum);
893 lfs_segunlock(fs);
894 KERNEL_UNLOCK_ONE(NULL);
895 vfs_unbusy(mntp, false, NULL);
896 return error;
897 }
898
899 /*
900 * Actually mark the segment clean.
901 * Must be called with the segment lock held.
902 */
903 int
904 lfs_do_segclean(struct lfs *fs, unsigned long segnum)
905 {
906 extern int lfs_dostats;
907 struct buf *bp;
908 CLEANERINFO *cip;
909 SEGUSE *sup;
910
911 if (lfs_dtosn(fs, fs->lfs_curseg) == segnum) {
912 return (EBUSY);
913 }
914
915 LFS_SEGENTRY(sup, fs, segnum, bp);
916 if (sup->su_nbytes) {
917 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
918 " %d live bytes\n", segnum, sup->su_nbytes));
919 brelse(bp, 0);
920 return (EBUSY);
921 }
922 if (sup->su_flags & SEGUSE_ACTIVE) {
923 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
924 " segment is active\n", segnum));
925 brelse(bp, 0);
926 return (EBUSY);
927 }
928 if (!(sup->su_flags & SEGUSE_DIRTY)) {
929 DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
930 " segment is already clean\n", segnum));
931 brelse(bp, 0);
932 return (EALREADY);
933 }
934
935 fs->lfs_avail += lfs_segtod(fs, 1);
936 if (sup->su_flags & SEGUSE_SUPERBLOCK)
937 fs->lfs_avail -= lfs_btofsb(fs, LFS_SBPAD);
938 if (fs->lfs_version > 1 && segnum == 0 &&
939 fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD))
940 fs->lfs_avail -= lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
941 mutex_enter(&lfs_lock);
942 fs->lfs_bfree += sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
943 lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
944 fs->lfs_dmeta -= sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
945 lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
946 if (fs->lfs_dmeta < 0)
947 fs->lfs_dmeta = 0;
948 mutex_exit(&lfs_lock);
949 sup->su_flags &= ~SEGUSE_DIRTY;
950 LFS_WRITESEGENTRY(sup, fs, segnum, bp);
951
952 LFS_CLEANERINFO(cip, fs, bp);
953 ++cip->clean;
954 --cip->dirty;
955 fs->lfs_nclean = cip->clean;
956 cip->bfree = fs->lfs_bfree;
957 mutex_enter(&lfs_lock);
958 cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
959 wakeup(&fs->lfs_avail);
960 mutex_exit(&lfs_lock);
961 (void) LFS_BWRITE_LOG(bp);
962
963 if (lfs_dostats)
964 ++lfs_stats.segs_reclaimed;
965
966 return (0);
967 }
968
969 /*
970 * This will block until a segment in file system fsid is written. A timeout
971 * in milliseconds may be specified which will awake the cleaner automatically.
972 * An fsid of -1 means any file system, and a timeout of 0 means forever.
973 */
974 int
975 lfs_segwait(fsid_t *fsidp, struct timeval *tv)
976 {
977 struct mount *mntp;
978 void *addr;
979 u_long timeout;
980 int error;
981
982 KERNEL_LOCK(1, NULL);
983 if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
984 addr = &lfs_allclean_wakeup;
985 else
986 addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextseg;
987 /*
988 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
989 * XXX IS THAT WHAT IS INTENDED?
990 */
991 timeout = tvtohz(tv);
992 error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
993 KERNEL_UNLOCK_ONE(NULL);
994 return (error == ERESTART ? EINTR : 0);
995 }
996
997 /*
998 * sys_lfs_segwait:
999 *
1000 * System call wrapper around lfs_segwait().
1001 *
1002 * 0 on success
1003 * 1 on timeout
1004 * -1/errno is return on error.
1005 */
1006 int
1007 sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
1008 register_t *retval)
1009 {
1010 /* {
1011 syscallarg(fsid_t *) fsidp;
1012 syscallarg(struct timeval *) tv;
1013 } */
1014 struct timeval atv;
1015 fsid_t fsid;
1016 int error;
1017
1018 /* XXX need we be su to segwait? */
1019 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
1020 KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL);
1021 if (error)
1022 return (error);
1023 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
1024 return (error);
1025
1026 if (SCARG(uap, tv)) {
1027 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
1028 if (error)
1029 return (error);
1030 if (itimerfix(&atv))
1031 return (EINVAL);
1032 } else /* NULL or invalid */
1033 atv.tv_sec = atv.tv_usec = 0;
1034 return lfs_segwait(&fsid, &atv);
1035 }
1036
1037 /*
1038 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1039 * daddr from the ifile, so don't look it up again. If the cleaner is
1040 * processing IINFO structures, it may have the ondisk inode already, so
1041 * don't go retrieving it again.
1042 *
1043 * we lfs_vref, and it is the caller's responsibility to lfs_vunref
1044 * when finished.
1045 */
1046
1047 int
1048 lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
1049 {
1050 struct vnode *vp;
1051
1052 mutex_enter(&ulfs_ihash_lock);
1053 if ((vp = ulfs_ihashlookup(dev, ino)) != NULL) {
1054 mutex_enter(vp->v_interlock);
1055 mutex_exit(&ulfs_ihash_lock);
1056 if (vdead_check(vp, VDEAD_NOWAIT) != 0) {
1057 DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d dead\n",
1058 ino));
1059 lfs_stats.clean_vnlocked++;
1060 mutex_exit(vp->v_interlock);
1061 return EAGAIN;
1062 }
1063 if (lfs_vref(vp)) {
1064 DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
1065 " for ino %d\n", ino));
1066 lfs_stats.clean_inlocked++;
1067 return EAGAIN;
1068 }
1069 } else {
1070 mutex_exit(&ulfs_ihash_lock);
1071 }
1072 *vpp = vp;
1073
1074 return (0);
1075 }
1076
1077 int
1078 lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
1079 struct ulfs1_dinode *dinp)
1080 {
1081 struct inode *ip;
1082 struct ulfs1_dinode *dip;
1083 struct vnode *vp;
1084 struct ulfsmount *ump;
1085 dev_t dev;
1086 int error, retries;
1087 struct buf *bp;
1088 struct lfs *fs;
1089
1090 ump = VFSTOULFS(mp);
1091 dev = ump->um_dev;
1092 fs = ump->um_lfs;
1093
1094 /*
1095 * Wait until the filesystem is fully mounted before allowing vget
1096 * to complete. This prevents possible problems with roll-forward.
1097 */
1098 mutex_enter(&lfs_lock);
1099 while (fs->lfs_flags & LFS_NOTYET) {
1100 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
1101 &lfs_lock);
1102 }
1103 mutex_exit(&lfs_lock);
1104
1105 /*
1106 * This is playing fast and loose. Someone may have the inode
1107 * locked, in which case they are going to be distinctly unhappy
1108 * if we trash something.
1109 */
1110
1111 error = lfs_fasthashget(dev, ino, vpp);
1112 if (error != 0 || *vpp != NULL)
1113 return (error);
1114
1115 /*
1116 * getnewvnode(9) will call vfs_busy, which will block if the
1117 * filesystem is being unmounted; but umount(9) is waiting for
1118 * us because we're already holding the fs busy.
1119 * XXXMP
1120 */
1121 if (mp->mnt_iflag & IMNT_UNMOUNT) {
1122 *vpp = NULL;
1123 return EDEADLK;
1124 }
1125 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1126 if (error) {
1127 *vpp = NULL;
1128 return (error);
1129 }
1130
1131 mutex_enter(&ulfs_hashlock);
1132 error = lfs_fasthashget(dev, ino, vpp);
1133 if (error != 0 || *vpp != NULL) {
1134 mutex_exit(&ulfs_hashlock);
1135 ungetnewvnode(vp);
1136 return (error);
1137 }
1138
1139 /* Allocate new vnode/inode. */
1140 lfs_vcreate(mp, ino, vp);
1141
1142 /*
1143 * Put it onto its hash chain and lock it so that other requests for
1144 * this inode will block if they arrive while we are sleeping waiting
1145 * for old data structures to be purged or for the contents of the
1146 * disk portion of this inode to be read.
1147 */
1148 ip = VTOI(vp);
1149 ulfs_ihashins(ip);
1150 mutex_exit(&ulfs_hashlock);
1151
1152 #ifdef notyet
1153 /* Not found in the cache => this vnode was loaded only for cleaning. */
1154 ip->i_lfs_iflags |= LFSI_BMAP;
1155 #endif
1156
1157 /*
1158 * XXX
1159 * This may not need to be here, logically it should go down with
1160 * the i_devvp initialization.
1161 * Ask Kirk.
1162 */
1163 ip->i_lfs = fs;
1164
1165 /* Read in the disk contents for the inode, copy into the inode. */
1166 if (dinp) {
1167 error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ulfs1_dinode));
1168 if (error) {
1169 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
1170 " for ino %d\n", ino));
1171 ulfs_ihashrem(ip);
1172
1173 /* Unlock and discard unneeded inode. */
1174 VOP_UNLOCK(vp);
1175 lfs_vunref(vp);
1176 *vpp = NULL;
1177 return (error);
1178 }
1179 if (ip->i_number != ino)
1180 panic("lfs_fastvget: I was fed the wrong inode!");
1181 } else {
1182 retries = 0;
1183 again:
1184 error = bread(ump->um_devvp, LFS_FSBTODB(fs, daddr), fs->lfs_ibsize,
1185 NOCRED, 0, &bp);
1186 if (error) {
1187 DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
1188 error));
1189 /*
1190 * The inode does not contain anything useful, so it
1191 * would be misleading to leave it on its hash chain.
1192 * Iput() will return it to the free list.
1193 */
1194 ulfs_ihashrem(ip);
1195
1196 /* Unlock and discard unneeded inode. */
1197 VOP_UNLOCK(vp);
1198 lfs_vunref(vp);
1199 *vpp = NULL;
1200 return (error);
1201 }
1202 dip = lfs_ifind(ump->um_lfs, ino, bp);
1203 if (dip == NULL) {
1204 /* Assume write has not completed yet; try again */
1205 brelse(bp, BC_INVAL);
1206 ++retries;
1207 if (retries > LFS_IFIND_RETRIES)
1208 panic("lfs_fastvget: dinode not found");
1209 DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
1210 " retrying...\n"));
1211 goto again;
1212 }
1213 *ip->i_din.ffs1_din = *dip;
1214 brelse(bp, 0);
1215 }
1216 lfs_vinit(mp, &vp);
1217
1218 *vpp = vp;
1219
1220 KASSERT(VOP_ISLOCKED(vp));
1221 VOP_UNLOCK(vp);
1222
1223 return (0);
1224 }
1225
1226 /*
1227 * Make up a "fake" cleaner buffer, copy the data from userland into it.
1228 */
1229 struct buf *
1230 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
1231 {
1232 struct buf *bp;
1233 int error;
1234
1235 KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
1236
1237 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
1238 error = copyin(uaddr, bp->b_data, size);
1239 if (error) {
1240 lfs_freebuf(fs, bp);
1241 return NULL;
1242 }
1243 KDASSERT(bp->b_iodone == lfs_callback);
1244
1245 #if 0
1246 mutex_enter(&lfs_lock);
1247 ++fs->lfs_iocount;
1248 mutex_exit(&lfs_lock);
1249 #endif
1250 bp->b_bufsize = size;
1251 bp->b_bcount = size;
1252 return (bp);
1253 }
1254