lfs_syscalls.c revision 1.37 1 /* $NetBSD: lfs_syscalls.c,v 1.37 1999/11/23 23:52:42 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
71 */
72
73 #include "fs_lfs.h" /* for prototypes in syscallargs.h */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/buf.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83
84 #include <sys/syscallargs.h>
85
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 #include <ufs/ufs/ufsmount.h>
89 #include <ufs/ufs/ufs_extern.h>
90
91 #include <ufs/lfs/lfs.h>
92 #include <ufs/lfs/lfs_extern.h>
93
94 /* Flags for return from lfs_fastvget */
95 #define FVG_UNLOCK 0x01 /* Needs to be unlocked */
96 #define FVG_PUT 0x02 /* Needs to be vput() */
97
98 struct buf *lfs_fakebuf __P((struct vnode *, int, size_t, caddr_t));
99
100 int debug_cleaner = 0;
101 int clean_vnlocked = 0;
102 int clean_inlocked = 0;
103 int verbose_debug = 0;
104
105 pid_t lfs_cleaner_pid = 0;
106
107 /*
108 * Definitions for the buffer free lists.
109 */
110 #define BQUEUES 4 /* number of free buffer queues */
111
112 #define BQ_LOCKED 0 /* super-blocks &c */
113 #define BQ_LRU 1 /* lru, useful buffers */
114 #define BQ_AGE 2 /* rubbish */
115 #define BQ_EMPTY 3 /* buffer headers with no memory */
116
117 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
118
119 #define LFS_FORCE_WRITE UNASSIGNED
120
121 #define LFS_VREF_THRESHOLD 128
122
123 /*
124 * sys_lfs_markv:
125 *
126 * This will mark inodes and blocks dirty, so they are written into the log.
127 * It will block until all the blocks have been written. The segment create
128 * time passed in the block_info and inode_info structures is used to decide
129 * if the data is valid for each block (in case some process dirtied a block
130 * or inode that is being cleaned between the determination that a block is
131 * live and the lfs_markv call).
132 *
133 * 0 on success
134 * -1/errno is return on error.
135 */
136 int
137 sys_lfs_markv(p, v, retval)
138 struct proc *p;
139 void *v;
140 register_t *retval;
141 {
142 struct sys_lfs_markv_args /* {
143 syscallarg(fsid_t *) fsidp;
144 syscallarg(struct block_info *) blkiov;
145 syscallarg(int) blkcnt;
146 } */ *uap = v;
147 BLOCK_INFO *blkp;
148 IFILE *ifp;
149 struct buf *bp, *nbp;
150 struct inode *ip = NULL;
151 struct lfs *fs;
152 struct mount *mntp;
153 struct vnode *vp;
154 #ifdef DEBUG_LFS
155 int vputc=0, iwritten=0;
156 #endif
157 fsid_t fsid;
158 void *start;
159 ino_t lastino;
160 ufs_daddr_t b_daddr, v_daddr;
161 int origcnt, cnt, error, lfs_fastvget_unlock;
162 int do_again=0;
163 int s;
164 #ifdef CHECK_COPYIN
165 int i;
166 #endif /* CHECK_COPYIN */
167 #ifdef LFS_TRACK_IOS
168 int j;
169 #endif
170 int numlocked=0, numrefed=0;
171
172 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
173 return (error);
174
175 if ((mntp = vfs_getvfs(&fsid)) == NULL)
176 return (EINVAL);
177
178 fs = VFSTOUFS(mntp)->um_lfs;
179
180 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
181 return (error);
182
183 origcnt = cnt = SCARG(uap, blkcnt);
184 start = malloc(cnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
185 error = copyin(SCARG(uap, blkiov), start, cnt * sizeof(BLOCK_INFO));
186 if (error)
187 goto err1;
188
189 /*
190 * This seglock is just to prevent the fact that we might have to sleep
191 * from allowing the possibility that our blocks might become
192 * invalid.
193 *
194 * It is also important to note here that unless we specify SEGM_CKP,
195 * any Ifile blocks that we might be asked to clean will never get
196 * to the disk.
197 */
198 lfs_seglock(fs, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
199
200 /* Mark blocks/inodes dirty. */
201 error = 0;
202
203 #ifdef DEBUG_LFS
204 /* Run through and count the inodes */
205 lastino = LFS_UNUSED_INUM;
206 for(blkp = start; cnt--; ++blkp) {
207 if(lastino != blkp->bi_inode) {
208 lastino = blkp->bi_inode;
209 vputc++;
210 }
211 }
212 cnt = origcnt;
213 printf("[%d/",vputc);
214 iwritten=0;
215 #endif /* DEBUG_LFS */
216 /* these were inside the initialization for the for loop */
217 v_daddr = LFS_UNUSED_DADDR;
218 lastino = LFS_UNUSED_INUM;
219 for (blkp = start; cnt--; ++blkp)
220 {
221 if(blkp->bi_daddr == LFS_FORCE_WRITE)
222 printf("lfs_markv: warning: force-writing ino %d lbn %d\n",
223 blkp->bi_inode, blkp->bi_lbn);
224 #ifdef LFS_TRACK_IOS
225 /*
226 * If there is I/O on this segment that is not yet complete,
227 * the cleaner probably does not have the right information.
228 * Send it packing.
229 */
230 for(j=0;j<LFS_THROTTLE;j++) {
231 if(fs->lfs_pending[j] != LFS_UNUSED_DADDR
232 && datosn(fs,fs->lfs_pending[j])==datosn(fs,blkp->bi_daddr)
233 && blkp->bi_daddr != LFS_FORCE_WRITE)
234 {
235 printf("lfs_markv: attempt to clean pending segment? (#%d)\n",
236 datosn(fs, fs->lfs_pending[j]));
237 /* free(start,M_SEGMENT); */
238 /* return (EBUSY); */
239 }
240 }
241 #endif /* LFS_TRACK_IOS */
242 /*
243 * Get the IFILE entry (only once) and see if the file still
244 * exists.
245 */
246 if (lastino != blkp->bi_inode) {
247 /*
248 * Finish the old file, if there was one. The presence
249 * of a usable vnode in vp is signaled by a valid v_daddr.
250 */
251 if(v_daddr != LFS_UNUSED_DADDR) {
252 #ifdef DEBUG_LFS
253 if(ip->i_flag & (IN_MODIFIED|IN_CLEANING))
254 iwritten++;
255 #endif
256 if(lfs_fastvget_unlock) {
257 VOP_UNLOCK(vp,0);
258 numlocked--;
259 }
260 lfs_vunref(vp);
261 numrefed--;
262 }
263
264 /*
265 * Start a new file
266 */
267 lastino = blkp->bi_inode;
268 if (blkp->bi_inode == LFS_IFILE_INUM)
269 v_daddr = fs->lfs_idaddr;
270 else {
271 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
272 /* XXX fix for force write */
273 v_daddr = ifp->if_daddr;
274 brelse(bp);
275 }
276 /* Don't force-write the ifile */
277 if (blkp->bi_inode == LFS_IFILE_INUM
278 && blkp->bi_daddr == LFS_FORCE_WRITE)
279 {
280 continue;
281 }
282 if (v_daddr == LFS_UNUSED_DADDR
283 && blkp->bi_daddr != LFS_FORCE_WRITE)
284 {
285 continue;
286 }
287
288 /* Get the vnode/inode. */
289 error=lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
290 &vp,
291 (blkp->bi_lbn==LFS_UNUSED_LBN
292 ? blkp->bi_bp
293 : NULL),
294 &lfs_fastvget_unlock);
295 if(lfs_fastvget_unlock)
296 numlocked++;
297
298 if(!error) {
299 numrefed++;
300 }
301 if(error) {
302 #ifdef DIAGNOSTIC
303 printf("lfs_markv: lfs_fastvget failed with %d (ino %d, segment %d)\n",
304 error, blkp->bi_inode,
305 datosn(fs, blkp->bi_daddr));
306 #endif /* DIAGNOSTIC */
307 /*
308 * If we got EAGAIN, that means that the
309 * Inode was locked. This is
310 * recoverable: just clean the rest of
311 * this segment, and let the cleaner try
312 * again with another. (When the
313 * cleaner runs again, this segment will
314 * sort high on the list, since it is
315 * now almost entirely empty.) But, we
316 * still set v_daddr = LFS_UNUSED_ADDR
317 * so as not to test this over and over
318 * again.
319 */
320 if(error == EAGAIN) {
321 error = 0;
322 do_again++;
323 }
324 #ifdef DIAGNOSTIC
325 else if(error != ENOENT)
326 panic("lfs_markv VFS_VGET FAILED");
327 #endif
328 /* lastino = LFS_UNUSED_INUM; */
329 v_daddr = LFS_UNUSED_DADDR;
330 vp = NULL;
331 ip = NULL;
332 continue;
333 }
334 ip = VTOI(vp);
335 } else if (v_daddr == LFS_UNUSED_DADDR) {
336 /*
337 * This can only happen if the vnode is dead (or
338 * in any case we can't get it...e.g., it is
339 * inlocked). Keep going.
340 */
341 continue;
342 }
343
344 /* Past this point we are guaranteed that vp, ip are valid. */
345
346 /* If this BLOCK_INFO didn't contain a block, keep going. */
347 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
348 /* XXX need to make sure that the inode gets written in this case */
349 /* XXX but only write the inode if it's the right one */
350 if (blkp->bi_inode != LFS_IFILE_INUM) {
351 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
352 if(ifp->if_daddr == blkp->bi_daddr
353 || blkp->bi_daddr == LFS_FORCE_WRITE)
354 {
355 if(!(ip->i_flag & IN_CLEANING))
356 fs->lfs_uinodes++;
357 ip->i_flag |= IN_CLEANING;
358 }
359 brelse(bp);
360 }
361 continue;
362 }
363
364 b_daddr = 0;
365 if(blkp->bi_daddr != LFS_FORCE_WRITE) {
366 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
367 b_daddr != blkp->bi_daddr)
368 {
369 if(datosn(fs,b_daddr)
370 == datosn(fs,blkp->bi_daddr))
371 {
372 printf("lfs_markv: wrong da same seg: %x vs %x\n",
373 blkp->bi_daddr, b_daddr);
374 }
375 continue;
376 }
377 }
378 /*
379 * If we got to here, then we are keeping the block. If
380 * it is an indirect block, we want to actually put it
381 * in the buffer cache so that it can be updated in the
382 * finish_meta section. If it's not, we need to
383 * allocate a fake buffer so that writeseg can perform
384 * the copyin and write the buffer.
385 */
386 /*
387 * XXX - if the block we are reading has been *extended* since
388 * it was written to disk, then we risk throwing away
389 * the extension in bread()/getblk(). Check the size
390 * here.
391 */
392 if(blkp->bi_size < fs->lfs_bsize) {
393 s = splbio();
394 bp = incore(vp, blkp->bi_lbn);
395 if(bp && bp->b_bcount > blkp->bi_size) {
396 printf("lfs_markv: %ld > %d (fixed)\n",
397 bp->b_bcount, blkp->bi_size);
398 blkp->bi_size = bp->b_bcount;
399 }
400 splx(s);
401 }
402 if (blkp->bi_lbn >= 0) { /* Data Block */
403 /* XXX KS - should we use incore here, or just always use getblk()? */
404 bp = lfs_fakebuf(vp, blkp->bi_lbn,
405 blkp->bi_size, blkp->bi_bp);
406 /* Pretend we used bread() to get it */
407 bp->b_blkno = blkp->bi_daddr;
408 } else { /* Indirect block */
409 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
410 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
411 /*
412 * The block in question was not found
413 * in the cache; i.e., the block that
414 * getblk() returned is empty. So, we
415 * can (and should) copy in the
416 * contents, because we've already
417 * determined that this was the right
418 * version of this block on disk.
419 *
420 * And, it can't have changed underneath
421 * us, because we have the segment lock.
422 */
423 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
424 if(error)
425 goto err2;
426 }
427 }
428 if ((error = lfs_bwrite_ext(bp,BW_CLEAN)) != 0)
429 goto err2;
430 }
431
432 /*
433 * Finish the old file, if there was one
434 */
435 if(v_daddr != LFS_UNUSED_DADDR) {
436 #ifdef DEBUG_LFS
437 if(ip->i_flag & (IN_MODIFIED|IN_CLEANING))
438 iwritten++;
439 #endif
440 if(lfs_fastvget_unlock) {
441 VOP_UNLOCK(vp,0);
442 numlocked--;
443 }
444 lfs_vunref(vp);
445 numrefed--;
446 }
447
448 /*
449 * The last write has to be SEGM_SYNC, because of calling semantics.
450 * It also has to be SEGM_CKP, because otherwise we could write
451 * over the newly cleaned data contained in a checkpoint, and then
452 * we'd be unhappy at recovery time.
453 */
454 lfs_segwrite(mntp, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
455 free(start, M_SEGMENT);
456
457 lfs_segunlock(fs);
458
459 #ifdef DEBUG_LFS
460 printf("%d]",iwritten);
461 if(numlocked != 0 || numrefed != 0) {
462 panic("lfs_markv: numlocked=%d numrefed=%d", numlocked, numrefed);
463 }
464 #endif
465
466 if(error)
467 return (error);
468 else if(do_again)
469 return EAGAIN;
470
471 return 0;
472
473 err2:
474 printf("lfs_markv err2\n");
475 lfs_vunref(vp);
476 /* Free up fakebuffers -- have to take these from the LOCKED list */
477 again:
478 s = splbio();
479 for(bp = bufqueues[BQ_LOCKED].tqh_first; bp; bp=nbp) {
480 nbp = bp->b_freelist.tqe_next;
481 if(bp->b_flags & B_CALL) {
482 if(bp->b_flags & B_BUSY) { /* not bloody likely */
483 bp->b_flags |= B_WANTED;
484 tsleep(bp, PRIBIO+1, "markv", 0);
485 splx(s);
486 goto again;
487 }
488 bremfree(bp);
489 splx(s);
490 brelse(bp);
491 s = splbio();
492 }
493 }
494 splx(s);
495 free(start, M_SEGMENT);
496 lfs_segunlock(fs);
497 vfs_unbusy(mntp);
498 return (error);
499
500 err1:
501 printf("lfs_markv err1\n");
502 free(start, M_SEGMENT);
503 return (error);
504 }
505
506 /*
507 * sys_lfs_bmapv:
508 *
509 * This will fill in the current disk address for arrays of blocks.
510 *
511 * 0 on success
512 * -1/errno is return on error.
513 */
514
515 int
516 sys_lfs_bmapv(p, v, retval)
517 struct proc *p;
518 void *v;
519 register_t *retval;
520 {
521 struct sys_lfs_bmapv_args /* {
522 syscallarg(fsid_t *) fsidp;
523 syscallarg(struct block_info *) blkiov;
524 syscallarg(int) blkcnt;
525 } */ *uap = v;
526 BLOCK_INFO *blkp;
527 IFILE *ifp;
528 struct buf *bp;
529 struct inode *ip = NULL;
530 struct lfs *fs;
531 struct mount *mntp;
532 struct ufsmount *ump;
533 struct vnode *vp;
534 fsid_t fsid;
535 void *start;
536 ino_t lastino;
537 ufs_daddr_t v_daddr;
538 int origcnt, cnt, error, need_unlock=0;
539 int numlocked=0, numrefed=0;
540 #ifdef LFS_TRACK_IOS
541 int j;
542 #endif
543
544 lfs_cleaner_pid = p->p_pid;
545
546 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
547 return (error);
548
549 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
550 return (error);
551 if ((mntp = vfs_getvfs(&fsid)) == NULL)
552 return (EINVAL);
553
554 ump = VFSTOUFS(mntp);
555
556 origcnt = cnt = SCARG(uap, blkcnt);
557 start = malloc(cnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
558 error = copyin(SCARG(uap, blkiov), start, cnt * sizeof(BLOCK_INFO));
559 if (error) {
560 free(start, M_SEGMENT);
561 return (error);
562 }
563
564 fs = VFSTOUFS(mntp)->um_lfs;
565
566 error = 0;
567
568 /* these were inside the initialization for the for loop */
569 v_daddr = LFS_UNUSED_DADDR;
570 lastino = LFS_UNUSED_INUM;
571 for (blkp = start; cnt--; ++blkp)
572 {
573 #ifdef DEBUG
574 if (datosn(fs, fs->lfs_curseg) == datosn(fs, blkp->bi_daddr)) {
575 printf("lfs_bmapv: attempt to clean current segment? (#%d)\n",
576 datosn(fs, fs->lfs_curseg));
577 free(start,M_SEGMENT);
578 return (EBUSY);
579 }
580 #endif /* DEBUG */
581 #ifdef LFS_TRACK_IOS
582 /*
583 * If there is I/O on this segment that is not yet complete,
584 * the cleaner probably does not have the right information.
585 * Send it packing.
586 */
587 for(j=0;j<LFS_THROTTLE;j++) {
588 if(fs->lfs_pending[j] != LFS_UNUSED_DADDR
589 && datosn(fs,fs->lfs_pending[j])==datosn(fs,blkp->bi_daddr))
590 {
591 printf("lfs_bmapv: attempt to clean pending segment? (#%d)\n",
592 datosn(fs, fs->lfs_pending[j]));
593 free(start,M_SEGMENT);
594 return (EBUSY);
595 }
596 }
597
598 #endif /* LFS_TRACK_IOS */
599 /*
600 * Get the IFILE entry (only once) and see if the file still
601 * exists.
602 */
603 if (lastino != blkp->bi_inode) {
604 /*
605 * Finish the old file, if there was one. The presence
606 * of a usable vnode in vp is signaled by a valid
607 * v_daddr.
608 */
609 if(v_daddr != LFS_UNUSED_DADDR) {
610 if(need_unlock) {
611 VOP_UNLOCK(vp,0);
612 numlocked--;
613 }
614 lfs_vunref(vp);
615 numrefed--;
616 }
617
618 /*
619 * Start a new file
620 */
621 lastino = blkp->bi_inode;
622 if (blkp->bi_inode == LFS_IFILE_INUM)
623 v_daddr = fs->lfs_idaddr;
624 else {
625 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
626 v_daddr = ifp->if_daddr;
627 brelse(bp);
628 }
629 if (v_daddr == LFS_UNUSED_DADDR) {
630 blkp->bi_daddr = LFS_UNUSED_DADDR;
631 continue;
632 }
633 /*
634 * A regular call to VFS_VGET could deadlock
635 * here. Instead, we try an unlocked access.
636 */
637 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
638 if (vp != NULL && !(vp->v_flag & VXLOCK)) {
639 ip = VTOI(vp);
640 if(VOP_ISLOCKED(vp)) {
641 /* printf("lfs_bmapv: inode %d inlocked\n",ip->i_number); */
642 need_unlock = 0;
643 } else {
644 VOP_LOCK(vp,LK_EXCLUSIVE);
645 need_unlock = FVG_UNLOCK;
646 numlocked++;
647 }
648 lfs_vref(vp);
649 numrefed++;
650 } else {
651 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
652 if(error) {
653 v_daddr = LFS_UNUSED_DADDR;
654 need_unlock = 0;
655 #ifdef DEBUG_LFS
656 printf("lfs_bmapv: vget of ino %d failed with %d",blkp->bi_inode,error);
657 #endif
658 continue;
659 } else {
660 need_unlock = FVG_PUT;
661 numlocked++;
662 numrefed++;
663 }
664 }
665 ip = VTOI(vp);
666 } else if (v_daddr == LFS_UNUSED_DADDR) {
667 /*
668 * This can only happen if the vnode is dead.
669 * Keep going. Note that we DO NOT set the
670 * bi_addr to anything -- if we failed to get
671 * the vnode, for example, we want to assume
672 * conservatively that all of its blocks *are*
673 * located in the segment in question.
674 * lfs_markv will throw them out if we are
675 * wrong.
676 */
677 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
678 continue;
679 }
680
681 /* Past this point we are guaranteed that vp, ip are valid. */
682
683 if(blkp->bi_lbn == LFS_UNUSED_LBN) {
684 /*
685 * We just want the inode address, which is
686 * conveniently in v_daddr.
687 */
688 blkp->bi_daddr = v_daddr;
689 } else {
690 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
691 &(blkp->bi_daddr), NULL);
692 if(error)
693 {
694 blkp->bi_daddr = LFS_UNUSED_DADDR;
695 continue;
696 }
697 }
698 }
699
700 /*
701 * Finish the old file, if there was one. The presence
702 * of a usable vnode in vp is signaled by a valid v_daddr.
703 */
704 if(v_daddr != LFS_UNUSED_DADDR) {
705 if(need_unlock) {
706 VOP_UNLOCK(vp,0);
707 numlocked--;
708 }
709 lfs_vunref(vp);
710 numrefed--;
711 }
712
713 if(numlocked != 0 || numrefed != 0) {
714 panic("lfs_bmapv: numlocked=%d numrefed=%d", numlocked,
715 numrefed);
716 }
717
718 copyout(start, SCARG(uap, blkiov), origcnt * sizeof(BLOCK_INFO));
719 free(start, M_SEGMENT);
720
721 return 0;
722 }
723
724 /*
725 * sys_lfs_segclean:
726 *
727 * Mark the segment clean.
728 *
729 * 0 on success
730 * -1/errno is return on error.
731 */
732 int
733 sys_lfs_segclean(p, v, retval)
734 struct proc *p;
735 void *v;
736 register_t *retval;
737 {
738 struct sys_lfs_segclean_args /* {
739 syscallarg(fsid_t *) fsidp;
740 syscallarg(u_long) segment;
741 } */ *uap = v;
742 CLEANERINFO *cip;
743 SEGUSE *sup;
744 struct buf *bp;
745 struct mount *mntp;
746 struct lfs *fs;
747 fsid_t fsid;
748 int error;
749
750 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
751 return (error);
752
753 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
754 return (error);
755 if ((mntp = vfs_getvfs(&fsid)) == NULL)
756 return (EINVAL);
757
758 fs = VFSTOUFS(mntp)->um_lfs;
759
760 if (datosn(fs, fs->lfs_curseg) == SCARG(uap, segment))
761 return (EBUSY);
762
763 LFS_SEGENTRY(sup, fs, SCARG(uap, segment), bp);
764 if (sup->su_flags & SEGUSE_ACTIVE) {
765 brelse(bp);
766 return (EBUSY);
767 }
768
769 fs->lfs_avail += fsbtodb(fs, fs->lfs_ssize) - 1;
770 fs->lfs_bfree += (sup->su_nsums * LFS_SUMMARY_SIZE / DEV_BSIZE) +
771 sup->su_ninos * btodb(fs->lfs_bsize);
772 sup->su_flags &= ~SEGUSE_DIRTY;
773 #ifdef DEBUG_LFS
774 /* XXX KS - before we return, really empty the segment (i.e., fill
775 it with zeroes). This is only for debugging purposes. */
776 {
777 daddr_t start;
778 int offset, sizeleft, bufsize;
779 struct buf *zbp;
780 int s;
781
782 start = sntoda(fs, SCARG(uap, segment));
783 offset = (sup->su_flags & SEGUSE_SUPERBLOCK) ? LFS_SBPAD : 0;
784 sizeleft = fs->lfs_ssize * fs->lfs_bsize - offset;
785 while(sizeleft > 0) {
786 bufsize = (sizeleft < MAXPHYS) ? sizeleft : MAXPHYS;
787 zbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, start+(offset/DEV_BSIZE), bufsize);
788 memset(zbp->b_data, 'Z', bufsize);
789 zbp->b_saveaddr = (caddr_t)fs;
790 s = splbio();
791 ++zbp->b_vp->v_numoutput;
792 ++fs->lfs_iocount;
793 splx(s);
794 VOP_STRATEGY(zbp);
795 offset += bufsize;
796 sizeleft -= bufsize;
797 }
798 }
799 #endif
800 (void) VOP_BWRITE(bp);
801
802 LFS_CLEANERINFO(cip, fs, bp);
803 ++cip->clean;
804 --cip->dirty;
805 fs->lfs_nclean = cip->clean;
806 (void) VOP_BWRITE(bp);
807 wakeup(&fs->lfs_avail);
808
809 return (0);
810 }
811
812 /*
813 * sys_lfs_segwait:
814 *
815 * This will block until a segment in file system fsid is written. A timeout
816 * in milliseconds may be specified which will awake the cleaner automatically.
817 * An fsid of -1 means any file system, and a timeout of 0 means forever.
818 *
819 * 0 on success
820 * 1 on timeout
821 * -1/errno is return on error.
822 */
823 int
824 sys_lfs_segwait(p, v, retval)
825 struct proc *p;
826 void *v;
827 register_t *retval;
828 {
829 struct sys_lfs_segwait_args /* {
830 syscallarg(fsid_t *) fsidp;
831 syscallarg(struct timeval *) tv;
832 } */ *uap = v;
833 extern int lfs_allclean_wakeup;
834 struct mount *mntp;
835 struct timeval atv;
836 fsid_t fsid;
837 void *addr;
838 u_long timeout;
839 int error, s;
840
841 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) {
842 return (error);
843 }
844 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
845 return (error);
846 if ((mntp = vfs_getvfs(&fsid)) == NULL)
847 addr = &lfs_allclean_wakeup;
848 else
849 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
850
851 if (SCARG(uap, tv)) {
852 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
853 if (error)
854 return (error);
855 if (itimerfix(&atv))
856 return (EINVAL);
857 s = splclock();
858 timeradd(&atv, &time, &atv);
859 timeout = hzto(&atv);
860 splx(s);
861 } else
862 timeout = 0;
863
864 error = tsleep(addr, PCATCH | PUSER, "segment", timeout);
865 return (error == ERESTART ? EINTR : 0);
866 }
867
868 /*
869 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
870 * daddr from the ifile, so don't look it up again. If the cleaner is
871 * processing IINFO structures, it may have the ondisk inode already, so
872 * don't go retrieving it again.
873 *
874 * If we find the vnode on the hash chain, then it may be locked by another
875 * process; so we set (*need_unlock) to zero.
876 *
877 * If we don't, we call ufs_ihashins, which locks the inode, and we set
878 * (*need_unlock) to non-zero.
879 *
880 * In either case we lfs_vref, and it is the caller's responsibility to
881 * lfs_vunref and VOP_UNLOCK (if necessary) when finished.
882 */
883 extern struct lock ufs_hashlock;
884
885 int
886 lfs_fastvget(mp, ino, daddr, vpp, dinp, need_unlock)
887 struct mount *mp;
888 ino_t ino;
889 ufs_daddr_t daddr;
890 struct vnode **vpp;
891 struct dinode *dinp;
892 int *need_unlock;
893 {
894 register struct inode *ip;
895 struct vnode *vp;
896 struct ufsmount *ump;
897 dev_t dev;
898 int error;
899 struct buf *bp;
900
901 ump = VFSTOUFS(mp);
902 dev = ump->um_dev;
903 *need_unlock = 0;
904 /*
905 * This is playing fast and loose. Someone may have the inode
906 * locked, in which case they are going to be distinctly unhappy
907 * if we trash something.
908 */
909 do {
910 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
911 if ((*vpp)->v_flag & VXLOCK) {
912 printf("lfs_fastvget: vnode VXLOCKed for ino %d\n",ino);
913 clean_vnlocked++;
914 #ifdef LFS_EAGAIN_FAIL
915 return EAGAIN;
916 #endif
917 }
918 ip = VTOI(*vpp);
919 lfs_vref(*vpp);
920 if (VOP_ISLOCKED(*vpp)) {
921 printf("lfs_fastvget: ino %d inlocked by pid %d\n",ip->i_number,
922 vp->v_lock.lk_lockholder);
923 clean_inlocked++;
924 #ifdef LFS_EAGAIN_FAIL
925 lfs_vunref(*vpp);
926 return EAGAIN;
927 #endif /* LFS_EAGAIN_FAIL */
928 } else {
929 VOP_LOCK(*vpp,LK_EXCLUSIVE);
930 *need_unlock |= FVG_UNLOCK;
931 }
932 return (0);
933 }
934 } while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
935
936 /* Allocate new vnode/inode. */
937 if ((error = lfs_vcreate(mp, ino, &vp)) != 0) {
938 *vpp = NULL;
939 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
940 return (error);
941 }
942 /*
943 * Put it onto its hash chain and lock it so that other requests for
944 * this inode will block if they arrive while we are sleeping waiting
945 * for old data structures to be purged or for the contents of the
946 * disk portion of this inode to be read.
947 */
948 ip = VTOI(vp);
949 ufs_ihashins(ip);
950 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
951
952 /*
953 * XXX
954 * This may not need to be here, logically it should go down with
955 * the i_devvp initialization.
956 * Ask Kirk.
957 */
958 ip->i_lfs = ump->um_lfs;
959
960 /* Read in the disk contents for the inode, copy into the inode. */
961 if (dinp) {
962 error = copyin(dinp, &ip->i_din.ffs_din, DINODE_SIZE);
963 if (error) {
964 printf("lfs_fastvget: dinode copyin failed for ino %d\n", ino);
965 ufs_ihashrem(ip);
966
967 /* Unlock and discard unneeded inode. */
968 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
969 lfs_vunref(vp);
970 *vpp = NULL;
971 return (error);
972 }
973 if(ip->i_number != ino)
974 panic("lfs_fastvget: I was fed the wrong inode!");
975 } else {
976 error = bread(ump->um_devvp, daddr,
977 (int)ump->um_lfs->lfs_bsize, NOCRED, &bp);
978 if (error) {
979 printf("lfs_fastvget: bread failed with %d\n",error);
980 /*
981 * The inode does not contain anything useful, so it
982 * would be misleading to leave it on its hash chain.
983 * Iput() will return it to the free list.
984 */
985 ufs_ihashrem(ip);
986
987 /* Unlock and discard unneeded inode. */
988 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
989 lfs_vunref(vp);
990 brelse(bp);
991 *vpp = NULL;
992 return (error);
993 }
994 ip->i_din.ffs_din =
995 *lfs_ifind(ump->um_lfs, ino, (struct dinode *)bp->b_data);
996 brelse(bp);
997 }
998 ip->i_ffs_effnlink = ip->i_ffs_nlink;
999
1000 /*
1001 * Initialize the vnode from the inode, check for aliases. In all
1002 * cases re-init ip, the underlying vnode/inode may have changed.
1003 */
1004 error = ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1005 if (error) {
1006 /* This CANNOT happen (see ufs_vinit) */
1007 printf("lfs_fastvget: ufs_vinit returned %d for ino %d\n", error, ino);
1008 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1009 lfs_vunref(vp);
1010 *vpp = NULL;
1011 return (error);
1012 }
1013 #ifdef DEBUG_LFS
1014 if(vp->v_type == VNON) {
1015 printf("lfs_fastvget: ino %d is type VNON! (ifmt=%o, dinp=%p)\n",
1016 ip->i_number, (ip->i_ffs_mode & IFMT)>>12, dinp);
1017 lfs_dump_dinode(&ip->i_din.ffs_din);
1018 #ifdef DDB
1019 Debugger();
1020 #endif
1021 }
1022 #endif /* DEBUG_LFS */
1023 /*
1024 * Finish inode initialization now that aliasing has been resolved.
1025 */
1026 ip->i_devvp = ump->um_devvp;
1027 VREF(ip->i_devvp);
1028 *vpp = vp;
1029 *need_unlock |= FVG_PUT;
1030
1031 return (0);
1032 }
1033
1034 struct buf *
1035 lfs_fakebuf(vp, lbn, size, uaddr)
1036 struct vnode *vp;
1037 int lbn;
1038 size_t size;
1039 caddr_t uaddr;
1040 {
1041 struct buf *bp;
1042 int error;
1043
1044 #ifndef ALLOW_VFLUSH_CORRUPTION
1045 bp = lfs_newbuf(vp, lbn, size);
1046 error = copyin(uaddr, bp->b_data, size);
1047 if(error) {
1048 lfs_freebuf(bp);
1049 return NULL;
1050 }
1051 #else
1052 bp = lfs_newbuf(vp, lbn, 0);
1053 bp->b_flags |= B_INVAL;
1054 bp->b_saveaddr = uaddr;
1055 #endif
1056
1057 bp->b_bufsize = size;
1058 bp->b_bcount = size;
1059 return (bp);
1060 }
1061