lfs_syscalls.c revision 1.57 1 /* $NetBSD: lfs_syscalls.c,v 1.57 2001/07/13 20:30:24 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
71 */
72
73 #define LFS /* for prototypes in syscallargs.h */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/buf.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83
84 #include <sys/syscallargs.h>
85
86 #include <ufs/ufs/quota.h>
87 #include <ufs/ufs/inode.h>
88 #include <ufs/ufs/ufsmount.h>
89 #include <ufs/ufs/ufs_extern.h>
90
91 #include <ufs/lfs/lfs.h>
92 #include <ufs/lfs/lfs_extern.h>
93
94 /* Flags for return from lfs_fastvget */
95 #define FVG_UNLOCK 0x01 /* Needs to be unlocked */
96 #define FVG_PUT 0x02 /* Needs to be vput() */
97
98 struct buf *lfs_fakebuf(struct vnode *, int, size_t, caddr_t);
99 int lfs_fasthashget(dev_t, ino_t, int *, struct vnode **);
100
101 int debug_cleaner = 0;
102 int clean_vnlocked = 0;
103 int clean_inlocked = 0;
104 int verbose_debug = 0;
105
106 pid_t lfs_cleaner_pid = 0;
107
108 /*
109 * Definitions for the buffer free lists.
110 */
111 #define BQUEUES 4 /* number of free buffer queues */
112
113 #define BQ_LOCKED 0 /* super-blocks &c */
114 #define BQ_LRU 1 /* lru, useful buffers */
115 #define BQ_AGE 2 /* rubbish */
116 #define BQ_EMPTY 3 /* buffer headers with no memory */
117
118 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
119
120 #define LFS_FORCE_WRITE UNASSIGNED
121
122 #define LFS_VREF_THRESHOLD 128
123
124 static int lfs_bmapv(struct proc *, fsid_t *, BLOCK_INFO *, int);
125 static int lfs_markv(struct proc *, fsid_t *, BLOCK_INFO *, int);
126
127 /*
128 * sys_lfs_markv:
129 *
130 * This will mark inodes and blocks dirty, so they are written into the log.
131 * It will block until all the blocks have been written. The segment create
132 * time passed in the block_info and inode_info structures is used to decide
133 * if the data is valid for each block (in case some process dirtied a block
134 * or inode that is being cleaned between the determination that a block is
135 * live and the lfs_markv call).
136 *
137 * 0 on success
138 * -1/errno is return on error.
139 */
140 #ifdef USE_64BIT_SYSCALLS
141 int
142 sys_lfs_markv(struct proc *p, void *v, register_t *retval)
143 {
144 struct sys_lfs_markv_args /* {
145 syscallarg(fsid_t *) fsidp;
146 syscallarg(struct block_info *) blkiov;
147 syscallarg(int) blkcnt;
148 } */ *uap = v;
149 BLOCK_INFO *blkiov;
150 int blkcnt, error;
151 fsid_t fsid;
152
153 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
154 return (error);
155
156 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
157 return (error);
158
159 blkcnt = SCARG(uap, blkcnt);
160 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
161 if ((error = copyin(SCARG(uap, blkiov), blkiov,
162 blkcnt * sizeof(BLOCK_INFO))) != 0)
163 goto out;
164
165 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
166 copyout(blkiov, SCARG(uap, blkiov),
167 blkcnt * sizeof(BLOCK_INFO));
168 out:
169 free(blkiov, M_SEGMENT);
170 return error;
171 }
172 #else
173 int
174 sys_lfs_markv(struct proc *p, void *v, register_t *retval)
175 {
176 struct sys_lfs_markv_args /* {
177 syscallarg(fsid_t *) fsidp;
178 syscallarg(struct block_info *) blkiov;
179 syscallarg(int) blkcnt;
180 } */ *uap = v;
181 BLOCK_INFO *blkiov;
182 BLOCK_INFO_15 *blkiov15;
183 int i, blkcnt, error;
184 fsid_t fsid;
185
186 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
187 return (error);
188
189 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
190 return (error);
191
192 blkcnt = SCARG(uap, blkcnt);
193 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
194 blkiov15 = malloc(blkcnt * sizeof(BLOCK_INFO_15), M_SEGMENT, M_WAITOK);
195 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
196 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
197 goto out;
198
199 for (i = 0; i < blkcnt; i++) {
200 blkiov[i].bi_inode = blkiov15[i].bi_inode;
201 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
202 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
203 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
204 blkiov[i].bi_version = blkiov15[i].bi_version;
205 blkiov[i].bi_bp = blkiov15[i].bi_bp;
206 blkiov[i].bi_size = blkiov15[i].bi_size;
207 }
208
209 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0) {
210 for (i = 0; i < blkcnt; i++) {
211 blkiov15[i].bi_inode = blkiov[i].bi_inode;
212 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
213 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
214 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
215 blkiov15[i].bi_version = blkiov[i].bi_version;
216 blkiov15[i].bi_bp = blkiov[i].bi_bp;
217 blkiov15[i].bi_size = blkiov[i].bi_size;
218 }
219 copyout(blkiov15, SCARG(uap, blkiov),
220 blkcnt * sizeof(BLOCK_INFO_15));
221 }
222 out:
223 free(blkiov, M_SEGMENT);
224 free(blkiov15, M_SEGMENT);
225 return error;
226 }
227 #endif
228
229 static int
230 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
231 {
232 BLOCK_INFO *blkp;
233 IFILE *ifp;
234 struct buf *bp, *nbp;
235 struct inode *ip = NULL;
236 struct lfs *fs;
237 struct mount *mntp;
238 struct vnode *vp;
239 #ifdef DEBUG_LFS
240 int vputc=0, iwritten=0;
241 #endif
242 ino_t lastino;
243 ufs_daddr_t b_daddr, v_daddr;
244 int cnt, error, lfs_fastvget_unlock;
245 int do_again=0;
246 int s;
247 #ifdef CHECK_COPYIN
248 int i;
249 #endif /* CHECK_COPYIN */
250 #ifdef LFS_TRACK_IOS
251 int j;
252 #endif
253 int numlocked=0, numrefed=0;
254 ino_t maxino;
255
256 if ((mntp = vfs_getvfs(fsidp)) == NULL)
257 return (ENOENT);
258
259 fs = VFSTOUFS(mntp)->um_lfs;
260 maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs_blocks)) -
261 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
262
263 cnt = blkcnt;
264
265 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
266 return (error);
267
268 /*
269 * This seglock is just to prevent the fact that we might have to sleep
270 * from allowing the possibility that our blocks might become
271 * invalid.
272 *
273 * It is also important to note here that unless we specify SEGM_CKP,
274 * any Ifile blocks that we might be asked to clean will never get
275 * to the disk.
276 */
277 lfs_seglock(fs, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
278
279 /* Mark blocks/inodes dirty. */
280 error = 0;
281
282 #ifdef DEBUG_LFS
283 /* Run through and count the inodes */
284 lastino = LFS_UNUSED_INUM;
285 for(blkp = blkiov; cnt--; ++blkp) {
286 if(lastino != blkp->bi_inode) {
287 lastino = blkp->bi_inode;
288 vputc++;
289 }
290 }
291 cnt = blkcnt;
292 printf("[%d/",vputc);
293 iwritten=0;
294 #endif /* DEBUG_LFS */
295 /* these were inside the initialization for the for loop */
296 v_daddr = LFS_UNUSED_DADDR;
297 lastino = LFS_UNUSED_INUM;
298 for (blkp = blkiov; cnt--; ++blkp)
299 {
300 if(blkp->bi_daddr == LFS_FORCE_WRITE)
301 printf("lfs_markv: warning: force-writing ino %d lbn %d\n",
302 blkp->bi_inode, blkp->bi_lbn);
303 #ifdef LFS_TRACK_IOS
304 /*
305 * If there is I/O on this segment that is not yet complete,
306 * the cleaner probably does not have the right information.
307 * Send it packing.
308 */
309 for(j=0;j<LFS_THROTTLE;j++) {
310 if(fs->lfs_pending[j] != LFS_UNUSED_DADDR
311 && dtosn(fs,fs->lfs_pending[j])==dtosn(fs,blkp->bi_daddr)
312 && blkp->bi_daddr != LFS_FORCE_WRITE)
313 {
314 printf("lfs_markv: attempt to clean pending segment? (#%d)\n",
315 dtosn(fs, fs->lfs_pending[j]));
316 /* return (EBUSY); */
317 }
318 }
319 #endif /* LFS_TRACK_IOS */
320 /* Bounds-check incoming data, avoid panic for failed VGET */
321 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
322 error = EINVAL;
323 goto again;
324 }
325 /*
326 * Get the IFILE entry (only once) and see if the file still
327 * exists.
328 */
329 if (lastino != blkp->bi_inode) {
330 /*
331 * Finish the old file, if there was one. The presence
332 * of a usable vnode in vp is signaled by a valid v_daddr.
333 */
334 if(v_daddr != LFS_UNUSED_DADDR) {
335 #ifdef DEBUG_LFS
336 if(ip->i_flag & (IN_MODIFIED|IN_CLEANING))
337 iwritten++;
338 #endif
339 if(lfs_fastvget_unlock) {
340 VOP_UNLOCK(vp, 0);
341 numlocked--;
342 }
343 lfs_vunref(vp);
344 numrefed--;
345 }
346
347 /*
348 * Start a new file
349 */
350 lastino = blkp->bi_inode;
351 if (blkp->bi_inode == LFS_IFILE_INUM)
352 v_daddr = fs->lfs_idaddr;
353 else {
354 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
355 /* XXX fix for force write */
356 v_daddr = ifp->if_daddr;
357 brelse(bp);
358 }
359 /* Don't force-write the ifile */
360 if (blkp->bi_inode == LFS_IFILE_INUM
361 && blkp->bi_daddr == LFS_FORCE_WRITE)
362 {
363 continue;
364 }
365 if (v_daddr == LFS_UNUSED_DADDR
366 && blkp->bi_daddr != LFS_FORCE_WRITE)
367 {
368 continue;
369 }
370
371 /* Get the vnode/inode. */
372 error=lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
373 &vp,
374 (blkp->bi_lbn==LFS_UNUSED_LBN
375 ? blkp->bi_bp
376 : NULL),
377 &lfs_fastvget_unlock);
378 if(lfs_fastvget_unlock)
379 numlocked++;
380
381 if(!error) {
382 numrefed++;
383 }
384 if(error) {
385 #ifdef DEBUG_LFS
386 printf("lfs_markv: lfs_fastvget failed with %d (ino %d, segment %d)\n",
387 error, blkp->bi_inode,
388 dtosn(fs, blkp->bi_daddr));
389 #endif /* DEBUG_LFS */
390 /*
391 * If we got EAGAIN, that means that the
392 * Inode was locked. This is
393 * recoverable: just clean the rest of
394 * this segment, and let the cleaner try
395 * again with another. (When the
396 * cleaner runs again, this segment will
397 * sort high on the list, since it is
398 * now almost entirely empty.) But, we
399 * still set v_daddr = LFS_UNUSED_ADDR
400 * so as not to test this over and over
401 * again.
402 */
403 if(error == EAGAIN) {
404 error = 0;
405 do_again++;
406 }
407 #ifdef DIAGNOSTIC
408 else if(error != ENOENT)
409 panic("lfs_markv VFS_VGET FAILED");
410 #endif
411 /* lastino = LFS_UNUSED_INUM; */
412 v_daddr = LFS_UNUSED_DADDR;
413 vp = NULL;
414 ip = NULL;
415 continue;
416 }
417 ip = VTOI(vp);
418 } else if (v_daddr == LFS_UNUSED_DADDR) {
419 /*
420 * This can only happen if the vnode is dead (or
421 * in any case we can't get it...e.g., it is
422 * inlocked). Keep going.
423 */
424 continue;
425 }
426
427 /* Past this point we are guaranteed that vp, ip are valid. */
428
429 /* If this BLOCK_INFO didn't contain a block, keep going. */
430 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
431 /* XXX need to make sure that the inode gets written in this case */
432 /* XXX but only write the inode if it's the right one */
433 if (blkp->bi_inode != LFS_IFILE_INUM) {
434 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
435 if(ifp->if_daddr == blkp->bi_daddr
436 || blkp->bi_daddr == LFS_FORCE_WRITE)
437 {
438 LFS_SET_UINO(ip, IN_CLEANING);
439 }
440 brelse(bp);
441 }
442 continue;
443 }
444
445 b_daddr = 0;
446 if(blkp->bi_daddr != LFS_FORCE_WRITE) {
447 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
448 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
449 {
450 if(dtosn(fs,dbtofsb(fs, b_daddr))
451 == dtosn(fs,blkp->bi_daddr))
452 {
453 printf("lfs_markv: wrong da same seg: %x vs %x\n",
454 blkp->bi_daddr, dbtofsb(fs, b_daddr));
455 }
456 continue;
457 }
458 }
459 /*
460 * If we got to here, then we are keeping the block. If
461 * it is an indirect block, we want to actually put it
462 * in the buffer cache so that it can be updated in the
463 * finish_meta section. If it's not, we need to
464 * allocate a fake buffer so that writeseg can perform
465 * the copyin and write the buffer.
466 */
467 /*
468 * XXX - if the block we are reading has been *extended* since
469 * it was written to disk, then we risk throwing away
470 * the extension in bread()/getblk(). Check the size
471 * here.
472 */
473 if(blkp->bi_size < fs->lfs_bsize) {
474 s = splbio();
475 bp = incore(vp, blkp->bi_lbn);
476 if(bp && bp->b_bcount > blkp->bi_size) {
477 printf("lfs_markv: %ld > %d (fixed)\n",
478 bp->b_bcount, blkp->bi_size);
479 blkp->bi_size = bp->b_bcount;
480 }
481 splx(s);
482 }
483 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
484 /* Data Block */
485 bp = lfs_fakebuf(vp, blkp->bi_lbn,
486 blkp->bi_size, blkp->bi_bp);
487 /* Pretend we used bread() to get it */
488 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
489 } else {
490 /* Indirect block */
491 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
492 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
493 /*
494 * The block in question was not found
495 * in the cache; i.e., the block that
496 * getblk() returned is empty. So, we
497 * can (and should) copy in the
498 * contents, because we've already
499 * determined that this was the right
500 * version of this block on disk.
501 *
502 * And, it can't have changed underneath
503 * us, because we have the segment lock.
504 */
505 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
506 if(error)
507 goto err2;
508 }
509 }
510 if ((error = lfs_bwrite_ext(bp,BW_CLEAN)) != 0)
511 goto err2;
512 }
513
514 /*
515 * Finish the old file, if there was one
516 */
517 if(v_daddr != LFS_UNUSED_DADDR) {
518 #ifdef DEBUG_LFS
519 if(ip->i_flag & (IN_MODIFIED|IN_CLEANING))
520 iwritten++;
521 #endif
522 if(lfs_fastvget_unlock) {
523 VOP_UNLOCK(vp, 0);
524 numlocked--;
525 }
526 lfs_vunref(vp);
527 numrefed--;
528 }
529
530 /*
531 * The last write has to be SEGM_SYNC, because of calling semantics.
532 * It also has to be SEGM_CKP, because otherwise we could write
533 * over the newly cleaned data contained in a checkpoint, and then
534 * we'd be unhappy at recovery time.
535 */
536 lfs_segwrite(mntp, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
537
538 lfs_segunlock(fs);
539
540 #ifdef DEBUG_LFS
541 printf("%d]",iwritten);
542 if(numlocked != 0 || numrefed != 0) {
543 panic("lfs_markv: numlocked=%d numrefed=%d", numlocked, numrefed);
544 }
545 #endif
546
547 vfs_unbusy(mntp);
548 if(error)
549 return (error);
550 else if(do_again)
551 return EAGAIN;
552
553 return 0;
554
555 err2:
556 printf("lfs_markv err2\n");
557 if(lfs_fastvget_unlock) {
558 VOP_UNLOCK(vp, 0);
559 --numlocked;
560 }
561 lfs_vunref(vp);
562 --numrefed;
563
564 /* Free up fakebuffers -- have to take these from the LOCKED list */
565 again:
566 s = splbio();
567 for(bp = bufqueues[BQ_LOCKED].tqh_first; bp; bp=nbp) {
568 nbp = bp->b_freelist.tqe_next;
569 if(bp->b_flags & B_CALL) {
570 if(bp->b_flags & B_BUSY) { /* not bloody likely */
571 bp->b_flags |= B_WANTED;
572 tsleep(bp, PRIBIO+1, "markv", 0);
573 splx(s);
574 goto again;
575 }
576 if(bp->b_flags & B_DELWRI)
577 fs->lfs_avail += btofsb(fs, bp->b_bcount);
578 bremfree(bp);
579 splx(s);
580 brelse(bp);
581 s = splbio();
582 }
583 }
584 splx(s);
585 lfs_segunlock(fs);
586 vfs_unbusy(mntp);
587 #ifdef DEBUG_LFS
588 if(numlocked != 0 || numrefed != 0) {
589 panic("lfs_markv: numlocked=%d numrefed=%d", numlocked, numrefed);
590 }
591 #endif
592
593 return (error);
594 }
595
596 /*
597 * sys_lfs_bmapv:
598 *
599 * This will fill in the current disk address for arrays of blocks.
600 *
601 * 0 on success
602 * -1/errno is return on error.
603 */
604 #ifdef USE_64BIT_SYSCALLS
605 int
606 sys_lfs_bmapv(struct proc *p, void *v, register_t *retval)
607 {
608 struct sys_lfs_bmapv_args /* {
609 syscallarg(fsid_t *) fsidp;
610 syscallarg(struct block_info *) blkiov;
611 syscallarg(int) blkcnt;
612 } */ *uap = v;
613 BLOCK_INFO *blkiov;
614 int blkcnt, error;
615 fsid_t fsid;
616
617 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
618 return (error);
619
620 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
621 return (error);
622
623 blkcnt = SCARG(uap, blkcnt);
624 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
625 if ((error = copyin(SCARG(uap, blkiov), blkiov,
626 blkcnt * sizeof(BLOCK_INFO))) != 0)
627 goto out;
628
629 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
630 copyout(blkiov, SCARG(uap, blkiov),
631 blkcnt * sizeof(BLOCK_INFO));
632 out:
633 free(blkiov, M_SEGMENT);
634 return error;
635 }
636 #else
637 int
638 sys_lfs_bmapv(struct proc *p, void *v, register_t *retval)
639 {
640 struct sys_lfs_bmapv_args /* {
641 syscallarg(fsid_t *) fsidp;
642 syscallarg(struct block_info *) blkiov;
643 syscallarg(int) blkcnt;
644 } */ *uap = v;
645 BLOCK_INFO *blkiov;
646 BLOCK_INFO_15 *blkiov15;
647 int i, blkcnt, error;
648 fsid_t fsid;
649
650 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
651 return (error);
652
653 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
654 return (error);
655
656 blkcnt = SCARG(uap, blkcnt);
657 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
658 blkiov15 = malloc(blkcnt * sizeof(BLOCK_INFO_15), M_SEGMENT, M_WAITOK);
659 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
660 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
661 goto out;
662
663 for (i = 0; i < blkcnt; i++) {
664 blkiov[i].bi_inode = blkiov15[i].bi_inode;
665 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
666 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
667 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
668 blkiov[i].bi_version = blkiov15[i].bi_version;
669 blkiov[i].bi_bp = blkiov15[i].bi_bp;
670 blkiov[i].bi_size = blkiov15[i].bi_size;
671 }
672
673 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0) {
674 for (i = 0; i < blkcnt; i++) {
675 blkiov15[i].bi_inode = blkiov[i].bi_inode;
676 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
677 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
678 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
679 blkiov15[i].bi_version = blkiov[i].bi_version;
680 blkiov15[i].bi_bp = blkiov[i].bi_bp;
681 blkiov15[i].bi_size = blkiov[i].bi_size;
682 }
683 copyout(blkiov15, SCARG(uap, blkiov),
684 blkcnt * sizeof(BLOCK_INFO_15));
685 }
686 out:
687 free(blkiov, M_SEGMENT);
688 free(blkiov15, M_SEGMENT);
689 return error;
690 }
691 #endif
692
693 static int
694 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
695 {
696 BLOCK_INFO *blkp;
697 IFILE *ifp;
698 struct buf *bp;
699 struct inode *ip = NULL;
700 struct lfs *fs;
701 struct mount *mntp;
702 struct ufsmount *ump;
703 struct vnode *vp;
704 ino_t lastino;
705 ufs_daddr_t v_daddr;
706 int cnt, error, need_unlock=0;
707 int numlocked=0, numrefed=0;
708 #ifdef LFS_TRACK_IOS
709 int j;
710 #endif
711
712 lfs_cleaner_pid = p->p_pid;
713
714 if ((mntp = vfs_getvfs(fsidp)) == NULL)
715 return (ENOENT);
716
717 ump = VFSTOUFS(mntp);
718 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
719 return (error);
720
721 cnt = blkcnt;
722
723 fs = VFSTOUFS(mntp)->um_lfs;
724
725 error = 0;
726
727 /* these were inside the initialization for the for loop */
728 v_daddr = LFS_UNUSED_DADDR;
729 lastino = LFS_UNUSED_INUM;
730 for (blkp = blkiov; cnt--; ++blkp)
731 {
732 #ifdef DEBUG
733 if (dtosn(fs, fs->lfs_curseg) == dtosn(fs, blkp->bi_daddr)) {
734 printf("lfs_bmapv: attempt to clean current segment? (#%d)\n",
735 dtosn(fs, fs->lfs_curseg));
736 vfs_unbusy(mntp);
737 return (EBUSY);
738 }
739 #endif /* DEBUG */
740 #ifdef LFS_TRACK_IOS
741 /*
742 * If there is I/O on this segment that is not yet complete,
743 * the cleaner probably does not have the right information.
744 * Send it packing.
745 */
746 for(j=0;j<LFS_THROTTLE;j++) {
747 if(fs->lfs_pending[j] != LFS_UNUSED_DADDR
748 && dtosn(fs,fs->lfs_pending[j])==dtosn(fs,blkp->bi_daddr))
749 {
750 printf("lfs_bmapv: attempt to clean pending segment? (#%d)\n",
751 dtosn(fs, fs->lfs_pending[j]));
752 vfs_unbusy(mntp);
753 return (EBUSY);
754 }
755 }
756
757 #endif /* LFS_TRACK_IOS */
758 /*
759 * Get the IFILE entry (only once) and see if the file still
760 * exists.
761 */
762 if (lastino != blkp->bi_inode) {
763 /*
764 * Finish the old file, if there was one. The presence
765 * of a usable vnode in vp is signaled by a valid
766 * v_daddr.
767 */
768 if(v_daddr != LFS_UNUSED_DADDR) {
769 if(need_unlock) {
770 VOP_UNLOCK(vp, 0);
771 numlocked--;
772 }
773 lfs_vunref(vp);
774 numrefed--;
775 }
776
777 /*
778 * Start a new file
779 */
780 lastino = blkp->bi_inode;
781 if (blkp->bi_inode == LFS_IFILE_INUM)
782 v_daddr = fs->lfs_idaddr;
783 else {
784 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
785 v_daddr = ifp->if_daddr;
786 brelse(bp);
787 }
788 if (v_daddr == LFS_UNUSED_DADDR) {
789 blkp->bi_daddr = LFS_UNUSED_DADDR;
790 continue;
791 }
792 /*
793 * A regular call to VFS_VGET could deadlock
794 * here. Instead, we try an unlocked access.
795 */
796 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
797 if (vp != NULL && !(vp->v_flag & VXLOCK)) {
798 ip = VTOI(vp);
799 if (lfs_vref(vp)) {
800 v_daddr = LFS_UNUSED_DADDR;
801 need_unlock = 0;
802 continue;
803 }
804 numrefed++;
805 if(VOP_ISLOCKED(vp)) {
806 #ifdef DEBUG_LFS
807 printf("lfs_bmapv: inode %d inlocked\n",ip->i_number);
808 #endif
809 v_daddr = LFS_UNUSED_DADDR;
810 need_unlock = 0;
811 lfs_vunref(vp);
812 --numrefed;
813 continue;
814 } else {
815 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
816 need_unlock = FVG_UNLOCK;
817 numlocked++;
818 }
819 } else {
820 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
821 if(error) {
822 #ifdef DEBUG_LFS
823 printf("lfs_bmapv: vget of ino %d failed with %d",blkp->bi_inode,error);
824 #endif
825 v_daddr = LFS_UNUSED_DADDR;
826 need_unlock = 0;
827 continue;
828 } else {
829 need_unlock = FVG_PUT;
830 numlocked++;
831 numrefed++;
832 }
833 }
834 ip = VTOI(vp);
835 } else if (v_daddr == LFS_UNUSED_DADDR) {
836 /*
837 * This can only happen if the vnode is dead.
838 * Keep going. Note that we DO NOT set the
839 * bi_addr to anything -- if we failed to get
840 * the vnode, for example, we want to assume
841 * conservatively that all of its blocks *are*
842 * located in the segment in question.
843 * lfs_markv will throw them out if we are
844 * wrong.
845 */
846 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
847 continue;
848 }
849
850 /* Past this point we are guaranteed that vp, ip are valid. */
851
852 if(blkp->bi_lbn == LFS_UNUSED_LBN) {
853 /*
854 * We just want the inode address, which is
855 * conveniently in v_daddr.
856 */
857 blkp->bi_daddr = v_daddr;
858 } else {
859 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
860 &(blkp->bi_daddr), NULL);
861 if(error)
862 {
863 blkp->bi_daddr = LFS_UNUSED_DADDR;
864 continue;
865 }
866 blkp->bi_daddr = dbtofsb(fs, blkp->bi_daddr);
867 }
868 }
869
870 /*
871 * Finish the old file, if there was one. The presence
872 * of a usable vnode in vp is signaled by a valid v_daddr.
873 */
874 if(v_daddr != LFS_UNUSED_DADDR) {
875 if(need_unlock) {
876 VOP_UNLOCK(vp, 0);
877 numlocked--;
878 }
879 lfs_vunref(vp);
880 numrefed--;
881 }
882
883 if(numlocked != 0 || numrefed != 0) {
884 panic("lfs_bmapv: numlocked=%d numrefed=%d", numlocked,
885 numrefed);
886 }
887
888 vfs_unbusy(mntp);
889
890 return 0;
891 }
892
893 /*
894 * sys_lfs_segclean:
895 *
896 * Mark the segment clean.
897 *
898 * 0 on success
899 * -1/errno is return on error.
900 */
901 int
902 sys_lfs_segclean(struct proc *p, void *v, register_t *retval)
903 {
904 struct sys_lfs_segclean_args /* {
905 syscallarg(fsid_t *) fsidp;
906 syscallarg(u_long) segment;
907 } */ *uap = v;
908 CLEANERINFO *cip;
909 SEGUSE *sup;
910 struct buf *bp;
911 struct mount *mntp;
912 struct lfs *fs;
913 fsid_t fsid;
914 int error;
915
916 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
917 return (error);
918
919 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
920 return (error);
921 if ((mntp = vfs_getvfs(&fsid)) == NULL)
922 return (ENOENT);
923
924 fs = VFSTOUFS(mntp)->um_lfs;
925
926 if (dtosn(fs, fs->lfs_curseg) == SCARG(uap, segment))
927 return (EBUSY);
928
929 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
930 return (error);
931 LFS_SEGENTRY(sup, fs, SCARG(uap, segment), bp);
932 if (sup->su_flags & SEGUSE_ACTIVE) {
933 brelse(bp);
934 vfs_unbusy(mntp);
935 return (EBUSY);
936 }
937 if (!(sup->su_flags & SEGUSE_DIRTY)) {
938 brelse(bp);
939 vfs_unbusy(mntp);
940 return (EALREADY);
941 }
942
943 fs->lfs_avail += segtod(fs, 1);
944 if (sup->su_flags & SEGUSE_SUPERBLOCK)
945 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
946 if (fs->lfs_version > 1 && SCARG(uap, segment) == 0 &&
947 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
948 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
949 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
950 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
951 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
952 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
953 if (fs->lfs_dmeta < 0)
954 fs->lfs_dmeta = 0;
955 sup->su_flags &= ~SEGUSE_DIRTY;
956 (void) VOP_BWRITE(bp);
957
958 LFS_CLEANERINFO(cip, fs, bp);
959 ++cip->clean;
960 --cip->dirty;
961 fs->lfs_nclean = cip->clean;
962 cip->bfree = fs->lfs_bfree;
963 cip->avail = fs->lfs_avail - fs->lfs_ravail;
964 (void) VOP_BWRITE(bp);
965 wakeup(&fs->lfs_avail);
966 vfs_unbusy(mntp);
967
968 return (0);
969 }
970
971 /*
972 * sys_lfs_segwait:
973 *
974 * This will block until a segment in file system fsid is written. A timeout
975 * in milliseconds may be specified which will awake the cleaner automatically.
976 * An fsid of -1 means any file system, and a timeout of 0 means forever.
977 *
978 * 0 on success
979 * 1 on timeout
980 * -1/errno is return on error.
981 */
982 int
983 sys_lfs_segwait(struct proc *p, void *v, register_t *retval)
984 {
985 struct sys_lfs_segwait_args /* {
986 syscallarg(fsid_t *) fsidp;
987 syscallarg(struct timeval *) tv;
988 } */ *uap = v;
989 extern int lfs_allclean_wakeup;
990 struct mount *mntp;
991 struct timeval atv;
992 fsid_t fsid;
993 void *addr;
994 u_long timeout;
995 int error, s;
996
997 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) {
998 return (error);
999 }
1000 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
1001 return (error);
1002 if ((mntp = vfs_getvfs(&fsid)) == NULL)
1003 addr = &lfs_allclean_wakeup;
1004 else
1005 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
1006
1007 if (SCARG(uap, tv)) {
1008 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
1009 if (error)
1010 return (error);
1011 if (itimerfix(&atv))
1012 return (EINVAL);
1013 /*
1014 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
1015 * XXX IS THAT WHAT IS INTENDED?
1016 */
1017 s = splclock();
1018 timeradd(&atv, &time, &atv);
1019 timeout = hzto(&atv);
1020 splx(s);
1021 } else
1022 timeout = 0;
1023
1024 error = tsleep(addr, PCATCH | PUSER, "segment", timeout);
1025 return (error == ERESTART ? EINTR : 0);
1026 }
1027
1028 /*
1029 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1030 * daddr from the ifile, so don't look it up again. If the cleaner is
1031 * processing IINFO structures, it may have the ondisk inode already, so
1032 * don't go retrieving it again.
1033 *
1034 * If we find the vnode on the hash chain, then it may be locked by another
1035 * process; so we set (*need_unlock) to zero.
1036 *
1037 * If we don't, we call ufs_ihashins, which locks the inode, and we set
1038 * (*need_unlock) to non-zero.
1039 *
1040 * In either case we lfs_vref, and it is the caller's responsibility to
1041 * lfs_vunref and VOP_UNLOCK (if necessary) when finished.
1042 */
1043 extern struct lock ufs_hashlock;
1044
1045 int
1046 lfs_fasthashget(dev_t dev, ino_t ino, int *need_unlock, struct vnode **vpp)
1047 {
1048 struct inode *ip;
1049
1050 /*
1051 * This is playing fast and loose. Someone may have the inode
1052 * locked, in which case they are going to be distinctly unhappy
1053 * if we trash something.
1054 */
1055 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
1056 if ((*vpp)->v_flag & VXLOCK) {
1057 printf("lfs_fastvget: vnode VXLOCKed for ino %d\n",
1058 ino);
1059 clean_vnlocked++;
1060 #ifdef LFS_EAGAIN_FAIL
1061 return EAGAIN;
1062 #endif
1063 }
1064 ip = VTOI(*vpp);
1065 if (lfs_vref(*vpp)) {
1066 clean_inlocked++;
1067 return EAGAIN;
1068 }
1069 if (VOP_ISLOCKED(*vpp)) {
1070 #ifdef DEBUG_LFS
1071 printf("lfs_fastvget: ino %d inlocked by pid %d\n",
1072 ip->i_number, (*vpp)->v_lock.lk_lockholder);
1073 #endif
1074 clean_inlocked++;
1075 #ifdef LFS_EAGAIN_FAIL
1076 lfs_vunref(*vpp);
1077 return EAGAIN;
1078 #endif /* LFS_EAGAIN_FAIL */
1079 } else {
1080 vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1081 *need_unlock |= FVG_UNLOCK;
1082 }
1083 } else
1084 *vpp = NULL;
1085
1086 return (0);
1087 }
1088
1089 int
1090 lfs_fastvget(struct mount *mp, ino_t ino, ufs_daddr_t daddr, struct vnode **vpp, struct dinode *dinp, int *need_unlock)
1091 {
1092 struct inode *ip;
1093 struct vnode *vp;
1094 struct ufsmount *ump;
1095 dev_t dev;
1096 int error;
1097 struct buf *bp;
1098 struct lfs *fs;
1099
1100 ump = VFSTOUFS(mp);
1101 dev = ump->um_dev;
1102 fs = ump->um_lfs;
1103 *need_unlock = 0;
1104
1105 /*
1106 * Wait until the filesystem is fully mounted before allowing vget
1107 * to complete. This prevents possible problems with roll-forward.
1108 */
1109 while(fs->lfs_flags & LFS_NOTYET) {
1110 tsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0);
1111 }
1112 /*
1113 * This is playing fast and loose. Someone may have the inode
1114 * locked, in which case they are going to be distinctly unhappy
1115 * if we trash something.
1116 */
1117
1118 error = lfs_fasthashget(dev, ino, need_unlock, vpp);
1119 if (error != 0 || *vpp != NULL)
1120 return (error);
1121
1122 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1123 *vpp = NULL;
1124 return (error);
1125 }
1126
1127 do {
1128 error = lfs_fasthashget(dev, ino, need_unlock, vpp);
1129 if (error != 0 || *vpp != NULL) {
1130 ungetnewvnode(vp);
1131 return (error);
1132 }
1133 } while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
1134
1135 /* Allocate new vnode/inode. */
1136 lfs_vcreate(mp, ino, vp);
1137
1138 /*
1139 * Put it onto its hash chain and lock it so that other requests for
1140 * this inode will block if they arrive while we are sleeping waiting
1141 * for old data structures to be purged or for the contents of the
1142 * disk portion of this inode to be read.
1143 */
1144 ip = VTOI(vp);
1145 ufs_ihashins(ip);
1146 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
1147
1148 /*
1149 * XXX
1150 * This may not need to be here, logically it should go down with
1151 * the i_devvp initialization.
1152 * Ask Kirk.
1153 */
1154 ip->i_lfs = fs;
1155
1156 /* Read in the disk contents for the inode, copy into the inode. */
1157 if (dinp) {
1158 error = copyin(dinp, &ip->i_din.ffs_din, DINODE_SIZE);
1159 if (error) {
1160 printf("lfs_fastvget: dinode copyin failed for ino %d\n", ino);
1161 ufs_ihashrem(ip);
1162
1163 /* Unlock and discard unneeded inode. */
1164 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1165 lfs_vunref(vp);
1166 *vpp = NULL;
1167 return (error);
1168 }
1169 if(ip->i_number != ino)
1170 panic("lfs_fastvget: I was fed the wrong inode!");
1171 } else {
1172 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1173 NOCRED, &bp);
1174 if (error) {
1175 printf("lfs_fastvget: bread failed with %d\n",error);
1176 /*
1177 * The inode does not contain anything useful, so it
1178 * would be misleading to leave it on its hash chain.
1179 * Iput() will return it to the free list.
1180 */
1181 ufs_ihashrem(ip);
1182
1183 /* Unlock and discard unneeded inode. */
1184 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1185 lfs_vunref(vp);
1186 brelse(bp);
1187 *vpp = NULL;
1188 return (error);
1189 }
1190 ip->i_din.ffs_din = *lfs_ifind(fs, ino, bp);
1191 brelse(bp);
1192 }
1193 ip->i_ffs_effnlink = ip->i_ffs_nlink;
1194 ip->i_lfs_effnblks = ip->i_ffs_blocks;
1195
1196 /*
1197 * Initialize the vnode from the inode, check for aliases. In all
1198 * cases re-init ip, the underlying vnode/inode may have changed.
1199 */
1200 error = ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1201 if (error) {
1202 /* This CANNOT happen (see ufs_vinit) */
1203 printf("lfs_fastvget: ufs_vinit returned %d for ino %d\n", error, ino);
1204 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1205 lfs_vunref(vp);
1206 *vpp = NULL;
1207 return (error);
1208 }
1209 #ifdef DEBUG_LFS
1210 if(vp->v_type == VNON) {
1211 printf("lfs_fastvget: ino %d is type VNON! (ifmt=%o, dinp=%p)\n",
1212 ip->i_number, (ip->i_ffs_mode & IFMT)>>12, dinp);
1213 lfs_dump_dinode(&ip->i_din.ffs_din);
1214 #ifdef DDB
1215 Debugger();
1216 #endif
1217 }
1218 #endif /* DEBUG_LFS */
1219 /*
1220 * Finish inode initialization now that aliasing has been resolved.
1221 */
1222 ip->i_devvp = ump->um_devvp;
1223 VREF(ip->i_devvp);
1224 *vpp = vp;
1225 *need_unlock |= FVG_PUT;
1226
1227 uvm_vnp_setsize(vp, ip->i_ffs_size);
1228
1229 return (0);
1230 }
1231
1232 struct buf *
1233 lfs_fakebuf(struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
1234 {
1235 struct buf *bp;
1236 int error;
1237
1238 #ifndef ALLOW_VFLUSH_CORRUPTION
1239 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size);
1240 error = copyin(uaddr, bp->b_data, size);
1241 if(error) {
1242 lfs_freebuf(bp);
1243 return NULL;
1244 }
1245 #else
1246 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, 0);
1247 bp->b_flags |= B_INVAL;
1248 bp->b_saveaddr = uaddr;
1249 #endif
1250
1251 bp->b_bufsize = size;
1252 bp->b_bcount = size;
1253 return (bp);
1254 }
1255