lfs_syscalls.c revision 1.65 1 /* $NetBSD: lfs_syscalls.c,v 1.65 2002/05/14 20:03:54 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.65 2002/05/14 20:03:54 perseant Exp $");
75
76 #define LFS /* for prototypes in syscallargs.h */
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/buf.h>
82 #include <sys/mount.h>
83 #include <sys/vnode.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86
87 #include <sys/syscallargs.h>
88
89 #include <ufs/ufs/inode.h>
90 #include <ufs/ufs/ufsmount.h>
91 #include <ufs/ufs/ufs_extern.h>
92
93 #include <ufs/lfs/lfs.h>
94 #include <ufs/lfs/lfs_extern.h>
95
96 /* Flags for return from lfs_fastvget */
97 #define FVG_UNLOCK 0x01 /* Needs to be unlocked */
98 #define FVG_PUT 0x02 /* Needs to be vput() */
99
100 /* Max block count for lfs_markv() */
101 #define MARKV_MAXBLKCNT 65536
102
103 struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, caddr_t);
104 int lfs_fasthashget(dev_t, ino_t, int *, struct vnode **);
105
106 int debug_cleaner = 0;
107 int clean_vnlocked = 0;
108 int clean_inlocked = 0;
109 int verbose_debug = 0;
110
111 pid_t lfs_cleaner_pid = 0;
112
113 /*
114 * Definitions for the buffer free lists.
115 */
116 #define BQUEUES 4 /* number of free buffer queues */
117
118 #define BQ_LOCKED 0 /* super-blocks &c */
119 #define BQ_LRU 1 /* lru, useful buffers */
120 #define BQ_AGE 2 /* rubbish */
121 #define BQ_EMPTY 3 /* buffer headers with no memory */
122
123 extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
124
125 #define LFS_FORCE_WRITE UNASSIGNED
126
127 #define LFS_VREF_THRESHOLD 128
128
129 static int lfs_bmapv(struct proc *, fsid_t *, BLOCK_INFO *, int);
130 static int lfs_markv(struct proc *, fsid_t *, BLOCK_INFO *, int);
131
132 /*
133 * sys_lfs_markv:
134 *
135 * This will mark inodes and blocks dirty, so they are written into the log.
136 * It will block until all the blocks have been written. The segment create
137 * time passed in the block_info and inode_info structures is used to decide
138 * if the data is valid for each block (in case some process dirtied a block
139 * or inode that is being cleaned between the determination that a block is
140 * live and the lfs_markv call).
141 *
142 * 0 on success
143 * -1/errno is return on error.
144 */
145 #ifdef USE_64BIT_SYSCALLS
146 int
147 sys_lfs_markv(struct proc *p, void *v, register_t *retval)
148 {
149 struct sys_lfs_markv_args /* {
150 syscallarg(fsid_t *) fsidp;
151 syscallarg(struct block_info *) blkiov;
152 syscallarg(int) blkcnt;
153 } */ *uap = v;
154 BLOCK_INFO *blkiov;
155 int blkcnt, error;
156 fsid_t fsid;
157
158 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
159 return (error);
160
161 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
162 return (error);
163
164 blkcnt = SCARG(uap, blkcnt);
165 if ((u_int) blkcnt > MARKV_MAXBLKCNT)
166 return (EINVAL);
167
168 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
169 if ((error = copyin(SCARG(uap, blkiov), blkiov,
170 blkcnt * sizeof(BLOCK_INFO))) != 0)
171 goto out;
172
173 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
174 copyout(blkiov, SCARG(uap, blkiov),
175 blkcnt * sizeof(BLOCK_INFO));
176 out:
177 free(blkiov, M_SEGMENT);
178 return error;
179 }
180 #else
181 int
182 sys_lfs_markv(struct proc *p, void *v, register_t *retval)
183 {
184 struct sys_lfs_markv_args /* {
185 syscallarg(fsid_t *) fsidp;
186 syscallarg(struct block_info *) blkiov;
187 syscallarg(int) blkcnt;
188 } */ *uap = v;
189 BLOCK_INFO *blkiov;
190 BLOCK_INFO_15 *blkiov15;
191 int i, blkcnt, error;
192 fsid_t fsid;
193
194 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
195 return (error);
196
197 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
198 return (error);
199
200 blkcnt = SCARG(uap, blkcnt);
201 if ((u_int) blkcnt > MARKV_MAXBLKCNT)
202 return (EINVAL);
203
204 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
205 blkiov15 = malloc(blkcnt * sizeof(BLOCK_INFO_15), M_SEGMENT, M_WAITOK);
206 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
207 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
208 goto out;
209
210 for (i = 0; i < blkcnt; i++) {
211 blkiov[i].bi_inode = blkiov15[i].bi_inode;
212 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
213 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
214 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
215 blkiov[i].bi_version = blkiov15[i].bi_version;
216 blkiov[i].bi_bp = blkiov15[i].bi_bp;
217 blkiov[i].bi_size = blkiov15[i].bi_size;
218 }
219
220 if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0) {
221 for (i = 0; i < blkcnt; i++) {
222 blkiov15[i].bi_inode = blkiov[i].bi_inode;
223 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
224 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
225 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
226 blkiov15[i].bi_version = blkiov[i].bi_version;
227 blkiov15[i].bi_bp = blkiov[i].bi_bp;
228 blkiov15[i].bi_size = blkiov[i].bi_size;
229 }
230 copyout(blkiov15, SCARG(uap, blkiov),
231 blkcnt * sizeof(BLOCK_INFO_15));
232 }
233 out:
234 free(blkiov, M_SEGMENT);
235 free(blkiov15, M_SEGMENT);
236 return error;
237 }
238 #endif
239
240 static int
241 lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
242 {
243 BLOCK_INFO *blkp;
244 IFILE *ifp;
245 struct buf *bp, *nbp;
246 struct inode *ip = NULL;
247 struct lfs *fs;
248 struct mount *mntp;
249 struct vnode *vp;
250 #ifdef DEBUG_LFS
251 int vputc = 0, iwritten = 0;
252 #endif
253 ino_t lastino;
254 ufs_daddr_t b_daddr, v_daddr;
255 int cnt, error, lfs_fastvget_unlock;
256 int do_again = 0;
257 int s;
258 #ifdef CHECK_COPYIN
259 int i;
260 #endif /* CHECK_COPYIN */
261 int numlocked = 0, numrefed = 0;
262 ino_t maxino;
263
264 if ((mntp = vfs_getvfs(fsidp)) == NULL)
265 return (ENOENT);
266
267 fs = VFSTOUFS(mntp)->um_lfs;
268 maxino = (fragstoblks(fs, fsbtofrags(fs, VTOI(fs->lfs_ivnode)->i_ffs_blocks)) -
269 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
270
271 cnt = blkcnt;
272
273 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
274 return (error);
275
276 /*
277 * This seglock is just to prevent the fact that we might have to sleep
278 * from allowing the possibility that our blocks might become
279 * invalid.
280 *
281 * It is also important to note here that unless we specify SEGM_CKP,
282 * any Ifile blocks that we might be asked to clean will never get
283 * to the disk.
284 */
285 lfs_seglock(fs, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
286
287 /* Mark blocks/inodes dirty. */
288 error = 0;
289
290 #ifdef DEBUG_LFS
291 /* Run through and count the inodes */
292 lastino = LFS_UNUSED_INUM;
293 for (blkp = blkiov; cnt--; ++blkp) {
294 if (lastino != blkp->bi_inode) {
295 lastino = blkp->bi_inode;
296 vputc++;
297 }
298 }
299 cnt = blkcnt;
300 printf("[%d/",vputc);
301 iwritten = 0;
302 #endif /* DEBUG_LFS */
303 /* these were inside the initialization for the for loop */
304 v_daddr = LFS_UNUSED_DADDR;
305 lastino = LFS_UNUSED_INUM;
306 for (blkp = blkiov; cnt--; ++blkp)
307 {
308 if (blkp->bi_daddr == LFS_FORCE_WRITE)
309 printf("lfs_markv: warning: force-writing ino %d lbn %d\n",
310 blkp->bi_inode, blkp->bi_lbn);
311 /* Bounds-check incoming data, avoid panic for failed VGET */
312 if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
313 error = EINVAL;
314 goto again;
315 }
316 /*
317 * Get the IFILE entry (only once) and see if the file still
318 * exists.
319 */
320 if (lastino != blkp->bi_inode) {
321 /*
322 * Finish the old file, if there was one. The presence
323 * of a usable vnode in vp is signaled by a valid v_daddr.
324 */
325 if (v_daddr != LFS_UNUSED_DADDR) {
326 #ifdef DEBUG_LFS
327 if (ip->i_flag & (IN_MODIFIED|IN_CLEANING))
328 iwritten++;
329 #endif
330 if (lfs_fastvget_unlock) {
331 VOP_UNLOCK(vp, 0);
332 numlocked--;
333 }
334 lfs_vunref(vp);
335 numrefed--;
336 }
337
338 /*
339 * Start a new file
340 */
341 lastino = blkp->bi_inode;
342 if (blkp->bi_inode == LFS_IFILE_INUM)
343 v_daddr = fs->lfs_idaddr;
344 else {
345 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
346 /* XXX fix for force write */
347 v_daddr = ifp->if_daddr;
348 brelse(bp);
349 }
350 /* Don't force-write the ifile */
351 if (blkp->bi_inode == LFS_IFILE_INUM
352 && blkp->bi_daddr == LFS_FORCE_WRITE)
353 {
354 continue;
355 }
356 if (v_daddr == LFS_UNUSED_DADDR
357 && blkp->bi_daddr != LFS_FORCE_WRITE)
358 {
359 continue;
360 }
361
362 /* Get the vnode/inode. */
363 error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
364 &vp,
365 (blkp->bi_lbn == LFS_UNUSED_LBN
366 ? blkp->bi_bp
367 : NULL),
368 &lfs_fastvget_unlock);
369 if (lfs_fastvget_unlock)
370 numlocked++;
371
372 if (!error) {
373 numrefed++;
374 }
375 if (error) {
376 #ifdef DEBUG_LFS
377 printf("lfs_markv: lfs_fastvget failed with %d (ino %d, segment %d)\n",
378 error, blkp->bi_inode,
379 dtosn(fs, blkp->bi_daddr));
380 #endif /* DEBUG_LFS */
381 /*
382 * If we got EAGAIN, that means that the
383 * Inode was locked. This is
384 * recoverable: just clean the rest of
385 * this segment, and let the cleaner try
386 * again with another. (When the
387 * cleaner runs again, this segment will
388 * sort high on the list, since it is
389 * now almost entirely empty.) But, we
390 * still set v_daddr = LFS_UNUSED_ADDR
391 * so as not to test this over and over
392 * again.
393 */
394 if (error == EAGAIN) {
395 error = 0;
396 do_again++;
397 }
398 #ifdef DIAGNOSTIC
399 else if (error != ENOENT)
400 panic("lfs_markv VFS_VGET FAILED");
401 #endif
402 /* lastino = LFS_UNUSED_INUM; */
403 v_daddr = LFS_UNUSED_DADDR;
404 vp = NULL;
405 ip = NULL;
406 continue;
407 }
408 ip = VTOI(vp);
409 } else if (v_daddr == LFS_UNUSED_DADDR) {
410 /*
411 * This can only happen if the vnode is dead (or
412 * in any case we can't get it...e.g., it is
413 * inlocked). Keep going.
414 */
415 continue;
416 }
417
418 /* Past this point we are guaranteed that vp, ip are valid. */
419
420 /* If this BLOCK_INFO didn't contain a block, keep going. */
421 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
422 /* XXX need to make sure that the inode gets written in this case */
423 /* XXX but only write the inode if it's the right one */
424 if (blkp->bi_inode != LFS_IFILE_INUM) {
425 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
426 if (ifp->if_daddr == blkp->bi_daddr
427 || blkp->bi_daddr == LFS_FORCE_WRITE)
428 {
429 LFS_SET_UINO(ip, IN_CLEANING);
430 }
431 brelse(bp);
432 }
433 continue;
434 }
435
436 b_daddr = 0;
437 if (blkp->bi_daddr != LFS_FORCE_WRITE) {
438 if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
439 dbtofsb(fs, b_daddr) != blkp->bi_daddr)
440 {
441 if (dtosn(fs,dbtofsb(fs, b_daddr))
442 == dtosn(fs,blkp->bi_daddr))
443 {
444 printf("lfs_markv: wrong da same seg: %x vs %x\n",
445 blkp->bi_daddr, dbtofsb(fs, b_daddr));
446 }
447 continue;
448 }
449 }
450 /*
451 * If we got to here, then we are keeping the block. If
452 * it is an indirect block, we want to actually put it
453 * in the buffer cache so that it can be updated in the
454 * finish_meta section. If it's not, we need to
455 * allocate a fake buffer so that writeseg can perform
456 * the copyin and write the buffer.
457 */
458 /*
459 * XXX - if the block we are reading has been *extended* since
460 * it was written to disk, then we risk throwing away
461 * the extension in bread()/getblk(). Check the size
462 * here.
463 */
464 if (blkp->bi_size < fs->lfs_bsize) {
465 s = splbio();
466 bp = incore(vp, blkp->bi_lbn);
467 if (bp && bp->b_bcount > blkp->bi_size) {
468 printf("lfs_markv: %ld > %d (fixed)\n",
469 bp->b_bcount, blkp->bi_size);
470 blkp->bi_size = bp->b_bcount;
471 }
472 splx(s);
473 }
474 if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
475 /* Data Block */
476 bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
477 blkp->bi_size, blkp->bi_bp);
478 /* Pretend we used bread() to get it */
479 bp->b_blkno = fsbtodb(fs, blkp->bi_daddr);
480 } else {
481 /* Indirect block */
482 bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
483 if (!(bp->b_flags & (B_DONE|B_DELWRI))) { /* B_CACHE */
484 /*
485 * The block in question was not found
486 * in the cache; i.e., the block that
487 * getblk() returned is empty. So, we
488 * can (and should) copy in the
489 * contents, because we've already
490 * determined that this was the right
491 * version of this block on disk.
492 *
493 * And, it can't have changed underneath
494 * us, because we have the segment lock.
495 */
496 error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
497 if (error)
498 goto err2;
499 }
500 }
501 if ((error = lfs_bwrite_ext(bp,BW_CLEAN)) != 0)
502 goto err2;
503 }
504
505 /*
506 * Finish the old file, if there was one
507 */
508 if (v_daddr != LFS_UNUSED_DADDR) {
509 #ifdef DEBUG_LFS
510 if (ip->i_flag & (IN_MODIFIED|IN_CLEANING))
511 iwritten++;
512 #endif
513 if (lfs_fastvget_unlock) {
514 VOP_UNLOCK(vp, 0);
515 numlocked--;
516 }
517 lfs_vunref(vp);
518 numrefed--;
519 }
520
521 /*
522 * The last write has to be SEGM_SYNC, because of calling semantics.
523 * It also has to be SEGM_CKP, because otherwise we could write
524 * over the newly cleaned data contained in a checkpoint, and then
525 * we'd be unhappy at recovery time.
526 */
527 lfs_segwrite(mntp, SEGM_SYNC|SEGM_CLEAN|SEGM_CKP);
528
529 lfs_segunlock(fs);
530
531 #ifdef DEBUG_LFS
532 printf("%d]",iwritten);
533 if (numlocked != 0 || numrefed != 0) {
534 panic("lfs_markv: numlocked=%d numrefed=%d", numlocked, numrefed);
535 }
536 #endif
537
538 vfs_unbusy(mntp);
539 if (error)
540 return (error);
541 else if (do_again)
542 return EAGAIN;
543
544 return 0;
545
546 err2:
547 printf("lfs_markv err2\n");
548 if (lfs_fastvget_unlock) {
549 VOP_UNLOCK(vp, 0);
550 --numlocked;
551 }
552 lfs_vunref(vp);
553 --numrefed;
554
555 /* Free up fakebuffers -- have to take these from the LOCKED list */
556 again:
557 s = splbio();
558 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp; bp = nbp) {
559 nbp = bp->b_freelist.tqe_next;
560 if (bp->b_flags & B_CALL) {
561 if (bp->b_flags & B_BUSY) { /* not bloody likely */
562 bp->b_flags |= B_WANTED;
563 tsleep(bp, PRIBIO+1, "markv", 0);
564 splx(s);
565 goto again;
566 }
567 if (bp->b_flags & B_DELWRI)
568 fs->lfs_avail += btofsb(fs, bp->b_bcount);
569 bremfree(bp);
570 splx(s);
571 brelse(bp);
572 s = splbio();
573 }
574 }
575 splx(s);
576 lfs_segunlock(fs);
577 vfs_unbusy(mntp);
578 #ifdef DEBUG_LFS
579 if (numlocked != 0 || numrefed != 0) {
580 panic("lfs_markv: numlocked=%d numrefed=%d", numlocked, numrefed);
581 }
582 #endif
583
584 return (error);
585 }
586
587 /*
588 * sys_lfs_bmapv:
589 *
590 * This will fill in the current disk address for arrays of blocks.
591 *
592 * 0 on success
593 * -1/errno is return on error.
594 */
595 #ifdef USE_64BIT_SYSCALLS
596 int
597 sys_lfs_bmapv(struct proc *p, void *v, register_t *retval)
598 {
599 struct sys_lfs_bmapv_args /* {
600 syscallarg(fsid_t *) fsidp;
601 syscallarg(struct block_info *) blkiov;
602 syscallarg(int) blkcnt;
603 } */ *uap = v;
604 BLOCK_INFO *blkiov;
605 int blkcnt, error;
606 fsid_t fsid;
607
608 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
609 return (error);
610
611 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
612 return (error);
613
614 blkcnt = SCARG(uap, blkcnt);
615 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
616 if ((error = copyin(SCARG(uap, blkiov), blkiov,
617 blkcnt * sizeof(BLOCK_INFO))) != 0)
618 goto out;
619
620 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
621 copyout(blkiov, SCARG(uap, blkiov),
622 blkcnt * sizeof(BLOCK_INFO));
623 out:
624 free(blkiov, M_SEGMENT);
625 return error;
626 }
627 #else
628 int
629 sys_lfs_bmapv(struct proc *p, void *v, register_t *retval)
630 {
631 struct sys_lfs_bmapv_args /* {
632 syscallarg(fsid_t *) fsidp;
633 syscallarg(struct block_info *) blkiov;
634 syscallarg(int) blkcnt;
635 } */ *uap = v;
636 BLOCK_INFO *blkiov;
637 BLOCK_INFO_15 *blkiov15;
638 int i, blkcnt, error;
639 fsid_t fsid;
640
641 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
642 return (error);
643
644 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
645 return (error);
646
647 blkcnt = SCARG(uap, blkcnt);
648 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
649 blkiov15 = malloc(blkcnt * sizeof(BLOCK_INFO_15), M_SEGMENT, M_WAITOK);
650 if ((error = copyin(SCARG(uap, blkiov), blkiov15,
651 blkcnt * sizeof(BLOCK_INFO_15))) != 0)
652 goto out;
653
654 for (i = 0; i < blkcnt; i++) {
655 blkiov[i].bi_inode = blkiov15[i].bi_inode;
656 blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
657 blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
658 blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
659 blkiov[i].bi_version = blkiov15[i].bi_version;
660 blkiov[i].bi_bp = blkiov15[i].bi_bp;
661 blkiov[i].bi_size = blkiov15[i].bi_size;
662 }
663
664 if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0) {
665 for (i = 0; i < blkcnt; i++) {
666 blkiov15[i].bi_inode = blkiov[i].bi_inode;
667 blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
668 blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
669 blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
670 blkiov15[i].bi_version = blkiov[i].bi_version;
671 blkiov15[i].bi_bp = blkiov[i].bi_bp;
672 blkiov15[i].bi_size = blkiov[i].bi_size;
673 }
674 copyout(blkiov15, SCARG(uap, blkiov),
675 blkcnt * sizeof(BLOCK_INFO_15));
676 }
677 out:
678 free(blkiov, M_SEGMENT);
679 free(blkiov15, M_SEGMENT);
680 return error;
681 }
682 #endif
683
684 static int
685 lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
686 {
687 BLOCK_INFO *blkp;
688 IFILE *ifp;
689 struct buf *bp;
690 struct inode *ip = NULL;
691 struct lfs *fs;
692 struct mount *mntp;
693 struct ufsmount *ump;
694 struct vnode *vp;
695 ino_t lastino;
696 ufs_daddr_t v_daddr;
697 int cnt, error, need_unlock = 0;
698 int numlocked = 0, numrefed = 0;
699
700 lfs_cleaner_pid = p->p_pid;
701
702 if ((mntp = vfs_getvfs(fsidp)) == NULL)
703 return (ENOENT);
704
705 ump = VFSTOUFS(mntp);
706 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
707 return (error);
708
709 cnt = blkcnt;
710
711 fs = VFSTOUFS(mntp)->um_lfs;
712
713 error = 0;
714
715 /* these were inside the initialization for the for loop */
716 v_daddr = LFS_UNUSED_DADDR;
717 lastino = LFS_UNUSED_INUM;
718 for (blkp = blkiov; cnt--; ++blkp)
719 {
720 #ifdef DEBUG
721 if (dtosn(fs, fs->lfs_curseg) == dtosn(fs, blkp->bi_daddr)) {
722 printf("lfs_bmapv: attempt to clean current segment? (#%d)\n",
723 dtosn(fs, fs->lfs_curseg));
724 vfs_unbusy(mntp);
725 return (EBUSY);
726 }
727 #endif /* DEBUG */
728 /*
729 * Get the IFILE entry (only once) and see if the file still
730 * exists.
731 */
732 if (lastino != blkp->bi_inode) {
733 /*
734 * Finish the old file, if there was one. The presence
735 * of a usable vnode in vp is signaled by a valid
736 * v_daddr.
737 */
738 if (v_daddr != LFS_UNUSED_DADDR) {
739 if (need_unlock) {
740 VOP_UNLOCK(vp, 0);
741 numlocked--;
742 }
743 lfs_vunref(vp);
744 numrefed--;
745 }
746
747 /*
748 * Start a new file
749 */
750 lastino = blkp->bi_inode;
751 if (blkp->bi_inode == LFS_IFILE_INUM)
752 v_daddr = fs->lfs_idaddr;
753 else {
754 LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
755 v_daddr = ifp->if_daddr;
756 brelse(bp);
757 }
758 if (v_daddr == LFS_UNUSED_DADDR) {
759 blkp->bi_daddr = LFS_UNUSED_DADDR;
760 continue;
761 }
762 /*
763 * A regular call to VFS_VGET could deadlock
764 * here. Instead, we try an unlocked access.
765 */
766 vp = ufs_ihashlookup(ump->um_dev, blkp->bi_inode);
767 if (vp != NULL && !(vp->v_flag & VXLOCK)) {
768 ip = VTOI(vp);
769 if (lfs_vref(vp)) {
770 v_daddr = LFS_UNUSED_DADDR;
771 need_unlock = 0;
772 continue;
773 }
774 numrefed++;
775 if (VOP_ISLOCKED(vp)) {
776 #ifdef DEBUG_LFS
777 printf("lfs_bmapv: inode %d inlocked\n",ip->i_number);
778 #endif
779 v_daddr = LFS_UNUSED_DADDR;
780 need_unlock = 0;
781 lfs_vunref(vp);
782 --numrefed;
783 continue;
784 } else {
785 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
786 need_unlock = FVG_UNLOCK;
787 numlocked++;
788 }
789 } else {
790 error = VFS_VGET(mntp, blkp->bi_inode, &vp);
791 if (error) {
792 #ifdef DEBUG_LFS
793 printf("lfs_bmapv: vget of ino %d failed with %d",blkp->bi_inode,error);
794 #endif
795 v_daddr = LFS_UNUSED_DADDR;
796 need_unlock = 0;
797 continue;
798 } else {
799 need_unlock = FVG_PUT;
800 numlocked++;
801 numrefed++;
802 }
803 }
804 ip = VTOI(vp);
805 } else if (v_daddr == LFS_UNUSED_DADDR) {
806 /*
807 * This can only happen if the vnode is dead.
808 * Keep going. Note that we DO NOT set the
809 * bi_addr to anything -- if we failed to get
810 * the vnode, for example, we want to assume
811 * conservatively that all of its blocks *are*
812 * located in the segment in question.
813 * lfs_markv will throw them out if we are
814 * wrong.
815 */
816 /* blkp->bi_daddr = LFS_UNUSED_DADDR; */
817 continue;
818 }
819
820 /* Past this point we are guaranteed that vp, ip are valid. */
821
822 if (blkp->bi_lbn == LFS_UNUSED_LBN) {
823 /*
824 * We just want the inode address, which is
825 * conveniently in v_daddr.
826 */
827 blkp->bi_daddr = v_daddr;
828 } else {
829 error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
830 &(blkp->bi_daddr), NULL);
831 if (error)
832 {
833 blkp->bi_daddr = LFS_UNUSED_DADDR;
834 continue;
835 }
836 blkp->bi_daddr = dbtofsb(fs, blkp->bi_daddr);
837 }
838 }
839
840 /*
841 * Finish the old file, if there was one. The presence
842 * of a usable vnode in vp is signaled by a valid v_daddr.
843 */
844 if (v_daddr != LFS_UNUSED_DADDR) {
845 if (need_unlock) {
846 VOP_UNLOCK(vp, 0);
847 numlocked--;
848 }
849 lfs_vunref(vp);
850 numrefed--;
851 }
852
853 if (numlocked != 0 || numrefed != 0) {
854 panic("lfs_bmapv: numlocked=%d numrefed=%d", numlocked,
855 numrefed);
856 }
857
858 vfs_unbusy(mntp);
859
860 return 0;
861 }
862
863 /*
864 * sys_lfs_segclean:
865 *
866 * Mark the segment clean.
867 *
868 * 0 on success
869 * -1/errno is return on error.
870 */
871 int
872 sys_lfs_segclean(struct proc *p, void *v, register_t *retval)
873 {
874 struct sys_lfs_segclean_args /* {
875 syscallarg(fsid_t *) fsidp;
876 syscallarg(u_long) segment;
877 } */ *uap = v;
878 CLEANERINFO *cip;
879 SEGUSE *sup;
880 struct buf *bp;
881 struct mount *mntp;
882 struct lfs *fs;
883 fsid_t fsid;
884 int error;
885
886 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
887 return (error);
888
889 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
890 return (error);
891 if ((mntp = vfs_getvfs(&fsid)) == NULL)
892 return (ENOENT);
893
894 fs = VFSTOUFS(mntp)->um_lfs;
895
896 if (dtosn(fs, fs->lfs_curseg) == SCARG(uap, segment))
897 return (EBUSY);
898
899 if ((error = vfs_busy(mntp, LK_NOWAIT, NULL)) != 0)
900 return (error);
901 #ifdef LFS_AGGRESSIVE_SEGLOCK
902 lfs_seglock(fs, SEGM_PROT);
903 #endif
904 LFS_SEGENTRY(sup, fs, SCARG(uap, segment), bp);
905 if (sup->su_flags & SEGUSE_ACTIVE) {
906 brelse(bp);
907 #ifdef LFS_AGGRESSIVE_SEGLOCK
908 lfs_segunlock(fs);
909 #endif
910 vfs_unbusy(mntp);
911 return (EBUSY);
912 }
913 if (!(sup->su_flags & SEGUSE_DIRTY)) {
914 brelse(bp);
915 #ifdef LFS_AGGRESSIVE_SEGLOCK
916 lfs_segunlock(fs);
917 #endif
918 vfs_unbusy(mntp);
919 return (EALREADY);
920 }
921
922 fs->lfs_avail += segtod(fs, 1);
923 if (sup->su_flags & SEGUSE_SUPERBLOCK)
924 fs->lfs_avail -= btofsb(fs, LFS_SBPAD);
925 if (fs->lfs_version > 1 && SCARG(uap, segment) == 0 &&
926 fs->lfs_start < btofsb(fs, LFS_LABELPAD))
927 fs->lfs_avail -= btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
928 fs->lfs_bfree += sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
929 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
930 fs->lfs_dmeta -= sup->su_nsums * btofsb(fs, fs->lfs_sumsize) +
931 btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
932 if (fs->lfs_dmeta < 0)
933 fs->lfs_dmeta = 0;
934 sup->su_flags &= ~SEGUSE_DIRTY;
935 (void) LFS_BWRITE_LOG(bp);
936
937 LFS_CLEANERINFO(cip, fs, bp);
938 ++cip->clean;
939 --cip->dirty;
940 fs->lfs_nclean = cip->clean;
941 cip->bfree = fs->lfs_bfree;
942 cip->avail = fs->lfs_avail - fs->lfs_ravail;
943 (void) LFS_BWRITE_LOG(bp);
944 wakeup(&fs->lfs_avail);
945 #ifdef LFS_AGGRESSIVE_SEGLOCK
946 lfs_segunlock(fs);
947 #endif
948 vfs_unbusy(mntp);
949
950 return (0);
951 }
952
953 /*
954 * sys_lfs_segwait:
955 *
956 * This will block until a segment in file system fsid is written. A timeout
957 * in milliseconds may be specified which will awake the cleaner automatically.
958 * An fsid of -1 means any file system, and a timeout of 0 means forever.
959 *
960 * 0 on success
961 * 1 on timeout
962 * -1/errno is return on error.
963 */
964 int
965 sys_lfs_segwait(struct proc *p, void *v, register_t *retval)
966 {
967 struct sys_lfs_segwait_args /* {
968 syscallarg(fsid_t *) fsidp;
969 syscallarg(struct timeval *) tv;
970 } */ *uap = v;
971 struct mount *mntp;
972 struct timeval atv;
973 fsid_t fsid;
974 void *addr;
975 u_long timeout;
976 int error, s;
977
978 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) {
979 return (error);
980 }
981 if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
982 return (error);
983 if ((mntp = vfs_getvfs(&fsid)) == NULL)
984 addr = &lfs_allclean_wakeup;
985 else
986 addr = &VFSTOUFS(mntp)->um_lfs->lfs_nextseg;
987
988 if (SCARG(uap, tv)) {
989 error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
990 if (error)
991 return (error);
992 if (itimerfix(&atv))
993 return (EINVAL);
994 /*
995 * XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
996 * XXX IS THAT WHAT IS INTENDED?
997 */
998 s = splclock();
999 timeradd(&atv, &time, &atv);
1000 timeout = hzto(&atv);
1001 splx(s);
1002 } else
1003 timeout = 0;
1004
1005 error = tsleep(addr, PCATCH | PUSER, "segment", timeout);
1006 return (error == ERESTART ? EINTR : 0);
1007 }
1008
1009 /*
1010 * VFS_VGET call specialized for the cleaner. The cleaner already knows the
1011 * daddr from the ifile, so don't look it up again. If the cleaner is
1012 * processing IINFO structures, it may have the ondisk inode already, so
1013 * don't go retrieving it again.
1014 *
1015 * If we find the vnode on the hash chain, then it may be locked by another
1016 * process; so we set (*need_unlock) to zero.
1017 *
1018 * If we don't, we call ufs_ihashins, which locks the inode, and we set
1019 * (*need_unlock) to non-zero.
1020 *
1021 * In either case we lfs_vref, and it is the caller's responsibility to
1022 * lfs_vunref and VOP_UNLOCK (if necessary) when finished.
1023 */
1024 extern struct lock ufs_hashlock;
1025
1026 int
1027 lfs_fasthashget(dev_t dev, ino_t ino, int *need_unlock, struct vnode **vpp)
1028 {
1029 struct inode *ip;
1030
1031 /*
1032 * This is playing fast and loose. Someone may have the inode
1033 * locked, in which case they are going to be distinctly unhappy
1034 * if we trash something.
1035 */
1036 if ((*vpp = ufs_ihashlookup(dev, ino)) != NULL) {
1037 if ((*vpp)->v_flag & VXLOCK) {
1038 printf("lfs_fastvget: vnode VXLOCKed for ino %d\n",
1039 ino);
1040 clean_vnlocked++;
1041 #ifdef LFS_EAGAIN_FAIL
1042 return EAGAIN;
1043 #endif
1044 }
1045 ip = VTOI(*vpp);
1046 if (lfs_vref(*vpp)) {
1047 clean_inlocked++;
1048 return EAGAIN;
1049 }
1050 if (VOP_ISLOCKED(*vpp)) {
1051 #ifdef DEBUG_LFS
1052 printf("lfs_fastvget: ino %d inlocked by pid %d\n",
1053 ip->i_number, (*vpp)->v_lock.lk_lockholder);
1054 #endif
1055 clean_inlocked++;
1056 #ifdef LFS_EAGAIN_FAIL
1057 lfs_vunref(*vpp);
1058 return EAGAIN;
1059 #endif /* LFS_EAGAIN_FAIL */
1060 } else {
1061 vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1062 *need_unlock |= FVG_UNLOCK;
1063 }
1064 } else
1065 *vpp = NULL;
1066
1067 return (0);
1068 }
1069
1070 int
1071 lfs_fastvget(struct mount *mp, ino_t ino, ufs_daddr_t daddr, struct vnode **vpp, struct dinode *dinp, int *need_unlock)
1072 {
1073 struct inode *ip;
1074 struct dinode *dip;
1075 struct vnode *vp;
1076 struct ufsmount *ump;
1077 dev_t dev;
1078 int error, retries;
1079 struct buf *bp;
1080 struct lfs *fs;
1081
1082 ump = VFSTOUFS(mp);
1083 dev = ump->um_dev;
1084 fs = ump->um_lfs;
1085 *need_unlock = 0;
1086
1087 /*
1088 * Wait until the filesystem is fully mounted before allowing vget
1089 * to complete. This prevents possible problems with roll-forward.
1090 */
1091 while (fs->lfs_flags & LFS_NOTYET) {
1092 tsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0);
1093 }
1094 /*
1095 * This is playing fast and loose. Someone may have the inode
1096 * locked, in which case they are going to be distinctly unhappy
1097 * if we trash something.
1098 */
1099
1100 error = lfs_fasthashget(dev, ino, need_unlock, vpp);
1101 if (error != 0 || *vpp != NULL)
1102 return (error);
1103
1104 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1105 *vpp = NULL;
1106 return (error);
1107 }
1108
1109 do {
1110 error = lfs_fasthashget(dev, ino, need_unlock, vpp);
1111 if (error != 0 || *vpp != NULL) {
1112 ungetnewvnode(vp);
1113 return (error);
1114 }
1115 } while (lockmgr(&ufs_hashlock, LK_EXCLUSIVE|LK_SLEEPFAIL, 0));
1116
1117 /* Allocate new vnode/inode. */
1118 lfs_vcreate(mp, ino, vp);
1119
1120 /*
1121 * Put it onto its hash chain and lock it so that other requests for
1122 * this inode will block if they arrive while we are sleeping waiting
1123 * for old data structures to be purged or for the contents of the
1124 * disk portion of this inode to be read.
1125 */
1126 ip = VTOI(vp);
1127 ufs_ihashins(ip);
1128 lockmgr(&ufs_hashlock, LK_RELEASE, 0);
1129
1130 /*
1131 * XXX
1132 * This may not need to be here, logically it should go down with
1133 * the i_devvp initialization.
1134 * Ask Kirk.
1135 */
1136 ip->i_lfs = fs;
1137
1138 /* Read in the disk contents for the inode, copy into the inode. */
1139 if (dinp) {
1140 error = copyin(dinp, &ip->i_din.ffs_din, DINODE_SIZE);
1141 if (error) {
1142 printf("lfs_fastvget: dinode copyin failed for ino %d\n", ino);
1143 ufs_ihashrem(ip);
1144
1145 /* Unlock and discard unneeded inode. */
1146 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1147 lfs_vunref(vp);
1148 *vpp = NULL;
1149 return (error);
1150 }
1151 if (ip->i_number != ino)
1152 panic("lfs_fastvget: I was fed the wrong inode!");
1153 } else {
1154 retries = 0;
1155 again:
1156 error = bread(ump->um_devvp, fsbtodb(fs, daddr), fs->lfs_ibsize,
1157 NOCRED, &bp);
1158 if (error) {
1159 printf("lfs_fastvget: bread failed with %d\n",error);
1160 /*
1161 * The inode does not contain anything useful, so it
1162 * would be misleading to leave it on its hash chain.
1163 * Iput() will return it to the free list.
1164 */
1165 ufs_ihashrem(ip);
1166
1167 /* Unlock and discard unneeded inode. */
1168 lockmgr(&vp->v_lock, LK_RELEASE, &vp->v_interlock);
1169 lfs_vunref(vp);
1170 brelse(bp);
1171 *vpp = NULL;
1172 return (error);
1173 }
1174 dip = lfs_ifind(ump->um_lfs, ino, bp);
1175 if (dip == NULL) {
1176 /* Assume write has not completed yet; try again */
1177 bp->b_flags |= B_INVAL;
1178 brelse(bp);
1179 ++retries;
1180 if (retries > LFS_IFIND_RETRIES)
1181 panic("lfs_fastvget: dinode not found");
1182 printf("lfs_fastvget: dinode not found, retrying...\n");
1183 goto again;
1184 }
1185 ip->i_din.ffs_din = *dip;
1186 brelse(bp);
1187 }
1188 ip->i_ffs_effnlink = ip->i_ffs_nlink;
1189 ip->i_lfs_effnblks = ip->i_ffs_blocks;
1190
1191 /*
1192 * Initialize the vnode from the inode, check for aliases. In all
1193 * cases re-init ip, the underlying vnode/inode may have changed.
1194 */
1195 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1196 #ifdef DEBUG_LFS
1197 if (vp->v_type == VNON) {
1198 printf("lfs_fastvget: ino %d is type VNON! (ifmt=%o, dinp=%p)\n",
1199 ip->i_number, (ip->i_ffs_mode & IFMT) >> 12, dinp);
1200 lfs_dump_dinode(&ip->i_din.ffs_din);
1201 #ifdef DDB
1202 Debugger();
1203 #endif
1204 }
1205 #endif /* DEBUG_LFS */
1206 /*
1207 * Finish inode initialization now that aliasing has been resolved.
1208 */
1209
1210 genfs_node_init(vp, &lfs_genfsops);
1211 ip->i_devvp = ump->um_devvp;
1212 VREF(ip->i_devvp);
1213 *vpp = vp;
1214 *need_unlock |= FVG_PUT;
1215
1216 uvm_vnp_setsize(vp, ip->i_ffs_size);
1217
1218 return (0);
1219 }
1220
1221 struct buf *
1222 lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, caddr_t uaddr)
1223 {
1224 struct buf *bp;
1225 int error;
1226
1227 #ifndef ALLOW_VFLUSH_CORRUPTION
1228 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size);
1229 error = copyin(uaddr, bp->b_data, size);
1230 if (error) {
1231 lfs_freebuf(bp);
1232 return NULL;
1233 }
1234 #else
1235 bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, 0);
1236 bp->b_flags |= B_INVAL;
1237 bp->b_saveaddr = uaddr;
1238 #endif
1239 #if 0
1240 bp->b_saveaddr = (caddr_t)fs;
1241 s = splbio();
1242 ++fs->lfs_iocount;
1243 splx(s);
1244 #endif
1245 bp->b_bufsize = size;
1246 bp->b_bcount = size;
1247 return (bp);
1248 }
1249