lfs_vfsops.c revision 1.240 1 /* $NetBSD: lfs_vfsops.c,v 1.240 2007/07/17 21:26:41 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1989, 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.240 2007/07/17 21:26:41 christos Exp $");
71
72 #if defined(_KERNEL_OPT)
73 #include "opt_quota.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/kernel.h>
81 #include <sys/vnode.h>
82 #include <sys/mount.h>
83 #include <sys/kthread.h>
84 #include <sys/buf.h>
85 #include <sys/device.h>
86 #include <sys/mbuf.h>
87 #include <sys/file.h>
88 #include <sys/disklabel.h>
89 #include <sys/ioctl.h>
90 #include <sys/errno.h>
91 #include <sys/malloc.h>
92 #include <sys/pool.h>
93 #include <sys/socket.h>
94 #include <sys/syslog.h>
95 #include <uvm/uvm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/conf.h>
98 #include <sys/kauth.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #include <ufs/ufs/quota.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/ufsmount.h>
105 #include <ufs/ufs/ufs_extern.h>
106
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_stat.h>
109 #include <uvm/uvm_pager.h>
110 #include <uvm/uvm_pdaemon.h>
111
112 #include <ufs/lfs/lfs.h>
113 #include <ufs/lfs/lfs_extern.h>
114
115 #include <miscfs/genfs/genfs.h>
116 #include <miscfs/genfs/genfs_node.h>
117
118 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
119 static bool lfs_issequential_hole(const struct ufsmount *,
120 daddr_t, daddr_t);
121
122 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
123
124 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
125 extern const struct vnodeopv_desc lfs_specop_opv_desc;
126 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
127
128 pid_t lfs_writer_daemon = 0;
129 int lfs_do_flush = 0;
130 #ifdef LFS_KERNEL_RFW
131 int lfs_do_rfw = 0;
132 #endif
133
134 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
135 &lfs_vnodeop_opv_desc,
136 &lfs_specop_opv_desc,
137 &lfs_fifoop_opv_desc,
138 NULL,
139 };
140
141 struct vfsops lfs_vfsops = {
142 MOUNT_LFS,
143 sizeof (struct ufs_args),
144 lfs_mount,
145 ufs_start,
146 lfs_unmount,
147 ufs_root,
148 ufs_quotactl,
149 lfs_statvfs,
150 lfs_sync,
151 lfs_vget,
152 lfs_fhtovp,
153 lfs_vptofh,
154 lfs_init,
155 lfs_reinit,
156 lfs_done,
157 lfs_mountroot,
158 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
159 vfs_stdextattrctl,
160 vfs_stdsuspendctl,
161 lfs_vnodeopv_descs,
162 0,
163 { NULL, NULL },
164 };
165 VFS_ATTACH(lfs_vfsops);
166
167 const struct genfs_ops lfs_genfsops = {
168 .gop_size = lfs_gop_size,
169 .gop_alloc = ufs_gop_alloc,
170 .gop_write = lfs_gop_write,
171 .gop_markupdate = ufs_gop_markupdate,
172 };
173
174 static const struct ufs_ops lfs_ufsops = {
175 .uo_itimes = NULL,
176 .uo_update = lfs_update,
177 .uo_truncate = lfs_truncate,
178 .uo_valloc = lfs_valloc,
179 .uo_vfree = lfs_vfree,
180 .uo_balloc = lfs_balloc,
181 };
182
183 /*
184 * XXX Same structure as FFS inodes? Should we share a common pool?
185 */
186 struct pool lfs_inode_pool;
187 struct pool lfs_dinode_pool;
188 struct pool lfs_inoext_pool;
189 struct pool lfs_lbnentry_pool;
190
191 /*
192 * The writer daemon. UVM keeps track of how many dirty pages we are holding
193 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
194 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
195 */
196 static void
197 lfs_writerd(void *arg)
198 {
199 struct mount *mp, *nmp;
200 struct lfs *fs;
201 int fsflags;
202 int loopcount;
203
204 lfs_writer_daemon = curproc->p_pid;
205
206 simple_lock(&lfs_subsys_lock);
207 for (;;) {
208 ltsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
209 &lfs_subsys_lock);
210
211 /*
212 * Look through the list of LFSs to see if any of them
213 * have requested pageouts.
214 */
215 simple_lock(&mountlist_slock);
216 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
217 mp = nmp) {
218 if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
219 nmp = CIRCLEQ_NEXT(mp, mnt_list);
220 continue;
221 }
222 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
223 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
224 fs = VFSTOUFS(mp)->um_lfs;
225 simple_lock(&fs->lfs_interlock);
226 fsflags = 0;
227 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
228 lfs_dirvcount > LFS_MAX_DIROP) &&
229 fs->lfs_dirops == 0)
230 fsflags |= SEGM_CKP;
231 if (fs->lfs_pdflush) {
232 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
233 fs->lfs_pdflush = 0;
234 lfs_flush_fs(fs, fsflags);
235 simple_unlock(&fs->lfs_interlock);
236 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
237 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
238 simple_unlock(&fs->lfs_interlock);
239 lfs_writer_enter(fs, "wrdirop");
240 lfs_flush_pchain(fs);
241 lfs_writer_leave(fs);
242 } else
243 simple_unlock(&fs->lfs_interlock);
244 }
245
246 simple_lock(&mountlist_slock);
247 nmp = CIRCLEQ_NEXT(mp, mnt_list);
248 vfs_unbusy(mp);
249 }
250 simple_unlock(&mountlist_slock);
251
252 /*
253 * If global state wants a flush, flush everything.
254 */
255 simple_lock(&lfs_subsys_lock);
256 loopcount = 0;
257 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
258 locked_queue_bytes > LFS_MAX_BYTES ||
259 lfs_subsys_pages > LFS_MAX_PAGES) {
260
261 if (lfs_do_flush) {
262 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
263 }
264 if (locked_queue_count > LFS_MAX_BUFS) {
265 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
266 locked_queue_count, LFS_MAX_BUFS));
267 }
268 if (locked_queue_bytes > LFS_MAX_BYTES) {
269 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
270 locked_queue_bytes, LFS_MAX_BYTES));
271 }
272 if (lfs_subsys_pages > LFS_MAX_PAGES) {
273 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
274 lfs_subsys_pages, LFS_MAX_PAGES));
275 }
276
277 lfs_flush(NULL, SEGM_WRITERD, 0);
278 lfs_do_flush = 0;
279 }
280 }
281 /* NOTREACHED */
282 }
283
284 /*
285 * Initialize the filesystem, most work done by ufs_init.
286 */
287 void
288 lfs_init()
289 {
290
291 malloc_type_attach(M_SEGMENT);
292 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
293 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
294 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
295 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
296 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
297 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
298 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
299 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
300 ufs_init();
301
302 #ifdef DEBUG
303 memset(lfs_log, 0, sizeof(lfs_log));
304 #endif
305 simple_lock_init(&lfs_subsys_lock);
306 }
307
308 void
309 lfs_reinit()
310 {
311 ufs_reinit();
312 }
313
314 void
315 lfs_done()
316 {
317
318 ufs_done();
319 pool_destroy(&lfs_inode_pool);
320 pool_destroy(&lfs_dinode_pool);
321 pool_destroy(&lfs_inoext_pool);
322 pool_destroy(&lfs_lbnentry_pool);
323 malloc_type_detach(M_SEGMENT);
324 }
325
326 /*
327 * Called by main() when ufs is going to be mounted as root.
328 */
329 int
330 lfs_mountroot()
331 {
332 extern struct vnode *rootvp;
333 struct mount *mp;
334 struct lwp *l = curlwp; /* XXX */
335 int error;
336
337 if (device_class(root_device) != DV_DISK)
338 return (ENODEV);
339
340 if (rootdev == NODEV)
341 return (ENODEV);
342 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
343 vrele(rootvp);
344 return (error);
345 }
346 if ((error = lfs_mountfs(rootvp, mp, l))) {
347 mp->mnt_op->vfs_refcount--;
348 vfs_unbusy(mp);
349 free(mp, M_MOUNT);
350 return (error);
351 }
352 simple_lock(&mountlist_slock);
353 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
354 simple_unlock(&mountlist_slock);
355 (void)lfs_statvfs(mp, &mp->mnt_stat, l);
356 vfs_unbusy(mp);
357 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
358 return (0);
359 }
360
361 /*
362 * VFS Operations.
363 *
364 * mount system call
365 */
366 int
367 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len,
368 struct nameidata *ndp, struct lwp *l)
369 {
370 struct vnode *devvp;
371 struct ufs_args *args = data;
372 struct ufsmount *ump = NULL;
373 struct lfs *fs = NULL; /* LFS */
374 int error = 0, update;
375 mode_t accessmode;
376
377 if (*data_len < sizeof *args)
378 return EINVAL;
379
380 if (mp->mnt_flag & MNT_GETARGS) {
381 ump = VFSTOUFS(mp);
382 if (ump == NULL)
383 return EIO;
384 args->fspec = NULL;
385 *data_len = sizeof *args;
386 return 0;
387 }
388
389 update = mp->mnt_flag & MNT_UPDATE;
390
391 /* Check arguments */
392 if (args->fspec != NULL) {
393 /*
394 * Look up the name and verify that it's sane.
395 */
396 NDINIT(ndp, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec, l);
397 if ((error = namei(ndp)) != 0)
398 return (error);
399 devvp = ndp->ni_vp;
400
401 if (!update) {
402 /*
403 * Be sure this is a valid block device
404 */
405 if (devvp->v_type != VBLK)
406 error = ENOTBLK;
407 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
408 error = ENXIO;
409 } else {
410 /*
411 * Be sure we're still naming the same device
412 * used for our initial mount
413 */
414 ump = VFSTOUFS(mp);
415 if (devvp != ump->um_devvp)
416 error = EINVAL;
417 }
418 } else {
419 if (!update) {
420 /* New mounts must have a filename for the device */
421 return (EINVAL);
422 } else {
423 /* Use the extant mount */
424 ump = VFSTOUFS(mp);
425 devvp = ump->um_devvp;
426 vref(devvp);
427 }
428 }
429
430
431 /*
432 * If mount by non-root, then verify that user has necessary
433 * permissions on the device.
434 */
435 if (error == 0 && kauth_authorize_generic(l->l_cred,
436 KAUTH_GENERIC_ISSUSER, NULL) != 0) {
437 accessmode = VREAD;
438 if (update ?
439 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
440 (mp->mnt_flag & MNT_RDONLY) == 0)
441 accessmode |= VWRITE;
442 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
443 error = VOP_ACCESS(devvp, accessmode, l->l_cred, l);
444 VOP_UNLOCK(devvp, 0);
445 }
446
447 if (error) {
448 vrele(devvp);
449 return (error);
450 }
451
452 if (!update) {
453 int flags;
454
455 /*
456 * Disallow multiple mounts of the same device.
457 * Disallow mounting of a device that is currently in use
458 * (except for root, which might share swap device for
459 * miniroot).
460 */
461 error = vfs_mountedon(devvp);
462 if (error)
463 goto fail;
464 if (vcount(devvp) > 1 && devvp != rootvp) {
465 error = EBUSY;
466 goto fail;
467 }
468 if (mp->mnt_flag & MNT_RDONLY)
469 flags = FREAD;
470 else
471 flags = FREAD|FWRITE;
472 error = VOP_OPEN(devvp, flags, FSCRED, l);
473 if (error)
474 goto fail;
475 error = lfs_mountfs(devvp, mp, l); /* LFS */
476 if (error) {
477 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
478 (void)VOP_CLOSE(devvp, flags, NOCRED, l);
479 VOP_UNLOCK(devvp, 0);
480 goto fail;
481 }
482
483 ump = VFSTOUFS(mp);
484 fs = ump->um_lfs;
485 } else {
486 /*
487 * Update the mount.
488 */
489
490 /*
491 * The initial mount got a reference on this
492 * device, so drop the one obtained via
493 * namei(), above.
494 */
495 vrele(devvp);
496
497 ump = VFSTOUFS(mp);
498 fs = ump->um_lfs;
499 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
500 /*
501 * Changing from read-only to read/write.
502 * Note in the superblocks that we're writing.
503 */
504 fs->lfs_ronly = 0;
505 if (fs->lfs_pflags & LFS_PF_CLEAN) {
506 fs->lfs_pflags &= ~LFS_PF_CLEAN;
507 lfs_writesuper(fs, fs->lfs_sboffs[0]);
508 lfs_writesuper(fs, fs->lfs_sboffs[1]);
509 }
510 }
511 if (args->fspec == NULL)
512 return EINVAL;
513 }
514
515 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
516 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
517 if (error == 0)
518 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
519 sizeof(fs->lfs_fsmnt));
520 return error;
521
522 fail:
523 vrele(devvp);
524 return (error);
525 }
526
527
528 /*
529 * Common code for mount and mountroot
530 * LFS specific
531 */
532 int
533 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
534 {
535 struct dlfs *tdfs, *dfs, *adfs;
536 struct lfs *fs;
537 struct ufsmount *ump;
538 struct vnode *vp;
539 struct buf *bp, *abp;
540 struct partinfo dpart;
541 dev_t dev;
542 int error, i, ronly, secsize, fsbsize;
543 kauth_cred_t cred;
544 CLEANERINFO *cip;
545 SEGUSE *sup;
546 daddr_t sb_addr;
547
548 cred = l ? l->l_cred : NOCRED;
549
550 /*
551 * Flush out any old buffers remaining from a previous use.
552 */
553 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
554 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
555 VOP_UNLOCK(devvp, 0);
556 if (error)
557 return (error);
558
559 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
560 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) != 0)
561 secsize = DEV_BSIZE;
562 else
563 secsize = dpart.disklab->d_secsize;
564
565 /* Don't free random space on error. */
566 bp = NULL;
567 abp = NULL;
568 ump = NULL;
569
570 sb_addr = LFS_LABELPAD / secsize;
571 while (1) {
572 /* Read in the superblock. */
573 error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp);
574 if (error)
575 goto out;
576 dfs = (struct dlfs *)bp->b_data;
577
578 /* Check the basics. */
579 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
580 dfs->dlfs_version > LFS_VERSION ||
581 dfs->dlfs_bsize < sizeof(struct dlfs)) {
582 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
583 error = EINVAL; /* XXX needs translation */
584 goto out;
585 }
586 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
587 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
588 dfs->dlfs_inodefmt));
589 error = EINVAL;
590 goto out;
591 }
592
593 if (dfs->dlfs_version == 1)
594 fsbsize = secsize;
595 else {
596 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
597 dfs->dlfs_fsbtodb);
598 /*
599 * Could be, if the frag size is large enough, that we
600 * don't have the "real" primary superblock. If that's
601 * the case, get the real one, and try again.
602 */
603 if (sb_addr != dfs->dlfs_sboffs[0] <<
604 dfs->dlfs_fsbtodb) {
605 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
606 " 0x%llx is not right, trying 0x%llx\n",
607 (long long)sb_addr,
608 (long long)(dfs->dlfs_sboffs[0] <<
609 dfs->dlfs_fsbtodb)));
610 sb_addr = dfs->dlfs_sboffs[0] <<
611 dfs->dlfs_fsbtodb;
612 brelse(bp);
613 continue;
614 }
615 }
616 break;
617 }
618
619 /*
620 * Check the second superblock to see which is newer; then mount
621 * using the older of the two. This is necessary to ensure that
622 * the filesystem is valid if it was not unmounted cleanly.
623 */
624
625 if (dfs->dlfs_sboffs[1] &&
626 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
627 {
628 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
629 LFS_SBPAD, cred, &abp);
630 if (error)
631 goto out;
632 adfs = (struct dlfs *)abp->b_data;
633
634 if (dfs->dlfs_version == 1) {
635 /* 1s resolution comparison */
636 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
637 tdfs = adfs;
638 else
639 tdfs = dfs;
640 } else {
641 /* monotonic infinite-resolution comparison */
642 if (adfs->dlfs_serial < dfs->dlfs_serial)
643 tdfs = adfs;
644 else
645 tdfs = dfs;
646 }
647
648 /* Check the basics. */
649 if (tdfs->dlfs_magic != LFS_MAGIC ||
650 tdfs->dlfs_bsize > MAXBSIZE ||
651 tdfs->dlfs_version > LFS_VERSION ||
652 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
653 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
654 " sanity failed\n"));
655 error = EINVAL; /* XXX needs translation */
656 goto out;
657 }
658 } else {
659 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
660 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
661 error = EINVAL;
662 goto out;
663 }
664
665 /* Allocate the mount structure, copy the superblock into it. */
666 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
667 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
668
669 /* Compatibility */
670 if (fs->lfs_version < 2) {
671 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
672 fs->lfs_ibsize = fs->lfs_bsize;
673 fs->lfs_start = fs->lfs_sboffs[0];
674 fs->lfs_tstamp = fs->lfs_otstamp;
675 fs->lfs_fsbtodb = 0;
676 }
677 if (fs->lfs_resvseg == 0)
678 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
679 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
680
681 /*
682 * If we aren't going to be able to write meaningfully to this
683 * filesystem, and were not mounted readonly, bomb out now.
684 */
685 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
686 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
687 " we need BUFPAGES >= %lld\n",
688 (long long)((bufmem_hiwater / bufmem_lowater) *
689 LFS_INVERSE_MAX_BYTES(
690 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
691 free(fs, M_UFSMNT);
692 error = EFBIG; /* XXX needs translation */
693 goto out;
694 }
695
696 /* Before rolling forward, lock so vget will sleep for other procs */
697 if (l != NULL) {
698 fs->lfs_flags = LFS_NOTYET;
699 fs->lfs_rfpid = l->l_proc->p_pid;
700 }
701
702 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
703 ump->um_lfs = fs;
704 ump->um_ops = &lfs_ufsops;
705 ump->um_fstype = UFS1;
706 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
707 bp->b_flags |= B_INVAL;
708 abp->b_flags |= B_INVAL;
709 }
710 brelse(bp);
711 bp = NULL;
712 brelse(abp);
713 abp = NULL;
714
715 /* Set up the I/O information */
716 fs->lfs_devbsize = secsize;
717 fs->lfs_iocount = 0;
718 fs->lfs_diropwait = 0;
719 fs->lfs_activesb = 0;
720 fs->lfs_uinodes = 0;
721 fs->lfs_ravail = 0;
722 fs->lfs_favail = 0;
723 fs->lfs_sbactive = 0;
724
725 /* Set up the ifile and lock aflags */
726 fs->lfs_doifile = 0;
727 fs->lfs_writer = 0;
728 fs->lfs_dirops = 0;
729 fs->lfs_nadirop = 0;
730 fs->lfs_seglock = 0;
731 fs->lfs_pdflush = 0;
732 fs->lfs_sleepers = 0;
733 fs->lfs_pages = 0;
734 simple_lock_init(&fs->lfs_interlock);
735 rw_init(&fs->lfs_fraglock);
736 lockinit(&fs->lfs_iflock, PINOD, "lfs_iflock", 0, 0);
737 lockinit(&fs->lfs_stoplock, PINOD, "lfs_stoplock", 0, 0);
738
739 /* Set the file system readonly/modify bits. */
740 fs->lfs_ronly = ronly;
741 if (ronly == 0)
742 fs->lfs_fmod = 1;
743
744 /* Initialize the mount structure. */
745 dev = devvp->v_rdev;
746 mp->mnt_data = ump;
747 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
748 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
749 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
750 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
751 mp->mnt_stat.f_iosize = fs->lfs_bsize;
752 mp->mnt_flag |= MNT_LOCAL;
753 mp->mnt_fs_bshift = fs->lfs_bshift;
754 ump->um_flags = 0;
755 ump->um_mountp = mp;
756 ump->um_dev = dev;
757 ump->um_devvp = devvp;
758 ump->um_bptrtodb = fs->lfs_fsbtodb;
759 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
760 ump->um_nindir = fs->lfs_nindir;
761 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
762 for (i = 0; i < MAXQUOTAS; i++)
763 ump->um_quotas[i] = NULLVP;
764 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
765 ump->um_dirblksiz = DIRBLKSIZ;
766 ump->um_maxfilesize = fs->lfs_maxfilesize;
767 if (ump->um_maxsymlinklen > 0)
768 mp->mnt_iflag |= IMNT_DTYPE;
769 devvp->v_specmountpoint = mp;
770
771 /* Set up reserved memory for pageout */
772 lfs_setup_resblks(fs);
773 /* Set up vdirop tailq */
774 TAILQ_INIT(&fs->lfs_dchainhd);
775 /* and paging tailq */
776 TAILQ_INIT(&fs->lfs_pchainhd);
777 /* and delayed segment accounting for truncation list */
778 LIST_INIT(&fs->lfs_segdhd);
779
780 /*
781 * We use the ifile vnode for almost every operation. Instead of
782 * retrieving it from the hash table each time we retrieve it here,
783 * artificially increment the reference count and keep a pointer
784 * to it in the incore copy of the superblock.
785 */
786 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
787 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
788 goto out;
789 }
790 fs->lfs_ivnode = vp;
791 VREF(vp);
792
793 /* Set up inode bitmap and order free list */
794 lfs_order_freelist(fs);
795
796 /* Set up segment usage flags for the autocleaner. */
797 fs->lfs_nactive = 0;
798 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
799 M_SEGMENT, M_WAITOK);
800 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
801 M_SEGMENT, M_WAITOK);
802 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
803 M_SEGMENT, M_WAITOK);
804 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
805 for (i = 0; i < fs->lfs_nseg; i++) {
806 int changed;
807
808 LFS_SEGENTRY(sup, fs, i, bp);
809 changed = 0;
810 if (!ronly) {
811 if (sup->su_nbytes == 0 &&
812 !(sup->su_flags & SEGUSE_EMPTY)) {
813 sup->su_flags |= SEGUSE_EMPTY;
814 ++changed;
815 } else if (!(sup->su_nbytes == 0) &&
816 (sup->su_flags & SEGUSE_EMPTY)) {
817 sup->su_flags &= ~SEGUSE_EMPTY;
818 ++changed;
819 }
820 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
821 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
822 ++changed;
823 }
824 }
825 fs->lfs_suflags[0][i] = sup->su_flags;
826 if (changed)
827 LFS_WRITESEGENTRY(sup, fs, i, bp);
828 else
829 brelse(bp);
830 }
831
832 #ifdef LFS_KERNEL_RFW
833 lfs_roll_forward(fs, mp, l);
834 #endif
835
836 /* If writing, sb is not clean; record in case of immediate crash */
837 if (!fs->lfs_ronly) {
838 fs->lfs_pflags &= ~LFS_PF_CLEAN;
839 lfs_writesuper(fs, fs->lfs_sboffs[0]);
840 lfs_writesuper(fs, fs->lfs_sboffs[1]);
841 }
842
843 /* Allow vget now that roll-forward is complete */
844 fs->lfs_flags &= ~(LFS_NOTYET);
845 wakeup(&fs->lfs_flags);
846
847 /*
848 * Initialize the ifile cleaner info with information from
849 * the superblock.
850 */
851 LFS_CLEANERINFO(cip, fs, bp);
852 cip->clean = fs->lfs_nclean;
853 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
854 cip->avail = fs->lfs_avail;
855 cip->bfree = fs->lfs_bfree;
856 (void) LFS_BWRITE_LOG(bp); /* Ifile */
857
858 /*
859 * Mark the current segment as ACTIVE, since we're going to
860 * be writing to it.
861 */
862 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
863 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
864 fs->lfs_nactive++;
865 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
866
867 /* Now that roll-forward is done, unlock the Ifile */
868 vput(vp);
869
870 /* Start the pagedaemon-anticipating daemon */
871 if (lfs_writer_daemon == 0 &&
872 kthread_create(PRI_NONE, 0, NULL, lfs_writerd, NULL, NULL,
873 "lfs_writer") != 0)
874 panic("fork lfs_writer");
875
876 return (0);
877
878 out:
879 if (bp)
880 brelse(bp);
881 if (abp)
882 brelse(abp);
883 if (ump) {
884 free(ump->um_lfs, M_UFSMNT);
885 free(ump, M_UFSMNT);
886 mp->mnt_data = NULL;
887 }
888
889 return (error);
890 }
891
892 /*
893 * unmount system call
894 */
895 int
896 lfs_unmount(struct mount *mp, int mntflags, struct lwp *l)
897 {
898 struct ufsmount *ump;
899 struct lfs *fs;
900 int error, flags, ronly;
901 int s;
902
903 flags = 0;
904 if (mntflags & MNT_FORCE)
905 flags |= FORCECLOSE;
906
907 ump = VFSTOUFS(mp);
908 fs = ump->um_lfs;
909
910 /* Two checkpoints */
911 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
912 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
913
914 /* wake up the cleaner so it can die */
915 lfs_wakeup_cleaner(fs);
916 simple_lock(&fs->lfs_interlock);
917 while (fs->lfs_sleepers)
918 ltsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
919 &fs->lfs_interlock);
920 simple_unlock(&fs->lfs_interlock);
921
922 #ifdef QUOTA
923 if (mp->mnt_flag & MNT_QUOTA) {
924 int i;
925 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
926 if (error)
927 return (error);
928 for (i = 0; i < MAXQUOTAS; i++) {
929 if (ump->um_quotas[i] == NULLVP)
930 continue;
931 quotaoff(l, mp, i);
932 }
933 /*
934 * Here we fall through to vflush again to ensure
935 * that we have gotten rid of all the system vnodes.
936 */
937 }
938 #endif
939 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
940 return (error);
941 if ((error = VFS_SYNC(mp, 1, l->l_cred, l)) != 0)
942 return (error);
943 s = splbio();
944 if (LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd))
945 panic("lfs_unmount: still dirty blocks on ifile vnode");
946 splx(s);
947
948 /* Explicitly write the superblock, to update serial and pflags */
949 fs->lfs_pflags |= LFS_PF_CLEAN;
950 lfs_writesuper(fs, fs->lfs_sboffs[0]);
951 lfs_writesuper(fs, fs->lfs_sboffs[1]);
952 simple_lock(&fs->lfs_interlock);
953 while (fs->lfs_iocount)
954 ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
955 &fs->lfs_interlock);
956 simple_unlock(&fs->lfs_interlock);
957
958 /* Finish with the Ifile, now that we're done with it */
959 vrele(fs->lfs_ivnode);
960 vgone(fs->lfs_ivnode);
961
962 ronly = !fs->lfs_ronly;
963 if (ump->um_devvp->v_type != VBAD)
964 ump->um_devvp->v_specmountpoint = NULL;
965 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
966 error = VOP_CLOSE(ump->um_devvp,
967 ronly ? FREAD : FREAD|FWRITE, NOCRED, l);
968 vput(ump->um_devvp);
969
970 /* Complain about page leakage */
971 if (fs->lfs_pages > 0)
972 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
973 fs->lfs_pages, lfs_subsys_pages);
974
975 /* Free per-mount data structures */
976 free(fs->lfs_ino_bitmap, M_SEGMENT);
977 free(fs->lfs_suflags[0], M_SEGMENT);
978 free(fs->lfs_suflags[1], M_SEGMENT);
979 free(fs->lfs_suflags, M_SEGMENT);
980 lfs_free_resblks(fs);
981 rw_destroy(&fs->lfs_fraglock);
982 free(fs, M_UFSMNT);
983 free(ump, M_UFSMNT);
984
985 mp->mnt_data = NULL;
986 mp->mnt_flag &= ~MNT_LOCAL;
987 return (error);
988 }
989
990 /*
991 * Get file system statistics.
992 *
993 * NB: We don't lock to access the superblock here, because it's not
994 * really that important if we get it wrong.
995 */
996 int
997 lfs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l)
998 {
999 struct lfs *fs;
1000 struct ufsmount *ump;
1001
1002 ump = VFSTOUFS(mp);
1003 fs = ump->um_lfs;
1004 if (fs->lfs_magic != LFS_MAGIC)
1005 panic("lfs_statvfs: magic");
1006
1007 sbp->f_bsize = fs->lfs_bsize;
1008 sbp->f_frsize = fs->lfs_fsize;
1009 sbp->f_iosize = fs->lfs_bsize;
1010 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1011
1012 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1013 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1014 #if 0
1015 if (sbp->f_bfree < 0)
1016 sbp->f_bfree = 0;
1017 #endif
1018
1019 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1020 if (sbp->f_bfree > sbp->f_bresvd)
1021 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1022 else
1023 sbp->f_bavail = 0;
1024
1025 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1026 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1027 sbp->f_favail = sbp->f_ffree;
1028 sbp->f_fresvd = 0;
1029 copy_statvfs_info(sbp, mp);
1030 return (0);
1031 }
1032
1033 /*
1034 * Go through the disk queues to initiate sandbagged IO;
1035 * go through the inodes to write those that have been modified;
1036 * initiate the writing of the super block if it has been modified.
1037 *
1038 * Note: we are always called with the filesystem marked `MPBUSY'.
1039 */
1040 int
1041 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred,
1042 struct lwp *l)
1043 {
1044 int error;
1045 struct lfs *fs;
1046
1047 fs = VFSTOUFS(mp)->um_lfs;
1048 if (fs->lfs_ronly)
1049 return 0;
1050
1051 /* Snapshots should not hose the syncer */
1052 /*
1053 * XXX Sync can block here anyway, since we don't have a very
1054 * XXX good idea of how much data is pending. If it's more
1055 * XXX than a segment and lfs_nextseg is close to the end of
1056 * XXX the log, we'll likely block.
1057 */
1058 simple_lock(&fs->lfs_interlock);
1059 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1060 simple_unlock(&fs->lfs_interlock);
1061 return 0;
1062 }
1063 simple_unlock(&fs->lfs_interlock);
1064
1065 lfs_writer_enter(fs, "lfs_dirops");
1066
1067 /* All syncs must be checkpoints until roll-forward is implemented. */
1068 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1069 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1070 lfs_writer_leave(fs);
1071 #ifdef QUOTA
1072 qsync(mp);
1073 #endif
1074 return (error);
1075 }
1076
1077 extern kmutex_t ufs_hashlock;
1078
1079 /*
1080 * Look up an LFS dinode number to find its incore vnode. If not already
1081 * in core, read it in from the specified device. Return the inode locked.
1082 * Detection and handling of mount points must be done by the calling routine.
1083 */
1084 int
1085 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1086 {
1087 struct lfs *fs;
1088 struct ufs1_dinode *dip;
1089 struct inode *ip;
1090 struct buf *bp;
1091 struct ifile *ifp;
1092 struct vnode *vp;
1093 struct ufsmount *ump;
1094 daddr_t daddr;
1095 dev_t dev;
1096 int error, retries;
1097 struct timespec ts;
1098
1099 memset(&ts, 0, sizeof ts); /* XXX gcc */
1100
1101 ump = VFSTOUFS(mp);
1102 dev = ump->um_dev;
1103 fs = ump->um_lfs;
1104
1105 /*
1106 * If the filesystem is not completely mounted yet, suspend
1107 * any access requests (wait for roll-forward to complete).
1108 */
1109 simple_lock(&fs->lfs_interlock);
1110 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1111 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1112 &fs->lfs_interlock);
1113 simple_unlock(&fs->lfs_interlock);
1114
1115 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1116 return (0);
1117
1118 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1119 *vpp = NULL;
1120 return (error);
1121 }
1122
1123 mutex_enter(&ufs_hashlock);
1124 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) {
1125 mutex_exit(&ufs_hashlock);
1126 ungetnewvnode(vp);
1127 return (0);
1128 }
1129
1130 /* Translate the inode number to a disk address. */
1131 if (ino == LFS_IFILE_INUM)
1132 daddr = fs->lfs_idaddr;
1133 else {
1134 /* XXX bounds-check this too */
1135 LFS_IENTRY(ifp, fs, ino, bp);
1136 daddr = ifp->if_daddr;
1137 if (fs->lfs_version > 1) {
1138 ts.tv_sec = ifp->if_atime_sec;
1139 ts.tv_nsec = ifp->if_atime_nsec;
1140 }
1141
1142 brelse(bp);
1143 if (daddr == LFS_UNUSED_DADDR) {
1144 *vpp = NULLVP;
1145 mutex_exit(&ufs_hashlock);
1146 ungetnewvnode(vp);
1147 return (ENOENT);
1148 }
1149 }
1150
1151 /* Allocate/init new vnode/inode. */
1152 lfs_vcreate(mp, ino, vp);
1153
1154 /*
1155 * Put it onto its hash chain and lock it so that other requests for
1156 * this inode will block if they arrive while we are sleeping waiting
1157 * for old data structures to be purged or for the contents of the
1158 * disk portion of this inode to be read.
1159 */
1160 ip = VTOI(vp);
1161 ufs_ihashins(ip);
1162 mutex_exit(&ufs_hashlock);
1163
1164 /*
1165 * XXX
1166 * This may not need to be here, logically it should go down with
1167 * the i_devvp initialization.
1168 * Ask Kirk.
1169 */
1170 ip->i_lfs = ump->um_lfs;
1171
1172 /* Read in the disk contents for the inode, copy into the inode. */
1173 retries = 0;
1174 again:
1175 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1176 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1177 NOCRED, &bp);
1178 if (error) {
1179 /*
1180 * The inode does not contain anything useful, so it would
1181 * be misleading to leave it on its hash chain. With mode
1182 * still zero, it will be unlinked and returned to the free
1183 * list by vput().
1184 */
1185 vput(vp);
1186 brelse(bp);
1187 *vpp = NULL;
1188 return (error);
1189 }
1190
1191 dip = lfs_ifind(fs, ino, bp);
1192 if (dip == NULL) {
1193 /* Assume write has not completed yet; try again */
1194 bp->b_flags |= B_INVAL;
1195 brelse(bp);
1196 ++retries;
1197 if (retries > LFS_IFIND_RETRIES) {
1198 #ifdef DEBUG
1199 /* If the seglock is held look at the bpp to see
1200 what is there anyway */
1201 simple_lock(&fs->lfs_interlock);
1202 if (fs->lfs_seglock > 0) {
1203 struct buf **bpp;
1204 struct ufs1_dinode *dp;
1205 int i;
1206
1207 for (bpp = fs->lfs_sp->bpp;
1208 bpp != fs->lfs_sp->cbpp; ++bpp) {
1209 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1210 bpp != fs->lfs_sp->bpp) {
1211 /* Inode block */
1212 printf("lfs_vget: block 0x%" PRIx64 ": ",
1213 (*bpp)->b_blkno);
1214 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1215 for (i = 0; i < INOPB(fs); i++)
1216 if (dp[i].di_u.inumber)
1217 printf("%d ", dp[i].di_u.inumber);
1218 printf("\n");
1219 }
1220 }
1221 }
1222 simple_unlock(&fs->lfs_interlock);
1223 #endif /* DEBUG */
1224 panic("lfs_vget: dinode not found");
1225 }
1226 simple_lock(&fs->lfs_interlock);
1227 if (fs->lfs_iocount) {
1228 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1229 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1230 "lfs ifind", 1, &fs->lfs_interlock);
1231 } else
1232 retries = LFS_IFIND_RETRIES;
1233 simple_unlock(&fs->lfs_interlock);
1234 goto again;
1235 }
1236 *ip->i_din.ffs1_din = *dip;
1237 brelse(bp);
1238
1239 if (fs->lfs_version > 1) {
1240 ip->i_ffs1_atime = ts.tv_sec;
1241 ip->i_ffs1_atimensec = ts.tv_nsec;
1242 }
1243
1244 lfs_vinit(mp, &vp);
1245
1246 *vpp = vp;
1247
1248 KASSERT(VOP_ISLOCKED(vp));
1249
1250 return (0);
1251 }
1252
1253 /*
1254 * File handle to vnode
1255 */
1256 int
1257 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1258 {
1259 struct lfid lfh;
1260 struct buf *bp;
1261 IFILE *ifp;
1262 int32_t daddr;
1263 struct lfs *fs;
1264
1265 if (fhp->fid_len != sizeof(struct lfid))
1266 return EINVAL;
1267
1268 memcpy(&lfh, fhp, sizeof(lfh));
1269 if (lfh.lfid_ino < LFS_IFILE_INUM)
1270 return ESTALE;
1271
1272 fs = VFSTOUFS(mp)->um_lfs;
1273 if (lfh.lfid_ident != fs->lfs_ident)
1274 return ESTALE;
1275
1276 if (lfh.lfid_ino >
1277 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1278 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1279 return ESTALE;
1280
1281 if (ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino) == NULLVP) {
1282 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1283 daddr = ifp->if_daddr;
1284 brelse(bp);
1285 if (daddr == LFS_UNUSED_DADDR)
1286 return ESTALE;
1287 }
1288
1289 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1290 }
1291
1292 /*
1293 * Vnode pointer to File handle
1294 */
1295 /* ARGSUSED */
1296 int
1297 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1298 {
1299 struct inode *ip;
1300 struct lfid lfh;
1301
1302 if (*fh_size < sizeof(struct lfid)) {
1303 *fh_size = sizeof(struct lfid);
1304 return E2BIG;
1305 }
1306 *fh_size = sizeof(struct lfid);
1307 ip = VTOI(vp);
1308 memset(&lfh, 0, sizeof(lfh));
1309 lfh.lfid_len = sizeof(struct lfid);
1310 lfh.lfid_ino = ip->i_number;
1311 lfh.lfid_gen = ip->i_gen;
1312 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1313 memcpy(fhp, &lfh, sizeof(lfh));
1314 return (0);
1315 }
1316
1317 static int
1318 sysctl_lfs_dostats(SYSCTLFN_ARGS)
1319 {
1320 extern struct lfs_stats lfs_stats;
1321 extern int lfs_dostats;
1322 int error;
1323
1324 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1325 if (error || newp == NULL)
1326 return (error);
1327
1328 if (lfs_dostats == 0)
1329 memset(&lfs_stats, 0, sizeof(lfs_stats));
1330
1331 return (0);
1332 }
1333
1334 struct shortlong {
1335 const char *sname;
1336 const char *lname;
1337 };
1338
1339 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
1340 {
1341 int i;
1342 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
1343 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
1344 #ifdef DEBUG
1345 extern int lfs_debug_log_subsys[DLOG_MAX];
1346 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
1347 { "rollforward", "Debug roll-forward code" },
1348 { "alloc", "Debug inode allocation and free list" },
1349 { "avail", "Debug space-available-now accounting" },
1350 { "flush", "Debug flush triggers" },
1351 { "lockedlist", "Debug locked list accounting" },
1352 { "vnode_verbose", "Verbose per-vnode-written debugging" },
1353 { "vnode", "Debug vnode use during segment write" },
1354 { "segment", "Debug segment writing" },
1355 { "seguse", "Debug segment used-bytes accounting" },
1356 { "cleaner", "Debug cleaning routines" },
1357 { "mount", "Debug mount/unmount routines" },
1358 { "pagecache", "Debug UBC interactions" },
1359 { "dirop", "Debug directory-operation accounting" },
1360 { "malloc", "Debug private malloc accounting" },
1361 };
1362 #endif /* DEBUG */
1363 struct shortlong stat_names[] = { /* Must match lfs.h! */
1364 { "segsused", "Number of new segments allocated" },
1365 { "psegwrites", "Number of partial-segment writes" },
1366 { "psyncwrites", "Number of synchronous partial-segment"
1367 " writes" },
1368 { "pcleanwrites", "Number of partial-segment writes by the"
1369 " cleaner" },
1370 { "blocktot", "Number of blocks written" },
1371 { "cleanblocks", "Number of blocks written by the cleaner" },
1372 { "ncheckpoints", "Number of checkpoints made" },
1373 { "nwrites", "Number of whole writes" },
1374 { "nsync_writes", "Number of synchronous writes" },
1375 { "wait_exceeded", "Number of times writer waited for"
1376 " cleaner" },
1377 { "write_exceeded", "Number of times writer invoked flush" },
1378 { "flush_invoked", "Number of times flush was invoked" },
1379 { "vflush_invoked", "Number of time vflush was called" },
1380 { "clean_inlocked", "Number of vnodes skipped for VXLOCK" },
1381 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
1382 { "segs_reclaimed", "Number of segments reclaimed" },
1383 };
1384
1385 sysctl_createv(clog, 0, NULL, NULL,
1386 CTLFLAG_PERMANENT,
1387 CTLTYPE_NODE, "vfs", NULL,
1388 NULL, 0, NULL, 0,
1389 CTL_VFS, CTL_EOL);
1390 sysctl_createv(clog, 0, NULL, NULL,
1391 CTLFLAG_PERMANENT,
1392 CTLTYPE_NODE, "lfs",
1393 SYSCTL_DESCR("Log-structured file system"),
1394 NULL, 0, NULL, 0,
1395 CTL_VFS, 5, CTL_EOL);
1396 /*
1397 * XXX the "5" above could be dynamic, thereby eliminating one
1398 * more instance of the "number to vfs" mapping problem, but
1399 * "5" is the order as taken from sys/mount.h
1400 */
1401
1402 sysctl_createv(clog, 0, NULL, NULL,
1403 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1404 CTLTYPE_INT, "flushindir", NULL,
1405 NULL, 0, &lfs_writeindir, 0,
1406 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
1407 sysctl_createv(clog, 0, NULL, NULL,
1408 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1409 CTLTYPE_INT, "clean_vnhead", NULL,
1410 NULL, 0, &lfs_clean_vnhead, 0,
1411 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
1412 sysctl_createv(clog, 0, NULL, NULL,
1413 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1414 CTLTYPE_INT, "dostats",
1415 SYSCTL_DESCR("Maintain statistics on LFS operations"),
1416 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
1417 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
1418 sysctl_createv(clog, 0, NULL, NULL,
1419 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1420 CTLTYPE_INT, "pagetrip",
1421 SYSCTL_DESCR("How many dirty pages in fs triggers"
1422 " a flush"),
1423 NULL, 0, &lfs_fs_pagetrip, 0,
1424 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
1425 sysctl_createv(clog, 0, NULL, NULL,
1426 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1427 CTLTYPE_INT, "ignore_lazy_sync",
1428 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
1429 NULL, 0, &lfs_ignore_lazy_sync, 0,
1430 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
1431 #ifdef LFS_KERNEL_RFW
1432 sysctl_createv(clog, 0, NULL, NULL,
1433 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1434 CTLTYPE_INT, "rfw",
1435 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
1436 NULL, 0, &lfs_do_rfw, 0,
1437 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
1438 #endif
1439
1440 sysctl_createv(clog, 0, NULL, NULL,
1441 CTLFLAG_PERMANENT,
1442 CTLTYPE_NODE, "stats",
1443 SYSCTL_DESCR("Debugging options"),
1444 NULL, 0, NULL, 0,
1445 CTL_VFS, 5, LFS_STATS, CTL_EOL);
1446 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
1447 sysctl_createv(clog, 0, NULL, NULL,
1448 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1449 CTLTYPE_INT, stat_names[i].sname,
1450 SYSCTL_DESCR(stat_names[i].lname),
1451 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
1452 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
1453 }
1454
1455 #ifdef DEBUG
1456 sysctl_createv(clog, 0, NULL, NULL,
1457 CTLFLAG_PERMANENT,
1458 CTLTYPE_NODE, "debug",
1459 SYSCTL_DESCR("Debugging options"),
1460 NULL, 0, NULL, 0,
1461 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
1462 for (i = 0; i < DLOG_MAX; i++) {
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1465 CTLTYPE_INT, dlog_names[i].sname,
1466 SYSCTL_DESCR(dlog_names[i].lname),
1467 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
1468 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
1469 }
1470 #endif
1471 }
1472
1473 /*
1474 * ufs_bmaparray callback function for writing.
1475 *
1476 * Since blocks will be written to the new segment anyway,
1477 * we don't care about current daddr of them.
1478 */
1479 static bool
1480 lfs_issequential_hole(const struct ufsmount *ump,
1481 daddr_t daddr0, daddr_t daddr1)
1482 {
1483 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1484 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1485
1486 KASSERT(daddr0 == UNWRITTEN ||
1487 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1488 KASSERT(daddr1 == UNWRITTEN ||
1489 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1490
1491 /* NOTE: all we want to know here is 'hole or not'. */
1492 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1493
1494 /*
1495 * treat UNWRITTENs and all resident blocks as 'contiguous'
1496 */
1497 if (daddr0 != 0 && daddr1 != 0)
1498 return true;
1499
1500 /*
1501 * both are in hole?
1502 */
1503 if (daddr0 == 0 && daddr1 == 0)
1504 return true; /* all holes are 'contiguous' for us. */
1505
1506 return false;
1507 }
1508
1509 /*
1510 * lfs_gop_write functions exactly like genfs_gop_write, except that
1511 * (1) it requires the seglock to be held by its caller, and sp->fip
1512 * to be properly initialized (it will return without re-initializing
1513 * sp->fip, and without calling lfs_writeseg).
1514 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1515 * to determine how large a block it can write at once (though it does
1516 * still use VOP_BMAP to find holes in the file);
1517 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1518 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1519 * now have clusters of clusters, ick.)
1520 */
1521 static int
1522 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1523 int flags)
1524 {
1525 int i, s, error, run, haveeof = 0;
1526 int fs_bshift;
1527 vaddr_t kva;
1528 off_t eof, offset, startoffset = 0;
1529 size_t bytes, iobytes, skipbytes;
1530 daddr_t lbn, blkno;
1531 struct vm_page *pg;
1532 struct buf *mbp, *bp;
1533 struct vnode *devvp = VTOI(vp)->i_devvp;
1534 struct inode *ip = VTOI(vp);
1535 struct lfs *fs = ip->i_lfs;
1536 struct segment *sp = fs->lfs_sp;
1537 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1538
1539 ASSERT_SEGLOCK(fs);
1540
1541 /* The Ifile lives in the buffer cache */
1542 KASSERT(vp != fs->lfs_ivnode);
1543
1544 /*
1545 * We don't want to fill the disk before the cleaner has a chance
1546 * to make room for us. If we're in danger of doing that, fail
1547 * with EAGAIN. The caller will have to notice this, unlock
1548 * so the cleaner can run, relock and try again.
1549 *
1550 * We must write everything, however, if our vnode is being
1551 * reclaimed.
1552 */
1553 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1554 goto tryagain;
1555
1556 /*
1557 * Sometimes things slip past the filters in lfs_putpages,
1558 * and the pagedaemon tries to write pages---problem is
1559 * that the pagedaemon never acquires the segment lock.
1560 *
1561 * Alternatively, pages that were clean when we called
1562 * genfs_putpages may have become dirty in the meantime. In this
1563 * case the segment header is not properly set up for blocks
1564 * to be added to it.
1565 *
1566 * Unbusy and unclean the pages, and put them on the ACTIVE
1567 * queue under the hypothesis that they couldn't have got here
1568 * unless they were modified *quite* recently.
1569 *
1570 * XXXUBC that last statement is an oversimplification of course.
1571 */
1572 if (!LFS_SEGLOCK_HELD(fs) ||
1573 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1574 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1575 goto tryagain;
1576 }
1577
1578 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1579 vp, pgs, npages, flags);
1580
1581 GOP_SIZE(vp, vp->v_size, &eof, 0);
1582 haveeof = 1;
1583
1584 if (vp->v_type == VREG)
1585 fs_bshift = vp->v_mount->mnt_fs_bshift;
1586 else
1587 fs_bshift = DEV_BSHIFT;
1588 error = 0;
1589 pg = pgs[0];
1590 startoffset = pg->offset;
1591 KASSERT(eof >= 0);
1592
1593 if (startoffset >= eof) {
1594 goto tryagain;
1595 } else
1596 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1597 skipbytes = 0;
1598
1599 KASSERT(bytes != 0);
1600
1601 /* Swap PG_DELWRI for PG_PAGEOUT */
1602 for (i = 0; i < npages; i++) {
1603 if (pgs[i]->flags & PG_DELWRI) {
1604 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1605 pgs[i]->flags &= ~PG_DELWRI;
1606 pgs[i]->flags |= PG_PAGEOUT;
1607 uvmexp.paging++;
1608 uvm_lock_pageq();
1609 uvm_pageunwire(pgs[i]);
1610 uvm_unlock_pageq();
1611 }
1612 }
1613
1614 /*
1615 * Check to make sure we're starting on a block boundary.
1616 * We'll check later to make sure we always write entire
1617 * blocks (or fragments).
1618 */
1619 if (startoffset & fs->lfs_bmask)
1620 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1621 startoffset, fs->lfs_bmask,
1622 startoffset & fs->lfs_bmask);
1623 KASSERT((startoffset & fs->lfs_bmask) == 0);
1624 if (bytes & fs->lfs_ffmask) {
1625 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1626 panic("lfs_gop_write: non-integer blocks");
1627 }
1628
1629 /*
1630 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1631 * If we would, write what we have and try again. If we don't
1632 * have anything to write, we'll have to sleep.
1633 */
1634 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1635 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1636 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1637 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1638 #if 0
1639 " with nfinfo=%d at offset 0x%x\n",
1640 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1641 (unsigned)fs->lfs_offset));
1642 #endif
1643 lfs_updatemeta(sp);
1644 lfs_release_finfo(fs);
1645 (void) lfs_writeseg(fs, sp);
1646
1647 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1648
1649 /*
1650 * Having given up all of the pager_map we were holding,
1651 * we can now wait for aiodoned to reclaim it for us
1652 * without fear of deadlock.
1653 */
1654 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1655 UVMPAGER_MAPIN_WAITOK);
1656 }
1657
1658 s = splbio();
1659 simple_lock(&global_v_numoutput_slock);
1660 vp->v_numoutput += 2; /* one for biodone, one for aiodone */
1661 simple_unlock(&global_v_numoutput_slock);
1662 splx(s);
1663
1664 mbp = getiobuf();
1665 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1666 vp, mbp, vp->v_numoutput, bytes);
1667 mbp->b_bufsize = npages << PAGE_SHIFT;
1668 mbp->b_data = (void *)kva;
1669 mbp->b_resid = mbp->b_bcount = bytes;
1670 mbp->b_flags = B_BUSY|B_WRITE|B_AGE|B_CALL;
1671 mbp->b_iodone = uvm_aio_biodone;
1672 mbp->b_vp = vp;
1673
1674 bp = NULL;
1675 for (offset = startoffset;
1676 bytes > 0;
1677 offset += iobytes, bytes -= iobytes) {
1678 lbn = offset >> fs_bshift;
1679 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1680 lfs_issequential_hole);
1681 if (error) {
1682 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1683 error,0,0,0);
1684 skipbytes += bytes;
1685 bytes = 0;
1686 break;
1687 }
1688
1689 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1690 bytes);
1691 if (blkno == (daddr_t)-1) {
1692 skipbytes += iobytes;
1693 continue;
1694 }
1695
1696 /*
1697 * Discover how much we can really pack into this buffer.
1698 */
1699 /* If no room in the current segment, finish it up */
1700 if (sp->sum_bytes_left < sizeof(int32_t) ||
1701 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1702 int vers;
1703
1704 lfs_updatemeta(sp);
1705 vers = sp->fip->fi_version;
1706 lfs_release_finfo(fs);
1707 (void) lfs_writeseg(fs, sp);
1708
1709 lfs_acquire_finfo(fs, ip->i_number, vers);
1710 }
1711 /* Check both for space in segment and space in segsum */
1712 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1713 << fs_bshift);
1714 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1715 << fs_bshift);
1716 KASSERT(iobytes > 0);
1717
1718 /* if it's really one i/o, don't make a second buf */
1719 if (offset == startoffset && iobytes == bytes) {
1720 bp = mbp;
1721 /* correct overcount if there is no second buffer */
1722 s = splbio();
1723 simple_lock(&global_v_numoutput_slock);
1724 --vp->v_numoutput;
1725 simple_unlock(&global_v_numoutput_slock);
1726 splx(s);
1727 } else {
1728 bp = getiobuf();
1729 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1730 vp, bp, vp->v_numoutput, 0);
1731 bp->b_data = (char *)kva +
1732 (vaddr_t)(offset - pg->offset);
1733 bp->b_resid = bp->b_bcount = iobytes;
1734 bp->b_flags = B_BUSY|B_WRITE|B_CALL;
1735 bp->b_iodone = uvm_aio_biodone1;
1736 }
1737
1738 /* XXX This is silly ... is this necessary? */
1739 bp->b_vp = NULL;
1740 s = splbio();
1741 bgetvp(vp, bp);
1742 splx(s);
1743
1744 bp->b_lblkno = lblkno(fs, offset);
1745 bp->b_private = mbp;
1746 if (devvp->v_type == VBLK) {
1747 bp->b_dev = devvp->v_rdev;
1748 }
1749 VOP_BWRITE(bp);
1750 while (lfs_gatherblock(sp, bp, NULL))
1751 continue;
1752 }
1753
1754 if (skipbytes) {
1755 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1756 s = splbio();
1757 if (error) {
1758 mbp->b_flags |= B_ERROR;
1759 mbp->b_error = error;
1760 }
1761 mbp->b_resid -= skipbytes;
1762 if (mbp->b_resid == 0) {
1763 biodone(mbp);
1764 }
1765 splx(s);
1766 }
1767 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1768 return (0);
1769
1770 tryagain:
1771 /*
1772 * We can't write the pages, for whatever reason.
1773 * Clean up after ourselves, and make the caller try again.
1774 */
1775 simple_lock(&vp->v_interlock);
1776
1777 /* Tell why we're here, if we know */
1778 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1779 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1780 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1781 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1782 } else if (haveeof && startoffset >= eof) {
1783 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1784 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1785 pgs[0]->offset, eof, npages));
1786 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1787 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1788 } else {
1789 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1790 }
1791
1792 uvm_lock_pageq();
1793 for (i = 0; i < npages; i++) {
1794 pg = pgs[i];
1795
1796 if (pg->flags & PG_PAGEOUT)
1797 uvmexp.paging--;
1798 if (pg->flags & PG_DELWRI) {
1799 uvm_pageunwire(pg);
1800 }
1801 uvm_pageactivate(pg);
1802 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1803 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1804 vp, pg->offset));
1805 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1806 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1807 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1808 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1809 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1810 pg->wire_count));
1811 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1812 pg->loan_count));
1813 }
1814 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1815 uvm_page_unbusy(pgs, npages);
1816 uvm_unlock_pageq();
1817 simple_unlock(&vp->v_interlock);
1818 return EAGAIN;
1819 }
1820
1821 /*
1822 * finish vnode/inode initialization.
1823 * used by lfs_vget and lfs_fastvget.
1824 */
1825 void
1826 lfs_vinit(struct mount *mp, struct vnode **vpp)
1827 {
1828 struct vnode *vp = *vpp;
1829 struct inode *ip = VTOI(vp);
1830 struct ufsmount *ump = VFSTOUFS(mp);
1831 struct lfs *fs = ump->um_lfs;
1832 int i;
1833
1834 ip->i_mode = ip->i_ffs1_mode;
1835 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
1836 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1837 ip->i_flags = ip->i_ffs1_flags;
1838 ip->i_gen = ip->i_ffs1_gen;
1839 ip->i_uid = ip->i_ffs1_uid;
1840 ip->i_gid = ip->i_ffs1_gid;
1841
1842 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1843 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1844
1845 /*
1846 * Initialize the vnode from the inode, check for aliases. In all
1847 * cases re-init ip, the underlying vnode/inode may have changed.
1848 */
1849 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1850 ip = VTOI(vp);
1851
1852 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1853 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1854 #ifdef DEBUG
1855 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1856 i < NDADDR; i++) {
1857 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1858 i == 0)
1859 continue;
1860 if (ip->i_ffs1_db[i] != 0) {
1861 inconsistent:
1862 lfs_dump_dinode(ip->i_din.ffs1_din);
1863 panic("inconsistent inode");
1864 }
1865 }
1866 for ( ; i < NDADDR + NIADDR; i++) {
1867 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1868 goto inconsistent;
1869 }
1870 }
1871 #endif /* DEBUG */
1872 for (i = 0; i < NDADDR; i++)
1873 if (ip->i_ffs1_db[i] != 0)
1874 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1875 }
1876
1877 #ifdef DIAGNOSTIC
1878 if (vp->v_type == VNON) {
1879 # ifdef DEBUG
1880 lfs_dump_dinode(ip->i_din.ffs1_din);
1881 # endif
1882 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1883 (unsigned long long)ip->i_number,
1884 (ip->i_mode & IFMT) >> 12);
1885 }
1886 #endif /* DIAGNOSTIC */
1887
1888 /*
1889 * Finish inode initialization now that aliasing has been resolved.
1890 */
1891
1892 ip->i_devvp = ump->um_devvp;
1893 VREF(ip->i_devvp);
1894 genfs_node_init(vp, &lfs_genfsops);
1895 uvm_vnp_setsize(vp, ip->i_size);
1896
1897 /* Initialize hiblk from file size */
1898 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1899
1900 *vpp = vp;
1901 }
1902
1903 /*
1904 * Resize the filesystem to contain the specified number of segments.
1905 */
1906 int
1907 lfs_resize_fs(struct lfs *fs, int newnsegs)
1908 {
1909 SEGUSE *sup;
1910 struct buf *bp, *obp;
1911 daddr_t olast, nlast, ilast, noff, start, end;
1912 struct vnode *ivp;
1913 struct inode *ip;
1914 int error, badnews, inc, oldnsegs;
1915 int sbbytes, csbbytes, gain, cgain;
1916 int i;
1917
1918 /* Only support v2 and up */
1919 if (fs->lfs_version < 2)
1920 return EOPNOTSUPP;
1921
1922 /* If we're doing nothing, do it fast */
1923 oldnsegs = fs->lfs_nseg;
1924 if (newnsegs == oldnsegs)
1925 return 0;
1926
1927 /* We always have to have two superblocks */
1928 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1929 return EFBIG;
1930
1931 ivp = fs->lfs_ivnode;
1932 ip = VTOI(ivp);
1933 error = 0;
1934
1935 /* Take the segment lock so no one else calls lfs_newseg() */
1936 lfs_seglock(fs, SEGM_PROT);
1937
1938 /*
1939 * Make sure the segments we're going to be losing, if any,
1940 * are in fact empty. We hold the seglock, so their status
1941 * cannot change underneath us. Count the superblocks we lose,
1942 * while we're at it.
1943 */
1944 sbbytes = csbbytes = 0;
1945 cgain = 0;
1946 for (i = newnsegs; i < oldnsegs; i++) {
1947 LFS_SEGENTRY(sup, fs, i, bp);
1948 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1949 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1950 sbbytes += LFS_SBPAD;
1951 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1952 ++cgain;
1953 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1954 csbbytes += LFS_SBPAD;
1955 }
1956 brelse(bp);
1957 if (badnews) {
1958 error = EBUSY;
1959 goto out;
1960 }
1961 }
1962
1963 /* Note old and new segment table endpoints, and old ifile size */
1964 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1965 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1966 ilast = ivp->v_size >> fs->lfs_bshift;
1967 noff = nlast - olast;
1968
1969 /*
1970 * Make sure no one can use the Ifile while we change it around.
1971 * Even after taking the iflock we need to make sure no one still
1972 * is holding Ifile buffers, so we get each one, to drain them.
1973 * (XXX this could be done better.)
1974 */
1975 simple_lock(&fs->lfs_interlock);
1976 lockmgr(&fs->lfs_iflock, LK_EXCLUSIVE, &fs->lfs_interlock);
1977 simple_unlock(&fs->lfs_interlock);
1978 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1979 for (i = 0; i < ilast; i++) {
1980 bread(ivp, i, fs->lfs_bsize, NOCRED, &bp);
1981 brelse(bp);
1982 }
1983
1984 /* Allocate new Ifile blocks */
1985 for (i = ilast; i < ilast + noff; i++) {
1986 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
1987 &bp) != 0)
1988 panic("balloc extending ifile");
1989 memset(bp->b_data, 0, fs->lfs_bsize);
1990 VOP_BWRITE(bp);
1991 }
1992
1993 /* Register new ifile size */
1994 ip->i_size += noff * fs->lfs_bsize;
1995 ip->i_ffs1_size = ip->i_size;
1996 uvm_vnp_setsize(ivp, ip->i_size);
1997
1998 /* Copy the inode table to its new position */
1999 if (noff != 0) {
2000 if (noff < 0) {
2001 start = nlast;
2002 end = ilast + noff;
2003 inc = 1;
2004 } else {
2005 start = ilast + noff - 1;
2006 end = nlast - 1;
2007 inc = -1;
2008 }
2009 for (i = start; i != end; i += inc) {
2010 if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0)
2011 panic("resize: bread dst blk failed");
2012 if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp))
2013 panic("resize: bread src blk failed");
2014 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2015 VOP_BWRITE(bp);
2016 brelse(obp);
2017 }
2018 }
2019
2020 /* If we are expanding, write the new empty SEGUSE entries */
2021 if (newnsegs > oldnsegs) {
2022 for (i = oldnsegs; i < newnsegs; i++) {
2023 if ((error = bread(ivp, i / fs->lfs_sepb +
2024 fs->lfs_cleansz,
2025 fs->lfs_bsize, NOCRED, &bp)) != 0)
2026 panic("lfs: ifile read: %d", error);
2027 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2028 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2029 memset(sup, 0, sizeof(*sup));
2030 i++;
2031 }
2032 VOP_BWRITE(bp);
2033 }
2034 }
2035
2036 /* Zero out unused superblock offsets */
2037 for (i = 2; i < LFS_MAXNUMSB; i++)
2038 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2039 fs->lfs_sboffs[i] = 0x0;
2040
2041 /*
2042 * Correct superblock entries that depend on fs size.
2043 * The computations of these are as follows:
2044 *
2045 * size = segtod(fs, nseg)
2046 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2047 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2048 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2049 * + (segtod(fs, 1) - (offset - curseg))
2050 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2051 *
2052 * XXX - we should probably adjust minfreeseg as well.
2053 */
2054 gain = (newnsegs - oldnsegs);
2055 fs->lfs_nseg = newnsegs;
2056 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2057 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2058 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2059 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2060 - gain * btofsb(fs, fs->lfs_bsize / 2);
2061 if (gain > 0) {
2062 fs->lfs_nclean += gain;
2063 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2064 } else {
2065 fs->lfs_nclean -= cgain;
2066 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2067 btofsb(fs, csbbytes);
2068 }
2069
2070 /* Resize segment flag cache */
2071 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2072 fs->lfs_nseg * sizeof(u_int32_t),
2073 M_SEGMENT, M_WAITOK);
2074 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2075 fs->lfs_nseg * sizeof(u_int32_t),
2076 M_SEGMENT, M_WAITOK);
2077 for (i = oldnsegs; i < newnsegs; i++)
2078 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2079
2080 /* Truncate Ifile if necessary */
2081 if (noff < 0)
2082 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2083 NOCRED, curlwp);
2084
2085 /* Update cleaner info so the cleaner can die */
2086 bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp);
2087 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2088 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2089 VOP_BWRITE(bp);
2090
2091 /* Let Ifile accesses proceed */
2092 VOP_UNLOCK(ivp, 0);
2093 simple_lock(&fs->lfs_interlock);
2094 lockmgr(&fs->lfs_iflock, LK_RELEASE, &fs->lfs_interlock);
2095 simple_unlock(&fs->lfs_interlock);
2096
2097 out:
2098 lfs_segunlock(fs);
2099 return error;
2100 }
2101