lfs_vfsops.c revision 1.247 1 /* $NetBSD: lfs_vfsops.c,v 1.247 2007/11/10 18:53:57 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*-
39 * Copyright (c) 1989, 1991, 1993, 1994
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.247 2007/11/10 18:53:57 rmind Exp $");
71
72 #if defined(_KERNEL_OPT)
73 #include "opt_quota.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/proc.h>
80 #include <sys/kernel.h>
81 #include <sys/vnode.h>
82 #include <sys/mount.h>
83 #include <sys/kthread.h>
84 #include <sys/buf.h>
85 #include <sys/device.h>
86 #include <sys/mbuf.h>
87 #include <sys/file.h>
88 #include <sys/disklabel.h>
89 #include <sys/ioctl.h>
90 #include <sys/errno.h>
91 #include <sys/malloc.h>
92 #include <sys/pool.h>
93 #include <sys/socket.h>
94 #include <sys/syslog.h>
95 #include <uvm/uvm_extern.h>
96 #include <sys/sysctl.h>
97 #include <sys/conf.h>
98 #include <sys/kauth.h>
99
100 #include <miscfs/specfs/specdev.h>
101
102 #include <ufs/ufs/quota.h>
103 #include <ufs/ufs/inode.h>
104 #include <ufs/ufs/ufsmount.h>
105 #include <ufs/ufs/ufs_extern.h>
106
107 #include <uvm/uvm.h>
108 #include <uvm/uvm_stat.h>
109 #include <uvm/uvm_pager.h>
110 #include <uvm/uvm_pdaemon.h>
111
112 #include <ufs/lfs/lfs.h>
113 #include <ufs/lfs/lfs_extern.h>
114
115 #include <miscfs/genfs/genfs.h>
116 #include <miscfs/genfs/genfs_node.h>
117
118 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
119 static bool lfs_issequential_hole(const struct ufsmount *,
120 daddr_t, daddr_t);
121
122 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
123
124 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
125 extern const struct vnodeopv_desc lfs_specop_opv_desc;
126 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
127
128 pid_t lfs_writer_daemon = 0;
129 int lfs_do_flush = 0;
130 #ifdef LFS_KERNEL_RFW
131 int lfs_do_rfw = 0;
132 #endif
133
134 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
135 &lfs_vnodeop_opv_desc,
136 &lfs_specop_opv_desc,
137 &lfs_fifoop_opv_desc,
138 NULL,
139 };
140
141 struct vfsops lfs_vfsops = {
142 MOUNT_LFS,
143 sizeof (struct ufs_args),
144 lfs_mount,
145 ufs_start,
146 lfs_unmount,
147 ufs_root,
148 ufs_quotactl,
149 lfs_statvfs,
150 lfs_sync,
151 lfs_vget,
152 lfs_fhtovp,
153 lfs_vptofh,
154 lfs_init,
155 lfs_reinit,
156 lfs_done,
157 lfs_mountroot,
158 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
159 vfs_stdextattrctl,
160 (void *)eopnotsupp, /* vfs_suspendctl */
161 lfs_vnodeopv_descs,
162 0,
163 { NULL, NULL },
164 };
165 VFS_ATTACH(lfs_vfsops);
166
167 const struct genfs_ops lfs_genfsops = {
168 .gop_size = lfs_gop_size,
169 .gop_alloc = ufs_gop_alloc,
170 .gop_write = lfs_gop_write,
171 .gop_markupdate = ufs_gop_markupdate,
172 };
173
174 static const struct ufs_ops lfs_ufsops = {
175 .uo_itimes = NULL,
176 .uo_update = lfs_update,
177 .uo_truncate = lfs_truncate,
178 .uo_valloc = lfs_valloc,
179 .uo_vfree = lfs_vfree,
180 .uo_balloc = lfs_balloc,
181 };
182
183 /*
184 * XXX Same structure as FFS inodes? Should we share a common pool?
185 */
186 struct pool lfs_inode_pool;
187 struct pool lfs_dinode_pool;
188 struct pool lfs_inoext_pool;
189 struct pool lfs_lbnentry_pool;
190
191 /*
192 * The writer daemon. UVM keeps track of how many dirty pages we are holding
193 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
194 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
195 */
196 static void
197 lfs_writerd(void *arg)
198 {
199 struct mount *mp, *nmp;
200 struct lfs *fs;
201 int fsflags;
202 int loopcount;
203
204 lfs_writer_daemon = curproc->p_pid;
205
206 simple_lock(&lfs_subsys_lock);
207 for (;;) {
208 ltsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
209 &lfs_subsys_lock);
210
211 /*
212 * Look through the list of LFSs to see if any of them
213 * have requested pageouts.
214 */
215 mutex_enter(&mountlist_lock);
216 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
217 mp = nmp) {
218 if (vfs_busy(mp, LK_NOWAIT, &mountlist_lock)) {
219 nmp = CIRCLEQ_NEXT(mp, mnt_list);
220 continue;
221 }
222 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
223 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
224 fs = VFSTOUFS(mp)->um_lfs;
225 simple_lock(&fs->lfs_interlock);
226 fsflags = 0;
227 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
228 lfs_dirvcount > LFS_MAX_DIROP) &&
229 fs->lfs_dirops == 0)
230 fsflags |= SEGM_CKP;
231 if (fs->lfs_pdflush) {
232 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
233 fs->lfs_pdflush = 0;
234 lfs_flush_fs(fs, fsflags);
235 simple_unlock(&fs->lfs_interlock);
236 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
237 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
238 simple_unlock(&fs->lfs_interlock);
239 lfs_writer_enter(fs, "wrdirop");
240 lfs_flush_pchain(fs);
241 lfs_writer_leave(fs);
242 } else
243 simple_unlock(&fs->lfs_interlock);
244 }
245
246 mutex_enter(&mountlist_lock);
247 nmp = CIRCLEQ_NEXT(mp, mnt_list);
248 vfs_unbusy(mp);
249 }
250 mutex_exit(&mountlist_lock);
251
252 /*
253 * If global state wants a flush, flush everything.
254 */
255 simple_lock(&lfs_subsys_lock);
256 loopcount = 0;
257 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
258 locked_queue_bytes > LFS_MAX_BYTES ||
259 lfs_subsys_pages > LFS_MAX_PAGES) {
260
261 if (lfs_do_flush) {
262 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
263 }
264 if (locked_queue_count > LFS_MAX_BUFS) {
265 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
266 locked_queue_count, LFS_MAX_BUFS));
267 }
268 if (locked_queue_bytes > LFS_MAX_BYTES) {
269 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
270 locked_queue_bytes, LFS_MAX_BYTES));
271 }
272 if (lfs_subsys_pages > LFS_MAX_PAGES) {
273 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
274 lfs_subsys_pages, LFS_MAX_PAGES));
275 }
276
277 lfs_flush(NULL, SEGM_WRITERD, 0);
278 lfs_do_flush = 0;
279 }
280 }
281 /* NOTREACHED */
282 }
283
284 /*
285 * Initialize the filesystem, most work done by ufs_init.
286 */
287 void
288 lfs_init()
289 {
290
291 malloc_type_attach(M_SEGMENT);
292 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
293 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
294 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
295 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
296 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
297 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
298 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
299 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
300 ufs_init();
301
302 #ifdef DEBUG
303 memset(lfs_log, 0, sizeof(lfs_log));
304 #endif
305 simple_lock_init(&lfs_subsys_lock);
306 }
307
308 void
309 lfs_reinit()
310 {
311 ufs_reinit();
312 }
313
314 void
315 lfs_done()
316 {
317
318 ufs_done();
319 pool_destroy(&lfs_inode_pool);
320 pool_destroy(&lfs_dinode_pool);
321 pool_destroy(&lfs_inoext_pool);
322 pool_destroy(&lfs_lbnentry_pool);
323 malloc_type_detach(M_SEGMENT);
324 }
325
326 /*
327 * Called by main() when ufs is going to be mounted as root.
328 */
329 int
330 lfs_mountroot()
331 {
332 extern struct vnode *rootvp;
333 struct mount *mp;
334 struct lwp *l = curlwp; /* XXX */
335 int error;
336
337 if (device_class(root_device) != DV_DISK)
338 return (ENODEV);
339
340 if (rootdev == NODEV)
341 return (ENODEV);
342 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
343 vrele(rootvp);
344 return (error);
345 }
346 if ((error = lfs_mountfs(rootvp, mp, l))) {
347 mp->mnt_op->vfs_refcount--;
348 vfs_unbusy(mp);
349 free(mp, M_MOUNT);
350 return (error);
351 }
352 mutex_enter(&mountlist_lock);
353 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
354 mutex_exit(&mountlist_lock);
355 (void)lfs_statvfs(mp, &mp->mnt_stat, l);
356 vfs_unbusy(mp);
357 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
358 return (0);
359 }
360
361 /*
362 * VFS Operations.
363 *
364 * mount system call
365 */
366 int
367 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len,
368 struct lwp *l)
369 {
370 struct nameidata nd;
371 struct vnode *devvp;
372 struct ufs_args *args = data;
373 struct ufsmount *ump = NULL;
374 struct lfs *fs = NULL; /* LFS */
375 int error = 0, update;
376 mode_t accessmode;
377
378 if (*data_len < sizeof *args)
379 return EINVAL;
380
381 if (mp->mnt_flag & MNT_GETARGS) {
382 ump = VFSTOUFS(mp);
383 if (ump == NULL)
384 return EIO;
385 args->fspec = NULL;
386 *data_len = sizeof *args;
387 return 0;
388 }
389
390 update = mp->mnt_flag & MNT_UPDATE;
391
392 /* Check arguments */
393 if (args->fspec != NULL) {
394 /*
395 * Look up the name and verify that it's sane.
396 */
397 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec, l);
398 if ((error = namei(&nd)) != 0)
399 return (error);
400 devvp = nd.ni_vp;
401
402 if (!update) {
403 /*
404 * Be sure this is a valid block device
405 */
406 if (devvp->v_type != VBLK)
407 error = ENOTBLK;
408 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
409 error = ENXIO;
410 } else {
411 /*
412 * Be sure we're still naming the same device
413 * used for our initial mount
414 */
415 ump = VFSTOUFS(mp);
416 if (devvp != ump->um_devvp)
417 error = EINVAL;
418 }
419 } else {
420 if (!update) {
421 /* New mounts must have a filename for the device */
422 return (EINVAL);
423 } else {
424 /* Use the extant mount */
425 ump = VFSTOUFS(mp);
426 devvp = ump->um_devvp;
427 vref(devvp);
428 }
429 }
430
431
432 /*
433 * If mount by non-root, then verify that user has necessary
434 * permissions on the device.
435 */
436 if (error == 0 && kauth_authorize_generic(l->l_cred,
437 KAUTH_GENERIC_ISSUSER, NULL) != 0) {
438 accessmode = VREAD;
439 if (update ?
440 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
441 (mp->mnt_flag & MNT_RDONLY) == 0)
442 accessmode |= VWRITE;
443 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
444 error = VOP_ACCESS(devvp, accessmode, l->l_cred, l);
445 VOP_UNLOCK(devvp, 0);
446 }
447
448 if (error) {
449 vrele(devvp);
450 return (error);
451 }
452
453 if (!update) {
454 int flags;
455
456 /*
457 * Disallow multiple mounts of the same device.
458 * Disallow mounting of a device that is currently in use
459 * (except for root, which might share swap device for
460 * miniroot).
461 */
462 error = vfs_mountedon(devvp);
463 if (error)
464 goto fail;
465 if (vcount(devvp) > 1 && devvp != rootvp) {
466 error = EBUSY;
467 goto fail;
468 }
469 if (mp->mnt_flag & MNT_RDONLY)
470 flags = FREAD;
471 else
472 flags = FREAD|FWRITE;
473 error = VOP_OPEN(devvp, flags, FSCRED, l);
474 if (error)
475 goto fail;
476 error = lfs_mountfs(devvp, mp, l); /* LFS */
477 if (error) {
478 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
479 (void)VOP_CLOSE(devvp, flags, NOCRED, l);
480 VOP_UNLOCK(devvp, 0);
481 goto fail;
482 }
483
484 ump = VFSTOUFS(mp);
485 fs = ump->um_lfs;
486 } else {
487 /*
488 * Update the mount.
489 */
490
491 /*
492 * The initial mount got a reference on this
493 * device, so drop the one obtained via
494 * namei(), above.
495 */
496 vrele(devvp);
497
498 ump = VFSTOUFS(mp);
499 fs = ump->um_lfs;
500 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
501 /*
502 * Changing from read-only to read/write.
503 * Note in the superblocks that we're writing.
504 */
505 fs->lfs_ronly = 0;
506 if (fs->lfs_pflags & LFS_PF_CLEAN) {
507 fs->lfs_pflags &= ~LFS_PF_CLEAN;
508 lfs_writesuper(fs, fs->lfs_sboffs[0]);
509 lfs_writesuper(fs, fs->lfs_sboffs[1]);
510 }
511 }
512 if (args->fspec == NULL)
513 return EINVAL;
514 }
515
516 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
517 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
518 if (error == 0)
519 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
520 sizeof(fs->lfs_fsmnt));
521 return error;
522
523 fail:
524 vrele(devvp);
525 return (error);
526 }
527
528
529 /*
530 * Common code for mount and mountroot
531 * LFS specific
532 */
533 int
534 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
535 {
536 struct dlfs *tdfs, *dfs, *adfs;
537 struct lfs *fs;
538 struct ufsmount *ump;
539 struct vnode *vp;
540 struct buf *bp, *abp;
541 struct partinfo dpart;
542 dev_t dev;
543 int error, i, ronly, secsize, fsbsize;
544 kauth_cred_t cred;
545 CLEANERINFO *cip;
546 SEGUSE *sup;
547 daddr_t sb_addr;
548
549 cred = l ? l->l_cred : NOCRED;
550
551 /*
552 * Flush out any old buffers remaining from a previous use.
553 */
554 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
555 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
556 VOP_UNLOCK(devvp, 0);
557 if (error)
558 return (error);
559
560 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
561 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) != 0)
562 secsize = DEV_BSIZE;
563 else
564 secsize = dpart.disklab->d_secsize;
565
566 /* Don't free random space on error. */
567 bp = NULL;
568 abp = NULL;
569 ump = NULL;
570
571 sb_addr = LFS_LABELPAD / secsize;
572 while (1) {
573 /* Read in the superblock. */
574 error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp);
575 if (error)
576 goto out;
577 dfs = (struct dlfs *)bp->b_data;
578
579 /* Check the basics. */
580 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
581 dfs->dlfs_version > LFS_VERSION ||
582 dfs->dlfs_bsize < sizeof(struct dlfs)) {
583 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
584 error = EINVAL; /* XXX needs translation */
585 goto out;
586 }
587 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
588 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
589 dfs->dlfs_inodefmt));
590 error = EINVAL;
591 goto out;
592 }
593
594 if (dfs->dlfs_version == 1)
595 fsbsize = secsize;
596 else {
597 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
598 dfs->dlfs_fsbtodb);
599 /*
600 * Could be, if the frag size is large enough, that we
601 * don't have the "real" primary superblock. If that's
602 * the case, get the real one, and try again.
603 */
604 if (sb_addr != dfs->dlfs_sboffs[0] <<
605 dfs->dlfs_fsbtodb) {
606 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
607 " 0x%llx is not right, trying 0x%llx\n",
608 (long long)sb_addr,
609 (long long)(dfs->dlfs_sboffs[0] <<
610 dfs->dlfs_fsbtodb)));
611 sb_addr = dfs->dlfs_sboffs[0] <<
612 dfs->dlfs_fsbtodb;
613 brelse(bp, 0);
614 continue;
615 }
616 }
617 break;
618 }
619
620 /*
621 * Check the second superblock to see which is newer; then mount
622 * using the older of the two. This is necessary to ensure that
623 * the filesystem is valid if it was not unmounted cleanly.
624 */
625
626 if (dfs->dlfs_sboffs[1] &&
627 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
628 {
629 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
630 LFS_SBPAD, cred, &abp);
631 if (error)
632 goto out;
633 adfs = (struct dlfs *)abp->b_data;
634
635 if (dfs->dlfs_version == 1) {
636 /* 1s resolution comparison */
637 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
638 tdfs = adfs;
639 else
640 tdfs = dfs;
641 } else {
642 /* monotonic infinite-resolution comparison */
643 if (adfs->dlfs_serial < dfs->dlfs_serial)
644 tdfs = adfs;
645 else
646 tdfs = dfs;
647 }
648
649 /* Check the basics. */
650 if (tdfs->dlfs_magic != LFS_MAGIC ||
651 tdfs->dlfs_bsize > MAXBSIZE ||
652 tdfs->dlfs_version > LFS_VERSION ||
653 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
654 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
655 " sanity failed\n"));
656 error = EINVAL; /* XXX needs translation */
657 goto out;
658 }
659 } else {
660 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
661 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
662 error = EINVAL;
663 goto out;
664 }
665
666 /* Allocate the mount structure, copy the superblock into it. */
667 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
668 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
669
670 /* Compatibility */
671 if (fs->lfs_version < 2) {
672 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
673 fs->lfs_ibsize = fs->lfs_bsize;
674 fs->lfs_start = fs->lfs_sboffs[0];
675 fs->lfs_tstamp = fs->lfs_otstamp;
676 fs->lfs_fsbtodb = 0;
677 }
678 if (fs->lfs_resvseg == 0)
679 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
680 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
681
682 /*
683 * If we aren't going to be able to write meaningfully to this
684 * filesystem, and were not mounted readonly, bomb out now.
685 */
686 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
687 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
688 " we need BUFPAGES >= %lld\n",
689 (long long)((bufmem_hiwater / bufmem_lowater) *
690 LFS_INVERSE_MAX_BYTES(
691 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
692 free(fs, M_UFSMNT);
693 error = EFBIG; /* XXX needs translation */
694 goto out;
695 }
696
697 /* Before rolling forward, lock so vget will sleep for other procs */
698 if (l != NULL) {
699 fs->lfs_flags = LFS_NOTYET;
700 fs->lfs_rfpid = l->l_proc->p_pid;
701 }
702
703 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
704 ump->um_lfs = fs;
705 ump->um_ops = &lfs_ufsops;
706 ump->um_fstype = UFS1;
707 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
708 brelse(bp, BC_INVAL);
709 brelse(abp, BC_INVAL);
710 } else {
711 brelse(bp, 0);
712 brelse(abp, 0);
713 }
714 bp = NULL;
715 abp = NULL;
716
717
718 /* Set up the I/O information */
719 fs->lfs_devbsize = secsize;
720 fs->lfs_iocount = 0;
721 fs->lfs_diropwait = 0;
722 fs->lfs_activesb = 0;
723 fs->lfs_uinodes = 0;
724 fs->lfs_ravail = 0;
725 fs->lfs_favail = 0;
726 fs->lfs_sbactive = 0;
727
728 /* Set up the ifile and lock aflags */
729 fs->lfs_doifile = 0;
730 fs->lfs_writer = 0;
731 fs->lfs_dirops = 0;
732 fs->lfs_nadirop = 0;
733 fs->lfs_seglock = 0;
734 fs->lfs_pdflush = 0;
735 fs->lfs_sleepers = 0;
736 fs->lfs_pages = 0;
737 simple_lock_init(&fs->lfs_interlock);
738 rw_init(&fs->lfs_fraglock);
739 lockinit(&fs->lfs_iflock, PINOD, "lfs_iflock", 0, 0);
740 lockinit(&fs->lfs_stoplock, PINOD, "lfs_stoplock", 0, 0);
741
742 /* Set the file system readonly/modify bits. */
743 fs->lfs_ronly = ronly;
744 if (ronly == 0)
745 fs->lfs_fmod = 1;
746
747 /* Initialize the mount structure. */
748 dev = devvp->v_rdev;
749 mp->mnt_data = ump;
750 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
751 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
752 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
753 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
754 mp->mnt_stat.f_iosize = fs->lfs_bsize;
755 mp->mnt_flag |= MNT_LOCAL;
756 mp->mnt_fs_bshift = fs->lfs_bshift;
757 ump->um_flags = 0;
758 ump->um_mountp = mp;
759 ump->um_dev = dev;
760 ump->um_devvp = devvp;
761 ump->um_bptrtodb = fs->lfs_fsbtodb;
762 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
763 ump->um_nindir = fs->lfs_nindir;
764 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
765 for (i = 0; i < MAXQUOTAS; i++)
766 ump->um_quotas[i] = NULLVP;
767 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
768 ump->um_dirblksiz = DIRBLKSIZ;
769 ump->um_maxfilesize = fs->lfs_maxfilesize;
770 if (ump->um_maxsymlinklen > 0)
771 mp->mnt_iflag |= IMNT_DTYPE;
772 devvp->v_specmountpoint = mp;
773
774 /* Set up reserved memory for pageout */
775 lfs_setup_resblks(fs);
776 /* Set up vdirop tailq */
777 TAILQ_INIT(&fs->lfs_dchainhd);
778 /* and paging tailq */
779 TAILQ_INIT(&fs->lfs_pchainhd);
780 /* and delayed segment accounting for truncation list */
781 LIST_INIT(&fs->lfs_segdhd);
782
783 /*
784 * We use the ifile vnode for almost every operation. Instead of
785 * retrieving it from the hash table each time we retrieve it here,
786 * artificially increment the reference count and keep a pointer
787 * to it in the incore copy of the superblock.
788 */
789 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
790 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
791 goto out;
792 }
793 fs->lfs_ivnode = vp;
794 VREF(vp);
795
796 /* Set up inode bitmap and order free list */
797 lfs_order_freelist(fs);
798
799 /* Set up segment usage flags for the autocleaner. */
800 fs->lfs_nactive = 0;
801 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
802 M_SEGMENT, M_WAITOK);
803 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
804 M_SEGMENT, M_WAITOK);
805 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
806 M_SEGMENT, M_WAITOK);
807 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
808 for (i = 0; i < fs->lfs_nseg; i++) {
809 int changed;
810
811 LFS_SEGENTRY(sup, fs, i, bp);
812 changed = 0;
813 if (!ronly) {
814 if (sup->su_nbytes == 0 &&
815 !(sup->su_flags & SEGUSE_EMPTY)) {
816 sup->su_flags |= SEGUSE_EMPTY;
817 ++changed;
818 } else if (!(sup->su_nbytes == 0) &&
819 (sup->su_flags & SEGUSE_EMPTY)) {
820 sup->su_flags &= ~SEGUSE_EMPTY;
821 ++changed;
822 }
823 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
824 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
825 ++changed;
826 }
827 }
828 fs->lfs_suflags[0][i] = sup->su_flags;
829 if (changed)
830 LFS_WRITESEGENTRY(sup, fs, i, bp);
831 else
832 brelse(bp, 0);
833 }
834
835 #ifdef LFS_KERNEL_RFW
836 lfs_roll_forward(fs, mp, l);
837 #endif
838
839 /* If writing, sb is not clean; record in case of immediate crash */
840 if (!fs->lfs_ronly) {
841 fs->lfs_pflags &= ~LFS_PF_CLEAN;
842 lfs_writesuper(fs, fs->lfs_sboffs[0]);
843 lfs_writesuper(fs, fs->lfs_sboffs[1]);
844 }
845
846 /* Allow vget now that roll-forward is complete */
847 fs->lfs_flags &= ~(LFS_NOTYET);
848 wakeup(&fs->lfs_flags);
849
850 /*
851 * Initialize the ifile cleaner info with information from
852 * the superblock.
853 */
854 LFS_CLEANERINFO(cip, fs, bp);
855 cip->clean = fs->lfs_nclean;
856 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
857 cip->avail = fs->lfs_avail;
858 cip->bfree = fs->lfs_bfree;
859 (void) LFS_BWRITE_LOG(bp); /* Ifile */
860
861 /*
862 * Mark the current segment as ACTIVE, since we're going to
863 * be writing to it.
864 */
865 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
866 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
867 fs->lfs_nactive++;
868 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
869
870 /* Now that roll-forward is done, unlock the Ifile */
871 vput(vp);
872
873 /* Start the pagedaemon-anticipating daemon */
874 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
875 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
876 panic("fork lfs_writer");
877
878 return (0);
879
880 out:
881 if (bp)
882 brelse(bp, 0);
883 if (abp)
884 brelse(abp, 0);
885 if (ump) {
886 free(ump->um_lfs, M_UFSMNT);
887 free(ump, M_UFSMNT);
888 mp->mnt_data = NULL;
889 }
890
891 return (error);
892 }
893
894 /*
895 * unmount system call
896 */
897 int
898 lfs_unmount(struct mount *mp, int mntflags, struct lwp *l)
899 {
900 struct ufsmount *ump;
901 struct lfs *fs;
902 int error, flags, ronly;
903 int s;
904
905 flags = 0;
906 if (mntflags & MNT_FORCE)
907 flags |= FORCECLOSE;
908
909 ump = VFSTOUFS(mp);
910 fs = ump->um_lfs;
911
912 /* Two checkpoints */
913 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
914 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
915
916 /* wake up the cleaner so it can die */
917 lfs_wakeup_cleaner(fs);
918 simple_lock(&fs->lfs_interlock);
919 while (fs->lfs_sleepers)
920 ltsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
921 &fs->lfs_interlock);
922 simple_unlock(&fs->lfs_interlock);
923
924 #ifdef QUOTA
925 if (mp->mnt_flag & MNT_QUOTA) {
926 int i;
927 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
928 if (error)
929 return (error);
930 for (i = 0; i < MAXQUOTAS; i++) {
931 if (ump->um_quotas[i] == NULLVP)
932 continue;
933 quotaoff(l, mp, i);
934 }
935 /*
936 * Here we fall through to vflush again to ensure
937 * that we have gotten rid of all the system vnodes.
938 */
939 }
940 #endif
941 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
942 return (error);
943 if ((error = VFS_SYNC(mp, 1, l->l_cred, l)) != 0)
944 return (error);
945 s = splbio();
946 if (LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd))
947 panic("lfs_unmount: still dirty blocks on ifile vnode");
948 splx(s);
949
950 /* Explicitly write the superblock, to update serial and pflags */
951 fs->lfs_pflags |= LFS_PF_CLEAN;
952 lfs_writesuper(fs, fs->lfs_sboffs[0]);
953 lfs_writesuper(fs, fs->lfs_sboffs[1]);
954 simple_lock(&fs->lfs_interlock);
955 while (fs->lfs_iocount)
956 ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
957 &fs->lfs_interlock);
958 simple_unlock(&fs->lfs_interlock);
959
960 /* Finish with the Ifile, now that we're done with it */
961 vrele(fs->lfs_ivnode);
962 vgone(fs->lfs_ivnode);
963
964 ronly = !fs->lfs_ronly;
965 if (ump->um_devvp->v_type != VBAD)
966 ump->um_devvp->v_specmountpoint = NULL;
967 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
968 error = VOP_CLOSE(ump->um_devvp,
969 ronly ? FREAD : FREAD|FWRITE, NOCRED, l);
970 vput(ump->um_devvp);
971
972 /* Complain about page leakage */
973 if (fs->lfs_pages > 0)
974 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
975 fs->lfs_pages, lfs_subsys_pages);
976
977 /* Free per-mount data structures */
978 free(fs->lfs_ino_bitmap, M_SEGMENT);
979 free(fs->lfs_suflags[0], M_SEGMENT);
980 free(fs->lfs_suflags[1], M_SEGMENT);
981 free(fs->lfs_suflags, M_SEGMENT);
982 lfs_free_resblks(fs);
983 rw_destroy(&fs->lfs_fraglock);
984 free(fs, M_UFSMNT);
985 free(ump, M_UFSMNT);
986
987 mp->mnt_data = NULL;
988 mp->mnt_flag &= ~MNT_LOCAL;
989 return (error);
990 }
991
992 /*
993 * Get file system statistics.
994 *
995 * NB: We don't lock to access the superblock here, because it's not
996 * really that important if we get it wrong.
997 */
998 int
999 lfs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l)
1000 {
1001 struct lfs *fs;
1002 struct ufsmount *ump;
1003
1004 ump = VFSTOUFS(mp);
1005 fs = ump->um_lfs;
1006 if (fs->lfs_magic != LFS_MAGIC)
1007 panic("lfs_statvfs: magic");
1008
1009 sbp->f_bsize = fs->lfs_bsize;
1010 sbp->f_frsize = fs->lfs_fsize;
1011 sbp->f_iosize = fs->lfs_bsize;
1012 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1013
1014 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1015 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1016 #if 0
1017 if (sbp->f_bfree < 0)
1018 sbp->f_bfree = 0;
1019 #endif
1020
1021 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1022 if (sbp->f_bfree > sbp->f_bresvd)
1023 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1024 else
1025 sbp->f_bavail = 0;
1026
1027 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1028 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1029 sbp->f_favail = sbp->f_ffree;
1030 sbp->f_fresvd = 0;
1031 copy_statvfs_info(sbp, mp);
1032 return (0);
1033 }
1034
1035 /*
1036 * Go through the disk queues to initiate sandbagged IO;
1037 * go through the inodes to write those that have been modified;
1038 * initiate the writing of the super block if it has been modified.
1039 *
1040 * Note: we are always called with the filesystem marked `MPBUSY'.
1041 */
1042 int
1043 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred,
1044 struct lwp *l)
1045 {
1046 int error;
1047 struct lfs *fs;
1048
1049 fs = VFSTOUFS(mp)->um_lfs;
1050 if (fs->lfs_ronly)
1051 return 0;
1052
1053 /* Snapshots should not hose the syncer */
1054 /*
1055 * XXX Sync can block here anyway, since we don't have a very
1056 * XXX good idea of how much data is pending. If it's more
1057 * XXX than a segment and lfs_nextseg is close to the end of
1058 * XXX the log, we'll likely block.
1059 */
1060 simple_lock(&fs->lfs_interlock);
1061 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1062 simple_unlock(&fs->lfs_interlock);
1063 return 0;
1064 }
1065 simple_unlock(&fs->lfs_interlock);
1066
1067 lfs_writer_enter(fs, "lfs_dirops");
1068
1069 /* All syncs must be checkpoints until roll-forward is implemented. */
1070 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1071 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1072 lfs_writer_leave(fs);
1073 #ifdef QUOTA
1074 qsync(mp);
1075 #endif
1076 return (error);
1077 }
1078
1079 extern kmutex_t ufs_hashlock;
1080
1081 /*
1082 * Look up an LFS dinode number to find its incore vnode. If not already
1083 * in core, read it in from the specified device. Return the inode locked.
1084 * Detection and handling of mount points must be done by the calling routine.
1085 */
1086 int
1087 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1088 {
1089 struct lfs *fs;
1090 struct ufs1_dinode *dip;
1091 struct inode *ip;
1092 struct buf *bp;
1093 struct ifile *ifp;
1094 struct vnode *vp;
1095 struct ufsmount *ump;
1096 daddr_t daddr;
1097 dev_t dev;
1098 int error, retries;
1099 struct timespec ts;
1100
1101 memset(&ts, 0, sizeof ts); /* XXX gcc */
1102
1103 ump = VFSTOUFS(mp);
1104 dev = ump->um_dev;
1105 fs = ump->um_lfs;
1106
1107 /*
1108 * If the filesystem is not completely mounted yet, suspend
1109 * any access requests (wait for roll-forward to complete).
1110 */
1111 simple_lock(&fs->lfs_interlock);
1112 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1113 ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1114 &fs->lfs_interlock);
1115 simple_unlock(&fs->lfs_interlock);
1116
1117 retry:
1118 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1119 return (0);
1120
1121 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1122 *vpp = NULL;
1123 return (error);
1124 }
1125
1126 mutex_enter(&ufs_hashlock);
1127 if (ufs_ihashget(dev, ino, 0) != NULL) {
1128 mutex_exit(&ufs_hashlock);
1129 ungetnewvnode(vp);
1130 goto retry;
1131 }
1132
1133 /* Translate the inode number to a disk address. */
1134 if (ino == LFS_IFILE_INUM)
1135 daddr = fs->lfs_idaddr;
1136 else {
1137 /* XXX bounds-check this too */
1138 LFS_IENTRY(ifp, fs, ino, bp);
1139 daddr = ifp->if_daddr;
1140 if (fs->lfs_version > 1) {
1141 ts.tv_sec = ifp->if_atime_sec;
1142 ts.tv_nsec = ifp->if_atime_nsec;
1143 }
1144
1145 brelse(bp, 0);
1146 if (daddr == LFS_UNUSED_DADDR) {
1147 *vpp = NULLVP;
1148 mutex_exit(&ufs_hashlock);
1149 ungetnewvnode(vp);
1150 return (ENOENT);
1151 }
1152 }
1153
1154 /* Allocate/init new vnode/inode. */
1155 lfs_vcreate(mp, ino, vp);
1156
1157 /*
1158 * Put it onto its hash chain and lock it so that other requests for
1159 * this inode will block if they arrive while we are sleeping waiting
1160 * for old data structures to be purged or for the contents of the
1161 * disk portion of this inode to be read.
1162 */
1163 ip = VTOI(vp);
1164 ufs_ihashins(ip);
1165 mutex_exit(&ufs_hashlock);
1166
1167 /*
1168 * XXX
1169 * This may not need to be here, logically it should go down with
1170 * the i_devvp initialization.
1171 * Ask Kirk.
1172 */
1173 ip->i_lfs = ump->um_lfs;
1174
1175 /* Read in the disk contents for the inode, copy into the inode. */
1176 retries = 0;
1177 again:
1178 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1179 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1180 NOCRED, &bp);
1181 if (error) {
1182 /*
1183 * The inode does not contain anything useful, so it would
1184 * be misleading to leave it on its hash chain. With mode
1185 * still zero, it will be unlinked and returned to the free
1186 * list by vput().
1187 */
1188 vput(vp);
1189 brelse(bp, 0);
1190 *vpp = NULL;
1191 return (error);
1192 }
1193
1194 dip = lfs_ifind(fs, ino, bp);
1195 if (dip == NULL) {
1196 /* Assume write has not completed yet; try again */
1197 brelse(bp, BC_INVAL);
1198 ++retries;
1199 if (retries > LFS_IFIND_RETRIES) {
1200 #ifdef DEBUG
1201 /* If the seglock is held look at the bpp to see
1202 what is there anyway */
1203 simple_lock(&fs->lfs_interlock);
1204 if (fs->lfs_seglock > 0) {
1205 struct buf **bpp;
1206 struct ufs1_dinode *dp;
1207 int i;
1208
1209 for (bpp = fs->lfs_sp->bpp;
1210 bpp != fs->lfs_sp->cbpp; ++bpp) {
1211 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1212 bpp != fs->lfs_sp->bpp) {
1213 /* Inode block */
1214 printf("lfs_vget: block 0x%" PRIx64 ": ",
1215 (*bpp)->b_blkno);
1216 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1217 for (i = 0; i < INOPB(fs); i++)
1218 if (dp[i].di_u.inumber)
1219 printf("%d ", dp[i].di_u.inumber);
1220 printf("\n");
1221 }
1222 }
1223 }
1224 simple_unlock(&fs->lfs_interlock);
1225 #endif /* DEBUG */
1226 panic("lfs_vget: dinode not found");
1227 }
1228 simple_lock(&fs->lfs_interlock);
1229 if (fs->lfs_iocount) {
1230 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1231 (void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
1232 "lfs ifind", 1, &fs->lfs_interlock);
1233 } else
1234 retries = LFS_IFIND_RETRIES;
1235 simple_unlock(&fs->lfs_interlock);
1236 goto again;
1237 }
1238 *ip->i_din.ffs1_din = *dip;
1239 brelse(bp, 0);
1240
1241 if (fs->lfs_version > 1) {
1242 ip->i_ffs1_atime = ts.tv_sec;
1243 ip->i_ffs1_atimensec = ts.tv_nsec;
1244 }
1245
1246 lfs_vinit(mp, &vp);
1247
1248 *vpp = vp;
1249
1250 KASSERT(VOP_ISLOCKED(vp));
1251
1252 return (0);
1253 }
1254
1255 /*
1256 * File handle to vnode
1257 */
1258 int
1259 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1260 {
1261 struct lfid lfh;
1262 struct buf *bp;
1263 IFILE *ifp;
1264 int32_t daddr;
1265 struct lfs *fs;
1266
1267 if (fhp->fid_len != sizeof(struct lfid))
1268 return EINVAL;
1269
1270 memcpy(&lfh, fhp, sizeof(lfh));
1271 if (lfh.lfid_ino < LFS_IFILE_INUM)
1272 return ESTALE;
1273
1274 fs = VFSTOUFS(mp)->um_lfs;
1275 if (lfh.lfid_ident != fs->lfs_ident)
1276 return ESTALE;
1277
1278 if (lfh.lfid_ino >
1279 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1280 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1281 return ESTALE;
1282
1283 if (ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino) == NULLVP) {
1284 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1285 daddr = ifp->if_daddr;
1286 brelse(bp, 0);
1287 if (daddr == LFS_UNUSED_DADDR)
1288 return ESTALE;
1289 }
1290
1291 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1292 }
1293
1294 /*
1295 * Vnode pointer to File handle
1296 */
1297 /* ARGSUSED */
1298 int
1299 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1300 {
1301 struct inode *ip;
1302 struct lfid lfh;
1303
1304 if (*fh_size < sizeof(struct lfid)) {
1305 *fh_size = sizeof(struct lfid);
1306 return E2BIG;
1307 }
1308 *fh_size = sizeof(struct lfid);
1309 ip = VTOI(vp);
1310 memset(&lfh, 0, sizeof(lfh));
1311 lfh.lfid_len = sizeof(struct lfid);
1312 lfh.lfid_ino = ip->i_number;
1313 lfh.lfid_gen = ip->i_gen;
1314 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1315 memcpy(fhp, &lfh, sizeof(lfh));
1316 return (0);
1317 }
1318
1319 static int
1320 sysctl_lfs_dostats(SYSCTLFN_ARGS)
1321 {
1322 extern struct lfs_stats lfs_stats;
1323 extern int lfs_dostats;
1324 int error;
1325
1326 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1327 if (error || newp == NULL)
1328 return (error);
1329
1330 if (lfs_dostats == 0)
1331 memset(&lfs_stats, 0, sizeof(lfs_stats));
1332
1333 return (0);
1334 }
1335
1336 struct shortlong {
1337 const char *sname;
1338 const char *lname;
1339 };
1340
1341 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
1342 {
1343 int i;
1344 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
1345 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
1346 #ifdef DEBUG
1347 extern int lfs_debug_log_subsys[DLOG_MAX];
1348 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
1349 { "rollforward", "Debug roll-forward code" },
1350 { "alloc", "Debug inode allocation and free list" },
1351 { "avail", "Debug space-available-now accounting" },
1352 { "flush", "Debug flush triggers" },
1353 { "lockedlist", "Debug locked list accounting" },
1354 { "vnode_verbose", "Verbose per-vnode-written debugging" },
1355 { "vnode", "Debug vnode use during segment write" },
1356 { "segment", "Debug segment writing" },
1357 { "seguse", "Debug segment used-bytes accounting" },
1358 { "cleaner", "Debug cleaning routines" },
1359 { "mount", "Debug mount/unmount routines" },
1360 { "pagecache", "Debug UBC interactions" },
1361 { "dirop", "Debug directory-operation accounting" },
1362 { "malloc", "Debug private malloc accounting" },
1363 };
1364 #endif /* DEBUG */
1365 struct shortlong stat_names[] = { /* Must match lfs.h! */
1366 { "segsused", "Number of new segments allocated" },
1367 { "psegwrites", "Number of partial-segment writes" },
1368 { "psyncwrites", "Number of synchronous partial-segment"
1369 " writes" },
1370 { "pcleanwrites", "Number of partial-segment writes by the"
1371 " cleaner" },
1372 { "blocktot", "Number of blocks written" },
1373 { "cleanblocks", "Number of blocks written by the cleaner" },
1374 { "ncheckpoints", "Number of checkpoints made" },
1375 { "nwrites", "Number of whole writes" },
1376 { "nsync_writes", "Number of synchronous writes" },
1377 { "wait_exceeded", "Number of times writer waited for"
1378 " cleaner" },
1379 { "write_exceeded", "Number of times writer invoked flush" },
1380 { "flush_invoked", "Number of times flush was invoked" },
1381 { "vflush_invoked", "Number of time vflush was called" },
1382 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
1383 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
1384 { "segs_reclaimed", "Number of segments reclaimed" },
1385 };
1386
1387 sysctl_createv(clog, 0, NULL, NULL,
1388 CTLFLAG_PERMANENT,
1389 CTLTYPE_NODE, "vfs", NULL,
1390 NULL, 0, NULL, 0,
1391 CTL_VFS, CTL_EOL);
1392 sysctl_createv(clog, 0, NULL, NULL,
1393 CTLFLAG_PERMANENT,
1394 CTLTYPE_NODE, "lfs",
1395 SYSCTL_DESCR("Log-structured file system"),
1396 NULL, 0, NULL, 0,
1397 CTL_VFS, 5, CTL_EOL);
1398 /*
1399 * XXX the "5" above could be dynamic, thereby eliminating one
1400 * more instance of the "number to vfs" mapping problem, but
1401 * "5" is the order as taken from sys/mount.h
1402 */
1403
1404 sysctl_createv(clog, 0, NULL, NULL,
1405 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1406 CTLTYPE_INT, "flushindir", NULL,
1407 NULL, 0, &lfs_writeindir, 0,
1408 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
1409 sysctl_createv(clog, 0, NULL, NULL,
1410 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1411 CTLTYPE_INT, "clean_vnhead", NULL,
1412 NULL, 0, &lfs_clean_vnhead, 0,
1413 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
1414 sysctl_createv(clog, 0, NULL, NULL,
1415 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1416 CTLTYPE_INT, "dostats",
1417 SYSCTL_DESCR("Maintain statistics on LFS operations"),
1418 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
1419 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
1420 sysctl_createv(clog, 0, NULL, NULL,
1421 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1422 CTLTYPE_INT, "pagetrip",
1423 SYSCTL_DESCR("How many dirty pages in fs triggers"
1424 " a flush"),
1425 NULL, 0, &lfs_fs_pagetrip, 0,
1426 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
1427 sysctl_createv(clog, 0, NULL, NULL,
1428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1429 CTLTYPE_INT, "ignore_lazy_sync",
1430 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
1431 NULL, 0, &lfs_ignore_lazy_sync, 0,
1432 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
1433 #ifdef LFS_KERNEL_RFW
1434 sysctl_createv(clog, 0, NULL, NULL,
1435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1436 CTLTYPE_INT, "rfw",
1437 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
1438 NULL, 0, &lfs_do_rfw, 0,
1439 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
1440 #endif
1441
1442 sysctl_createv(clog, 0, NULL, NULL,
1443 CTLFLAG_PERMANENT,
1444 CTLTYPE_NODE, "stats",
1445 SYSCTL_DESCR("Debugging options"),
1446 NULL, 0, NULL, 0,
1447 CTL_VFS, 5, LFS_STATS, CTL_EOL);
1448 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
1449 sysctl_createv(clog, 0, NULL, NULL,
1450 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1451 CTLTYPE_INT, stat_names[i].sname,
1452 SYSCTL_DESCR(stat_names[i].lname),
1453 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
1454 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
1455 }
1456
1457 #ifdef DEBUG
1458 sysctl_createv(clog, 0, NULL, NULL,
1459 CTLFLAG_PERMANENT,
1460 CTLTYPE_NODE, "debug",
1461 SYSCTL_DESCR("Debugging options"),
1462 NULL, 0, NULL, 0,
1463 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
1464 for (i = 0; i < DLOG_MAX; i++) {
1465 sysctl_createv(clog, 0, NULL, NULL,
1466 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1467 CTLTYPE_INT, dlog_names[i].sname,
1468 SYSCTL_DESCR(dlog_names[i].lname),
1469 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
1470 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
1471 }
1472 #endif
1473 }
1474
1475 /*
1476 * ufs_bmaparray callback function for writing.
1477 *
1478 * Since blocks will be written to the new segment anyway,
1479 * we don't care about current daddr of them.
1480 */
1481 static bool
1482 lfs_issequential_hole(const struct ufsmount *ump,
1483 daddr_t daddr0, daddr_t daddr1)
1484 {
1485 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1486 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1487
1488 KASSERT(daddr0 == UNWRITTEN ||
1489 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1490 KASSERT(daddr1 == UNWRITTEN ||
1491 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1492
1493 /* NOTE: all we want to know here is 'hole or not'. */
1494 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1495
1496 /*
1497 * treat UNWRITTENs and all resident blocks as 'contiguous'
1498 */
1499 if (daddr0 != 0 && daddr1 != 0)
1500 return true;
1501
1502 /*
1503 * both are in hole?
1504 */
1505 if (daddr0 == 0 && daddr1 == 0)
1506 return true; /* all holes are 'contiguous' for us. */
1507
1508 return false;
1509 }
1510
1511 /*
1512 * lfs_gop_write functions exactly like genfs_gop_write, except that
1513 * (1) it requires the seglock to be held by its caller, and sp->fip
1514 * to be properly initialized (it will return without re-initializing
1515 * sp->fip, and without calling lfs_writeseg).
1516 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1517 * to determine how large a block it can write at once (though it does
1518 * still use VOP_BMAP to find holes in the file);
1519 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1520 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1521 * now have clusters of clusters, ick.)
1522 */
1523 static int
1524 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1525 int flags)
1526 {
1527 int i, s, error, run, haveeof = 0;
1528 int fs_bshift;
1529 vaddr_t kva;
1530 off_t eof, offset, startoffset = 0;
1531 size_t bytes, iobytes, skipbytes;
1532 daddr_t lbn, blkno;
1533 struct vm_page *pg;
1534 struct buf *mbp, *bp;
1535 struct vnode *devvp = VTOI(vp)->i_devvp;
1536 struct inode *ip = VTOI(vp);
1537 struct lfs *fs = ip->i_lfs;
1538 struct segment *sp = fs->lfs_sp;
1539 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1540
1541 ASSERT_SEGLOCK(fs);
1542
1543 /* The Ifile lives in the buffer cache */
1544 KASSERT(vp != fs->lfs_ivnode);
1545
1546 /*
1547 * We don't want to fill the disk before the cleaner has a chance
1548 * to make room for us. If we're in danger of doing that, fail
1549 * with EAGAIN. The caller will have to notice this, unlock
1550 * so the cleaner can run, relock and try again.
1551 *
1552 * We must write everything, however, if our vnode is being
1553 * reclaimed.
1554 */
1555 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1556 goto tryagain;
1557
1558 /*
1559 * Sometimes things slip past the filters in lfs_putpages,
1560 * and the pagedaemon tries to write pages---problem is
1561 * that the pagedaemon never acquires the segment lock.
1562 *
1563 * Alternatively, pages that were clean when we called
1564 * genfs_putpages may have become dirty in the meantime. In this
1565 * case the segment header is not properly set up for blocks
1566 * to be added to it.
1567 *
1568 * Unbusy and unclean the pages, and put them on the ACTIVE
1569 * queue under the hypothesis that they couldn't have got here
1570 * unless they were modified *quite* recently.
1571 *
1572 * XXXUBC that last statement is an oversimplification of course.
1573 */
1574 if (!LFS_SEGLOCK_HELD(fs) ||
1575 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1576 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1577 goto tryagain;
1578 }
1579
1580 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1581 vp, pgs, npages, flags);
1582
1583 GOP_SIZE(vp, vp->v_size, &eof, 0);
1584 haveeof = 1;
1585
1586 if (vp->v_type == VREG)
1587 fs_bshift = vp->v_mount->mnt_fs_bshift;
1588 else
1589 fs_bshift = DEV_BSHIFT;
1590 error = 0;
1591 pg = pgs[0];
1592 startoffset = pg->offset;
1593 KASSERT(eof >= 0);
1594
1595 if (startoffset >= eof) {
1596 goto tryagain;
1597 } else
1598 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1599 skipbytes = 0;
1600
1601 KASSERT(bytes != 0);
1602
1603 /* Swap PG_DELWRI for PG_PAGEOUT */
1604 for (i = 0; i < npages; i++) {
1605 if (pgs[i]->flags & PG_DELWRI) {
1606 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1607 pgs[i]->flags &= ~PG_DELWRI;
1608 pgs[i]->flags |= PG_PAGEOUT;
1609 uvmexp.paging++;
1610 uvm_lock_pageq();
1611 uvm_pageunwire(pgs[i]);
1612 uvm_unlock_pageq();
1613 }
1614 }
1615
1616 /*
1617 * Check to make sure we're starting on a block boundary.
1618 * We'll check later to make sure we always write entire
1619 * blocks (or fragments).
1620 */
1621 if (startoffset & fs->lfs_bmask)
1622 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1623 startoffset, fs->lfs_bmask,
1624 startoffset & fs->lfs_bmask);
1625 KASSERT((startoffset & fs->lfs_bmask) == 0);
1626 if (bytes & fs->lfs_ffmask) {
1627 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1628 panic("lfs_gop_write: non-integer blocks");
1629 }
1630
1631 /*
1632 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1633 * If we would, write what we have and try again. If we don't
1634 * have anything to write, we'll have to sleep.
1635 */
1636 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1637 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1638 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1639 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1640 #if 0
1641 " with nfinfo=%d at offset 0x%x\n",
1642 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1643 (unsigned)fs->lfs_offset));
1644 #endif
1645 lfs_updatemeta(sp);
1646 lfs_release_finfo(fs);
1647 (void) lfs_writeseg(fs, sp);
1648
1649 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1650
1651 /*
1652 * Having given up all of the pager_map we were holding,
1653 * we can now wait for aiodoned to reclaim it for us
1654 * without fear of deadlock.
1655 */
1656 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1657 UVMPAGER_MAPIN_WAITOK);
1658 }
1659
1660 s = splbio();
1661 simple_lock(&global_v_numoutput_slock);
1662 vp->v_numoutput += 2; /* one for biodone, one for aiodone */
1663 simple_unlock(&global_v_numoutput_slock);
1664 splx(s);
1665
1666 mbp = getiobuf();
1667 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1668 vp, mbp, vp->v_numoutput, bytes);
1669 mbp->b_bufsize = npages << PAGE_SHIFT;
1670 mbp->b_data = (void *)kva;
1671 mbp->b_resid = mbp->b_bcount = bytes;
1672 mbp->b_flags = B_BUSY|B_WRITE|B_AGE|B_CALL;
1673 mbp->b_iodone = uvm_aio_biodone;
1674 mbp->b_vp = vp;
1675
1676 bp = NULL;
1677 for (offset = startoffset;
1678 bytes > 0;
1679 offset += iobytes, bytes -= iobytes) {
1680 lbn = offset >> fs_bshift;
1681 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1682 lfs_issequential_hole);
1683 if (error) {
1684 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1685 error,0,0,0);
1686 skipbytes += bytes;
1687 bytes = 0;
1688 break;
1689 }
1690
1691 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1692 bytes);
1693 if (blkno == (daddr_t)-1) {
1694 skipbytes += iobytes;
1695 continue;
1696 }
1697
1698 /*
1699 * Discover how much we can really pack into this buffer.
1700 */
1701 /* If no room in the current segment, finish it up */
1702 if (sp->sum_bytes_left < sizeof(int32_t) ||
1703 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1704 int vers;
1705
1706 lfs_updatemeta(sp);
1707 vers = sp->fip->fi_version;
1708 lfs_release_finfo(fs);
1709 (void) lfs_writeseg(fs, sp);
1710
1711 lfs_acquire_finfo(fs, ip->i_number, vers);
1712 }
1713 /* Check both for space in segment and space in segsum */
1714 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1715 << fs_bshift);
1716 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1717 << fs_bshift);
1718 KASSERT(iobytes > 0);
1719
1720 /* if it's really one i/o, don't make a second buf */
1721 if (offset == startoffset && iobytes == bytes) {
1722 bp = mbp;
1723 /* correct overcount if there is no second buffer */
1724 s = splbio();
1725 simple_lock(&global_v_numoutput_slock);
1726 --vp->v_numoutput;
1727 simple_unlock(&global_v_numoutput_slock);
1728 splx(s);
1729 } else {
1730 bp = getiobuf();
1731 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1732 vp, bp, vp->v_numoutput, 0);
1733 bp->b_data = (char *)kva +
1734 (vaddr_t)(offset - pg->offset);
1735 bp->b_resid = bp->b_bcount = iobytes;
1736 bp->b_flags = B_BUSY|B_WRITE|B_CALL;
1737 bp->b_iodone = uvm_aio_biodone1;
1738 }
1739
1740 /* XXX This is silly ... is this necessary? */
1741 bp->b_vp = NULL;
1742 s = splbio();
1743 bgetvp(vp, bp);
1744 splx(s);
1745
1746 bp->b_lblkno = lblkno(fs, offset);
1747 bp->b_private = mbp;
1748 if (devvp->v_type == VBLK) {
1749 bp->b_dev = devvp->v_rdev;
1750 }
1751 VOP_BWRITE(bp);
1752 while (lfs_gatherblock(sp, bp, NULL))
1753 continue;
1754 }
1755
1756 if (skipbytes) {
1757 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1758 s = splbio();
1759 if (error) {
1760 mbp->b_error = error;
1761 }
1762 mbp->b_resid -= skipbytes;
1763 if (mbp->b_resid == 0) {
1764 biodone(mbp);
1765 }
1766 splx(s);
1767 }
1768 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1769 return (0);
1770
1771 tryagain:
1772 /*
1773 * We can't write the pages, for whatever reason.
1774 * Clean up after ourselves, and make the caller try again.
1775 */
1776 simple_lock(&vp->v_interlock);
1777
1778 /* Tell why we're here, if we know */
1779 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1780 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1781 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1782 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1783 } else if (haveeof && startoffset >= eof) {
1784 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1785 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1786 pgs[0]->offset, eof, npages));
1787 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1788 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1789 } else {
1790 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1791 }
1792
1793 uvm_lock_pageq();
1794 for (i = 0; i < npages; i++) {
1795 pg = pgs[i];
1796
1797 if (pg->flags & PG_PAGEOUT)
1798 uvmexp.paging--;
1799 if (pg->flags & PG_DELWRI) {
1800 uvm_pageunwire(pg);
1801 }
1802 uvm_pageactivate(pg);
1803 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1804 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1805 vp, pg->offset));
1806 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1807 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1808 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1809 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1810 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1811 pg->wire_count));
1812 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1813 pg->loan_count));
1814 }
1815 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1816 uvm_page_unbusy(pgs, npages);
1817 uvm_unlock_pageq();
1818 simple_unlock(&vp->v_interlock);
1819 return EAGAIN;
1820 }
1821
1822 /*
1823 * finish vnode/inode initialization.
1824 * used by lfs_vget and lfs_fastvget.
1825 */
1826 void
1827 lfs_vinit(struct mount *mp, struct vnode **vpp)
1828 {
1829 struct vnode *vp = *vpp;
1830 struct inode *ip = VTOI(vp);
1831 struct ufsmount *ump = VFSTOUFS(mp);
1832 struct lfs *fs = ump->um_lfs;
1833 int i;
1834
1835 ip->i_mode = ip->i_ffs1_mode;
1836 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
1837 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1838 ip->i_flags = ip->i_ffs1_flags;
1839 ip->i_gen = ip->i_ffs1_gen;
1840 ip->i_uid = ip->i_ffs1_uid;
1841 ip->i_gid = ip->i_ffs1_gid;
1842
1843 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1844 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1845
1846 /*
1847 * Initialize the vnode from the inode, check for aliases. In all
1848 * cases re-init ip, the underlying vnode/inode may have changed.
1849 */
1850 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1851 ip = VTOI(vp);
1852
1853 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1854 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1855 #ifdef DEBUG
1856 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1857 i < NDADDR; i++) {
1858 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1859 i == 0)
1860 continue;
1861 if (ip->i_ffs1_db[i] != 0) {
1862 inconsistent:
1863 lfs_dump_dinode(ip->i_din.ffs1_din);
1864 panic("inconsistent inode");
1865 }
1866 }
1867 for ( ; i < NDADDR + NIADDR; i++) {
1868 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1869 goto inconsistent;
1870 }
1871 }
1872 #endif /* DEBUG */
1873 for (i = 0; i < NDADDR; i++)
1874 if (ip->i_ffs1_db[i] != 0)
1875 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1876 }
1877
1878 #ifdef DIAGNOSTIC
1879 if (vp->v_type == VNON) {
1880 # ifdef DEBUG
1881 lfs_dump_dinode(ip->i_din.ffs1_din);
1882 # endif
1883 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1884 (unsigned long long)ip->i_number,
1885 (ip->i_mode & IFMT) >> 12);
1886 }
1887 #endif /* DIAGNOSTIC */
1888
1889 /*
1890 * Finish inode initialization now that aliasing has been resolved.
1891 */
1892
1893 ip->i_devvp = ump->um_devvp;
1894 VREF(ip->i_devvp);
1895 genfs_node_init(vp, &lfs_genfsops);
1896 uvm_vnp_setsize(vp, ip->i_size);
1897
1898 /* Initialize hiblk from file size */
1899 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1900
1901 *vpp = vp;
1902 }
1903
1904 /*
1905 * Resize the filesystem to contain the specified number of segments.
1906 */
1907 int
1908 lfs_resize_fs(struct lfs *fs, int newnsegs)
1909 {
1910 SEGUSE *sup;
1911 struct buf *bp, *obp;
1912 daddr_t olast, nlast, ilast, noff, start, end;
1913 struct vnode *ivp;
1914 struct inode *ip;
1915 int error, badnews, inc, oldnsegs;
1916 int sbbytes, csbbytes, gain, cgain;
1917 int i;
1918
1919 /* Only support v2 and up */
1920 if (fs->lfs_version < 2)
1921 return EOPNOTSUPP;
1922
1923 /* If we're doing nothing, do it fast */
1924 oldnsegs = fs->lfs_nseg;
1925 if (newnsegs == oldnsegs)
1926 return 0;
1927
1928 /* We always have to have two superblocks */
1929 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1930 return EFBIG;
1931
1932 ivp = fs->lfs_ivnode;
1933 ip = VTOI(ivp);
1934 error = 0;
1935
1936 /* Take the segment lock so no one else calls lfs_newseg() */
1937 lfs_seglock(fs, SEGM_PROT);
1938
1939 /*
1940 * Make sure the segments we're going to be losing, if any,
1941 * are in fact empty. We hold the seglock, so their status
1942 * cannot change underneath us. Count the superblocks we lose,
1943 * while we're at it.
1944 */
1945 sbbytes = csbbytes = 0;
1946 cgain = 0;
1947 for (i = newnsegs; i < oldnsegs; i++) {
1948 LFS_SEGENTRY(sup, fs, i, bp);
1949 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1950 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1951 sbbytes += LFS_SBPAD;
1952 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1953 ++cgain;
1954 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1955 csbbytes += LFS_SBPAD;
1956 }
1957 brelse(bp, 0);
1958 if (badnews) {
1959 error = EBUSY;
1960 goto out;
1961 }
1962 }
1963
1964 /* Note old and new segment table endpoints, and old ifile size */
1965 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1966 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1967 ilast = ivp->v_size >> fs->lfs_bshift;
1968 noff = nlast - olast;
1969
1970 /*
1971 * Make sure no one can use the Ifile while we change it around.
1972 * Even after taking the iflock we need to make sure no one still
1973 * is holding Ifile buffers, so we get each one, to drain them.
1974 * (XXX this could be done better.)
1975 */
1976 simple_lock(&fs->lfs_interlock);
1977 lockmgr(&fs->lfs_iflock, LK_EXCLUSIVE, &fs->lfs_interlock);
1978 simple_unlock(&fs->lfs_interlock);
1979 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1980 for (i = 0; i < ilast; i++) {
1981 bread(ivp, i, fs->lfs_bsize, NOCRED, &bp);
1982 brelse(bp, 0);
1983 }
1984
1985 /* Allocate new Ifile blocks */
1986 for (i = ilast; i < ilast + noff; i++) {
1987 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
1988 &bp) != 0)
1989 panic("balloc extending ifile");
1990 memset(bp->b_data, 0, fs->lfs_bsize);
1991 VOP_BWRITE(bp);
1992 }
1993
1994 /* Register new ifile size */
1995 ip->i_size += noff * fs->lfs_bsize;
1996 ip->i_ffs1_size = ip->i_size;
1997 uvm_vnp_setsize(ivp, ip->i_size);
1998
1999 /* Copy the inode table to its new position */
2000 if (noff != 0) {
2001 if (noff < 0) {
2002 start = nlast;
2003 end = ilast + noff;
2004 inc = 1;
2005 } else {
2006 start = ilast + noff - 1;
2007 end = nlast - 1;
2008 inc = -1;
2009 }
2010 for (i = start; i != end; i += inc) {
2011 if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0)
2012 panic("resize: bread dst blk failed");
2013 if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp))
2014 panic("resize: bread src blk failed");
2015 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2016 VOP_BWRITE(bp);
2017 brelse(obp, 0);
2018 }
2019 }
2020
2021 /* If we are expanding, write the new empty SEGUSE entries */
2022 if (newnsegs > oldnsegs) {
2023 for (i = oldnsegs; i < newnsegs; i++) {
2024 if ((error = bread(ivp, i / fs->lfs_sepb +
2025 fs->lfs_cleansz,
2026 fs->lfs_bsize, NOCRED, &bp)) != 0)
2027 panic("lfs: ifile read: %d", error);
2028 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2029 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2030 memset(sup, 0, sizeof(*sup));
2031 i++;
2032 }
2033 VOP_BWRITE(bp);
2034 }
2035 }
2036
2037 /* Zero out unused superblock offsets */
2038 for (i = 2; i < LFS_MAXNUMSB; i++)
2039 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2040 fs->lfs_sboffs[i] = 0x0;
2041
2042 /*
2043 * Correct superblock entries that depend on fs size.
2044 * The computations of these are as follows:
2045 *
2046 * size = segtod(fs, nseg)
2047 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2048 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2049 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2050 * + (segtod(fs, 1) - (offset - curseg))
2051 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2052 *
2053 * XXX - we should probably adjust minfreeseg as well.
2054 */
2055 gain = (newnsegs - oldnsegs);
2056 fs->lfs_nseg = newnsegs;
2057 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2058 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2059 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2060 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2061 - gain * btofsb(fs, fs->lfs_bsize / 2);
2062 if (gain > 0) {
2063 fs->lfs_nclean += gain;
2064 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2065 } else {
2066 fs->lfs_nclean -= cgain;
2067 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2068 btofsb(fs, csbbytes);
2069 }
2070
2071 /* Resize segment flag cache */
2072 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2073 fs->lfs_nseg * sizeof(u_int32_t),
2074 M_SEGMENT, M_WAITOK);
2075 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2076 fs->lfs_nseg * sizeof(u_int32_t),
2077 M_SEGMENT, M_WAITOK);
2078 for (i = oldnsegs; i < newnsegs; i++)
2079 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2080
2081 /* Truncate Ifile if necessary */
2082 if (noff < 0)
2083 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2084 NOCRED, curlwp);
2085
2086 /* Update cleaner info so the cleaner can die */
2087 bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp);
2088 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2089 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2090 VOP_BWRITE(bp);
2091
2092 /* Let Ifile accesses proceed */
2093 VOP_UNLOCK(ivp, 0);
2094 simple_lock(&fs->lfs_interlock);
2095 lockmgr(&fs->lfs_iflock, LK_RELEASE, &fs->lfs_interlock);
2096 simple_unlock(&fs->lfs_interlock);
2097
2098 out:
2099 lfs_segunlock(fs);
2100 return error;
2101 }
2102