Home | History | Annotate | Line # | Download | only in lfs
lfs_vfsops.c revision 1.257
      1 /*	$NetBSD: lfs_vfsops.c,v 1.257 2008/04/29 18:18:09 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 /*-
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)lfs_vfsops.c	8.20 (Berkeley) 6/10/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.257 2008/04/29 18:18:09 ad Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_lfs.h"
     68 #include "opt_quota.h"
     69 #endif
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/namei.h>
     74 #include <sys/proc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/vnode.h>
     77 #include <sys/mount.h>
     78 #include <sys/kthread.h>
     79 #include <sys/buf.h>
     80 #include <sys/device.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/file.h>
     83 #include <sys/disklabel.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/errno.h>
     86 #include <sys/malloc.h>
     87 #include <sys/pool.h>
     88 #include <sys/socket.h>
     89 #include <sys/syslog.h>
     90 #include <uvm/uvm_extern.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 
     95 #include <miscfs/specfs/specdev.h>
     96 
     97 #include <ufs/ufs/quota.h>
     98 #include <ufs/ufs/inode.h>
     99 #include <ufs/ufs/ufsmount.h>
    100 #include <ufs/ufs/ufs_extern.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_stat.h>
    104 #include <uvm/uvm_pager.h>
    105 #include <uvm/uvm_pdaemon.h>
    106 
    107 #include <ufs/lfs/lfs.h>
    108 #include <ufs/lfs/lfs_extern.h>
    109 
    110 #include <miscfs/genfs/genfs.h>
    111 #include <miscfs/genfs/genfs_node.h>
    112 
    113 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
    114 static bool lfs_issequential_hole(const struct ufsmount *,
    115     daddr_t, daddr_t);
    116 
    117 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
    118 
    119 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
    120 extern const struct vnodeopv_desc lfs_specop_opv_desc;
    121 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
    122 
    123 pid_t lfs_writer_daemon = 0;
    124 int lfs_do_flush = 0;
    125 #ifdef LFS_KERNEL_RFW
    126 int lfs_do_rfw = 0;
    127 #endif
    128 
    129 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
    130 	&lfs_vnodeop_opv_desc,
    131 	&lfs_specop_opv_desc,
    132 	&lfs_fifoop_opv_desc,
    133 	NULL,
    134 };
    135 
    136 struct vfsops lfs_vfsops = {
    137 	MOUNT_LFS,
    138 	sizeof (struct ufs_args),
    139 	lfs_mount,
    140 	ufs_start,
    141 	lfs_unmount,
    142 	ufs_root,
    143 	ufs_quotactl,
    144 	lfs_statvfs,
    145 	lfs_sync,
    146 	lfs_vget,
    147 	lfs_fhtovp,
    148 	lfs_vptofh,
    149 	lfs_init,
    150 	lfs_reinit,
    151 	lfs_done,
    152 	lfs_mountroot,
    153 	(int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
    154 	vfs_stdextattrctl,
    155 	(void *)eopnotsupp,	/* vfs_suspendctl */
    156 	genfs_renamelock_enter,
    157 	genfs_renamelock_exit,
    158 	(void *)eopnotsupp,
    159 	lfs_vnodeopv_descs,
    160 	0,
    161 	{ NULL, NULL },
    162 };
    163 VFS_ATTACH(lfs_vfsops);
    164 
    165 const struct genfs_ops lfs_genfsops = {
    166 	.gop_size = lfs_gop_size,
    167 	.gop_alloc = ufs_gop_alloc,
    168 	.gop_write = lfs_gop_write,
    169 	.gop_markupdate = ufs_gop_markupdate,
    170 };
    171 
    172 static const struct ufs_ops lfs_ufsops = {
    173 	.uo_itimes = NULL,
    174 	.uo_update = lfs_update,
    175 	.uo_truncate = lfs_truncate,
    176 	.uo_valloc = lfs_valloc,
    177 	.uo_vfree = lfs_vfree,
    178 	.uo_balloc = lfs_balloc,
    179 };
    180 
    181 /*
    182  * XXX Same structure as FFS inodes?  Should we share a common pool?
    183  */
    184 struct pool lfs_inode_pool;
    185 struct pool lfs_dinode_pool;
    186 struct pool lfs_inoext_pool;
    187 struct pool lfs_lbnentry_pool;
    188 
    189 /*
    190  * The writer daemon.  UVM keeps track of how many dirty pages we are holding
    191  * in lfs_subsys_pages; the daemon flushes the filesystem when this value
    192  * crosses the (user-defined) threshhold LFS_MAX_PAGES.
    193  */
    194 static void
    195 lfs_writerd(void *arg)
    196 {
    197 	struct mount *mp, *nmp;
    198 	struct lfs *fs;
    199 	int fsflags;
    200 	int loopcount;
    201 
    202 	lfs_writer_daemon = curproc->p_pid;
    203 
    204 	mutex_enter(&lfs_lock);
    205 	for (;;) {
    206 		mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
    207 		    &lfs_lock);
    208 
    209 		/*
    210 		 * Look through the list of LFSs to see if any of them
    211 		 * have requested pageouts.
    212 		 */
    213 		mutex_enter(&mountlist_lock);
    214 		for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
    215 		     mp = nmp) {
    216 			if (vfs_trybusy(mp, RW_WRITER, &mountlist_lock)) {
    217 				nmp = CIRCLEQ_NEXT(mp, mnt_list);
    218 				continue;
    219 			}
    220 			if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
    221 			    sizeof(mp->mnt_stat.f_fstypename)) == 0) {
    222 				fs = VFSTOUFS(mp)->um_lfs;
    223 				mutex_enter(&lfs_lock);
    224 				fsflags = 0;
    225 				if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
    226 				     lfs_dirvcount > LFS_MAX_DIROP) &&
    227 				    fs->lfs_dirops == 0)
    228 					fsflags |= SEGM_CKP;
    229 				if (fs->lfs_pdflush) {
    230 					DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
    231 					fs->lfs_pdflush = 0;
    232 					lfs_flush_fs(fs, fsflags);
    233 					mutex_exit(&lfs_lock);
    234 				} else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
    235 					DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
    236 					mutex_exit(&lfs_lock);
    237 					lfs_writer_enter(fs, "wrdirop");
    238 					lfs_flush_pchain(fs);
    239 					lfs_writer_leave(fs);
    240 				} else
    241 					mutex_exit(&lfs_lock);
    242 			}
    243 
    244 			mutex_enter(&mountlist_lock);
    245 			nmp = CIRCLEQ_NEXT(mp, mnt_list);
    246 			vfs_unbusy(mp, false);
    247 		}
    248 		mutex_exit(&mountlist_lock);
    249 
    250 		/*
    251 		 * If global state wants a flush, flush everything.
    252 		 */
    253 		mutex_enter(&lfs_lock);
    254 		loopcount = 0;
    255 		if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
    256 			locked_queue_bytes > LFS_MAX_BYTES ||
    257 			lfs_subsys_pages > LFS_MAX_PAGES) {
    258 
    259 			if (lfs_do_flush) {
    260 				DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
    261 			}
    262 			if (locked_queue_count > LFS_MAX_BUFS) {
    263 				DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
    264 				      locked_queue_count, LFS_MAX_BUFS));
    265 			}
    266 			if (locked_queue_bytes > LFS_MAX_BYTES) {
    267 				DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
    268 				      locked_queue_bytes, LFS_MAX_BYTES));
    269 			}
    270 			if (lfs_subsys_pages > LFS_MAX_PAGES) {
    271 				DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
    272 				      lfs_subsys_pages, LFS_MAX_PAGES));
    273 			}
    274 
    275 			lfs_flush(NULL, SEGM_WRITERD, 0);
    276 			lfs_do_flush = 0;
    277 		}
    278 	}
    279 	/* NOTREACHED */
    280 }
    281 
    282 /*
    283  * Initialize the filesystem, most work done by ufs_init.
    284  */
    285 void
    286 lfs_init()
    287 {
    288 
    289 	malloc_type_attach(M_SEGMENT);
    290 	pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
    291 	    "lfsinopl", &pool_allocator_nointr, IPL_NONE);
    292 	pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
    293 	    "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
    294 	pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
    295 	    "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
    296 	pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
    297 	    "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
    298 	ufs_init();
    299 
    300 #ifdef DEBUG
    301 	memset(lfs_log, 0, sizeof(lfs_log));
    302 #endif
    303 	mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
    304 	cv_init(&locked_queue_cv, "lfsbuf");
    305 	cv_init(&lfs_writing_cv, "lfsflush");
    306 }
    307 
    308 void
    309 lfs_reinit()
    310 {
    311 	ufs_reinit();
    312 }
    313 
    314 void
    315 lfs_done()
    316 {
    317 	ufs_done();
    318 	mutex_destroy(&lfs_lock);
    319 	cv_destroy(&locked_queue_cv);
    320 	cv_destroy(&lfs_writing_cv);
    321 	pool_destroy(&lfs_inode_pool);
    322 	pool_destroy(&lfs_dinode_pool);
    323 	pool_destroy(&lfs_inoext_pool);
    324 	pool_destroy(&lfs_lbnentry_pool);
    325 	malloc_type_detach(M_SEGMENT);
    326 }
    327 
    328 /*
    329  * Called by main() when ufs is going to be mounted as root.
    330  */
    331 int
    332 lfs_mountroot()
    333 {
    334 	extern struct vnode *rootvp;
    335 	struct mount *mp;
    336 	struct lwp *l = curlwp;
    337 	int error;
    338 
    339 	if (device_class(root_device) != DV_DISK)
    340 		return (ENODEV);
    341 
    342 	if (rootdev == NODEV)
    343 		return (ENODEV);
    344 	if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
    345 		vrele(rootvp);
    346 		return (error);
    347 	}
    348 	if ((error = lfs_mountfs(rootvp, mp, l))) {
    349 		vfs_unbusy(mp, false);
    350 		vfs_destroy(mp);
    351 		return (error);
    352 	}
    353 	mutex_enter(&mountlist_lock);
    354 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    355 	mutex_exit(&mountlist_lock);
    356 	(void)lfs_statvfs(mp, &mp->mnt_stat);
    357 	vfs_unbusy(mp, false);
    358 	setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
    359 	return (0);
    360 }
    361 
    362 /*
    363  * VFS Operations.
    364  *
    365  * mount system call
    366  */
    367 int
    368 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    369 {
    370 	struct lwp *l = curlwp;
    371 	struct nameidata nd;
    372 	struct vnode *devvp;
    373 	struct ufs_args *args = data;
    374 	struct ufsmount *ump = NULL;
    375 	struct lfs *fs = NULL;				/* LFS */
    376 	int error = 0, update;
    377 	mode_t accessmode;
    378 
    379 	if (*data_len < sizeof *args)
    380 		return EINVAL;
    381 
    382 	if (mp->mnt_flag & MNT_GETARGS) {
    383 		ump = VFSTOUFS(mp);
    384 		if (ump == NULL)
    385 			return EIO;
    386 		args->fspec = NULL;
    387 		*data_len = sizeof *args;
    388 		return 0;
    389 	}
    390 
    391 	update = mp->mnt_flag & MNT_UPDATE;
    392 
    393 	/* Check arguments */
    394 	if (args->fspec != NULL) {
    395 		/*
    396 		 * Look up the name and verify that it's sane.
    397 		 */
    398 		NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec);
    399 		if ((error = namei(&nd)) != 0)
    400 			return (error);
    401 		devvp = nd.ni_vp;
    402 
    403 		if (!update) {
    404 			/*
    405 			 * Be sure this is a valid block device
    406 			 */
    407 			if (devvp->v_type != VBLK)
    408 				error = ENOTBLK;
    409 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    410 				error = ENXIO;
    411 		} else {
    412 			/*
    413 			 * Be sure we're still naming the same device
    414 			 * used for our initial mount
    415 			 */
    416 			ump = VFSTOUFS(mp);
    417 			if (devvp != ump->um_devvp)
    418 				error = EINVAL;
    419 		}
    420 	} else {
    421 		if (!update) {
    422 			/* New mounts must have a filename for the device */
    423 			return (EINVAL);
    424 		} else {
    425 			/* Use the extant mount */
    426 			ump = VFSTOUFS(mp);
    427 			devvp = ump->um_devvp;
    428 			vref(devvp);
    429 		}
    430 	}
    431 
    432 
    433 	/*
    434 	 * If mount by non-root, then verify that user has necessary
    435 	 * permissions on the device.
    436 	 */
    437 	if (error == 0 && kauth_authorize_generic(l->l_cred,
    438 	    KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    439 		accessmode = VREAD;
    440 		if (update ?
    441 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    442 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    443 			accessmode |= VWRITE;
    444 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    445 		error = VOP_ACCESS(devvp, accessmode, l->l_cred);
    446 		VOP_UNLOCK(devvp, 0);
    447 	}
    448 
    449 	if (error) {
    450 		vrele(devvp);
    451 		return (error);
    452 	}
    453 
    454 	if (!update) {
    455 		int flags;
    456 
    457 		if (mp->mnt_flag & MNT_RDONLY)
    458 			flags = FREAD;
    459 		else
    460 			flags = FREAD|FWRITE;
    461 		error = VOP_OPEN(devvp, flags, FSCRED);
    462 		if (error)
    463 			goto fail;
    464 		error = lfs_mountfs(devvp, mp, l);		/* LFS */
    465 		if (error) {
    466 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    467 			(void)VOP_CLOSE(devvp, flags, NOCRED);
    468 			VOP_UNLOCK(devvp, 0);
    469 			goto fail;
    470 		}
    471 
    472 		ump = VFSTOUFS(mp);
    473 		fs = ump->um_lfs;
    474 	} else {
    475 		/*
    476 		 * Update the mount.
    477 		 */
    478 
    479 		/*
    480 		 * The initial mount got a reference on this
    481 		 * device, so drop the one obtained via
    482 		 * namei(), above.
    483 		 */
    484 		vrele(devvp);
    485 
    486 		ump = VFSTOUFS(mp);
    487 		fs = ump->um_lfs;
    488 		if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    489 			/*
    490 			 * Changing from read-only to read/write.
    491 			 * Note in the superblocks that we're writing.
    492 			 */
    493 			fs->lfs_ronly = 0;
    494 			if (fs->lfs_pflags & LFS_PF_CLEAN) {
    495 				fs->lfs_pflags &= ~LFS_PF_CLEAN;
    496 				lfs_writesuper(fs, fs->lfs_sboffs[0]);
    497 				lfs_writesuper(fs, fs->lfs_sboffs[1]);
    498 			}
    499 		}
    500 		if (args->fspec == NULL)
    501 			return EINVAL;
    502 	}
    503 
    504 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    505 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    506 	if (error == 0)
    507 		(void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
    508 			      sizeof(fs->lfs_fsmnt));
    509 	return error;
    510 
    511 fail:
    512 	vrele(devvp);
    513 	return (error);
    514 }
    515 
    516 
    517 /*
    518  * Common code for mount and mountroot
    519  * LFS specific
    520  */
    521 int
    522 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    523 {
    524 	struct dlfs *tdfs, *dfs, *adfs;
    525 	struct lfs *fs;
    526 	struct ufsmount *ump;
    527 	struct vnode *vp;
    528 	struct buf *bp, *abp;
    529 	struct partinfo dpart;
    530 	dev_t dev;
    531 	int error, i, ronly, secsize, fsbsize;
    532 	kauth_cred_t cred;
    533 	CLEANERINFO *cip;
    534 	SEGUSE *sup;
    535 	daddr_t sb_addr;
    536 
    537 	cred = l ? l->l_cred : NOCRED;
    538 
    539 	/*
    540 	 * Flush out any old buffers remaining from a previous use.
    541 	 */
    542 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    543 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    544 	VOP_UNLOCK(devvp, 0);
    545 	if (error)
    546 		return (error);
    547 
    548 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    549 	if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
    550 		secsize = DEV_BSIZE;
    551 	else
    552 		secsize = dpart.disklab->d_secsize;
    553 
    554 	/* Don't free random space on error. */
    555 	bp = NULL;
    556 	abp = NULL;
    557 	ump = NULL;
    558 
    559 	sb_addr = LFS_LABELPAD / secsize;
    560 	while (1) {
    561 		/* Read in the superblock. */
    562 		error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp);
    563 		if (error)
    564 			goto out;
    565 		dfs = (struct dlfs *)bp->b_data;
    566 
    567 		/* Check the basics. */
    568 		if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
    569 		    dfs->dlfs_version > LFS_VERSION ||
    570 		    dfs->dlfs_bsize < sizeof(struct dlfs)) {
    571 			DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
    572 			error = EINVAL;		/* XXX needs translation */
    573 			goto out;
    574 		}
    575 		if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
    576 			DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
    577 			       dfs->dlfs_inodefmt));
    578 			error = EINVAL;
    579 			goto out;
    580 		}
    581 
    582 		if (dfs->dlfs_version == 1)
    583 			fsbsize = secsize;
    584 		else {
    585 			fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
    586 				dfs->dlfs_fsbtodb);
    587 			/*
    588 			 * Could be, if the frag size is large enough, that we
    589 			 * don't have the "real" primary superblock.  If that's
    590 			 * the case, get the real one, and try again.
    591 			 */
    592 			if (sb_addr != dfs->dlfs_sboffs[0] <<
    593 				       dfs->dlfs_fsbtodb) {
    594 				DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
    595 				      " 0x%llx is not right, trying 0x%llx\n",
    596 				      (long long)sb_addr,
    597 				      (long long)(dfs->dlfs_sboffs[0] <<
    598 						  dfs->dlfs_fsbtodb)));
    599 				sb_addr = dfs->dlfs_sboffs[0] <<
    600 					  dfs->dlfs_fsbtodb;
    601 				brelse(bp, 0);
    602 				continue;
    603 			}
    604 		}
    605 		break;
    606 	}
    607 
    608 	/*
    609 	 * Check the second superblock to see which is newer; then mount
    610 	 * using the older of the two.	This is necessary to ensure that
    611 	 * the filesystem is valid if it was not unmounted cleanly.
    612 	 */
    613 
    614 	if (dfs->dlfs_sboffs[1] &&
    615 	    dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
    616 	{
    617 		error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
    618 			LFS_SBPAD, cred, &abp);
    619 		if (error)
    620 			goto out;
    621 		adfs = (struct dlfs *)abp->b_data;
    622 
    623 		if (dfs->dlfs_version == 1) {
    624 			/* 1s resolution comparison */
    625 			if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
    626 				tdfs = adfs;
    627 			else
    628 				tdfs = dfs;
    629 		} else {
    630 			/* monotonic infinite-resolution comparison */
    631 			if (adfs->dlfs_serial < dfs->dlfs_serial)
    632 				tdfs = adfs;
    633 			else
    634 				tdfs = dfs;
    635 		}
    636 
    637 		/* Check the basics. */
    638 		if (tdfs->dlfs_magic != LFS_MAGIC ||
    639 		    tdfs->dlfs_bsize > MAXBSIZE ||
    640 		    tdfs->dlfs_version > LFS_VERSION ||
    641 		    tdfs->dlfs_bsize < sizeof(struct dlfs)) {
    642 			DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
    643 			      " sanity failed\n"));
    644 			error = EINVAL;		/* XXX needs translation */
    645 			goto out;
    646 		}
    647 	} else {
    648 		DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
    649 		      " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
    650 		error = EINVAL;
    651 		goto out;
    652 	}
    653 
    654 	/* Allocate the mount structure, copy the superblock into it. */
    655 	fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
    656 	memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
    657 
    658 	/* Compatibility */
    659 	if (fs->lfs_version < 2) {
    660 		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
    661 		fs->lfs_ibsize = fs->lfs_bsize;
    662 		fs->lfs_start = fs->lfs_sboffs[0];
    663 		fs->lfs_tstamp = fs->lfs_otstamp;
    664 		fs->lfs_fsbtodb = 0;
    665 	}
    666 	if (fs->lfs_resvseg == 0)
    667 		fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
    668 			MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
    669 
    670 	/*
    671 	 * If we aren't going to be able to write meaningfully to this
    672 	 * filesystem, and were not mounted readonly, bomb out now.
    673 	 */
    674 	if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
    675 		DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
    676 		      " we need BUFPAGES >= %lld\n",
    677 		      (long long)((bufmem_hiwater / bufmem_lowater) *
    678 				  LFS_INVERSE_MAX_BYTES(
    679 					  fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
    680 		free(fs, M_UFSMNT);
    681 		error = EFBIG; /* XXX needs translation */
    682 		goto out;
    683 	}
    684 
    685 	/* Before rolling forward, lock so vget will sleep for other procs */
    686 	if (l != NULL) {
    687 		fs->lfs_flags = LFS_NOTYET;
    688 		fs->lfs_rfpid = l->l_proc->p_pid;
    689 	}
    690 
    691 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
    692 	ump->um_lfs = fs;
    693 	ump->um_ops = &lfs_ufsops;
    694 	ump->um_fstype = UFS1;
    695 	if (sizeof(struct lfs) < LFS_SBPAD) {			/* XXX why? */
    696 		brelse(bp, BC_INVAL);
    697 		brelse(abp, BC_INVAL);
    698 	} else {
    699 		brelse(bp, 0);
    700 		brelse(abp, 0);
    701 	}
    702 	bp = NULL;
    703 	abp = NULL;
    704 
    705 
    706 	/* Set up the I/O information */
    707 	fs->lfs_devbsize = secsize;
    708 	fs->lfs_iocount = 0;
    709 	fs->lfs_diropwait = 0;
    710 	fs->lfs_activesb = 0;
    711 	fs->lfs_uinodes = 0;
    712 	fs->lfs_ravail = 0;
    713 	fs->lfs_favail = 0;
    714 	fs->lfs_sbactive = 0;
    715 
    716 	/* Set up the ifile and lock aflags */
    717 	fs->lfs_doifile = 0;
    718 	fs->lfs_writer = 0;
    719 	fs->lfs_dirops = 0;
    720 	fs->lfs_nadirop = 0;
    721 	fs->lfs_seglock = 0;
    722 	fs->lfs_pdflush = 0;
    723 	fs->lfs_sleepers = 0;
    724 	fs->lfs_pages = 0;
    725 	rw_init(&fs->lfs_fraglock);
    726 	rw_init(&fs->lfs_iflock);
    727 	cv_init(&fs->lfs_stopcv, "lfsstop");
    728 
    729 	/* Set the file system readonly/modify bits. */
    730 	fs->lfs_ronly = ronly;
    731 	if (ronly == 0)
    732 		fs->lfs_fmod = 1;
    733 
    734 	/* Initialize the mount structure. */
    735 	dev = devvp->v_rdev;
    736 	mp->mnt_data = ump;
    737 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
    738 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
    739 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
    740 	mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
    741 	mp->mnt_stat.f_iosize = fs->lfs_bsize;
    742 	mp->mnt_flag |= MNT_LOCAL;
    743 	mp->mnt_fs_bshift = fs->lfs_bshift;
    744 	ump->um_flags = 0;
    745 	ump->um_mountp = mp;
    746 	ump->um_dev = dev;
    747 	ump->um_devvp = devvp;
    748 	ump->um_bptrtodb = fs->lfs_fsbtodb;
    749 	ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
    750 	ump->um_nindir = fs->lfs_nindir;
    751 	ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
    752 	for (i = 0; i < MAXQUOTAS; i++)
    753 		ump->um_quotas[i] = NULLVP;
    754 	ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
    755 	ump->um_dirblksiz = DIRBLKSIZ;
    756 	ump->um_maxfilesize = fs->lfs_maxfilesize;
    757 	if (ump->um_maxsymlinklen > 0)
    758 		mp->mnt_iflag |= IMNT_DTYPE;
    759 	devvp->v_specmountpoint = mp;
    760 
    761 	/* Set up reserved memory for pageout */
    762 	lfs_setup_resblks(fs);
    763 	/* Set up vdirop tailq */
    764 	TAILQ_INIT(&fs->lfs_dchainhd);
    765 	/* and paging tailq */
    766 	TAILQ_INIT(&fs->lfs_pchainhd);
    767 	/* and delayed segment accounting for truncation list */
    768 	LIST_INIT(&fs->lfs_segdhd);
    769 
    770 	/*
    771 	 * We use the ifile vnode for almost every operation.  Instead of
    772 	 * retrieving it from the hash table each time we retrieve it here,
    773 	 * artificially increment the reference count and keep a pointer
    774 	 * to it in the incore copy of the superblock.
    775 	 */
    776 	if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
    777 		DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
    778 		goto out;
    779 	}
    780 	fs->lfs_ivnode = vp;
    781 	VREF(vp);
    782 
    783 	/* Set up inode bitmap and order free list */
    784 	lfs_order_freelist(fs);
    785 
    786 	/* Set up segment usage flags for the autocleaner. */
    787 	fs->lfs_nactive = 0;
    788 	fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
    789 						M_SEGMENT, M_WAITOK);
    790 	fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    791 						 M_SEGMENT, M_WAITOK);
    792 	fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    793 						 M_SEGMENT, M_WAITOK);
    794 	memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
    795 	for (i = 0; i < fs->lfs_nseg; i++) {
    796 		int changed;
    797 
    798 		LFS_SEGENTRY(sup, fs, i, bp);
    799 		changed = 0;
    800 		if (!ronly) {
    801 			if (sup->su_nbytes == 0 &&
    802 			    !(sup->su_flags & SEGUSE_EMPTY)) {
    803 				sup->su_flags |= SEGUSE_EMPTY;
    804 				++changed;
    805 			} else if (!(sup->su_nbytes == 0) &&
    806 				   (sup->su_flags & SEGUSE_EMPTY)) {
    807 				sup->su_flags &= ~SEGUSE_EMPTY;
    808 				++changed;
    809 			}
    810 			if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
    811 				sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
    812 				++changed;
    813 			}
    814 		}
    815 		fs->lfs_suflags[0][i] = sup->su_flags;
    816 		if (changed)
    817 			LFS_WRITESEGENTRY(sup, fs, i, bp);
    818 		else
    819 			brelse(bp, 0);
    820 	}
    821 
    822 #ifdef LFS_KERNEL_RFW
    823 	lfs_roll_forward(fs, mp, l);
    824 #endif
    825 
    826 	/* If writing, sb is not clean; record in case of immediate crash */
    827 	if (!fs->lfs_ronly) {
    828 		fs->lfs_pflags &= ~LFS_PF_CLEAN;
    829 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    830 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    831 	}
    832 
    833 	/* Allow vget now that roll-forward is complete */
    834 	fs->lfs_flags &= ~(LFS_NOTYET);
    835 	wakeup(&fs->lfs_flags);
    836 
    837 	/*
    838 	 * Initialize the ifile cleaner info with information from
    839 	 * the superblock.
    840 	 */
    841 	LFS_CLEANERINFO(cip, fs, bp);
    842 	cip->clean = fs->lfs_nclean;
    843 	cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
    844 	cip->avail = fs->lfs_avail;
    845 	cip->bfree = fs->lfs_bfree;
    846 	(void) LFS_BWRITE_LOG(bp); /* Ifile */
    847 
    848 	/*
    849 	 * Mark the current segment as ACTIVE, since we're going to
    850 	 * be writing to it.
    851 	 */
    852 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
    853 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    854 	fs->lfs_nactive++;
    855 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);  /* Ifile */
    856 
    857 	/* Now that roll-forward is done, unlock the Ifile */
    858 	vput(vp);
    859 
    860 	/* Start the pagedaemon-anticipating daemon */
    861 	if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
    862 	    lfs_writerd, NULL, NULL, "lfs_writer") != 0)
    863 		panic("fork lfs_writer");
    864 
    865 	return (0);
    866 
    867 out:
    868 	if (bp)
    869 		brelse(bp, 0);
    870 	if (abp)
    871 		brelse(abp, 0);
    872 	if (ump) {
    873 		free(ump->um_lfs, M_UFSMNT);
    874 		free(ump, M_UFSMNT);
    875 		mp->mnt_data = NULL;
    876 	}
    877 
    878 	return (error);
    879 }
    880 
    881 /*
    882  * unmount system call
    883  */
    884 int
    885 lfs_unmount(struct mount *mp, int mntflags)
    886 {
    887 	struct lwp *l = curlwp;
    888 	struct ufsmount *ump;
    889 	struct lfs *fs;
    890 	int error, flags, ronly;
    891 	vnode_t *vp;
    892 
    893 	flags = 0;
    894 	if (mntflags & MNT_FORCE)
    895 		flags |= FORCECLOSE;
    896 
    897 	ump = VFSTOUFS(mp);
    898 	fs = ump->um_lfs;
    899 
    900 	/* Two checkpoints */
    901 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
    902 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
    903 
    904 	/* wake up the cleaner so it can die */
    905 	lfs_wakeup_cleaner(fs);
    906 	mutex_enter(&lfs_lock);
    907 	while (fs->lfs_sleepers)
    908 		mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
    909 			&lfs_lock);
    910 	mutex_exit(&lfs_lock);
    911 
    912 #ifdef QUOTA
    913 	if (mp->mnt_flag & MNT_QUOTA) {
    914 		int i;
    915 		error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
    916 		if (error)
    917 			return (error);
    918 		for (i = 0; i < MAXQUOTAS; i++) {
    919 			if (ump->um_quotas[i] == NULLVP)
    920 				continue;
    921 			quotaoff(l, mp, i);
    922 		}
    923 		/*
    924 		 * Here we fall through to vflush again to ensure
    925 		 * that we have gotten rid of all the system vnodes.
    926 		 */
    927 	}
    928 #endif
    929 	if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
    930 		return (error);
    931 	if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
    932 		return (error);
    933 	vp = fs->lfs_ivnode;
    934 	mutex_enter(&vp->v_interlock);
    935 	if (LIST_FIRST(&vp->v_dirtyblkhd))
    936 		panic("lfs_unmount: still dirty blocks on ifile vnode");
    937 	mutex_exit(&vp->v_interlock);
    938 
    939 	/* Explicitly write the superblock, to update serial and pflags */
    940 	fs->lfs_pflags |= LFS_PF_CLEAN;
    941 	lfs_writesuper(fs, fs->lfs_sboffs[0]);
    942 	lfs_writesuper(fs, fs->lfs_sboffs[1]);
    943 	mutex_enter(&lfs_lock);
    944 	while (fs->lfs_iocount)
    945 		mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
    946 			&lfs_lock);
    947 	mutex_exit(&lfs_lock);
    948 
    949 	/* Finish with the Ifile, now that we're done with it */
    950 	vgone(fs->lfs_ivnode);
    951 
    952 	ronly = !fs->lfs_ronly;
    953 	if (ump->um_devvp->v_type != VBAD)
    954 		ump->um_devvp->v_specmountpoint = NULL;
    955 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
    956 	error = VOP_CLOSE(ump->um_devvp,
    957 	    ronly ? FREAD : FREAD|FWRITE, NOCRED);
    958 	vput(ump->um_devvp);
    959 
    960 	/* Complain about page leakage */
    961 	if (fs->lfs_pages > 0)
    962 		printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
    963 			fs->lfs_pages, lfs_subsys_pages);
    964 
    965 	/* Free per-mount data structures */
    966 	free(fs->lfs_ino_bitmap, M_SEGMENT);
    967 	free(fs->lfs_suflags[0], M_SEGMENT);
    968 	free(fs->lfs_suflags[1], M_SEGMENT);
    969 	free(fs->lfs_suflags, M_SEGMENT);
    970 	lfs_free_resblks(fs);
    971 	cv_destroy(&fs->lfs_stopcv);
    972 	rw_destroy(&fs->lfs_fraglock);
    973 	rw_destroy(&fs->lfs_iflock);
    974 	free(fs, M_UFSMNT);
    975 	free(ump, M_UFSMNT);
    976 
    977 	mp->mnt_data = NULL;
    978 	mp->mnt_flag &= ~MNT_LOCAL;
    979 	return (error);
    980 }
    981 
    982 /*
    983  * Get file system statistics.
    984  *
    985  * NB: We don't lock to access the superblock here, because it's not
    986  * really that important if we get it wrong.
    987  */
    988 int
    989 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
    990 {
    991 	struct lfs *fs;
    992 	struct ufsmount *ump;
    993 
    994 	ump = VFSTOUFS(mp);
    995 	fs = ump->um_lfs;
    996 	if (fs->lfs_magic != LFS_MAGIC)
    997 		panic("lfs_statvfs: magic");
    998 
    999 	sbp->f_bsize = fs->lfs_bsize;
   1000 	sbp->f_frsize = fs->lfs_fsize;
   1001 	sbp->f_iosize = fs->lfs_bsize;
   1002 	sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
   1003 
   1004 	sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
   1005 	KASSERT(sbp->f_bfree <= fs->lfs_dsize);
   1006 #if 0
   1007 	if (sbp->f_bfree < 0)
   1008 		sbp->f_bfree = 0;
   1009 #endif
   1010 
   1011 	sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
   1012 	if (sbp->f_bfree > sbp->f_bresvd)
   1013 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1014 	else
   1015 		sbp->f_bavail = 0;
   1016 
   1017 	sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
   1018 	sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
   1019 	sbp->f_favail = sbp->f_ffree;
   1020 	sbp->f_fresvd = 0;
   1021 	copy_statvfs_info(sbp, mp);
   1022 	return (0);
   1023 }
   1024 
   1025 /*
   1026  * Go through the disk queues to initiate sandbagged IO;
   1027  * go through the inodes to write those that have been modified;
   1028  * initiate the writing of the super block if it has been modified.
   1029  *
   1030  * Note: we are always called with the filesystem marked `MPBUSY'.
   1031  */
   1032 int
   1033 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1034 {
   1035 	int error;
   1036 	struct lfs *fs;
   1037 
   1038 	fs = VFSTOUFS(mp)->um_lfs;
   1039 	if (fs->lfs_ronly)
   1040 		return 0;
   1041 
   1042 	/* Snapshots should not hose the syncer */
   1043 	/*
   1044 	 * XXX Sync can block here anyway, since we don't have a very
   1045 	 * XXX good idea of how much data is pending.  If it's more
   1046 	 * XXX than a segment and lfs_nextseg is close to the end of
   1047 	 * XXX the log, we'll likely block.
   1048 	 */
   1049 	mutex_enter(&lfs_lock);
   1050 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1051 		mutex_exit(&lfs_lock);
   1052 		return 0;
   1053 	}
   1054 	mutex_exit(&lfs_lock);
   1055 
   1056 	lfs_writer_enter(fs, "lfs_dirops");
   1057 
   1058 	/* All syncs must be checkpoints until roll-forward is implemented. */
   1059 	DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
   1060 	error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
   1061 	lfs_writer_leave(fs);
   1062 #ifdef QUOTA
   1063 	qsync(mp);
   1064 #endif
   1065 	return (error);
   1066 }
   1067 
   1068 extern kmutex_t ufs_hashlock;
   1069 
   1070 /*
   1071  * Look up an LFS dinode number to find its incore vnode.  If not already
   1072  * in core, read it in from the specified device.  Return the inode locked.
   1073  * Detection and handling of mount points must be done by the calling routine.
   1074  */
   1075 int
   1076 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1077 {
   1078 	struct lfs *fs;
   1079 	struct ufs1_dinode *dip;
   1080 	struct inode *ip;
   1081 	struct buf *bp;
   1082 	struct ifile *ifp;
   1083 	struct vnode *vp;
   1084 	struct ufsmount *ump;
   1085 	daddr_t daddr;
   1086 	dev_t dev;
   1087 	int error, retries;
   1088 	struct timespec ts;
   1089 
   1090 	memset(&ts, 0, sizeof ts);	/* XXX gcc */
   1091 
   1092 	ump = VFSTOUFS(mp);
   1093 	dev = ump->um_dev;
   1094 	fs = ump->um_lfs;
   1095 
   1096 	/*
   1097 	 * If the filesystem is not completely mounted yet, suspend
   1098 	 * any access requests (wait for roll-forward to complete).
   1099 	 */
   1100 	mutex_enter(&lfs_lock);
   1101 	while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
   1102 		mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
   1103 			&lfs_lock);
   1104 	mutex_exit(&lfs_lock);
   1105 
   1106 retry:
   1107 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1108 		return (0);
   1109 
   1110 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1111 		*vpp = NULL;
   1112 		 return (error);
   1113 	}
   1114 
   1115 	mutex_enter(&ufs_hashlock);
   1116 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1117 		mutex_exit(&ufs_hashlock);
   1118 		ungetnewvnode(vp);
   1119 		goto retry;
   1120 	}
   1121 
   1122 	/* Translate the inode number to a disk address. */
   1123 	if (ino == LFS_IFILE_INUM)
   1124 		daddr = fs->lfs_idaddr;
   1125 	else {
   1126 		/* XXX bounds-check this too */
   1127 		LFS_IENTRY(ifp, fs, ino, bp);
   1128 		daddr = ifp->if_daddr;
   1129 		if (fs->lfs_version > 1) {
   1130 			ts.tv_sec = ifp->if_atime_sec;
   1131 			ts.tv_nsec = ifp->if_atime_nsec;
   1132 		}
   1133 
   1134 		brelse(bp, 0);
   1135 		if (daddr == LFS_UNUSED_DADDR) {
   1136 			*vpp = NULLVP;
   1137 			mutex_exit(&ufs_hashlock);
   1138 			ungetnewvnode(vp);
   1139 			return (ENOENT);
   1140 		}
   1141 	}
   1142 
   1143 	/* Allocate/init new vnode/inode. */
   1144 	lfs_vcreate(mp, ino, vp);
   1145 
   1146 	/*
   1147 	 * Put it onto its hash chain and lock it so that other requests for
   1148 	 * this inode will block if they arrive while we are sleeping waiting
   1149 	 * for old data structures to be purged or for the contents of the
   1150 	 * disk portion of this inode to be read.
   1151 	 */
   1152 	ip = VTOI(vp);
   1153 	ufs_ihashins(ip);
   1154 	mutex_exit(&ufs_hashlock);
   1155 
   1156 	/*
   1157 	 * XXX
   1158 	 * This may not need to be here, logically it should go down with
   1159 	 * the i_devvp initialization.
   1160 	 * Ask Kirk.
   1161 	 */
   1162 	ip->i_lfs = ump->um_lfs;
   1163 
   1164 	/* Read in the disk contents for the inode, copy into the inode. */
   1165 	retries = 0;
   1166     again:
   1167 	error = bread(ump->um_devvp, fsbtodb(fs, daddr),
   1168 		(fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
   1169 		NOCRED, &bp);
   1170 	if (error) {
   1171 		/*
   1172 		 * The inode does not contain anything useful, so it would
   1173 		 * be misleading to leave it on its hash chain. With mode
   1174 		 * still zero, it will be unlinked and returned to the free
   1175 		 * list by vput().
   1176 		 */
   1177 		vput(vp);
   1178 		brelse(bp, 0);
   1179 		*vpp = NULL;
   1180 		return (error);
   1181 	}
   1182 
   1183 	dip = lfs_ifind(fs, ino, bp);
   1184 	if (dip == NULL) {
   1185 		/* Assume write has not completed yet; try again */
   1186 		brelse(bp, BC_INVAL);
   1187 		++retries;
   1188 		if (retries > LFS_IFIND_RETRIES) {
   1189 #ifdef DEBUG
   1190 			/* If the seglock is held look at the bpp to see
   1191 			   what is there anyway */
   1192 			mutex_enter(&lfs_lock);
   1193 			if (fs->lfs_seglock > 0) {
   1194 				struct buf **bpp;
   1195 				struct ufs1_dinode *dp;
   1196 				int i;
   1197 
   1198 				for (bpp = fs->lfs_sp->bpp;
   1199 				     bpp != fs->lfs_sp->cbpp; ++bpp) {
   1200 					if ((*bpp)->b_vp == fs->lfs_ivnode &&
   1201 					    bpp != fs->lfs_sp->bpp) {
   1202 						/* Inode block */
   1203 						printf("lfs_vget: block 0x%" PRIx64 ": ",
   1204 						       (*bpp)->b_blkno);
   1205 						dp = (struct ufs1_dinode *)(*bpp)->b_data;
   1206 						for (i = 0; i < INOPB(fs); i++)
   1207 							if (dp[i].di_u.inumber)
   1208 								printf("%d ", dp[i].di_u.inumber);
   1209 						printf("\n");
   1210 					}
   1211 				}
   1212 			}
   1213 			mutex_exit(&lfs_lock);
   1214 #endif /* DEBUG */
   1215 			panic("lfs_vget: dinode not found");
   1216 		}
   1217 		mutex_enter(&lfs_lock);
   1218 		if (fs->lfs_iocount) {
   1219 			DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
   1220 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
   1221 				      "lfs ifind", 1, &lfs_lock);
   1222 		} else
   1223 			retries = LFS_IFIND_RETRIES;
   1224 		mutex_exit(&lfs_lock);
   1225 		goto again;
   1226 	}
   1227 	*ip->i_din.ffs1_din = *dip;
   1228 	brelse(bp, 0);
   1229 
   1230 	if (fs->lfs_version > 1) {
   1231 		ip->i_ffs1_atime = ts.tv_sec;
   1232 		ip->i_ffs1_atimensec = ts.tv_nsec;
   1233 	}
   1234 
   1235 	lfs_vinit(mp, &vp);
   1236 
   1237 	*vpp = vp;
   1238 
   1239 	KASSERT(VOP_ISLOCKED(vp));
   1240 
   1241 	return (0);
   1242 }
   1243 
   1244 /*
   1245  * File handle to vnode
   1246  */
   1247 int
   1248 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1249 {
   1250 	struct lfid lfh;
   1251 	struct buf *bp;
   1252 	IFILE *ifp;
   1253 	int32_t daddr;
   1254 	struct lfs *fs;
   1255 	vnode_t *vp;
   1256 
   1257 	if (fhp->fid_len != sizeof(struct lfid))
   1258 		return EINVAL;
   1259 
   1260 	memcpy(&lfh, fhp, sizeof(lfh));
   1261 	if (lfh.lfid_ino < LFS_IFILE_INUM)
   1262 		return ESTALE;
   1263 
   1264 	fs = VFSTOUFS(mp)->um_lfs;
   1265 	if (lfh.lfid_ident != fs->lfs_ident)
   1266 		return ESTALE;
   1267 
   1268 	if (lfh.lfid_ino >
   1269 	    ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
   1270 	     fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
   1271 		return ESTALE;
   1272 
   1273 	mutex_enter(&ufs_ihash_lock);
   1274 	vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
   1275 	mutex_exit(&ufs_ihash_lock);
   1276 	if (vp == NULL) {
   1277 		LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
   1278 		daddr = ifp->if_daddr;
   1279 		brelse(bp, 0);
   1280 		if (daddr == LFS_UNUSED_DADDR)
   1281 			return ESTALE;
   1282 	}
   1283 
   1284 	return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
   1285 }
   1286 
   1287 /*
   1288  * Vnode pointer to File handle
   1289  */
   1290 /* ARGSUSED */
   1291 int
   1292 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1293 {
   1294 	struct inode *ip;
   1295 	struct lfid lfh;
   1296 
   1297 	if (*fh_size < sizeof(struct lfid)) {
   1298 		*fh_size = sizeof(struct lfid);
   1299 		return E2BIG;
   1300 	}
   1301 	*fh_size = sizeof(struct lfid);
   1302 	ip = VTOI(vp);
   1303 	memset(&lfh, 0, sizeof(lfh));
   1304 	lfh.lfid_len = sizeof(struct lfid);
   1305 	lfh.lfid_ino = ip->i_number;
   1306 	lfh.lfid_gen = ip->i_gen;
   1307 	lfh.lfid_ident = ip->i_lfs->lfs_ident;
   1308 	memcpy(fhp, &lfh, sizeof(lfh));
   1309 	return (0);
   1310 }
   1311 
   1312 static int
   1313 sysctl_lfs_dostats(SYSCTLFN_ARGS)
   1314 {
   1315 	extern struct lfs_stats lfs_stats;
   1316 	extern int lfs_dostats;
   1317 	int error;
   1318 
   1319 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
   1320 	if (error || newp == NULL)
   1321 		return (error);
   1322 
   1323 	if (lfs_dostats == 0)
   1324 		memset(&lfs_stats, 0, sizeof(lfs_stats));
   1325 
   1326 	return (0);
   1327 }
   1328 
   1329 struct shortlong {
   1330 	const char *sname;
   1331 	const char *lname;
   1332 };
   1333 
   1334 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
   1335 {
   1336 	int i;
   1337 	extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
   1338 		   lfs_fs_pagetrip, lfs_ignore_lazy_sync;
   1339 #ifdef DEBUG
   1340 	extern int lfs_debug_log_subsys[DLOG_MAX];
   1341 	struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
   1342 		{ "rollforward", "Debug roll-forward code" },
   1343 		{ "alloc",	"Debug inode allocation and free list" },
   1344 		{ "avail",	"Debug space-available-now accounting" },
   1345 		{ "flush",	"Debug flush triggers" },
   1346 		{ "lockedlist",	"Debug locked list accounting" },
   1347 		{ "vnode_verbose", "Verbose per-vnode-written debugging" },
   1348 		{ "vnode",	"Debug vnode use during segment write" },
   1349 		{ "segment",	"Debug segment writing" },
   1350 		{ "seguse",	"Debug segment used-bytes accounting" },
   1351 		{ "cleaner",	"Debug cleaning routines" },
   1352 		{ "mount",	"Debug mount/unmount routines" },
   1353 		{ "pagecache",	"Debug UBC interactions" },
   1354 		{ "dirop",	"Debug directory-operation accounting" },
   1355 		{ "malloc",	"Debug private malloc accounting" },
   1356 	};
   1357 #endif /* DEBUG */
   1358 	struct shortlong stat_names[] = { /* Must match lfs.h! */
   1359 		{ "segsused",	    "Number of new segments allocated" },
   1360 		{ "psegwrites",	    "Number of partial-segment writes" },
   1361 		{ "psyncwrites",    "Number of synchronous partial-segment"
   1362 				    " writes" },
   1363 		{ "pcleanwrites",   "Number of partial-segment writes by the"
   1364 				    " cleaner" },
   1365 		{ "blocktot",       "Number of blocks written" },
   1366 		{ "cleanblocks",    "Number of blocks written by the cleaner" },
   1367 		{ "ncheckpoints",   "Number of checkpoints made" },
   1368 		{ "nwrites",        "Number of whole writes" },
   1369 		{ "nsync_writes",   "Number of synchronous writes" },
   1370 		{ "wait_exceeded",  "Number of times writer waited for"
   1371 				    " cleaner" },
   1372 		{ "write_exceeded", "Number of times writer invoked flush" },
   1373 		{ "flush_invoked",  "Number of times flush was invoked" },
   1374 		{ "vflush_invoked", "Number of time vflush was called" },
   1375 		{ "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
   1376 		{ "clean_vnlocked", "Number of vnodes skipped for vget failure" },
   1377 		{ "segs_reclaimed", "Number of segments reclaimed" },
   1378 	};
   1379 
   1380 	sysctl_createv(clog, 0, NULL, NULL,
   1381 		       CTLFLAG_PERMANENT,
   1382 		       CTLTYPE_NODE, "vfs", NULL,
   1383 		       NULL, 0, NULL, 0,
   1384 		       CTL_VFS, CTL_EOL);
   1385 	sysctl_createv(clog, 0, NULL, NULL,
   1386 		       CTLFLAG_PERMANENT,
   1387 		       CTLTYPE_NODE, "lfs",
   1388 		       SYSCTL_DESCR("Log-structured file system"),
   1389 		       NULL, 0, NULL, 0,
   1390 		       CTL_VFS, 5, CTL_EOL);
   1391 	/*
   1392 	 * XXX the "5" above could be dynamic, thereby eliminating one
   1393 	 * more instance of the "number to vfs" mapping problem, but
   1394 	 * "5" is the order as taken from sys/mount.h
   1395 	 */
   1396 
   1397 	sysctl_createv(clog, 0, NULL, NULL,
   1398 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1399 		       CTLTYPE_INT, "flushindir", NULL,
   1400 		       NULL, 0, &lfs_writeindir, 0,
   1401 		       CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
   1402 	sysctl_createv(clog, 0, NULL, NULL,
   1403 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1404 		       CTLTYPE_INT, "clean_vnhead", NULL,
   1405 		       NULL, 0, &lfs_clean_vnhead, 0,
   1406 		       CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
   1407 	sysctl_createv(clog, 0, NULL, NULL,
   1408 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1409 		       CTLTYPE_INT, "dostats",
   1410 		       SYSCTL_DESCR("Maintain statistics on LFS operations"),
   1411 		       sysctl_lfs_dostats, 0, &lfs_dostats, 0,
   1412 		       CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
   1413 	sysctl_createv(clog, 0, NULL, NULL,
   1414 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1415 		       CTLTYPE_INT, "pagetrip",
   1416 		       SYSCTL_DESCR("How many dirty pages in fs triggers"
   1417 				    " a flush"),
   1418 		       NULL, 0, &lfs_fs_pagetrip, 0,
   1419 		       CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
   1420 	sysctl_createv(clog, 0, NULL, NULL,
   1421 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1422 		       CTLTYPE_INT, "ignore_lazy_sync",
   1423 		       SYSCTL_DESCR("Lazy Sync is ignored entirely"),
   1424 		       NULL, 0, &lfs_ignore_lazy_sync, 0,
   1425 		       CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
   1426 #ifdef LFS_KERNEL_RFW
   1427 	sysctl_createv(clog, 0, NULL, NULL,
   1428 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1429 		       CTLTYPE_INT, "rfw",
   1430 		       SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
   1431 		       NULL, 0, &lfs_do_rfw, 0,
   1432 		       CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
   1433 #endif
   1434 
   1435 	sysctl_createv(clog, 0, NULL, NULL,
   1436 		       CTLFLAG_PERMANENT,
   1437 		       CTLTYPE_NODE, "stats",
   1438 		       SYSCTL_DESCR("Debugging options"),
   1439 		       NULL, 0, NULL, 0,
   1440 		       CTL_VFS, 5, LFS_STATS, CTL_EOL);
   1441 	for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
   1442 		sysctl_createv(clog, 0, NULL, NULL,
   1443 			       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1444 			       CTLTYPE_INT, stat_names[i].sname,
   1445 			       SYSCTL_DESCR(stat_names[i].lname),
   1446 			       NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
   1447 			       0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
   1448 	}
   1449 
   1450 #ifdef DEBUG
   1451 	sysctl_createv(clog, 0, NULL, NULL,
   1452 		       CTLFLAG_PERMANENT,
   1453 		       CTLTYPE_NODE, "debug",
   1454 		       SYSCTL_DESCR("Debugging options"),
   1455 		       NULL, 0, NULL, 0,
   1456 		       CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
   1457 	for (i = 0; i < DLOG_MAX; i++) {
   1458 		sysctl_createv(clog, 0, NULL, NULL,
   1459 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1460 			       CTLTYPE_INT, dlog_names[i].sname,
   1461 			       SYSCTL_DESCR(dlog_names[i].lname),
   1462 			       NULL, 0, &(lfs_debug_log_subsys[i]), 0,
   1463 			       CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
   1464 	}
   1465 #endif
   1466 }
   1467 
   1468 /*
   1469  * ufs_bmaparray callback function for writing.
   1470  *
   1471  * Since blocks will be written to the new segment anyway,
   1472  * we don't care about current daddr of them.
   1473  */
   1474 static bool
   1475 lfs_issequential_hole(const struct ufsmount *ump,
   1476     daddr_t daddr0, daddr_t daddr1)
   1477 {
   1478 	daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
   1479 	daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
   1480 
   1481 	KASSERT(daddr0 == UNWRITTEN ||
   1482 	    (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
   1483 	KASSERT(daddr1 == UNWRITTEN ||
   1484 	    (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
   1485 
   1486 	/* NOTE: all we want to know here is 'hole or not'. */
   1487 	/* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
   1488 
   1489 	/*
   1490 	 * treat UNWRITTENs and all resident blocks as 'contiguous'
   1491 	 */
   1492 	if (daddr0 != 0 && daddr1 != 0)
   1493 		return true;
   1494 
   1495 	/*
   1496 	 * both are in hole?
   1497 	 */
   1498 	if (daddr0 == 0 && daddr1 == 0)
   1499 		return true; /* all holes are 'contiguous' for us. */
   1500 
   1501 	return false;
   1502 }
   1503 
   1504 /*
   1505  * lfs_gop_write functions exactly like genfs_gop_write, except that
   1506  * (1) it requires the seglock to be held by its caller, and sp->fip
   1507  *     to be properly initialized (it will return without re-initializing
   1508  *     sp->fip, and without calling lfs_writeseg).
   1509  * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
   1510  *     to determine how large a block it can write at once (though it does
   1511  *     still use VOP_BMAP to find holes in the file);
   1512  * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
   1513  *     (leaving lfs_writeseg to deal with the cluster blocks, so we might
   1514  *     now have clusters of clusters, ick.)
   1515  */
   1516 static int
   1517 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1518     int flags)
   1519 {
   1520 	int i, error, run, haveeof = 0;
   1521 	int fs_bshift;
   1522 	vaddr_t kva;
   1523 	off_t eof, offset, startoffset = 0;
   1524 	size_t bytes, iobytes, skipbytes;
   1525 	daddr_t lbn, blkno;
   1526 	struct vm_page *pg;
   1527 	struct buf *mbp, *bp;
   1528 	struct vnode *devvp = VTOI(vp)->i_devvp;
   1529 	struct inode *ip = VTOI(vp);
   1530 	struct lfs *fs = ip->i_lfs;
   1531 	struct segment *sp = fs->lfs_sp;
   1532 	UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
   1533 
   1534 	ASSERT_SEGLOCK(fs);
   1535 
   1536 	/* The Ifile lives in the buffer cache */
   1537 	KASSERT(vp != fs->lfs_ivnode);
   1538 
   1539 	/*
   1540 	 * We don't want to fill the disk before the cleaner has a chance
   1541 	 * to make room for us.  If we're in danger of doing that, fail
   1542 	 * with EAGAIN.  The caller will have to notice this, unlock
   1543 	 * so the cleaner can run, relock and try again.
   1544 	 *
   1545 	 * We must write everything, however, if our vnode is being
   1546 	 * reclaimed.
   1547 	 */
   1548 	if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
   1549 		goto tryagain;
   1550 
   1551 	/*
   1552 	 * Sometimes things slip past the filters in lfs_putpages,
   1553 	 * and the pagedaemon tries to write pages---problem is
   1554 	 * that the pagedaemon never acquires the segment lock.
   1555 	 *
   1556 	 * Alternatively, pages that were clean when we called
   1557 	 * genfs_putpages may have become dirty in the meantime.  In this
   1558 	 * case the segment header is not properly set up for blocks
   1559 	 * to be added to it.
   1560 	 *
   1561 	 * Unbusy and unclean the pages, and put them on the ACTIVE
   1562 	 * queue under the hypothesis that they couldn't have got here
   1563 	 * unless they were modified *quite* recently.
   1564 	 *
   1565 	 * XXXUBC that last statement is an oversimplification of course.
   1566 	 */
   1567 	if (!LFS_SEGLOCK_HELD(fs) ||
   1568 	    (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
   1569 	    (pgs[0]->offset & fs->lfs_bmask) != 0) {
   1570 		goto tryagain;
   1571 	}
   1572 
   1573 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1574 	    vp, pgs, npages, flags);
   1575 
   1576 	GOP_SIZE(vp, vp->v_size, &eof, 0);
   1577 	haveeof = 1;
   1578 
   1579 	if (vp->v_type == VREG)
   1580 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1581 	else
   1582 		fs_bshift = DEV_BSHIFT;
   1583 	error = 0;
   1584 	pg = pgs[0];
   1585 	startoffset = pg->offset;
   1586 	KASSERT(eof >= 0);
   1587 
   1588 	if (startoffset >= eof) {
   1589 		goto tryagain;
   1590 	} else
   1591 		bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1592 	skipbytes = 0;
   1593 
   1594 	KASSERT(bytes != 0);
   1595 
   1596 	/* Swap PG_DELWRI for PG_PAGEOUT */
   1597 	for (i = 0; i < npages; i++) {
   1598 		if (pgs[i]->flags & PG_DELWRI) {
   1599 			KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
   1600 			pgs[i]->flags &= ~PG_DELWRI;
   1601 			pgs[i]->flags |= PG_PAGEOUT;
   1602 			uvm_pageout_start(1);
   1603 			mutex_enter(&uvm_pageqlock);
   1604 			uvm_pageunwire(pgs[i]);
   1605 			mutex_exit(&uvm_pageqlock);
   1606 		}
   1607 	}
   1608 
   1609 	/*
   1610 	 * Check to make sure we're starting on a block boundary.
   1611 	 * We'll check later to make sure we always write entire
   1612 	 * blocks (or fragments).
   1613 	 */
   1614 	if (startoffset & fs->lfs_bmask)
   1615 		printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
   1616 		       startoffset, fs->lfs_bmask,
   1617 		       startoffset & fs->lfs_bmask);
   1618 	KASSERT((startoffset & fs->lfs_bmask) == 0);
   1619 	if (bytes & fs->lfs_ffmask) {
   1620 		printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
   1621 		panic("lfs_gop_write: non-integer blocks");
   1622 	}
   1623 
   1624 	/*
   1625 	 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
   1626 	 * If we would, write what we have and try again.  If we don't
   1627 	 * have anything to write, we'll have to sleep.
   1628 	 */
   1629 	if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1630 				      (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
   1631 				       UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
   1632 		DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
   1633 #if 0
   1634 		      " with nfinfo=%d at offset 0x%x\n",
   1635 		      (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
   1636 		      (unsigned)fs->lfs_offset));
   1637 #endif
   1638 		lfs_updatemeta(sp);
   1639 		lfs_release_finfo(fs);
   1640 		(void) lfs_writeseg(fs, sp);
   1641 
   1642 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   1643 
   1644 		/*
   1645 		 * Having given up all of the pager_map we were holding,
   1646 		 * we can now wait for aiodoned to reclaim it for us
   1647 		 * without fear of deadlock.
   1648 		 */
   1649 		kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1650 				     UVMPAGER_MAPIN_WAITOK);
   1651 	}
   1652 
   1653 	mutex_enter(&vp->v_interlock);
   1654 	vp->v_numoutput += 2; /* one for biodone, one for aiodone */
   1655 	mutex_exit(&vp->v_interlock);
   1656 
   1657 	mbp = getiobuf(NULL, true);
   1658 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1659 	    vp, mbp, vp->v_numoutput, bytes);
   1660 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1661 	mbp->b_data = (void *)kva;
   1662 	mbp->b_resid = mbp->b_bcount = bytes;
   1663 	mbp->b_cflags = BC_BUSY|BC_AGE;
   1664 	mbp->b_iodone = uvm_aio_biodone;
   1665 
   1666 	bp = NULL;
   1667 	for (offset = startoffset;
   1668 	    bytes > 0;
   1669 	    offset += iobytes, bytes -= iobytes) {
   1670 		lbn = offset >> fs_bshift;
   1671 		error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
   1672 		    lfs_issequential_hole);
   1673 		if (error) {
   1674 			UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
   1675 			    error,0,0,0);
   1676 			skipbytes += bytes;
   1677 			bytes = 0;
   1678 			break;
   1679 		}
   1680 
   1681 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1682 		    bytes);
   1683 		if (blkno == (daddr_t)-1) {
   1684 			skipbytes += iobytes;
   1685 			continue;
   1686 		}
   1687 
   1688 		/*
   1689 		 * Discover how much we can really pack into this buffer.
   1690 		 */
   1691 		/* If no room in the current segment, finish it up */
   1692 		if (sp->sum_bytes_left < sizeof(int32_t) ||
   1693 		    sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
   1694 			int vers;
   1695 
   1696 			lfs_updatemeta(sp);
   1697 			vers = sp->fip->fi_version;
   1698 			lfs_release_finfo(fs);
   1699 			(void) lfs_writeseg(fs, sp);
   1700 
   1701 			lfs_acquire_finfo(fs, ip->i_number, vers);
   1702 		}
   1703 		/* Check both for space in segment and space in segsum */
   1704 		iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
   1705 					<< fs_bshift);
   1706 		iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
   1707 				       << fs_bshift);
   1708 		KASSERT(iobytes > 0);
   1709 
   1710 		/* if it's really one i/o, don't make a second buf */
   1711 		if (offset == startoffset && iobytes == bytes) {
   1712 			bp = mbp;
   1713 			/* correct overcount if there is no second buffer */
   1714 			mutex_enter(&vp->v_interlock);
   1715 			--vp->v_numoutput;
   1716 			mutex_exit(&vp->v_interlock);
   1717 		} else {
   1718 			bp = getiobuf(NULL, true);
   1719 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1720 			    vp, bp, vp->v_numoutput, 0);
   1721 			bp->b_data = (char *)kva +
   1722 			    (vaddr_t)(offset - pg->offset);
   1723 			bp->b_resid = bp->b_bcount = iobytes;
   1724 			bp->b_cflags = BC_BUSY;
   1725 			bp->b_iodone = uvm_aio_biodone1;
   1726 		}
   1727 
   1728 		/* XXX This is silly ... is this necessary? */
   1729 		mutex_enter(&bufcache_lock);
   1730 		mutex_enter(&vp->v_interlock);
   1731 		bgetvp(vp, bp);
   1732 		mutex_exit(&vp->v_interlock);
   1733 		mutex_exit(&bufcache_lock);
   1734 
   1735 		bp->b_lblkno = lblkno(fs, offset);
   1736 		bp->b_private = mbp;
   1737 		if (devvp->v_type == VBLK) {
   1738 			bp->b_dev = devvp->v_rdev;
   1739 		}
   1740 		VOP_BWRITE(bp);
   1741 		while (lfs_gatherblock(sp, bp, NULL))
   1742 			continue;
   1743 	}
   1744 
   1745 	if (skipbytes) {
   1746 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1747 		mutex_enter(mbp->b_objlock);
   1748 		if (error) {
   1749 			mbp->b_error = error;
   1750 		}
   1751 		mbp->b_resid -= skipbytes;
   1752 		mutex_exit(mbp->b_objlock);
   1753 		if (mbp->b_resid == 0) {
   1754 			biodone(mbp);
   1755 		}
   1756 	}
   1757 	UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
   1758 	return (0);
   1759 
   1760     tryagain:
   1761 	/*
   1762 	 * We can't write the pages, for whatever reason.
   1763 	 * Clean up after ourselves, and make the caller try again.
   1764 	 */
   1765 	mutex_enter(&vp->v_interlock);
   1766 
   1767 	/* Tell why we're here, if we know */
   1768 	if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
   1769 		DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
   1770 	} else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
   1771 		DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
   1772 	} else if (haveeof && startoffset >= eof) {
   1773 		DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
   1774 		      " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
   1775 		      pgs[0]->offset, eof, npages));
   1776 	} else if (LFS_STARVED_FOR_SEGS(fs)) {
   1777 		DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
   1778 	} else {
   1779 		DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
   1780 	}
   1781 
   1782 	mutex_enter(&uvm_pageqlock);
   1783 	for (i = 0; i < npages; i++) {
   1784 		pg = pgs[i];
   1785 
   1786 		if (pg->flags & PG_PAGEOUT)
   1787 			uvm_pageout_done(1);
   1788 		if (pg->flags & PG_DELWRI) {
   1789 			uvm_pageunwire(pg);
   1790 		}
   1791 		uvm_pageactivate(pg);
   1792 		pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
   1793 		DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
   1794 			vp, pg->offset));
   1795 		DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
   1796 		DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
   1797 		DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
   1798 		DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
   1799 		DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
   1800 		      pg->wire_count));
   1801 		DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
   1802 		      pg->loan_count));
   1803 	}
   1804 	/* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
   1805 	uvm_page_unbusy(pgs, npages);
   1806 	mutex_exit(&uvm_pageqlock);
   1807 	mutex_exit(&vp->v_interlock);
   1808 	return EAGAIN;
   1809 }
   1810 
   1811 /*
   1812  * finish vnode/inode initialization.
   1813  * used by lfs_vget and lfs_fastvget.
   1814  */
   1815 void
   1816 lfs_vinit(struct mount *mp, struct vnode **vpp)
   1817 {
   1818 	struct vnode *vp = *vpp;
   1819 	struct inode *ip = VTOI(vp);
   1820 	struct ufsmount *ump = VFSTOUFS(mp);
   1821 	struct lfs *fs = ump->um_lfs;
   1822 	int i;
   1823 
   1824 	ip->i_mode = ip->i_ffs1_mode;
   1825 	ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
   1826 	ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
   1827 	ip->i_flags = ip->i_ffs1_flags;
   1828 	ip->i_gen = ip->i_ffs1_gen;
   1829 	ip->i_uid = ip->i_ffs1_uid;
   1830 	ip->i_gid = ip->i_ffs1_gid;
   1831 
   1832 	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
   1833 	ip->i_lfs_odnlink = ip->i_ffs1_nlink;
   1834 
   1835 	/*
   1836 	 * Initialize the vnode from the inode, check for aliases.  In all
   1837 	 * cases re-init ip, the underlying vnode/inode may have changed.
   1838 	 */
   1839 	ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
   1840 	ip = VTOI(vp);
   1841 
   1842 	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
   1843 	if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
   1844 #ifdef DEBUG
   1845 		for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1846 		    i < NDADDR; i++) {
   1847 			if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
   1848 			    i == 0)
   1849 				continue;
   1850 			if (ip->i_ffs1_db[i] != 0) {
   1851 inconsistent:
   1852 				lfs_dump_dinode(ip->i_din.ffs1_din);
   1853 				panic("inconsistent inode");
   1854 			}
   1855 		}
   1856 		for ( ; i < NDADDR + NIADDR; i++) {
   1857 			if (ip->i_ffs1_ib[i - NDADDR] != 0) {
   1858 				goto inconsistent;
   1859 			}
   1860 		}
   1861 #endif /* DEBUG */
   1862 		for (i = 0; i < NDADDR; i++)
   1863 			if (ip->i_ffs1_db[i] != 0)
   1864 				ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
   1865 	}
   1866 
   1867 #ifdef DIAGNOSTIC
   1868 	if (vp->v_type == VNON) {
   1869 # ifdef DEBUG
   1870 		lfs_dump_dinode(ip->i_din.ffs1_din);
   1871 # endif
   1872 		panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
   1873 		      (unsigned long long)ip->i_number,
   1874 		      (ip->i_mode & IFMT) >> 12);
   1875 	}
   1876 #endif /* DIAGNOSTIC */
   1877 
   1878 	/*
   1879 	 * Finish inode initialization now that aliasing has been resolved.
   1880 	 */
   1881 
   1882 	ip->i_devvp = ump->um_devvp;
   1883 	VREF(ip->i_devvp);
   1884 	genfs_node_init(vp, &lfs_genfsops);
   1885 	uvm_vnp_setsize(vp, ip->i_size);
   1886 
   1887 	/* Initialize hiblk from file size */
   1888 	ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
   1889 
   1890 	*vpp = vp;
   1891 }
   1892 
   1893 /*
   1894  * Resize the filesystem to contain the specified number of segments.
   1895  */
   1896 int
   1897 lfs_resize_fs(struct lfs *fs, int newnsegs)
   1898 {
   1899 	SEGUSE *sup;
   1900 	struct buf *bp, *obp;
   1901 	daddr_t olast, nlast, ilast, noff, start, end;
   1902 	struct vnode *ivp;
   1903 	struct inode *ip;
   1904 	int error, badnews, inc, oldnsegs;
   1905 	int sbbytes, csbbytes, gain, cgain;
   1906 	int i;
   1907 
   1908 	/* Only support v2 and up */
   1909 	if (fs->lfs_version < 2)
   1910 		return EOPNOTSUPP;
   1911 
   1912 	/* If we're doing nothing, do it fast */
   1913 	oldnsegs = fs->lfs_nseg;
   1914 	if (newnsegs == oldnsegs)
   1915 		return 0;
   1916 
   1917 	/* We always have to have two superblocks */
   1918 	if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
   1919 		return EFBIG;
   1920 
   1921 	ivp = fs->lfs_ivnode;
   1922 	ip = VTOI(ivp);
   1923 	error = 0;
   1924 
   1925 	/* Take the segment lock so no one else calls lfs_newseg() */
   1926 	lfs_seglock(fs, SEGM_PROT);
   1927 
   1928 	/*
   1929 	 * Make sure the segments we're going to be losing, if any,
   1930 	 * are in fact empty.  We hold the seglock, so their status
   1931 	 * cannot change underneath us.  Count the superblocks we lose,
   1932 	 * while we're at it.
   1933 	 */
   1934 	sbbytes = csbbytes = 0;
   1935 	cgain = 0;
   1936 	for (i = newnsegs; i < oldnsegs; i++) {
   1937 		LFS_SEGENTRY(sup, fs, i, bp);
   1938 		badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
   1939 		if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1940 			sbbytes += LFS_SBPAD;
   1941 		if (!(sup->su_flags & SEGUSE_DIRTY)) {
   1942 			++cgain;
   1943 			if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1944 				csbbytes += LFS_SBPAD;
   1945 		}
   1946 		brelse(bp, 0);
   1947 		if (badnews) {
   1948 			error = EBUSY;
   1949 			goto out;
   1950 		}
   1951 	}
   1952 
   1953 	/* Note old and new segment table endpoints, and old ifile size */
   1954 	olast = fs->lfs_cleansz + fs->lfs_segtabsz;
   1955 	nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
   1956 	ilast = ivp->v_size >> fs->lfs_bshift;
   1957 	noff = nlast - olast;
   1958 
   1959 	/*
   1960 	 * Make sure no one can use the Ifile while we change it around.
   1961 	 * Even after taking the iflock we need to make sure no one still
   1962 	 * is holding Ifile buffers, so we get each one, to drain them.
   1963 	 * (XXX this could be done better.)
   1964 	 */
   1965 	rw_enter(&fs->lfs_iflock, RW_WRITER);
   1966 	vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
   1967 	for (i = 0; i < ilast; i++) {
   1968 		bread(ivp, i, fs->lfs_bsize, NOCRED, &bp);
   1969 		brelse(bp, 0);
   1970 	}
   1971 
   1972 	/* Allocate new Ifile blocks */
   1973 	for (i = ilast; i < ilast + noff; i++) {
   1974 		if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
   1975 			       &bp) != 0)
   1976 			panic("balloc extending ifile");
   1977 		memset(bp->b_data, 0, fs->lfs_bsize);
   1978 		VOP_BWRITE(bp);
   1979 	}
   1980 
   1981 	/* Register new ifile size */
   1982 	ip->i_size += noff * fs->lfs_bsize;
   1983 	ip->i_ffs1_size = ip->i_size;
   1984 	uvm_vnp_setsize(ivp, ip->i_size);
   1985 
   1986 	/* Copy the inode table to its new position */
   1987 	if (noff != 0) {
   1988 		if (noff < 0) {
   1989 			start = nlast;
   1990 			end = ilast + noff;
   1991 			inc = 1;
   1992 		} else {
   1993 			start = ilast + noff - 1;
   1994 			end = nlast - 1;
   1995 			inc = -1;
   1996 		}
   1997 		for (i = start; i != end; i += inc) {
   1998 			if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0)
   1999 				panic("resize: bread dst blk failed");
   2000 			if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp))
   2001 				panic("resize: bread src blk failed");
   2002 			memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
   2003 			VOP_BWRITE(bp);
   2004 			brelse(obp, 0);
   2005 		}
   2006 	}
   2007 
   2008 	/* If we are expanding, write the new empty SEGUSE entries */
   2009 	if (newnsegs > oldnsegs) {
   2010 		for (i = oldnsegs; i < newnsegs; i++) {
   2011 			if ((error = bread(ivp, i / fs->lfs_sepb +
   2012 					   fs->lfs_cleansz,
   2013 					   fs->lfs_bsize, NOCRED, &bp)) != 0)
   2014 				panic("lfs: ifile read: %d", error);
   2015 			while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
   2016 				sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
   2017 				memset(sup, 0, sizeof(*sup));
   2018 				i++;
   2019 			}
   2020 			VOP_BWRITE(bp);
   2021 		}
   2022 	}
   2023 
   2024 	/* Zero out unused superblock offsets */
   2025 	for (i = 2; i < LFS_MAXNUMSB; i++)
   2026 		if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
   2027 			fs->lfs_sboffs[i] = 0x0;
   2028 
   2029 	/*
   2030 	 * Correct superblock entries that depend on fs size.
   2031 	 * The computations of these are as follows:
   2032 	 *
   2033 	 * size  = segtod(fs, nseg)
   2034 	 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
   2035 	 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
   2036 	 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
   2037 	 *         + (segtod(fs, 1) - (offset - curseg))
   2038 	 *	   - segtod(fs, minfreeseg - (minfreeseg / 2))
   2039 	 *
   2040 	 * XXX - we should probably adjust minfreeseg as well.
   2041 	 */
   2042 	gain = (newnsegs - oldnsegs);
   2043 	fs->lfs_nseg = newnsegs;
   2044 	fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
   2045 	fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
   2046 	fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
   2047 	fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
   2048 		       - gain * btofsb(fs, fs->lfs_bsize / 2);
   2049 	if (gain > 0) {
   2050 		fs->lfs_nclean += gain;
   2051 		fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
   2052 	} else {
   2053 		fs->lfs_nclean -= cgain;
   2054 		fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
   2055 				 btofsb(fs, csbbytes);
   2056 	}
   2057 
   2058 	/* Resize segment flag cache */
   2059 	fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
   2060 						  fs->lfs_nseg * sizeof(u_int32_t),
   2061 						  M_SEGMENT, M_WAITOK);
   2062 	fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
   2063 						  fs->lfs_nseg * sizeof(u_int32_t),
   2064 						  M_SEGMENT, M_WAITOK);
   2065 	for (i = oldnsegs; i < newnsegs; i++)
   2066 		fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
   2067 
   2068 	/* Truncate Ifile if necessary */
   2069 	if (noff < 0)
   2070 		lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
   2071 		    NOCRED);
   2072 
   2073 	/* Update cleaner info so the cleaner can die */
   2074 	bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp);
   2075 	((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
   2076 	((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
   2077 	VOP_BWRITE(bp);
   2078 
   2079 	/* Let Ifile accesses proceed */
   2080 	VOP_UNLOCK(ivp, 0);
   2081 	rw_exit(&fs->lfs_iflock);
   2082 
   2083     out:
   2084 	lfs_segunlock(fs);
   2085 	return error;
   2086 }
   2087