lfs_vfsops.c revision 1.261 1 /* $NetBSD: lfs_vfsops.c,v 1.261 2008/05/10 02:26:10 rumble Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.261 2008/05/10 02:26:10 rumble Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/mbuf.h>
82 #include <sys/file.h>
83 #include <sys/disklabel.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/socket.h>
89 #include <sys/syslog.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/module.h>
95
96 #include <miscfs/specfs/specdev.h>
97
98 #include <ufs/ufs/quota.h>
99 #include <ufs/ufs/inode.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106 #include <uvm/uvm_pdaemon.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <miscfs/genfs/genfs.h>
112 #include <miscfs/genfs/genfs_node.h>
113
114 MODULE(MODULE_CLASS_VFS, lfs, NULL);
115
116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
117 static bool lfs_issequential_hole(const struct ufsmount *,
118 daddr_t, daddr_t);
119
120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
121
122 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
123 extern const struct vnodeopv_desc lfs_specop_opv_desc;
124 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
125
126 pid_t lfs_writer_daemon = 0;
127 int lfs_do_flush = 0;
128 #ifdef LFS_KERNEL_RFW
129 int lfs_do_rfw = 0;
130 #endif
131
132 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
133 &lfs_vnodeop_opv_desc,
134 &lfs_specop_opv_desc,
135 &lfs_fifoop_opv_desc,
136 NULL,
137 };
138
139 struct vfsops lfs_vfsops = {
140 MOUNT_LFS,
141 sizeof (struct ufs_args),
142 lfs_mount,
143 ufs_start,
144 lfs_unmount,
145 ufs_root,
146 ufs_quotactl,
147 lfs_statvfs,
148 lfs_sync,
149 lfs_vget,
150 lfs_fhtovp,
151 lfs_vptofh,
152 lfs_init,
153 lfs_reinit,
154 lfs_done,
155 lfs_mountroot,
156 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
157 vfs_stdextattrctl,
158 (void *)eopnotsupp, /* vfs_suspendctl */
159 genfs_renamelock_enter,
160 genfs_renamelock_exit,
161 (void *)eopnotsupp,
162 lfs_vnodeopv_descs,
163 0,
164 { NULL, NULL },
165 };
166
167 const struct genfs_ops lfs_genfsops = {
168 .gop_size = lfs_gop_size,
169 .gop_alloc = ufs_gop_alloc,
170 .gop_write = lfs_gop_write,
171 .gop_markupdate = ufs_gop_markupdate,
172 };
173
174 static const struct ufs_ops lfs_ufsops = {
175 .uo_itimes = NULL,
176 .uo_update = lfs_update,
177 .uo_truncate = lfs_truncate,
178 .uo_valloc = lfs_valloc,
179 .uo_vfree = lfs_vfree,
180 .uo_balloc = lfs_balloc,
181 };
182
183 static int
184 lfs_modcmd(modcmd_t cmd, void *arg)
185 {
186
187 switch (cmd) {
188 case MODULE_CMD_INIT:
189 return vfs_attach(&lfs_vfsops);
190 case MODULE_CMD_FINI:
191 return vfs_detach(&lfs_vfsops);
192 default:
193 return ENOTTY;
194 }
195 }
196
197 /*
198 * XXX Same structure as FFS inodes? Should we share a common pool?
199 */
200 struct pool lfs_inode_pool;
201 struct pool lfs_dinode_pool;
202 struct pool lfs_inoext_pool;
203 struct pool lfs_lbnentry_pool;
204
205 /*
206 * The writer daemon. UVM keeps track of how many dirty pages we are holding
207 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
208 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
209 */
210 static void
211 lfs_writerd(void *arg)
212 {
213 struct mount *mp, *nmp;
214 struct lfs *fs;
215 int fsflags;
216 int loopcount;
217
218 lfs_writer_daemon = curproc->p_pid;
219
220 mutex_enter(&lfs_lock);
221 for (;;) {
222 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
223 &lfs_lock);
224
225 /*
226 * Look through the list of LFSs to see if any of them
227 * have requested pageouts.
228 */
229 mutex_enter(&mountlist_lock);
230 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
231 mp = nmp) {
232 if (vfs_busy(mp, &nmp)) {
233 continue;
234 }
235 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
236 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
237 fs = VFSTOUFS(mp)->um_lfs;
238 mutex_enter(&lfs_lock);
239 fsflags = 0;
240 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
241 lfs_dirvcount > LFS_MAX_DIROP) &&
242 fs->lfs_dirops == 0)
243 fsflags |= SEGM_CKP;
244 if (fs->lfs_pdflush) {
245 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
246 fs->lfs_pdflush = 0;
247 lfs_flush_fs(fs, fsflags);
248 mutex_exit(&lfs_lock);
249 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
250 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
251 mutex_exit(&lfs_lock);
252 lfs_writer_enter(fs, "wrdirop");
253 lfs_flush_pchain(fs);
254 lfs_writer_leave(fs);
255 } else
256 mutex_exit(&lfs_lock);
257 }
258 vfs_unbusy(mp, false, &nmp);
259 }
260 mutex_exit(&mountlist_lock);
261
262 /*
263 * If global state wants a flush, flush everything.
264 */
265 mutex_enter(&lfs_lock);
266 loopcount = 0;
267 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
268 locked_queue_bytes > LFS_MAX_BYTES ||
269 lfs_subsys_pages > LFS_MAX_PAGES) {
270
271 if (lfs_do_flush) {
272 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
273 }
274 if (locked_queue_count > LFS_MAX_BUFS) {
275 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
276 locked_queue_count, LFS_MAX_BUFS));
277 }
278 if (locked_queue_bytes > LFS_MAX_BYTES) {
279 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
280 locked_queue_bytes, LFS_MAX_BYTES));
281 }
282 if (lfs_subsys_pages > LFS_MAX_PAGES) {
283 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
284 lfs_subsys_pages, LFS_MAX_PAGES));
285 }
286
287 lfs_flush(NULL, SEGM_WRITERD, 0);
288 lfs_do_flush = 0;
289 }
290 }
291 /* NOTREACHED */
292 }
293
294 /*
295 * Initialize the filesystem, most work done by ufs_init.
296 */
297 void
298 lfs_init()
299 {
300
301 malloc_type_attach(M_SEGMENT);
302 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
303 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
304 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
305 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
306 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
307 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
308 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
309 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
310 ufs_init();
311
312 #ifdef DEBUG
313 memset(lfs_log, 0, sizeof(lfs_log));
314 #endif
315 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
316 cv_init(&locked_queue_cv, "lfsbuf");
317 cv_init(&lfs_writing_cv, "lfsflush");
318 }
319
320 void
321 lfs_reinit()
322 {
323 ufs_reinit();
324 }
325
326 void
327 lfs_done()
328 {
329 ufs_done();
330 mutex_destroy(&lfs_lock);
331 cv_destroy(&locked_queue_cv);
332 cv_destroy(&lfs_writing_cv);
333 pool_destroy(&lfs_inode_pool);
334 pool_destroy(&lfs_dinode_pool);
335 pool_destroy(&lfs_inoext_pool);
336 pool_destroy(&lfs_lbnentry_pool);
337 malloc_type_detach(M_SEGMENT);
338 }
339
340 /*
341 * Called by main() when ufs is going to be mounted as root.
342 */
343 int
344 lfs_mountroot()
345 {
346 extern struct vnode *rootvp;
347 struct mount *mp;
348 struct lwp *l = curlwp;
349 int error;
350
351 if (device_class(root_device) != DV_DISK)
352 return (ENODEV);
353
354 if (rootdev == NODEV)
355 return (ENODEV);
356 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
357 vrele(rootvp);
358 return (error);
359 }
360 if ((error = lfs_mountfs(rootvp, mp, l))) {
361 vfs_unbusy(mp, false, NULL);
362 vfs_destroy(mp);
363 return (error);
364 }
365 mutex_enter(&mountlist_lock);
366 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
367 mutex_exit(&mountlist_lock);
368 (void)lfs_statvfs(mp, &mp->mnt_stat);
369 vfs_unbusy(mp, false, NULL);
370 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
371 return (0);
372 }
373
374 /*
375 * VFS Operations.
376 *
377 * mount system call
378 */
379 int
380 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
381 {
382 struct lwp *l = curlwp;
383 struct nameidata nd;
384 struct vnode *devvp;
385 struct ufs_args *args = data;
386 struct ufsmount *ump = NULL;
387 struct lfs *fs = NULL; /* LFS */
388 int error = 0, update;
389 mode_t accessmode;
390
391 if (*data_len < sizeof *args)
392 return EINVAL;
393
394 if (mp->mnt_flag & MNT_GETARGS) {
395 ump = VFSTOUFS(mp);
396 if (ump == NULL)
397 return EIO;
398 args->fspec = NULL;
399 *data_len = sizeof *args;
400 return 0;
401 }
402
403 update = mp->mnt_flag & MNT_UPDATE;
404
405 /* Check arguments */
406 if (args->fspec != NULL) {
407 /*
408 * Look up the name and verify that it's sane.
409 */
410 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec);
411 if ((error = namei(&nd)) != 0)
412 return (error);
413 devvp = nd.ni_vp;
414
415 if (!update) {
416 /*
417 * Be sure this is a valid block device
418 */
419 if (devvp->v_type != VBLK)
420 error = ENOTBLK;
421 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
422 error = ENXIO;
423 } else {
424 /*
425 * Be sure we're still naming the same device
426 * used for our initial mount
427 */
428 ump = VFSTOUFS(mp);
429 if (devvp != ump->um_devvp)
430 error = EINVAL;
431 }
432 } else {
433 if (!update) {
434 /* New mounts must have a filename for the device */
435 return (EINVAL);
436 } else {
437 /* Use the extant mount */
438 ump = VFSTOUFS(mp);
439 devvp = ump->um_devvp;
440 vref(devvp);
441 }
442 }
443
444
445 /*
446 * If mount by non-root, then verify that user has necessary
447 * permissions on the device.
448 */
449 if (error == 0 && kauth_authorize_generic(l->l_cred,
450 KAUTH_GENERIC_ISSUSER, NULL) != 0) {
451 accessmode = VREAD;
452 if (update ?
453 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
454 (mp->mnt_flag & MNT_RDONLY) == 0)
455 accessmode |= VWRITE;
456 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
457 error = VOP_ACCESS(devvp, accessmode, l->l_cred);
458 VOP_UNLOCK(devvp, 0);
459 }
460
461 if (error) {
462 vrele(devvp);
463 return (error);
464 }
465
466 if (!update) {
467 int flags;
468
469 if (mp->mnt_flag & MNT_RDONLY)
470 flags = FREAD;
471 else
472 flags = FREAD|FWRITE;
473 error = VOP_OPEN(devvp, flags, FSCRED);
474 if (error)
475 goto fail;
476 error = lfs_mountfs(devvp, mp, l); /* LFS */
477 if (error) {
478 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
479 (void)VOP_CLOSE(devvp, flags, NOCRED);
480 VOP_UNLOCK(devvp, 0);
481 goto fail;
482 }
483
484 ump = VFSTOUFS(mp);
485 fs = ump->um_lfs;
486 } else {
487 /*
488 * Update the mount.
489 */
490
491 /*
492 * The initial mount got a reference on this
493 * device, so drop the one obtained via
494 * namei(), above.
495 */
496 vrele(devvp);
497
498 ump = VFSTOUFS(mp);
499 fs = ump->um_lfs;
500 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
501 /*
502 * Changing from read-only to read/write.
503 * Note in the superblocks that we're writing.
504 */
505 fs->lfs_ronly = 0;
506 if (fs->lfs_pflags & LFS_PF_CLEAN) {
507 fs->lfs_pflags &= ~LFS_PF_CLEAN;
508 lfs_writesuper(fs, fs->lfs_sboffs[0]);
509 lfs_writesuper(fs, fs->lfs_sboffs[1]);
510 }
511 }
512 if (args->fspec == NULL)
513 return EINVAL;
514 }
515
516 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
517 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
518 if (error == 0)
519 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
520 sizeof(fs->lfs_fsmnt));
521 return error;
522
523 fail:
524 vrele(devvp);
525 return (error);
526 }
527
528
529 /*
530 * Common code for mount and mountroot
531 * LFS specific
532 */
533 int
534 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
535 {
536 struct dlfs *tdfs, *dfs, *adfs;
537 struct lfs *fs;
538 struct ufsmount *ump;
539 struct vnode *vp;
540 struct buf *bp, *abp;
541 struct partinfo dpart;
542 dev_t dev;
543 int error, i, ronly, secsize, fsbsize;
544 kauth_cred_t cred;
545 CLEANERINFO *cip;
546 SEGUSE *sup;
547 daddr_t sb_addr;
548
549 cred = l ? l->l_cred : NOCRED;
550
551 /*
552 * Flush out any old buffers remaining from a previous use.
553 */
554 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
555 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
556 VOP_UNLOCK(devvp, 0);
557 if (error)
558 return (error);
559
560 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
561 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
562 secsize = DEV_BSIZE;
563 else
564 secsize = dpart.disklab->d_secsize;
565
566 /* Don't free random space on error. */
567 bp = NULL;
568 abp = NULL;
569 ump = NULL;
570
571 sb_addr = LFS_LABELPAD / secsize;
572 while (1) {
573 /* Read in the superblock. */
574 error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp);
575 if (error)
576 goto out;
577 dfs = (struct dlfs *)bp->b_data;
578
579 /* Check the basics. */
580 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
581 dfs->dlfs_version > LFS_VERSION ||
582 dfs->dlfs_bsize < sizeof(struct dlfs)) {
583 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
584 error = EINVAL; /* XXX needs translation */
585 goto out;
586 }
587 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
588 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
589 dfs->dlfs_inodefmt));
590 error = EINVAL;
591 goto out;
592 }
593
594 if (dfs->dlfs_version == 1)
595 fsbsize = secsize;
596 else {
597 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
598 dfs->dlfs_fsbtodb);
599 /*
600 * Could be, if the frag size is large enough, that we
601 * don't have the "real" primary superblock. If that's
602 * the case, get the real one, and try again.
603 */
604 if (sb_addr != dfs->dlfs_sboffs[0] <<
605 dfs->dlfs_fsbtodb) {
606 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
607 " 0x%llx is not right, trying 0x%llx\n",
608 (long long)sb_addr,
609 (long long)(dfs->dlfs_sboffs[0] <<
610 dfs->dlfs_fsbtodb)));
611 sb_addr = dfs->dlfs_sboffs[0] <<
612 dfs->dlfs_fsbtodb;
613 brelse(bp, 0);
614 continue;
615 }
616 }
617 break;
618 }
619
620 /*
621 * Check the second superblock to see which is newer; then mount
622 * using the older of the two. This is necessary to ensure that
623 * the filesystem is valid if it was not unmounted cleanly.
624 */
625
626 if (dfs->dlfs_sboffs[1] &&
627 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
628 {
629 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
630 LFS_SBPAD, cred, &abp);
631 if (error)
632 goto out;
633 adfs = (struct dlfs *)abp->b_data;
634
635 if (dfs->dlfs_version == 1) {
636 /* 1s resolution comparison */
637 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
638 tdfs = adfs;
639 else
640 tdfs = dfs;
641 } else {
642 /* monotonic infinite-resolution comparison */
643 if (adfs->dlfs_serial < dfs->dlfs_serial)
644 tdfs = adfs;
645 else
646 tdfs = dfs;
647 }
648
649 /* Check the basics. */
650 if (tdfs->dlfs_magic != LFS_MAGIC ||
651 tdfs->dlfs_bsize > MAXBSIZE ||
652 tdfs->dlfs_version > LFS_VERSION ||
653 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
654 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
655 " sanity failed\n"));
656 error = EINVAL; /* XXX needs translation */
657 goto out;
658 }
659 } else {
660 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
661 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
662 error = EINVAL;
663 goto out;
664 }
665
666 /* Allocate the mount structure, copy the superblock into it. */
667 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
668 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
669
670 /* Compatibility */
671 if (fs->lfs_version < 2) {
672 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
673 fs->lfs_ibsize = fs->lfs_bsize;
674 fs->lfs_start = fs->lfs_sboffs[0];
675 fs->lfs_tstamp = fs->lfs_otstamp;
676 fs->lfs_fsbtodb = 0;
677 }
678 if (fs->lfs_resvseg == 0)
679 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
680 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
681
682 /*
683 * If we aren't going to be able to write meaningfully to this
684 * filesystem, and were not mounted readonly, bomb out now.
685 */
686 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
687 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
688 " we need BUFPAGES >= %lld\n",
689 (long long)((bufmem_hiwater / bufmem_lowater) *
690 LFS_INVERSE_MAX_BYTES(
691 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
692 free(fs, M_UFSMNT);
693 error = EFBIG; /* XXX needs translation */
694 goto out;
695 }
696
697 /* Before rolling forward, lock so vget will sleep for other procs */
698 if (l != NULL) {
699 fs->lfs_flags = LFS_NOTYET;
700 fs->lfs_rfpid = l->l_proc->p_pid;
701 }
702
703 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
704 ump->um_lfs = fs;
705 ump->um_ops = &lfs_ufsops;
706 ump->um_fstype = UFS1;
707 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
708 brelse(bp, BC_INVAL);
709 brelse(abp, BC_INVAL);
710 } else {
711 brelse(bp, 0);
712 brelse(abp, 0);
713 }
714 bp = NULL;
715 abp = NULL;
716
717
718 /* Set up the I/O information */
719 fs->lfs_devbsize = secsize;
720 fs->lfs_iocount = 0;
721 fs->lfs_diropwait = 0;
722 fs->lfs_activesb = 0;
723 fs->lfs_uinodes = 0;
724 fs->lfs_ravail = 0;
725 fs->lfs_favail = 0;
726 fs->lfs_sbactive = 0;
727
728 /* Set up the ifile and lock aflags */
729 fs->lfs_doifile = 0;
730 fs->lfs_writer = 0;
731 fs->lfs_dirops = 0;
732 fs->lfs_nadirop = 0;
733 fs->lfs_seglock = 0;
734 fs->lfs_pdflush = 0;
735 fs->lfs_sleepers = 0;
736 fs->lfs_pages = 0;
737 rw_init(&fs->lfs_fraglock);
738 rw_init(&fs->lfs_iflock);
739 cv_init(&fs->lfs_stopcv, "lfsstop");
740
741 /* Set the file system readonly/modify bits. */
742 fs->lfs_ronly = ronly;
743 if (ronly == 0)
744 fs->lfs_fmod = 1;
745
746 /* Initialize the mount structure. */
747 dev = devvp->v_rdev;
748 mp->mnt_data = ump;
749 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
750 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
751 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
752 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
753 mp->mnt_stat.f_iosize = fs->lfs_bsize;
754 mp->mnt_flag |= MNT_LOCAL;
755 mp->mnt_fs_bshift = fs->lfs_bshift;
756 ump->um_flags = 0;
757 ump->um_mountp = mp;
758 ump->um_dev = dev;
759 ump->um_devvp = devvp;
760 ump->um_bptrtodb = fs->lfs_fsbtodb;
761 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
762 ump->um_nindir = fs->lfs_nindir;
763 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
764 for (i = 0; i < MAXQUOTAS; i++)
765 ump->um_quotas[i] = NULLVP;
766 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
767 ump->um_dirblksiz = DIRBLKSIZ;
768 ump->um_maxfilesize = fs->lfs_maxfilesize;
769 if (ump->um_maxsymlinklen > 0)
770 mp->mnt_iflag |= IMNT_DTYPE;
771 devvp->v_specmountpoint = mp;
772
773 /* Set up reserved memory for pageout */
774 lfs_setup_resblks(fs);
775 /* Set up vdirop tailq */
776 TAILQ_INIT(&fs->lfs_dchainhd);
777 /* and paging tailq */
778 TAILQ_INIT(&fs->lfs_pchainhd);
779 /* and delayed segment accounting for truncation list */
780 LIST_INIT(&fs->lfs_segdhd);
781
782 /*
783 * We use the ifile vnode for almost every operation. Instead of
784 * retrieving it from the hash table each time we retrieve it here,
785 * artificially increment the reference count and keep a pointer
786 * to it in the incore copy of the superblock.
787 */
788 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
789 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
790 goto out;
791 }
792 fs->lfs_ivnode = vp;
793 VREF(vp);
794
795 /* Set up inode bitmap and order free list */
796 lfs_order_freelist(fs);
797
798 /* Set up segment usage flags for the autocleaner. */
799 fs->lfs_nactive = 0;
800 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
801 M_SEGMENT, M_WAITOK);
802 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
803 M_SEGMENT, M_WAITOK);
804 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
805 M_SEGMENT, M_WAITOK);
806 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
807 for (i = 0; i < fs->lfs_nseg; i++) {
808 int changed;
809
810 LFS_SEGENTRY(sup, fs, i, bp);
811 changed = 0;
812 if (!ronly) {
813 if (sup->su_nbytes == 0 &&
814 !(sup->su_flags & SEGUSE_EMPTY)) {
815 sup->su_flags |= SEGUSE_EMPTY;
816 ++changed;
817 } else if (!(sup->su_nbytes == 0) &&
818 (sup->su_flags & SEGUSE_EMPTY)) {
819 sup->su_flags &= ~SEGUSE_EMPTY;
820 ++changed;
821 }
822 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
823 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
824 ++changed;
825 }
826 }
827 fs->lfs_suflags[0][i] = sup->su_flags;
828 if (changed)
829 LFS_WRITESEGENTRY(sup, fs, i, bp);
830 else
831 brelse(bp, 0);
832 }
833
834 #ifdef LFS_KERNEL_RFW
835 lfs_roll_forward(fs, mp, l);
836 #endif
837
838 /* If writing, sb is not clean; record in case of immediate crash */
839 if (!fs->lfs_ronly) {
840 fs->lfs_pflags &= ~LFS_PF_CLEAN;
841 lfs_writesuper(fs, fs->lfs_sboffs[0]);
842 lfs_writesuper(fs, fs->lfs_sboffs[1]);
843 }
844
845 /* Allow vget now that roll-forward is complete */
846 fs->lfs_flags &= ~(LFS_NOTYET);
847 wakeup(&fs->lfs_flags);
848
849 /*
850 * Initialize the ifile cleaner info with information from
851 * the superblock.
852 */
853 LFS_CLEANERINFO(cip, fs, bp);
854 cip->clean = fs->lfs_nclean;
855 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
856 cip->avail = fs->lfs_avail;
857 cip->bfree = fs->lfs_bfree;
858 (void) LFS_BWRITE_LOG(bp); /* Ifile */
859
860 /*
861 * Mark the current segment as ACTIVE, since we're going to
862 * be writing to it.
863 */
864 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
865 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
866 fs->lfs_nactive++;
867 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
868
869 /* Now that roll-forward is done, unlock the Ifile */
870 vput(vp);
871
872 /* Start the pagedaemon-anticipating daemon */
873 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
874 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
875 panic("fork lfs_writer");
876
877 return (0);
878
879 out:
880 if (bp)
881 brelse(bp, 0);
882 if (abp)
883 brelse(abp, 0);
884 if (ump) {
885 free(ump->um_lfs, M_UFSMNT);
886 free(ump, M_UFSMNT);
887 mp->mnt_data = NULL;
888 }
889
890 return (error);
891 }
892
893 /*
894 * unmount system call
895 */
896 int
897 lfs_unmount(struct mount *mp, int mntflags)
898 {
899 struct lwp *l = curlwp;
900 struct ufsmount *ump;
901 struct lfs *fs;
902 int error, flags, ronly;
903 vnode_t *vp;
904
905 flags = 0;
906 if (mntflags & MNT_FORCE)
907 flags |= FORCECLOSE;
908
909 ump = VFSTOUFS(mp);
910 fs = ump->um_lfs;
911
912 /* Two checkpoints */
913 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
914 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
915
916 /* wake up the cleaner so it can die */
917 lfs_wakeup_cleaner(fs);
918 mutex_enter(&lfs_lock);
919 while (fs->lfs_sleepers)
920 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
921 &lfs_lock);
922 mutex_exit(&lfs_lock);
923
924 #ifdef QUOTA
925 if (mp->mnt_flag & MNT_QUOTA) {
926 int i;
927 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
928 if (error)
929 return (error);
930 for (i = 0; i < MAXQUOTAS; i++) {
931 if (ump->um_quotas[i] == NULLVP)
932 continue;
933 quotaoff(l, mp, i);
934 }
935 /*
936 * Here we fall through to vflush again to ensure
937 * that we have gotten rid of all the system vnodes.
938 */
939 }
940 #endif
941 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
942 return (error);
943 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
944 return (error);
945 vp = fs->lfs_ivnode;
946 mutex_enter(&vp->v_interlock);
947 if (LIST_FIRST(&vp->v_dirtyblkhd))
948 panic("lfs_unmount: still dirty blocks on ifile vnode");
949 mutex_exit(&vp->v_interlock);
950
951 /* Explicitly write the superblock, to update serial and pflags */
952 fs->lfs_pflags |= LFS_PF_CLEAN;
953 lfs_writesuper(fs, fs->lfs_sboffs[0]);
954 lfs_writesuper(fs, fs->lfs_sboffs[1]);
955 mutex_enter(&lfs_lock);
956 while (fs->lfs_iocount)
957 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
958 &lfs_lock);
959 mutex_exit(&lfs_lock);
960
961 /* Finish with the Ifile, now that we're done with it */
962 vgone(fs->lfs_ivnode);
963
964 ronly = !fs->lfs_ronly;
965 if (ump->um_devvp->v_type != VBAD)
966 ump->um_devvp->v_specmountpoint = NULL;
967 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
968 error = VOP_CLOSE(ump->um_devvp,
969 ronly ? FREAD : FREAD|FWRITE, NOCRED);
970 vput(ump->um_devvp);
971
972 /* Complain about page leakage */
973 if (fs->lfs_pages > 0)
974 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
975 fs->lfs_pages, lfs_subsys_pages);
976
977 /* Free per-mount data structures */
978 free(fs->lfs_ino_bitmap, M_SEGMENT);
979 free(fs->lfs_suflags[0], M_SEGMENT);
980 free(fs->lfs_suflags[1], M_SEGMENT);
981 free(fs->lfs_suflags, M_SEGMENT);
982 lfs_free_resblks(fs);
983 cv_destroy(&fs->lfs_stopcv);
984 rw_destroy(&fs->lfs_fraglock);
985 rw_destroy(&fs->lfs_iflock);
986 free(fs, M_UFSMNT);
987 free(ump, M_UFSMNT);
988
989 mp->mnt_data = NULL;
990 mp->mnt_flag &= ~MNT_LOCAL;
991 return (error);
992 }
993
994 /*
995 * Get file system statistics.
996 *
997 * NB: We don't lock to access the superblock here, because it's not
998 * really that important if we get it wrong.
999 */
1000 int
1001 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1002 {
1003 struct lfs *fs;
1004 struct ufsmount *ump;
1005
1006 ump = VFSTOUFS(mp);
1007 fs = ump->um_lfs;
1008 if (fs->lfs_magic != LFS_MAGIC)
1009 panic("lfs_statvfs: magic");
1010
1011 sbp->f_bsize = fs->lfs_bsize;
1012 sbp->f_frsize = fs->lfs_fsize;
1013 sbp->f_iosize = fs->lfs_bsize;
1014 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1015
1016 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1017 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1018 #if 0
1019 if (sbp->f_bfree < 0)
1020 sbp->f_bfree = 0;
1021 #endif
1022
1023 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1024 if (sbp->f_bfree > sbp->f_bresvd)
1025 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1026 else
1027 sbp->f_bavail = 0;
1028
1029 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1030 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1031 sbp->f_favail = sbp->f_ffree;
1032 sbp->f_fresvd = 0;
1033 copy_statvfs_info(sbp, mp);
1034 return (0);
1035 }
1036
1037 /*
1038 * Go through the disk queues to initiate sandbagged IO;
1039 * go through the inodes to write those that have been modified;
1040 * initiate the writing of the super block if it has been modified.
1041 *
1042 * Note: we are always called with the filesystem marked `MPBUSY'.
1043 */
1044 int
1045 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1046 {
1047 int error;
1048 struct lfs *fs;
1049
1050 fs = VFSTOUFS(mp)->um_lfs;
1051 if (fs->lfs_ronly)
1052 return 0;
1053
1054 /* Snapshots should not hose the syncer */
1055 /*
1056 * XXX Sync can block here anyway, since we don't have a very
1057 * XXX good idea of how much data is pending. If it's more
1058 * XXX than a segment and lfs_nextseg is close to the end of
1059 * XXX the log, we'll likely block.
1060 */
1061 mutex_enter(&lfs_lock);
1062 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1063 mutex_exit(&lfs_lock);
1064 return 0;
1065 }
1066 mutex_exit(&lfs_lock);
1067
1068 lfs_writer_enter(fs, "lfs_dirops");
1069
1070 /* All syncs must be checkpoints until roll-forward is implemented. */
1071 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1072 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1073 lfs_writer_leave(fs);
1074 #ifdef QUOTA
1075 qsync(mp);
1076 #endif
1077 return (error);
1078 }
1079
1080 extern kmutex_t ufs_hashlock;
1081
1082 /*
1083 * Look up an LFS dinode number to find its incore vnode. If not already
1084 * in core, read it in from the specified device. Return the inode locked.
1085 * Detection and handling of mount points must be done by the calling routine.
1086 */
1087 int
1088 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1089 {
1090 struct lfs *fs;
1091 struct ufs1_dinode *dip;
1092 struct inode *ip;
1093 struct buf *bp;
1094 struct ifile *ifp;
1095 struct vnode *vp;
1096 struct ufsmount *ump;
1097 daddr_t daddr;
1098 dev_t dev;
1099 int error, retries;
1100 struct timespec ts;
1101
1102 memset(&ts, 0, sizeof ts); /* XXX gcc */
1103
1104 ump = VFSTOUFS(mp);
1105 dev = ump->um_dev;
1106 fs = ump->um_lfs;
1107
1108 /*
1109 * If the filesystem is not completely mounted yet, suspend
1110 * any access requests (wait for roll-forward to complete).
1111 */
1112 mutex_enter(&lfs_lock);
1113 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1114 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1115 &lfs_lock);
1116 mutex_exit(&lfs_lock);
1117
1118 retry:
1119 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1120 return (0);
1121
1122 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1123 *vpp = NULL;
1124 return (error);
1125 }
1126
1127 mutex_enter(&ufs_hashlock);
1128 if (ufs_ihashget(dev, ino, 0) != NULL) {
1129 mutex_exit(&ufs_hashlock);
1130 ungetnewvnode(vp);
1131 goto retry;
1132 }
1133
1134 /* Translate the inode number to a disk address. */
1135 if (ino == LFS_IFILE_INUM)
1136 daddr = fs->lfs_idaddr;
1137 else {
1138 /* XXX bounds-check this too */
1139 LFS_IENTRY(ifp, fs, ino, bp);
1140 daddr = ifp->if_daddr;
1141 if (fs->lfs_version > 1) {
1142 ts.tv_sec = ifp->if_atime_sec;
1143 ts.tv_nsec = ifp->if_atime_nsec;
1144 }
1145
1146 brelse(bp, 0);
1147 if (daddr == LFS_UNUSED_DADDR) {
1148 *vpp = NULLVP;
1149 mutex_exit(&ufs_hashlock);
1150 ungetnewvnode(vp);
1151 return (ENOENT);
1152 }
1153 }
1154
1155 /* Allocate/init new vnode/inode. */
1156 lfs_vcreate(mp, ino, vp);
1157
1158 /*
1159 * Put it onto its hash chain and lock it so that other requests for
1160 * this inode will block if they arrive while we are sleeping waiting
1161 * for old data structures to be purged or for the contents of the
1162 * disk portion of this inode to be read.
1163 */
1164 ip = VTOI(vp);
1165 ufs_ihashins(ip);
1166 mutex_exit(&ufs_hashlock);
1167
1168 /*
1169 * XXX
1170 * This may not need to be here, logically it should go down with
1171 * the i_devvp initialization.
1172 * Ask Kirk.
1173 */
1174 ip->i_lfs = ump->um_lfs;
1175
1176 /* Read in the disk contents for the inode, copy into the inode. */
1177 retries = 0;
1178 again:
1179 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1180 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1181 NOCRED, &bp);
1182 if (error) {
1183 /*
1184 * The inode does not contain anything useful, so it would
1185 * be misleading to leave it on its hash chain. With mode
1186 * still zero, it will be unlinked and returned to the free
1187 * list by vput().
1188 */
1189 vput(vp);
1190 brelse(bp, 0);
1191 *vpp = NULL;
1192 return (error);
1193 }
1194
1195 dip = lfs_ifind(fs, ino, bp);
1196 if (dip == NULL) {
1197 /* Assume write has not completed yet; try again */
1198 brelse(bp, BC_INVAL);
1199 ++retries;
1200 if (retries > LFS_IFIND_RETRIES) {
1201 #ifdef DEBUG
1202 /* If the seglock is held look at the bpp to see
1203 what is there anyway */
1204 mutex_enter(&lfs_lock);
1205 if (fs->lfs_seglock > 0) {
1206 struct buf **bpp;
1207 struct ufs1_dinode *dp;
1208 int i;
1209
1210 for (bpp = fs->lfs_sp->bpp;
1211 bpp != fs->lfs_sp->cbpp; ++bpp) {
1212 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1213 bpp != fs->lfs_sp->bpp) {
1214 /* Inode block */
1215 printf("lfs_vget: block 0x%" PRIx64 ": ",
1216 (*bpp)->b_blkno);
1217 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1218 for (i = 0; i < INOPB(fs); i++)
1219 if (dp[i].di_u.inumber)
1220 printf("%d ", dp[i].di_u.inumber);
1221 printf("\n");
1222 }
1223 }
1224 }
1225 mutex_exit(&lfs_lock);
1226 #endif /* DEBUG */
1227 panic("lfs_vget: dinode not found");
1228 }
1229 mutex_enter(&lfs_lock);
1230 if (fs->lfs_iocount) {
1231 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1232 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1233 "lfs ifind", 1, &lfs_lock);
1234 } else
1235 retries = LFS_IFIND_RETRIES;
1236 mutex_exit(&lfs_lock);
1237 goto again;
1238 }
1239 *ip->i_din.ffs1_din = *dip;
1240 brelse(bp, 0);
1241
1242 if (fs->lfs_version > 1) {
1243 ip->i_ffs1_atime = ts.tv_sec;
1244 ip->i_ffs1_atimensec = ts.tv_nsec;
1245 }
1246
1247 lfs_vinit(mp, &vp);
1248
1249 *vpp = vp;
1250
1251 KASSERT(VOP_ISLOCKED(vp));
1252
1253 return (0);
1254 }
1255
1256 /*
1257 * File handle to vnode
1258 */
1259 int
1260 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1261 {
1262 struct lfid lfh;
1263 struct buf *bp;
1264 IFILE *ifp;
1265 int32_t daddr;
1266 struct lfs *fs;
1267 vnode_t *vp;
1268
1269 if (fhp->fid_len != sizeof(struct lfid))
1270 return EINVAL;
1271
1272 memcpy(&lfh, fhp, sizeof(lfh));
1273 if (lfh.lfid_ino < LFS_IFILE_INUM)
1274 return ESTALE;
1275
1276 fs = VFSTOUFS(mp)->um_lfs;
1277 if (lfh.lfid_ident != fs->lfs_ident)
1278 return ESTALE;
1279
1280 if (lfh.lfid_ino >
1281 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1282 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1283 return ESTALE;
1284
1285 mutex_enter(&ufs_ihash_lock);
1286 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
1287 mutex_exit(&ufs_ihash_lock);
1288 if (vp == NULL) {
1289 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1290 daddr = ifp->if_daddr;
1291 brelse(bp, 0);
1292 if (daddr == LFS_UNUSED_DADDR)
1293 return ESTALE;
1294 }
1295
1296 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1297 }
1298
1299 /*
1300 * Vnode pointer to File handle
1301 */
1302 /* ARGSUSED */
1303 int
1304 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1305 {
1306 struct inode *ip;
1307 struct lfid lfh;
1308
1309 if (*fh_size < sizeof(struct lfid)) {
1310 *fh_size = sizeof(struct lfid);
1311 return E2BIG;
1312 }
1313 *fh_size = sizeof(struct lfid);
1314 ip = VTOI(vp);
1315 memset(&lfh, 0, sizeof(lfh));
1316 lfh.lfid_len = sizeof(struct lfid);
1317 lfh.lfid_ino = ip->i_number;
1318 lfh.lfid_gen = ip->i_gen;
1319 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1320 memcpy(fhp, &lfh, sizeof(lfh));
1321 return (0);
1322 }
1323
1324 static int
1325 sysctl_lfs_dostats(SYSCTLFN_ARGS)
1326 {
1327 extern struct lfs_stats lfs_stats;
1328 extern int lfs_dostats;
1329 int error;
1330
1331 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
1332 if (error || newp == NULL)
1333 return (error);
1334
1335 if (lfs_dostats == 0)
1336 memset(&lfs_stats, 0, sizeof(lfs_stats));
1337
1338 return (0);
1339 }
1340
1341 struct shortlong {
1342 const char *sname;
1343 const char *lname;
1344 };
1345
1346 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
1347 {
1348 int i;
1349 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
1350 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
1351 #ifdef DEBUG
1352 extern int lfs_debug_log_subsys[DLOG_MAX];
1353 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
1354 { "rollforward", "Debug roll-forward code" },
1355 { "alloc", "Debug inode allocation and free list" },
1356 { "avail", "Debug space-available-now accounting" },
1357 { "flush", "Debug flush triggers" },
1358 { "lockedlist", "Debug locked list accounting" },
1359 { "vnode_verbose", "Verbose per-vnode-written debugging" },
1360 { "vnode", "Debug vnode use during segment write" },
1361 { "segment", "Debug segment writing" },
1362 { "seguse", "Debug segment used-bytes accounting" },
1363 { "cleaner", "Debug cleaning routines" },
1364 { "mount", "Debug mount/unmount routines" },
1365 { "pagecache", "Debug UBC interactions" },
1366 { "dirop", "Debug directory-operation accounting" },
1367 { "malloc", "Debug private malloc accounting" },
1368 };
1369 #endif /* DEBUG */
1370 struct shortlong stat_names[] = { /* Must match lfs.h! */
1371 { "segsused", "Number of new segments allocated" },
1372 { "psegwrites", "Number of partial-segment writes" },
1373 { "psyncwrites", "Number of synchronous partial-segment"
1374 " writes" },
1375 { "pcleanwrites", "Number of partial-segment writes by the"
1376 " cleaner" },
1377 { "blocktot", "Number of blocks written" },
1378 { "cleanblocks", "Number of blocks written by the cleaner" },
1379 { "ncheckpoints", "Number of checkpoints made" },
1380 { "nwrites", "Number of whole writes" },
1381 { "nsync_writes", "Number of synchronous writes" },
1382 { "wait_exceeded", "Number of times writer waited for"
1383 " cleaner" },
1384 { "write_exceeded", "Number of times writer invoked flush" },
1385 { "flush_invoked", "Number of times flush was invoked" },
1386 { "vflush_invoked", "Number of time vflush was called" },
1387 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
1388 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
1389 { "segs_reclaimed", "Number of segments reclaimed" },
1390 };
1391
1392 sysctl_createv(clog, 0, NULL, NULL,
1393 CTLFLAG_PERMANENT,
1394 CTLTYPE_NODE, "vfs", NULL,
1395 NULL, 0, NULL, 0,
1396 CTL_VFS, CTL_EOL);
1397 sysctl_createv(clog, 0, NULL, NULL,
1398 CTLFLAG_PERMANENT,
1399 CTLTYPE_NODE, "lfs",
1400 SYSCTL_DESCR("Log-structured file system"),
1401 NULL, 0, NULL, 0,
1402 CTL_VFS, 5, CTL_EOL);
1403 /*
1404 * XXX the "5" above could be dynamic, thereby eliminating one
1405 * more instance of the "number to vfs" mapping problem, but
1406 * "5" is the order as taken from sys/mount.h
1407 */
1408
1409 sysctl_createv(clog, 0, NULL, NULL,
1410 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1411 CTLTYPE_INT, "flushindir", NULL,
1412 NULL, 0, &lfs_writeindir, 0,
1413 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
1414 sysctl_createv(clog, 0, NULL, NULL,
1415 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1416 CTLTYPE_INT, "clean_vnhead", NULL,
1417 NULL, 0, &lfs_clean_vnhead, 0,
1418 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
1419 sysctl_createv(clog, 0, NULL, NULL,
1420 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1421 CTLTYPE_INT, "dostats",
1422 SYSCTL_DESCR("Maintain statistics on LFS operations"),
1423 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
1424 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
1425 sysctl_createv(clog, 0, NULL, NULL,
1426 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1427 CTLTYPE_INT, "pagetrip",
1428 SYSCTL_DESCR("How many dirty pages in fs triggers"
1429 " a flush"),
1430 NULL, 0, &lfs_fs_pagetrip, 0,
1431 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
1432 sysctl_createv(clog, 0, NULL, NULL,
1433 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1434 CTLTYPE_INT, "ignore_lazy_sync",
1435 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
1436 NULL, 0, &lfs_ignore_lazy_sync, 0,
1437 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
1438 #ifdef LFS_KERNEL_RFW
1439 sysctl_createv(clog, 0, NULL, NULL,
1440 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1441 CTLTYPE_INT, "rfw",
1442 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
1443 NULL, 0, &lfs_do_rfw, 0,
1444 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
1445 #endif
1446
1447 sysctl_createv(clog, 0, NULL, NULL,
1448 CTLFLAG_PERMANENT,
1449 CTLTYPE_NODE, "stats",
1450 SYSCTL_DESCR("Debugging options"),
1451 NULL, 0, NULL, 0,
1452 CTL_VFS, 5, LFS_STATS, CTL_EOL);
1453 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
1454 sysctl_createv(clog, 0, NULL, NULL,
1455 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1456 CTLTYPE_INT, stat_names[i].sname,
1457 SYSCTL_DESCR(stat_names[i].lname),
1458 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
1459 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
1460 }
1461
1462 #ifdef DEBUG
1463 sysctl_createv(clog, 0, NULL, NULL,
1464 CTLFLAG_PERMANENT,
1465 CTLTYPE_NODE, "debug",
1466 SYSCTL_DESCR("Debugging options"),
1467 NULL, 0, NULL, 0,
1468 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
1469 for (i = 0; i < DLOG_MAX; i++) {
1470 sysctl_createv(clog, 0, NULL, NULL,
1471 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1472 CTLTYPE_INT, dlog_names[i].sname,
1473 SYSCTL_DESCR(dlog_names[i].lname),
1474 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
1475 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
1476 }
1477 #endif
1478 }
1479
1480 /*
1481 * ufs_bmaparray callback function for writing.
1482 *
1483 * Since blocks will be written to the new segment anyway,
1484 * we don't care about current daddr of them.
1485 */
1486 static bool
1487 lfs_issequential_hole(const struct ufsmount *ump,
1488 daddr_t daddr0, daddr_t daddr1)
1489 {
1490 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1491 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1492
1493 KASSERT(daddr0 == UNWRITTEN ||
1494 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1495 KASSERT(daddr1 == UNWRITTEN ||
1496 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1497
1498 /* NOTE: all we want to know here is 'hole or not'. */
1499 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1500
1501 /*
1502 * treat UNWRITTENs and all resident blocks as 'contiguous'
1503 */
1504 if (daddr0 != 0 && daddr1 != 0)
1505 return true;
1506
1507 /*
1508 * both are in hole?
1509 */
1510 if (daddr0 == 0 && daddr1 == 0)
1511 return true; /* all holes are 'contiguous' for us. */
1512
1513 return false;
1514 }
1515
1516 /*
1517 * lfs_gop_write functions exactly like genfs_gop_write, except that
1518 * (1) it requires the seglock to be held by its caller, and sp->fip
1519 * to be properly initialized (it will return without re-initializing
1520 * sp->fip, and without calling lfs_writeseg).
1521 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1522 * to determine how large a block it can write at once (though it does
1523 * still use VOP_BMAP to find holes in the file);
1524 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1525 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1526 * now have clusters of clusters, ick.)
1527 */
1528 static int
1529 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1530 int flags)
1531 {
1532 int i, error, run, haveeof = 0;
1533 int fs_bshift;
1534 vaddr_t kva;
1535 off_t eof, offset, startoffset = 0;
1536 size_t bytes, iobytes, skipbytes;
1537 daddr_t lbn, blkno;
1538 struct vm_page *pg;
1539 struct buf *mbp, *bp;
1540 struct vnode *devvp = VTOI(vp)->i_devvp;
1541 struct inode *ip = VTOI(vp);
1542 struct lfs *fs = ip->i_lfs;
1543 struct segment *sp = fs->lfs_sp;
1544 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1545
1546 ASSERT_SEGLOCK(fs);
1547
1548 /* The Ifile lives in the buffer cache */
1549 KASSERT(vp != fs->lfs_ivnode);
1550
1551 /*
1552 * We don't want to fill the disk before the cleaner has a chance
1553 * to make room for us. If we're in danger of doing that, fail
1554 * with EAGAIN. The caller will have to notice this, unlock
1555 * so the cleaner can run, relock and try again.
1556 *
1557 * We must write everything, however, if our vnode is being
1558 * reclaimed.
1559 */
1560 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1561 goto tryagain;
1562
1563 /*
1564 * Sometimes things slip past the filters in lfs_putpages,
1565 * and the pagedaemon tries to write pages---problem is
1566 * that the pagedaemon never acquires the segment lock.
1567 *
1568 * Alternatively, pages that were clean when we called
1569 * genfs_putpages may have become dirty in the meantime. In this
1570 * case the segment header is not properly set up for blocks
1571 * to be added to it.
1572 *
1573 * Unbusy and unclean the pages, and put them on the ACTIVE
1574 * queue under the hypothesis that they couldn't have got here
1575 * unless they were modified *quite* recently.
1576 *
1577 * XXXUBC that last statement is an oversimplification of course.
1578 */
1579 if (!LFS_SEGLOCK_HELD(fs) ||
1580 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1581 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1582 goto tryagain;
1583 }
1584
1585 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1586 vp, pgs, npages, flags);
1587
1588 GOP_SIZE(vp, vp->v_size, &eof, 0);
1589 haveeof = 1;
1590
1591 if (vp->v_type == VREG)
1592 fs_bshift = vp->v_mount->mnt_fs_bshift;
1593 else
1594 fs_bshift = DEV_BSHIFT;
1595 error = 0;
1596 pg = pgs[0];
1597 startoffset = pg->offset;
1598 KASSERT(eof >= 0);
1599
1600 if (startoffset >= eof) {
1601 goto tryagain;
1602 } else
1603 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1604 skipbytes = 0;
1605
1606 KASSERT(bytes != 0);
1607
1608 /* Swap PG_DELWRI for PG_PAGEOUT */
1609 for (i = 0; i < npages; i++) {
1610 if (pgs[i]->flags & PG_DELWRI) {
1611 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1612 pgs[i]->flags &= ~PG_DELWRI;
1613 pgs[i]->flags |= PG_PAGEOUT;
1614 uvm_pageout_start(1);
1615 mutex_enter(&uvm_pageqlock);
1616 uvm_pageunwire(pgs[i]);
1617 mutex_exit(&uvm_pageqlock);
1618 }
1619 }
1620
1621 /*
1622 * Check to make sure we're starting on a block boundary.
1623 * We'll check later to make sure we always write entire
1624 * blocks (or fragments).
1625 */
1626 if (startoffset & fs->lfs_bmask)
1627 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1628 startoffset, fs->lfs_bmask,
1629 startoffset & fs->lfs_bmask);
1630 KASSERT((startoffset & fs->lfs_bmask) == 0);
1631 if (bytes & fs->lfs_ffmask) {
1632 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1633 panic("lfs_gop_write: non-integer blocks");
1634 }
1635
1636 /*
1637 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1638 * If we would, write what we have and try again. If we don't
1639 * have anything to write, we'll have to sleep.
1640 */
1641 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1642 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1643 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1644 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1645 #if 0
1646 " with nfinfo=%d at offset 0x%x\n",
1647 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1648 (unsigned)fs->lfs_offset));
1649 #endif
1650 lfs_updatemeta(sp);
1651 lfs_release_finfo(fs);
1652 (void) lfs_writeseg(fs, sp);
1653
1654 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1655
1656 /*
1657 * Having given up all of the pager_map we were holding,
1658 * we can now wait for aiodoned to reclaim it for us
1659 * without fear of deadlock.
1660 */
1661 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1662 UVMPAGER_MAPIN_WAITOK);
1663 }
1664
1665 mutex_enter(&vp->v_interlock);
1666 vp->v_numoutput += 2; /* one for biodone, one for aiodone */
1667 mutex_exit(&vp->v_interlock);
1668
1669 mbp = getiobuf(NULL, true);
1670 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1671 vp, mbp, vp->v_numoutput, bytes);
1672 mbp->b_bufsize = npages << PAGE_SHIFT;
1673 mbp->b_data = (void *)kva;
1674 mbp->b_resid = mbp->b_bcount = bytes;
1675 mbp->b_cflags = BC_BUSY|BC_AGE;
1676 mbp->b_iodone = uvm_aio_biodone;
1677
1678 bp = NULL;
1679 for (offset = startoffset;
1680 bytes > 0;
1681 offset += iobytes, bytes -= iobytes) {
1682 lbn = offset >> fs_bshift;
1683 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1684 lfs_issequential_hole);
1685 if (error) {
1686 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1687 error,0,0,0);
1688 skipbytes += bytes;
1689 bytes = 0;
1690 break;
1691 }
1692
1693 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1694 bytes);
1695 if (blkno == (daddr_t)-1) {
1696 skipbytes += iobytes;
1697 continue;
1698 }
1699
1700 /*
1701 * Discover how much we can really pack into this buffer.
1702 */
1703 /* If no room in the current segment, finish it up */
1704 if (sp->sum_bytes_left < sizeof(int32_t) ||
1705 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1706 int vers;
1707
1708 lfs_updatemeta(sp);
1709 vers = sp->fip->fi_version;
1710 lfs_release_finfo(fs);
1711 (void) lfs_writeseg(fs, sp);
1712
1713 lfs_acquire_finfo(fs, ip->i_number, vers);
1714 }
1715 /* Check both for space in segment and space in segsum */
1716 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1717 << fs_bshift);
1718 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1719 << fs_bshift);
1720 KASSERT(iobytes > 0);
1721
1722 /* if it's really one i/o, don't make a second buf */
1723 if (offset == startoffset && iobytes == bytes) {
1724 bp = mbp;
1725 /* correct overcount if there is no second buffer */
1726 mutex_enter(&vp->v_interlock);
1727 --vp->v_numoutput;
1728 mutex_exit(&vp->v_interlock);
1729 } else {
1730 bp = getiobuf(NULL, true);
1731 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1732 vp, bp, vp->v_numoutput, 0);
1733 bp->b_data = (char *)kva +
1734 (vaddr_t)(offset - pg->offset);
1735 bp->b_resid = bp->b_bcount = iobytes;
1736 bp->b_cflags = BC_BUSY;
1737 bp->b_iodone = uvm_aio_biodone1;
1738 }
1739
1740 /* XXX This is silly ... is this necessary? */
1741 mutex_enter(&bufcache_lock);
1742 mutex_enter(&vp->v_interlock);
1743 bgetvp(vp, bp);
1744 mutex_exit(&vp->v_interlock);
1745 mutex_exit(&bufcache_lock);
1746
1747 bp->b_lblkno = lblkno(fs, offset);
1748 bp->b_private = mbp;
1749 if (devvp->v_type == VBLK) {
1750 bp->b_dev = devvp->v_rdev;
1751 }
1752 VOP_BWRITE(bp);
1753 while (lfs_gatherblock(sp, bp, NULL))
1754 continue;
1755 }
1756
1757 if (skipbytes) {
1758 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1759 mutex_enter(mbp->b_objlock);
1760 if (error) {
1761 mbp->b_error = error;
1762 }
1763 mbp->b_resid -= skipbytes;
1764 mutex_exit(mbp->b_objlock);
1765 if (mbp->b_resid == 0) {
1766 biodone(mbp);
1767 }
1768 }
1769 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1770 return (0);
1771
1772 tryagain:
1773 /*
1774 * We can't write the pages, for whatever reason.
1775 * Clean up after ourselves, and make the caller try again.
1776 */
1777 mutex_enter(&vp->v_interlock);
1778
1779 /* Tell why we're here, if we know */
1780 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1781 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1782 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1783 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1784 } else if (haveeof && startoffset >= eof) {
1785 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1786 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1787 pgs[0]->offset, eof, npages));
1788 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1789 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1790 } else {
1791 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1792 }
1793
1794 mutex_enter(&uvm_pageqlock);
1795 for (i = 0; i < npages; i++) {
1796 pg = pgs[i];
1797
1798 if (pg->flags & PG_PAGEOUT)
1799 uvm_pageout_done(1);
1800 if (pg->flags & PG_DELWRI) {
1801 uvm_pageunwire(pg);
1802 }
1803 uvm_pageactivate(pg);
1804 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1805 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1806 vp, pg->offset));
1807 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1808 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1809 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1810 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1811 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1812 pg->wire_count));
1813 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1814 pg->loan_count));
1815 }
1816 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1817 uvm_page_unbusy(pgs, npages);
1818 mutex_exit(&uvm_pageqlock);
1819 mutex_exit(&vp->v_interlock);
1820 return EAGAIN;
1821 }
1822
1823 /*
1824 * finish vnode/inode initialization.
1825 * used by lfs_vget and lfs_fastvget.
1826 */
1827 void
1828 lfs_vinit(struct mount *mp, struct vnode **vpp)
1829 {
1830 struct vnode *vp = *vpp;
1831 struct inode *ip = VTOI(vp);
1832 struct ufsmount *ump = VFSTOUFS(mp);
1833 struct lfs *fs = ump->um_lfs;
1834 int i;
1835
1836 ip->i_mode = ip->i_ffs1_mode;
1837 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
1838 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1839 ip->i_flags = ip->i_ffs1_flags;
1840 ip->i_gen = ip->i_ffs1_gen;
1841 ip->i_uid = ip->i_ffs1_uid;
1842 ip->i_gid = ip->i_ffs1_gid;
1843
1844 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1845 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1846
1847 /*
1848 * Initialize the vnode from the inode, check for aliases. In all
1849 * cases re-init ip, the underlying vnode/inode may have changed.
1850 */
1851 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1852 ip = VTOI(vp);
1853
1854 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1855 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1856 #ifdef DEBUG
1857 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1858 i < NDADDR; i++) {
1859 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1860 i == 0)
1861 continue;
1862 if (ip->i_ffs1_db[i] != 0) {
1863 inconsistent:
1864 lfs_dump_dinode(ip->i_din.ffs1_din);
1865 panic("inconsistent inode");
1866 }
1867 }
1868 for ( ; i < NDADDR + NIADDR; i++) {
1869 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1870 goto inconsistent;
1871 }
1872 }
1873 #endif /* DEBUG */
1874 for (i = 0; i < NDADDR; i++)
1875 if (ip->i_ffs1_db[i] != 0)
1876 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1877 }
1878
1879 #ifdef DIAGNOSTIC
1880 if (vp->v_type == VNON) {
1881 # ifdef DEBUG
1882 lfs_dump_dinode(ip->i_din.ffs1_din);
1883 # endif
1884 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1885 (unsigned long long)ip->i_number,
1886 (ip->i_mode & IFMT) >> 12);
1887 }
1888 #endif /* DIAGNOSTIC */
1889
1890 /*
1891 * Finish inode initialization now that aliasing has been resolved.
1892 */
1893
1894 ip->i_devvp = ump->um_devvp;
1895 VREF(ip->i_devvp);
1896 genfs_node_init(vp, &lfs_genfsops);
1897 uvm_vnp_setsize(vp, ip->i_size);
1898
1899 /* Initialize hiblk from file size */
1900 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1901
1902 *vpp = vp;
1903 }
1904
1905 /*
1906 * Resize the filesystem to contain the specified number of segments.
1907 */
1908 int
1909 lfs_resize_fs(struct lfs *fs, int newnsegs)
1910 {
1911 SEGUSE *sup;
1912 struct buf *bp, *obp;
1913 daddr_t olast, nlast, ilast, noff, start, end;
1914 struct vnode *ivp;
1915 struct inode *ip;
1916 int error, badnews, inc, oldnsegs;
1917 int sbbytes, csbbytes, gain, cgain;
1918 int i;
1919
1920 /* Only support v2 and up */
1921 if (fs->lfs_version < 2)
1922 return EOPNOTSUPP;
1923
1924 /* If we're doing nothing, do it fast */
1925 oldnsegs = fs->lfs_nseg;
1926 if (newnsegs == oldnsegs)
1927 return 0;
1928
1929 /* We always have to have two superblocks */
1930 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1931 return EFBIG;
1932
1933 ivp = fs->lfs_ivnode;
1934 ip = VTOI(ivp);
1935 error = 0;
1936
1937 /* Take the segment lock so no one else calls lfs_newseg() */
1938 lfs_seglock(fs, SEGM_PROT);
1939
1940 /*
1941 * Make sure the segments we're going to be losing, if any,
1942 * are in fact empty. We hold the seglock, so their status
1943 * cannot change underneath us. Count the superblocks we lose,
1944 * while we're at it.
1945 */
1946 sbbytes = csbbytes = 0;
1947 cgain = 0;
1948 for (i = newnsegs; i < oldnsegs; i++) {
1949 LFS_SEGENTRY(sup, fs, i, bp);
1950 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1951 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1952 sbbytes += LFS_SBPAD;
1953 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1954 ++cgain;
1955 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1956 csbbytes += LFS_SBPAD;
1957 }
1958 brelse(bp, 0);
1959 if (badnews) {
1960 error = EBUSY;
1961 goto out;
1962 }
1963 }
1964
1965 /* Note old and new segment table endpoints, and old ifile size */
1966 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1967 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1968 ilast = ivp->v_size >> fs->lfs_bshift;
1969 noff = nlast - olast;
1970
1971 /*
1972 * Make sure no one can use the Ifile while we change it around.
1973 * Even after taking the iflock we need to make sure no one still
1974 * is holding Ifile buffers, so we get each one, to drain them.
1975 * (XXX this could be done better.)
1976 */
1977 rw_enter(&fs->lfs_iflock, RW_WRITER);
1978 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1979 for (i = 0; i < ilast; i++) {
1980 bread(ivp, i, fs->lfs_bsize, NOCRED, &bp);
1981 brelse(bp, 0);
1982 }
1983
1984 /* Allocate new Ifile blocks */
1985 for (i = ilast; i < ilast + noff; i++) {
1986 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
1987 &bp) != 0)
1988 panic("balloc extending ifile");
1989 memset(bp->b_data, 0, fs->lfs_bsize);
1990 VOP_BWRITE(bp);
1991 }
1992
1993 /* Register new ifile size */
1994 ip->i_size += noff * fs->lfs_bsize;
1995 ip->i_ffs1_size = ip->i_size;
1996 uvm_vnp_setsize(ivp, ip->i_size);
1997
1998 /* Copy the inode table to its new position */
1999 if (noff != 0) {
2000 if (noff < 0) {
2001 start = nlast;
2002 end = ilast + noff;
2003 inc = 1;
2004 } else {
2005 start = ilast + noff - 1;
2006 end = nlast - 1;
2007 inc = -1;
2008 }
2009 for (i = start; i != end; i += inc) {
2010 if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0)
2011 panic("resize: bread dst blk failed");
2012 if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp))
2013 panic("resize: bread src blk failed");
2014 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2015 VOP_BWRITE(bp);
2016 brelse(obp, 0);
2017 }
2018 }
2019
2020 /* If we are expanding, write the new empty SEGUSE entries */
2021 if (newnsegs > oldnsegs) {
2022 for (i = oldnsegs; i < newnsegs; i++) {
2023 if ((error = bread(ivp, i / fs->lfs_sepb +
2024 fs->lfs_cleansz,
2025 fs->lfs_bsize, NOCRED, &bp)) != 0)
2026 panic("lfs: ifile read: %d", error);
2027 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2028 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2029 memset(sup, 0, sizeof(*sup));
2030 i++;
2031 }
2032 VOP_BWRITE(bp);
2033 }
2034 }
2035
2036 /* Zero out unused superblock offsets */
2037 for (i = 2; i < LFS_MAXNUMSB; i++)
2038 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2039 fs->lfs_sboffs[i] = 0x0;
2040
2041 /*
2042 * Correct superblock entries that depend on fs size.
2043 * The computations of these are as follows:
2044 *
2045 * size = segtod(fs, nseg)
2046 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2047 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2048 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2049 * + (segtod(fs, 1) - (offset - curseg))
2050 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2051 *
2052 * XXX - we should probably adjust minfreeseg as well.
2053 */
2054 gain = (newnsegs - oldnsegs);
2055 fs->lfs_nseg = newnsegs;
2056 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2057 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2058 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2059 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2060 - gain * btofsb(fs, fs->lfs_bsize / 2);
2061 if (gain > 0) {
2062 fs->lfs_nclean += gain;
2063 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2064 } else {
2065 fs->lfs_nclean -= cgain;
2066 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2067 btofsb(fs, csbbytes);
2068 }
2069
2070 /* Resize segment flag cache */
2071 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2072 fs->lfs_nseg * sizeof(u_int32_t),
2073 M_SEGMENT, M_WAITOK);
2074 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2075 fs->lfs_nseg * sizeof(u_int32_t),
2076 M_SEGMENT, M_WAITOK);
2077 for (i = oldnsegs; i < newnsegs; i++)
2078 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2079
2080 /* Truncate Ifile if necessary */
2081 if (noff < 0)
2082 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2083 NOCRED);
2084
2085 /* Update cleaner info so the cleaner can die */
2086 bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp);
2087 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2088 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2089 VOP_BWRITE(bp);
2090
2091 /* Let Ifile accesses proceed */
2092 VOP_UNLOCK(ivp, 0);
2093 rw_exit(&fs->lfs_iflock);
2094
2095 out:
2096 lfs_segunlock(fs);
2097 return error;
2098 }
2099