Home | History | Annotate | Line # | Download | only in lfs
lfs_vfsops.c revision 1.264
      1 /*	$NetBSD: lfs_vfsops.c,v 1.264 2008/05/20 16:26:04 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 /*-
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)lfs_vfsops.c	8.20 (Berkeley) 6/10/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.264 2008/05/20 16:26:04 ad Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_lfs.h"
     68 #include "opt_quota.h"
     69 #endif
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/namei.h>
     74 #include <sys/proc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/vnode.h>
     77 #include <sys/mount.h>
     78 #include <sys/kthread.h>
     79 #include <sys/buf.h>
     80 #include <sys/device.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/file.h>
     83 #include <sys/disklabel.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/errno.h>
     86 #include <sys/malloc.h>
     87 #include <sys/pool.h>
     88 #include <sys/socket.h>
     89 #include <sys/syslog.h>
     90 #include <uvm/uvm_extern.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/module.h>
     95 
     96 #include <miscfs/specfs/specdev.h>
     97 
     98 #include <ufs/ufs/quota.h>
     99 #include <ufs/ufs/inode.h>
    100 #include <ufs/ufs/ufsmount.h>
    101 #include <ufs/ufs/ufs_extern.h>
    102 
    103 #include <uvm/uvm.h>
    104 #include <uvm/uvm_stat.h>
    105 #include <uvm/uvm_pager.h>
    106 #include <uvm/uvm_pdaemon.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <miscfs/genfs/genfs.h>
    112 #include <miscfs/genfs/genfs_node.h>
    113 
    114 MODULE(MODULE_CLASS_VFS, lfs, NULL);
    115 
    116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
    117 static bool lfs_issequential_hole(const struct ufsmount *,
    118     daddr_t, daddr_t);
    119 
    120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
    121 
    122 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
    123 extern const struct vnodeopv_desc lfs_specop_opv_desc;
    124 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
    125 
    126 pid_t lfs_writer_daemon = 0;
    127 int lfs_do_flush = 0;
    128 #ifdef LFS_KERNEL_RFW
    129 int lfs_do_rfw = 0;
    130 #endif
    131 
    132 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
    133 	&lfs_vnodeop_opv_desc,
    134 	&lfs_specop_opv_desc,
    135 	&lfs_fifoop_opv_desc,
    136 	NULL,
    137 };
    138 
    139 struct vfsops lfs_vfsops = {
    140 	MOUNT_LFS,
    141 	sizeof (struct ufs_args),
    142 	lfs_mount,
    143 	ufs_start,
    144 	lfs_unmount,
    145 	ufs_root,
    146 	ufs_quotactl,
    147 	lfs_statvfs,
    148 	lfs_sync,
    149 	lfs_vget,
    150 	lfs_fhtovp,
    151 	lfs_vptofh,
    152 	lfs_init,
    153 	lfs_reinit,
    154 	lfs_done,
    155 	lfs_mountroot,
    156 	(int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
    157 	vfs_stdextattrctl,
    158 	(void *)eopnotsupp,	/* vfs_suspendctl */
    159 	genfs_renamelock_enter,
    160 	genfs_renamelock_exit,
    161 	(void *)eopnotsupp,
    162 	lfs_vnodeopv_descs,
    163 	0,
    164 	{ NULL, NULL },
    165 };
    166 
    167 const struct genfs_ops lfs_genfsops = {
    168 	.gop_size = lfs_gop_size,
    169 	.gop_alloc = ufs_gop_alloc,
    170 	.gop_write = lfs_gop_write,
    171 	.gop_markupdate = ufs_gop_markupdate,
    172 };
    173 
    174 static const struct ufs_ops lfs_ufsops = {
    175 	.uo_itimes = NULL,
    176 	.uo_update = lfs_update,
    177 	.uo_truncate = lfs_truncate,
    178 	.uo_valloc = lfs_valloc,
    179 	.uo_vfree = lfs_vfree,
    180 	.uo_balloc = lfs_balloc,
    181 };
    182 
    183 static int
    184 lfs_modcmd(modcmd_t cmd, void *arg)
    185 {
    186 
    187 	switch (cmd) {
    188 	case MODULE_CMD_INIT:
    189 		return vfs_attach(&lfs_vfsops);
    190 	case MODULE_CMD_FINI:
    191 		return vfs_detach(&lfs_vfsops);
    192 	default:
    193 		return ENOTTY;
    194 	}
    195 }
    196 
    197 /*
    198  * XXX Same structure as FFS inodes?  Should we share a common pool?
    199  */
    200 struct pool lfs_inode_pool;
    201 struct pool lfs_dinode_pool;
    202 struct pool lfs_inoext_pool;
    203 struct pool lfs_lbnentry_pool;
    204 
    205 /*
    206  * The writer daemon.  UVM keeps track of how many dirty pages we are holding
    207  * in lfs_subsys_pages; the daemon flushes the filesystem when this value
    208  * crosses the (user-defined) threshhold LFS_MAX_PAGES.
    209  */
    210 static void
    211 lfs_writerd(void *arg)
    212 {
    213 	struct mount *mp, *nmp;
    214 	struct lfs *fs;
    215 	int fsflags;
    216 	int loopcount;
    217 
    218 	lfs_writer_daemon = curproc->p_pid;
    219 
    220 	mutex_enter(&lfs_lock);
    221 	for (;;) {
    222 		mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
    223 		    &lfs_lock);
    224 
    225 		/*
    226 		 * Look through the list of LFSs to see if any of them
    227 		 * have requested pageouts.
    228 		 */
    229 		mutex_enter(&mountlist_lock);
    230 		for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
    231 		     mp = nmp) {
    232 			if (vfs_busy(mp, &nmp)) {
    233 				continue;
    234 			}
    235 			if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
    236 			    sizeof(mp->mnt_stat.f_fstypename)) == 0) {
    237 				fs = VFSTOUFS(mp)->um_lfs;
    238 				mutex_enter(&lfs_lock);
    239 				fsflags = 0;
    240 				if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
    241 				     lfs_dirvcount > LFS_MAX_DIROP) &&
    242 				    fs->lfs_dirops == 0)
    243 					fsflags |= SEGM_CKP;
    244 				if (fs->lfs_pdflush) {
    245 					DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
    246 					fs->lfs_pdflush = 0;
    247 					lfs_flush_fs(fs, fsflags);
    248 					mutex_exit(&lfs_lock);
    249 				} else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
    250 					DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
    251 					mutex_exit(&lfs_lock);
    252 					lfs_writer_enter(fs, "wrdirop");
    253 					lfs_flush_pchain(fs);
    254 					lfs_writer_leave(fs);
    255 				} else
    256 					mutex_exit(&lfs_lock);
    257 			}
    258 			vfs_unbusy(mp, false, &nmp);
    259 		}
    260 		mutex_exit(&mountlist_lock);
    261 
    262 		/*
    263 		 * If global state wants a flush, flush everything.
    264 		 */
    265 		mutex_enter(&lfs_lock);
    266 		loopcount = 0;
    267 		if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
    268 			locked_queue_bytes > LFS_MAX_BYTES ||
    269 			lfs_subsys_pages > LFS_MAX_PAGES) {
    270 
    271 			if (lfs_do_flush) {
    272 				DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
    273 			}
    274 			if (locked_queue_count > LFS_MAX_BUFS) {
    275 				DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
    276 				      locked_queue_count, LFS_MAX_BUFS));
    277 			}
    278 			if (locked_queue_bytes > LFS_MAX_BYTES) {
    279 				DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
    280 				      locked_queue_bytes, LFS_MAX_BYTES));
    281 			}
    282 			if (lfs_subsys_pages > LFS_MAX_PAGES) {
    283 				DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
    284 				      lfs_subsys_pages, LFS_MAX_PAGES));
    285 			}
    286 
    287 			lfs_flush(NULL, SEGM_WRITERD, 0);
    288 			lfs_do_flush = 0;
    289 		}
    290 	}
    291 	/* NOTREACHED */
    292 }
    293 
    294 /*
    295  * Initialize the filesystem, most work done by ufs_init.
    296  */
    297 void
    298 lfs_init()
    299 {
    300 
    301 	malloc_type_attach(M_SEGMENT);
    302 	pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
    303 	    "lfsinopl", &pool_allocator_nointr, IPL_NONE);
    304 	pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
    305 	    "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
    306 	pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
    307 	    "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
    308 	pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
    309 	    "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
    310 	ufs_init();
    311 
    312 #ifdef DEBUG
    313 	memset(lfs_log, 0, sizeof(lfs_log));
    314 #endif
    315 	mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
    316 	cv_init(&locked_queue_cv, "lfsbuf");
    317 	cv_init(&lfs_writing_cv, "lfsflush");
    318 }
    319 
    320 void
    321 lfs_reinit()
    322 {
    323 	ufs_reinit();
    324 }
    325 
    326 void
    327 lfs_done()
    328 {
    329 	ufs_done();
    330 	mutex_destroy(&lfs_lock);
    331 	cv_destroy(&locked_queue_cv);
    332 	cv_destroy(&lfs_writing_cv);
    333 	pool_destroy(&lfs_inode_pool);
    334 	pool_destroy(&lfs_dinode_pool);
    335 	pool_destroy(&lfs_inoext_pool);
    336 	pool_destroy(&lfs_lbnentry_pool);
    337 	malloc_type_detach(M_SEGMENT);
    338 }
    339 
    340 /*
    341  * Called by main() when ufs is going to be mounted as root.
    342  */
    343 int
    344 lfs_mountroot()
    345 {
    346 	extern struct vnode *rootvp;
    347 	struct mount *mp;
    348 	struct lwp *l = curlwp;
    349 	int error;
    350 
    351 	if (device_class(root_device) != DV_DISK)
    352 		return (ENODEV);
    353 
    354 	if (rootdev == NODEV)
    355 		return (ENODEV);
    356 	if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
    357 		vrele(rootvp);
    358 		return (error);
    359 	}
    360 	if ((error = lfs_mountfs(rootvp, mp, l))) {
    361 		vfs_unbusy(mp, false, NULL);
    362 		vfs_destroy(mp);
    363 		return (error);
    364 	}
    365 	mutex_enter(&mountlist_lock);
    366 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    367 	mutex_exit(&mountlist_lock);
    368 	(void)lfs_statvfs(mp, &mp->mnt_stat);
    369 	vfs_unbusy(mp, false, NULL);
    370 	setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
    371 	return (0);
    372 }
    373 
    374 /*
    375  * VFS Operations.
    376  *
    377  * mount system call
    378  */
    379 int
    380 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    381 {
    382 	struct lwp *l = curlwp;
    383 	struct nameidata nd;
    384 	struct vnode *devvp;
    385 	struct ufs_args *args = data;
    386 	struct ufsmount *ump = NULL;
    387 	struct lfs *fs = NULL;				/* LFS */
    388 	int error = 0, update;
    389 	mode_t accessmode;
    390 
    391 	if (*data_len < sizeof *args)
    392 		return EINVAL;
    393 
    394 	if (mp->mnt_flag & MNT_GETARGS) {
    395 		ump = VFSTOUFS(mp);
    396 		if (ump == NULL)
    397 			return EIO;
    398 		args->fspec = NULL;
    399 		*data_len = sizeof *args;
    400 		return 0;
    401 	}
    402 
    403 	update = mp->mnt_flag & MNT_UPDATE;
    404 
    405 	/* Check arguments */
    406 	if (args->fspec != NULL) {
    407 		/*
    408 		 * Look up the name and verify that it's sane.
    409 		 */
    410 		NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec);
    411 		if ((error = namei(&nd)) != 0)
    412 			return (error);
    413 		devvp = nd.ni_vp;
    414 
    415 		if (!update) {
    416 			/*
    417 			 * Be sure this is a valid block device
    418 			 */
    419 			if (devvp->v_type != VBLK)
    420 				error = ENOTBLK;
    421 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    422 				error = ENXIO;
    423 		} else {
    424 			/*
    425 			 * Be sure we're still naming the same device
    426 			 * used for our initial mount
    427 			 */
    428 			ump = VFSTOUFS(mp);
    429 			if (devvp != ump->um_devvp)
    430 				error = EINVAL;
    431 		}
    432 	} else {
    433 		if (!update) {
    434 			/* New mounts must have a filename for the device */
    435 			return (EINVAL);
    436 		} else {
    437 			/* Use the extant mount */
    438 			ump = VFSTOUFS(mp);
    439 			devvp = ump->um_devvp;
    440 			vref(devvp);
    441 		}
    442 	}
    443 
    444 
    445 	/*
    446 	 * If mount by non-root, then verify that user has necessary
    447 	 * permissions on the device.
    448 	 */
    449 	if (error == 0 && kauth_authorize_generic(l->l_cred,
    450 	    KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    451 		accessmode = VREAD;
    452 		if (update ?
    453 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    454 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    455 			accessmode |= VWRITE;
    456 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    457 		error = VOP_ACCESS(devvp, accessmode, l->l_cred);
    458 		VOP_UNLOCK(devvp, 0);
    459 	}
    460 
    461 	if (error) {
    462 		vrele(devvp);
    463 		return (error);
    464 	}
    465 
    466 	if (!update) {
    467 		int flags;
    468 
    469 		if (mp->mnt_flag & MNT_RDONLY)
    470 			flags = FREAD;
    471 		else
    472 			flags = FREAD|FWRITE;
    473 		error = VOP_OPEN(devvp, flags, FSCRED);
    474 		if (error)
    475 			goto fail;
    476 		error = lfs_mountfs(devvp, mp, l);		/* LFS */
    477 		if (error) {
    478 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    479 			(void)VOP_CLOSE(devvp, flags, NOCRED);
    480 			VOP_UNLOCK(devvp, 0);
    481 			goto fail;
    482 		}
    483 
    484 		ump = VFSTOUFS(mp);
    485 		fs = ump->um_lfs;
    486 	} else {
    487 		/*
    488 		 * Update the mount.
    489 		 */
    490 
    491 		/*
    492 		 * The initial mount got a reference on this
    493 		 * device, so drop the one obtained via
    494 		 * namei(), above.
    495 		 */
    496 		vrele(devvp);
    497 
    498 		ump = VFSTOUFS(mp);
    499 		fs = ump->um_lfs;
    500 		if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    501 			/*
    502 			 * Changing from read-only to read/write.
    503 			 * Note in the superblocks that we're writing.
    504 			 */
    505 			fs->lfs_ronly = 0;
    506 			if (fs->lfs_pflags & LFS_PF_CLEAN) {
    507 				fs->lfs_pflags &= ~LFS_PF_CLEAN;
    508 				lfs_writesuper(fs, fs->lfs_sboffs[0]);
    509 				lfs_writesuper(fs, fs->lfs_sboffs[1]);
    510 			}
    511 		}
    512 		if (args->fspec == NULL)
    513 			return EINVAL;
    514 	}
    515 
    516 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    517 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    518 	if (error == 0)
    519 		(void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
    520 			      sizeof(fs->lfs_fsmnt));
    521 	return error;
    522 
    523 fail:
    524 	vrele(devvp);
    525 	return (error);
    526 }
    527 
    528 
    529 /*
    530  * Common code for mount and mountroot
    531  * LFS specific
    532  */
    533 int
    534 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    535 {
    536 	struct dlfs *tdfs, *dfs, *adfs;
    537 	struct lfs *fs;
    538 	struct ufsmount *ump;
    539 	struct vnode *vp;
    540 	struct buf *bp, *abp;
    541 	struct partinfo dpart;
    542 	dev_t dev;
    543 	int error, i, ronly, secsize, fsbsize;
    544 	kauth_cred_t cred;
    545 	CLEANERINFO *cip;
    546 	SEGUSE *sup;
    547 	daddr_t sb_addr;
    548 
    549 	cred = l ? l->l_cred : NOCRED;
    550 
    551 	/*
    552 	 * Flush out any old buffers remaining from a previous use.
    553 	 */
    554 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    555 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    556 	VOP_UNLOCK(devvp, 0);
    557 	if (error)
    558 		return (error);
    559 
    560 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    561 	if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
    562 		secsize = DEV_BSIZE;
    563 	else
    564 		secsize = dpart.disklab->d_secsize;
    565 
    566 	/* Don't free random space on error. */
    567 	bp = NULL;
    568 	abp = NULL;
    569 	ump = NULL;
    570 
    571 	sb_addr = LFS_LABELPAD / secsize;
    572 	while (1) {
    573 		/* Read in the superblock. */
    574 		error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
    575 		if (error)
    576 			goto out;
    577 		dfs = (struct dlfs *)bp->b_data;
    578 
    579 		/* Check the basics. */
    580 		if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
    581 		    dfs->dlfs_version > LFS_VERSION ||
    582 		    dfs->dlfs_bsize < sizeof(struct dlfs)) {
    583 			DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
    584 			error = EINVAL;		/* XXX needs translation */
    585 			goto out;
    586 		}
    587 		if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
    588 			DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
    589 			       dfs->dlfs_inodefmt));
    590 			error = EINVAL;
    591 			goto out;
    592 		}
    593 
    594 		if (dfs->dlfs_version == 1)
    595 			fsbsize = secsize;
    596 		else {
    597 			fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
    598 				dfs->dlfs_fsbtodb);
    599 			/*
    600 			 * Could be, if the frag size is large enough, that we
    601 			 * don't have the "real" primary superblock.  If that's
    602 			 * the case, get the real one, and try again.
    603 			 */
    604 			if (sb_addr != dfs->dlfs_sboffs[0] <<
    605 				       dfs->dlfs_fsbtodb) {
    606 				DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
    607 				      " 0x%llx is not right, trying 0x%llx\n",
    608 				      (long long)sb_addr,
    609 				      (long long)(dfs->dlfs_sboffs[0] <<
    610 						  dfs->dlfs_fsbtodb)));
    611 				sb_addr = dfs->dlfs_sboffs[0] <<
    612 					  dfs->dlfs_fsbtodb;
    613 				brelse(bp, 0);
    614 				continue;
    615 			}
    616 		}
    617 		break;
    618 	}
    619 
    620 	/*
    621 	 * Check the second superblock to see which is newer; then mount
    622 	 * using the older of the two.	This is necessary to ensure that
    623 	 * the filesystem is valid if it was not unmounted cleanly.
    624 	 */
    625 
    626 	if (dfs->dlfs_sboffs[1] &&
    627 	    dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
    628 	{
    629 		error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
    630 			LFS_SBPAD, cred, 0, &abp);
    631 		if (error)
    632 			goto out;
    633 		adfs = (struct dlfs *)abp->b_data;
    634 
    635 		if (dfs->dlfs_version == 1) {
    636 			/* 1s resolution comparison */
    637 			if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
    638 				tdfs = adfs;
    639 			else
    640 				tdfs = dfs;
    641 		} else {
    642 			/* monotonic infinite-resolution comparison */
    643 			if (adfs->dlfs_serial < dfs->dlfs_serial)
    644 				tdfs = adfs;
    645 			else
    646 				tdfs = dfs;
    647 		}
    648 
    649 		/* Check the basics. */
    650 		if (tdfs->dlfs_magic != LFS_MAGIC ||
    651 		    tdfs->dlfs_bsize > MAXBSIZE ||
    652 		    tdfs->dlfs_version > LFS_VERSION ||
    653 		    tdfs->dlfs_bsize < sizeof(struct dlfs)) {
    654 			DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
    655 			      " sanity failed\n"));
    656 			error = EINVAL;		/* XXX needs translation */
    657 			goto out;
    658 		}
    659 	} else {
    660 		DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
    661 		      " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
    662 		error = EINVAL;
    663 		goto out;
    664 	}
    665 
    666 	/* Allocate the mount structure, copy the superblock into it. */
    667 	fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
    668 	memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
    669 
    670 	/* Compatibility */
    671 	if (fs->lfs_version < 2) {
    672 		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
    673 		fs->lfs_ibsize = fs->lfs_bsize;
    674 		fs->lfs_start = fs->lfs_sboffs[0];
    675 		fs->lfs_tstamp = fs->lfs_otstamp;
    676 		fs->lfs_fsbtodb = 0;
    677 	}
    678 	if (fs->lfs_resvseg == 0)
    679 		fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
    680 			MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
    681 
    682 	/*
    683 	 * If we aren't going to be able to write meaningfully to this
    684 	 * filesystem, and were not mounted readonly, bomb out now.
    685 	 */
    686 	if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
    687 		DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
    688 		      " we need BUFPAGES >= %lld\n",
    689 		      (long long)((bufmem_hiwater / bufmem_lowater) *
    690 				  LFS_INVERSE_MAX_BYTES(
    691 					  fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
    692 		free(fs, M_UFSMNT);
    693 		error = EFBIG; /* XXX needs translation */
    694 		goto out;
    695 	}
    696 
    697 	/* Before rolling forward, lock so vget will sleep for other procs */
    698 	if (l != NULL) {
    699 		fs->lfs_flags = LFS_NOTYET;
    700 		fs->lfs_rfpid = l->l_proc->p_pid;
    701 	}
    702 
    703 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
    704 	ump->um_lfs = fs;
    705 	ump->um_ops = &lfs_ufsops;
    706 	ump->um_fstype = UFS1;
    707 	if (sizeof(struct lfs) < LFS_SBPAD) {			/* XXX why? */
    708 		brelse(bp, BC_INVAL);
    709 		brelse(abp, BC_INVAL);
    710 	} else {
    711 		brelse(bp, 0);
    712 		brelse(abp, 0);
    713 	}
    714 	bp = NULL;
    715 	abp = NULL;
    716 
    717 
    718 	/* Set up the I/O information */
    719 	fs->lfs_devbsize = secsize;
    720 	fs->lfs_iocount = 0;
    721 	fs->lfs_diropwait = 0;
    722 	fs->lfs_activesb = 0;
    723 	fs->lfs_uinodes = 0;
    724 	fs->lfs_ravail = 0;
    725 	fs->lfs_favail = 0;
    726 	fs->lfs_sbactive = 0;
    727 
    728 	/* Set up the ifile and lock aflags */
    729 	fs->lfs_doifile = 0;
    730 	fs->lfs_writer = 0;
    731 	fs->lfs_dirops = 0;
    732 	fs->lfs_nadirop = 0;
    733 	fs->lfs_seglock = 0;
    734 	fs->lfs_pdflush = 0;
    735 	fs->lfs_sleepers = 0;
    736 	fs->lfs_pages = 0;
    737 	rw_init(&fs->lfs_fraglock);
    738 	rw_init(&fs->lfs_iflock);
    739 	cv_init(&fs->lfs_stopcv, "lfsstop");
    740 
    741 	/* Set the file system readonly/modify bits. */
    742 	fs->lfs_ronly = ronly;
    743 	if (ronly == 0)
    744 		fs->lfs_fmod = 1;
    745 
    746 	/* Initialize the mount structure. */
    747 	dev = devvp->v_rdev;
    748 	mp->mnt_data = ump;
    749 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
    750 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
    751 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
    752 	mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
    753 	mp->mnt_stat.f_iosize = fs->lfs_bsize;
    754 	mp->mnt_flag |= MNT_LOCAL;
    755 	mp->mnt_fs_bshift = fs->lfs_bshift;
    756 	ump->um_flags = 0;
    757 	ump->um_mountp = mp;
    758 	ump->um_dev = dev;
    759 	ump->um_devvp = devvp;
    760 	ump->um_bptrtodb = fs->lfs_fsbtodb;
    761 	ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
    762 	ump->um_nindir = fs->lfs_nindir;
    763 	ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
    764 	for (i = 0; i < MAXQUOTAS; i++)
    765 		ump->um_quotas[i] = NULLVP;
    766 	ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
    767 	ump->um_dirblksiz = DIRBLKSIZ;
    768 	ump->um_maxfilesize = fs->lfs_maxfilesize;
    769 	if (ump->um_maxsymlinklen > 0)
    770 		mp->mnt_iflag |= IMNT_DTYPE;
    771 	devvp->v_specmountpoint = mp;
    772 
    773 	/* Set up reserved memory for pageout */
    774 	lfs_setup_resblks(fs);
    775 	/* Set up vdirop tailq */
    776 	TAILQ_INIT(&fs->lfs_dchainhd);
    777 	/* and paging tailq */
    778 	TAILQ_INIT(&fs->lfs_pchainhd);
    779 	/* and delayed segment accounting for truncation list */
    780 	LIST_INIT(&fs->lfs_segdhd);
    781 
    782 	/*
    783 	 * We use the ifile vnode for almost every operation.  Instead of
    784 	 * retrieving it from the hash table each time we retrieve it here,
    785 	 * artificially increment the reference count and keep a pointer
    786 	 * to it in the incore copy of the superblock.
    787 	 */
    788 	if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
    789 		DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
    790 		goto out;
    791 	}
    792 	fs->lfs_ivnode = vp;
    793 	VREF(vp);
    794 
    795 	/* Set up inode bitmap and order free list */
    796 	lfs_order_freelist(fs);
    797 
    798 	/* Set up segment usage flags for the autocleaner. */
    799 	fs->lfs_nactive = 0;
    800 	fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
    801 						M_SEGMENT, M_WAITOK);
    802 	fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    803 						 M_SEGMENT, M_WAITOK);
    804 	fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    805 						 M_SEGMENT, M_WAITOK);
    806 	memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
    807 	for (i = 0; i < fs->lfs_nseg; i++) {
    808 		int changed;
    809 
    810 		LFS_SEGENTRY(sup, fs, i, bp);
    811 		changed = 0;
    812 		if (!ronly) {
    813 			if (sup->su_nbytes == 0 &&
    814 			    !(sup->su_flags & SEGUSE_EMPTY)) {
    815 				sup->su_flags |= SEGUSE_EMPTY;
    816 				++changed;
    817 			} else if (!(sup->su_nbytes == 0) &&
    818 				   (sup->su_flags & SEGUSE_EMPTY)) {
    819 				sup->su_flags &= ~SEGUSE_EMPTY;
    820 				++changed;
    821 			}
    822 			if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
    823 				sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
    824 				++changed;
    825 			}
    826 		}
    827 		fs->lfs_suflags[0][i] = sup->su_flags;
    828 		if (changed)
    829 			LFS_WRITESEGENTRY(sup, fs, i, bp);
    830 		else
    831 			brelse(bp, 0);
    832 	}
    833 
    834 #ifdef LFS_KERNEL_RFW
    835 	lfs_roll_forward(fs, mp, l);
    836 #endif
    837 
    838 	/* If writing, sb is not clean; record in case of immediate crash */
    839 	if (!fs->lfs_ronly) {
    840 		fs->lfs_pflags &= ~LFS_PF_CLEAN;
    841 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
    842 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
    843 	}
    844 
    845 	/* Allow vget now that roll-forward is complete */
    846 	fs->lfs_flags &= ~(LFS_NOTYET);
    847 	wakeup(&fs->lfs_flags);
    848 
    849 	/*
    850 	 * Initialize the ifile cleaner info with information from
    851 	 * the superblock.
    852 	 */
    853 	LFS_CLEANERINFO(cip, fs, bp);
    854 	cip->clean = fs->lfs_nclean;
    855 	cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
    856 	cip->avail = fs->lfs_avail;
    857 	cip->bfree = fs->lfs_bfree;
    858 	(void) LFS_BWRITE_LOG(bp); /* Ifile */
    859 
    860 	/*
    861 	 * Mark the current segment as ACTIVE, since we're going to
    862 	 * be writing to it.
    863 	 */
    864 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
    865 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
    866 	fs->lfs_nactive++;
    867 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);  /* Ifile */
    868 
    869 	/* Now that roll-forward is done, unlock the Ifile */
    870 	vput(vp);
    871 
    872 	/* Start the pagedaemon-anticipating daemon */
    873 	if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
    874 	    lfs_writerd, NULL, NULL, "lfs_writer") != 0)
    875 		panic("fork lfs_writer");
    876 
    877 	printf("WARNING: the log file system is experimental and "
    878 	    "may be unstable\n");
    879 
    880 	return (0);
    881 
    882 out:
    883 	if (bp)
    884 		brelse(bp, 0);
    885 	if (abp)
    886 		brelse(abp, 0);
    887 	if (ump) {
    888 		free(ump->um_lfs, M_UFSMNT);
    889 		free(ump, M_UFSMNT);
    890 		mp->mnt_data = NULL;
    891 	}
    892 
    893 	return (error);
    894 }
    895 
    896 /*
    897  * unmount system call
    898  */
    899 int
    900 lfs_unmount(struct mount *mp, int mntflags)
    901 {
    902 	struct lwp *l = curlwp;
    903 	struct ufsmount *ump;
    904 	struct lfs *fs;
    905 	int error, flags, ronly;
    906 	vnode_t *vp;
    907 
    908 	flags = 0;
    909 	if (mntflags & MNT_FORCE)
    910 		flags |= FORCECLOSE;
    911 
    912 	ump = VFSTOUFS(mp);
    913 	fs = ump->um_lfs;
    914 
    915 	/* Two checkpoints */
    916 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
    917 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
    918 
    919 	/* wake up the cleaner so it can die */
    920 	lfs_wakeup_cleaner(fs);
    921 	mutex_enter(&lfs_lock);
    922 	while (fs->lfs_sleepers)
    923 		mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
    924 			&lfs_lock);
    925 	mutex_exit(&lfs_lock);
    926 
    927 #ifdef QUOTA
    928 	if (mp->mnt_flag & MNT_QUOTA) {
    929 		int i;
    930 		error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
    931 		if (error)
    932 			return (error);
    933 		for (i = 0; i < MAXQUOTAS; i++) {
    934 			if (ump->um_quotas[i] == NULLVP)
    935 				continue;
    936 			quotaoff(l, mp, i);
    937 		}
    938 		/*
    939 		 * Here we fall through to vflush again to ensure
    940 		 * that we have gotten rid of all the system vnodes.
    941 		 */
    942 	}
    943 #endif
    944 	if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
    945 		return (error);
    946 	if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
    947 		return (error);
    948 	vp = fs->lfs_ivnode;
    949 	mutex_enter(&vp->v_interlock);
    950 	if (LIST_FIRST(&vp->v_dirtyblkhd))
    951 		panic("lfs_unmount: still dirty blocks on ifile vnode");
    952 	mutex_exit(&vp->v_interlock);
    953 
    954 	/* Explicitly write the superblock, to update serial and pflags */
    955 	fs->lfs_pflags |= LFS_PF_CLEAN;
    956 	lfs_writesuper(fs, fs->lfs_sboffs[0]);
    957 	lfs_writesuper(fs, fs->lfs_sboffs[1]);
    958 	mutex_enter(&lfs_lock);
    959 	while (fs->lfs_iocount)
    960 		mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
    961 			&lfs_lock);
    962 	mutex_exit(&lfs_lock);
    963 
    964 	/* Finish with the Ifile, now that we're done with it */
    965 	vgone(fs->lfs_ivnode);
    966 
    967 	ronly = !fs->lfs_ronly;
    968 	if (ump->um_devvp->v_type != VBAD)
    969 		ump->um_devvp->v_specmountpoint = NULL;
    970 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
    971 	error = VOP_CLOSE(ump->um_devvp,
    972 	    ronly ? FREAD : FREAD|FWRITE, NOCRED);
    973 	vput(ump->um_devvp);
    974 
    975 	/* Complain about page leakage */
    976 	if (fs->lfs_pages > 0)
    977 		printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
    978 			fs->lfs_pages, lfs_subsys_pages);
    979 
    980 	/* Free per-mount data structures */
    981 	free(fs->lfs_ino_bitmap, M_SEGMENT);
    982 	free(fs->lfs_suflags[0], M_SEGMENT);
    983 	free(fs->lfs_suflags[1], M_SEGMENT);
    984 	free(fs->lfs_suflags, M_SEGMENT);
    985 	lfs_free_resblks(fs);
    986 	cv_destroy(&fs->lfs_stopcv);
    987 	rw_destroy(&fs->lfs_fraglock);
    988 	rw_destroy(&fs->lfs_iflock);
    989 	free(fs, M_UFSMNT);
    990 	free(ump, M_UFSMNT);
    991 
    992 	mp->mnt_data = NULL;
    993 	mp->mnt_flag &= ~MNT_LOCAL;
    994 	return (error);
    995 }
    996 
    997 /*
    998  * Get file system statistics.
    999  *
   1000  * NB: We don't lock to access the superblock here, because it's not
   1001  * really that important if we get it wrong.
   1002  */
   1003 int
   1004 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
   1005 {
   1006 	struct lfs *fs;
   1007 	struct ufsmount *ump;
   1008 
   1009 	ump = VFSTOUFS(mp);
   1010 	fs = ump->um_lfs;
   1011 	if (fs->lfs_magic != LFS_MAGIC)
   1012 		panic("lfs_statvfs: magic");
   1013 
   1014 	sbp->f_bsize = fs->lfs_bsize;
   1015 	sbp->f_frsize = fs->lfs_fsize;
   1016 	sbp->f_iosize = fs->lfs_bsize;
   1017 	sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
   1018 
   1019 	sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
   1020 	KASSERT(sbp->f_bfree <= fs->lfs_dsize);
   1021 #if 0
   1022 	if (sbp->f_bfree < 0)
   1023 		sbp->f_bfree = 0;
   1024 #endif
   1025 
   1026 	sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
   1027 	if (sbp->f_bfree > sbp->f_bresvd)
   1028 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1029 	else
   1030 		sbp->f_bavail = 0;
   1031 
   1032 	sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
   1033 	sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
   1034 	sbp->f_favail = sbp->f_ffree;
   1035 	sbp->f_fresvd = 0;
   1036 	copy_statvfs_info(sbp, mp);
   1037 	return (0);
   1038 }
   1039 
   1040 /*
   1041  * Go through the disk queues to initiate sandbagged IO;
   1042  * go through the inodes to write those that have been modified;
   1043  * initiate the writing of the super block if it has been modified.
   1044  *
   1045  * Note: we are always called with the filesystem marked `MPBUSY'.
   1046  */
   1047 int
   1048 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1049 {
   1050 	int error;
   1051 	struct lfs *fs;
   1052 
   1053 	fs = VFSTOUFS(mp)->um_lfs;
   1054 	if (fs->lfs_ronly)
   1055 		return 0;
   1056 
   1057 	/* Snapshots should not hose the syncer */
   1058 	/*
   1059 	 * XXX Sync can block here anyway, since we don't have a very
   1060 	 * XXX good idea of how much data is pending.  If it's more
   1061 	 * XXX than a segment and lfs_nextseg is close to the end of
   1062 	 * XXX the log, we'll likely block.
   1063 	 */
   1064 	mutex_enter(&lfs_lock);
   1065 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1066 		mutex_exit(&lfs_lock);
   1067 		return 0;
   1068 	}
   1069 	mutex_exit(&lfs_lock);
   1070 
   1071 	lfs_writer_enter(fs, "lfs_dirops");
   1072 
   1073 	/* All syncs must be checkpoints until roll-forward is implemented. */
   1074 	DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
   1075 	error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
   1076 	lfs_writer_leave(fs);
   1077 #ifdef QUOTA
   1078 	qsync(mp);
   1079 #endif
   1080 	return (error);
   1081 }
   1082 
   1083 extern kmutex_t ufs_hashlock;
   1084 
   1085 /*
   1086  * Look up an LFS dinode number to find its incore vnode.  If not already
   1087  * in core, read it in from the specified device.  Return the inode locked.
   1088  * Detection and handling of mount points must be done by the calling routine.
   1089  */
   1090 int
   1091 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1092 {
   1093 	struct lfs *fs;
   1094 	struct ufs1_dinode *dip;
   1095 	struct inode *ip;
   1096 	struct buf *bp;
   1097 	struct ifile *ifp;
   1098 	struct vnode *vp;
   1099 	struct ufsmount *ump;
   1100 	daddr_t daddr;
   1101 	dev_t dev;
   1102 	int error, retries;
   1103 	struct timespec ts;
   1104 
   1105 	memset(&ts, 0, sizeof ts);	/* XXX gcc */
   1106 
   1107 	ump = VFSTOUFS(mp);
   1108 	dev = ump->um_dev;
   1109 	fs = ump->um_lfs;
   1110 
   1111 	/*
   1112 	 * If the filesystem is not completely mounted yet, suspend
   1113 	 * any access requests (wait for roll-forward to complete).
   1114 	 */
   1115 	mutex_enter(&lfs_lock);
   1116 	while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
   1117 		mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
   1118 			&lfs_lock);
   1119 	mutex_exit(&lfs_lock);
   1120 
   1121 retry:
   1122 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1123 		return (0);
   1124 
   1125 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1126 		*vpp = NULL;
   1127 		 return (error);
   1128 	}
   1129 
   1130 	mutex_enter(&ufs_hashlock);
   1131 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1132 		mutex_exit(&ufs_hashlock);
   1133 		ungetnewvnode(vp);
   1134 		goto retry;
   1135 	}
   1136 
   1137 	/* Translate the inode number to a disk address. */
   1138 	if (ino == LFS_IFILE_INUM)
   1139 		daddr = fs->lfs_idaddr;
   1140 	else {
   1141 		/* XXX bounds-check this too */
   1142 		LFS_IENTRY(ifp, fs, ino, bp);
   1143 		daddr = ifp->if_daddr;
   1144 		if (fs->lfs_version > 1) {
   1145 			ts.tv_sec = ifp->if_atime_sec;
   1146 			ts.tv_nsec = ifp->if_atime_nsec;
   1147 		}
   1148 
   1149 		brelse(bp, 0);
   1150 		if (daddr == LFS_UNUSED_DADDR) {
   1151 			*vpp = NULLVP;
   1152 			mutex_exit(&ufs_hashlock);
   1153 			ungetnewvnode(vp);
   1154 			return (ENOENT);
   1155 		}
   1156 	}
   1157 
   1158 	/* Allocate/init new vnode/inode. */
   1159 	lfs_vcreate(mp, ino, vp);
   1160 
   1161 	/*
   1162 	 * Put it onto its hash chain and lock it so that other requests for
   1163 	 * this inode will block if they arrive while we are sleeping waiting
   1164 	 * for old data structures to be purged or for the contents of the
   1165 	 * disk portion of this inode to be read.
   1166 	 */
   1167 	ip = VTOI(vp);
   1168 	ufs_ihashins(ip);
   1169 	mutex_exit(&ufs_hashlock);
   1170 
   1171 	/*
   1172 	 * XXX
   1173 	 * This may not need to be here, logically it should go down with
   1174 	 * the i_devvp initialization.
   1175 	 * Ask Kirk.
   1176 	 */
   1177 	ip->i_lfs = ump->um_lfs;
   1178 
   1179 	/* Read in the disk contents for the inode, copy into the inode. */
   1180 	retries = 0;
   1181     again:
   1182 	error = bread(ump->um_devvp, fsbtodb(fs, daddr),
   1183 		(fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
   1184 		NOCRED, 0, &bp);
   1185 	if (error) {
   1186 		/*
   1187 		 * The inode does not contain anything useful, so it would
   1188 		 * be misleading to leave it on its hash chain. With mode
   1189 		 * still zero, it will be unlinked and returned to the free
   1190 		 * list by vput().
   1191 		 */
   1192 		vput(vp);
   1193 		brelse(bp, 0);
   1194 		*vpp = NULL;
   1195 		return (error);
   1196 	}
   1197 
   1198 	dip = lfs_ifind(fs, ino, bp);
   1199 	if (dip == NULL) {
   1200 		/* Assume write has not completed yet; try again */
   1201 		brelse(bp, BC_INVAL);
   1202 		++retries;
   1203 		if (retries > LFS_IFIND_RETRIES) {
   1204 #ifdef DEBUG
   1205 			/* If the seglock is held look at the bpp to see
   1206 			   what is there anyway */
   1207 			mutex_enter(&lfs_lock);
   1208 			if (fs->lfs_seglock > 0) {
   1209 				struct buf **bpp;
   1210 				struct ufs1_dinode *dp;
   1211 				int i;
   1212 
   1213 				for (bpp = fs->lfs_sp->bpp;
   1214 				     bpp != fs->lfs_sp->cbpp; ++bpp) {
   1215 					if ((*bpp)->b_vp == fs->lfs_ivnode &&
   1216 					    bpp != fs->lfs_sp->bpp) {
   1217 						/* Inode block */
   1218 						printf("lfs_vget: block 0x%" PRIx64 ": ",
   1219 						       (*bpp)->b_blkno);
   1220 						dp = (struct ufs1_dinode *)(*bpp)->b_data;
   1221 						for (i = 0; i < INOPB(fs); i++)
   1222 							if (dp[i].di_u.inumber)
   1223 								printf("%d ", dp[i].di_u.inumber);
   1224 						printf("\n");
   1225 					}
   1226 				}
   1227 			}
   1228 			mutex_exit(&lfs_lock);
   1229 #endif /* DEBUG */
   1230 			panic("lfs_vget: dinode not found");
   1231 		}
   1232 		mutex_enter(&lfs_lock);
   1233 		if (fs->lfs_iocount) {
   1234 			DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
   1235 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
   1236 				      "lfs ifind", 1, &lfs_lock);
   1237 		} else
   1238 			retries = LFS_IFIND_RETRIES;
   1239 		mutex_exit(&lfs_lock);
   1240 		goto again;
   1241 	}
   1242 	*ip->i_din.ffs1_din = *dip;
   1243 	brelse(bp, 0);
   1244 
   1245 	if (fs->lfs_version > 1) {
   1246 		ip->i_ffs1_atime = ts.tv_sec;
   1247 		ip->i_ffs1_atimensec = ts.tv_nsec;
   1248 	}
   1249 
   1250 	lfs_vinit(mp, &vp);
   1251 
   1252 	*vpp = vp;
   1253 
   1254 	KASSERT(VOP_ISLOCKED(vp));
   1255 
   1256 	return (0);
   1257 }
   1258 
   1259 /*
   1260  * File handle to vnode
   1261  */
   1262 int
   1263 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1264 {
   1265 	struct lfid lfh;
   1266 	struct buf *bp;
   1267 	IFILE *ifp;
   1268 	int32_t daddr;
   1269 	struct lfs *fs;
   1270 	vnode_t *vp;
   1271 
   1272 	if (fhp->fid_len != sizeof(struct lfid))
   1273 		return EINVAL;
   1274 
   1275 	memcpy(&lfh, fhp, sizeof(lfh));
   1276 	if (lfh.lfid_ino < LFS_IFILE_INUM)
   1277 		return ESTALE;
   1278 
   1279 	fs = VFSTOUFS(mp)->um_lfs;
   1280 	if (lfh.lfid_ident != fs->lfs_ident)
   1281 		return ESTALE;
   1282 
   1283 	if (lfh.lfid_ino >
   1284 	    ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
   1285 	     fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
   1286 		return ESTALE;
   1287 
   1288 	mutex_enter(&ufs_ihash_lock);
   1289 	vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
   1290 	mutex_exit(&ufs_ihash_lock);
   1291 	if (vp == NULL) {
   1292 		LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
   1293 		daddr = ifp->if_daddr;
   1294 		brelse(bp, 0);
   1295 		if (daddr == LFS_UNUSED_DADDR)
   1296 			return ESTALE;
   1297 	}
   1298 
   1299 	return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
   1300 }
   1301 
   1302 /*
   1303  * Vnode pointer to File handle
   1304  */
   1305 /* ARGSUSED */
   1306 int
   1307 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1308 {
   1309 	struct inode *ip;
   1310 	struct lfid lfh;
   1311 
   1312 	if (*fh_size < sizeof(struct lfid)) {
   1313 		*fh_size = sizeof(struct lfid);
   1314 		return E2BIG;
   1315 	}
   1316 	*fh_size = sizeof(struct lfid);
   1317 	ip = VTOI(vp);
   1318 	memset(&lfh, 0, sizeof(lfh));
   1319 	lfh.lfid_len = sizeof(struct lfid);
   1320 	lfh.lfid_ino = ip->i_number;
   1321 	lfh.lfid_gen = ip->i_gen;
   1322 	lfh.lfid_ident = ip->i_lfs->lfs_ident;
   1323 	memcpy(fhp, &lfh, sizeof(lfh));
   1324 	return (0);
   1325 }
   1326 
   1327 static int
   1328 sysctl_lfs_dostats(SYSCTLFN_ARGS)
   1329 {
   1330 	extern struct lfs_stats lfs_stats;
   1331 	extern int lfs_dostats;
   1332 	int error;
   1333 
   1334 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
   1335 	if (error || newp == NULL)
   1336 		return (error);
   1337 
   1338 	if (lfs_dostats == 0)
   1339 		memset(&lfs_stats, 0, sizeof(lfs_stats));
   1340 
   1341 	return (0);
   1342 }
   1343 
   1344 struct shortlong {
   1345 	const char *sname;
   1346 	const char *lname;
   1347 };
   1348 
   1349 SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
   1350 {
   1351 	int i;
   1352 	extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
   1353 		   lfs_fs_pagetrip, lfs_ignore_lazy_sync;
   1354 #ifdef DEBUG
   1355 	extern int lfs_debug_log_subsys[DLOG_MAX];
   1356 	struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
   1357 		{ "rollforward", "Debug roll-forward code" },
   1358 		{ "alloc",	"Debug inode allocation and free list" },
   1359 		{ "avail",	"Debug space-available-now accounting" },
   1360 		{ "flush",	"Debug flush triggers" },
   1361 		{ "lockedlist",	"Debug locked list accounting" },
   1362 		{ "vnode_verbose", "Verbose per-vnode-written debugging" },
   1363 		{ "vnode",	"Debug vnode use during segment write" },
   1364 		{ "segment",	"Debug segment writing" },
   1365 		{ "seguse",	"Debug segment used-bytes accounting" },
   1366 		{ "cleaner",	"Debug cleaning routines" },
   1367 		{ "mount",	"Debug mount/unmount routines" },
   1368 		{ "pagecache",	"Debug UBC interactions" },
   1369 		{ "dirop",	"Debug directory-operation accounting" },
   1370 		{ "malloc",	"Debug private malloc accounting" },
   1371 	};
   1372 #endif /* DEBUG */
   1373 	struct shortlong stat_names[] = { /* Must match lfs.h! */
   1374 		{ "segsused",	    "Number of new segments allocated" },
   1375 		{ "psegwrites",	    "Number of partial-segment writes" },
   1376 		{ "psyncwrites",    "Number of synchronous partial-segment"
   1377 				    " writes" },
   1378 		{ "pcleanwrites",   "Number of partial-segment writes by the"
   1379 				    " cleaner" },
   1380 		{ "blocktot",       "Number of blocks written" },
   1381 		{ "cleanblocks",    "Number of blocks written by the cleaner" },
   1382 		{ "ncheckpoints",   "Number of checkpoints made" },
   1383 		{ "nwrites",        "Number of whole writes" },
   1384 		{ "nsync_writes",   "Number of synchronous writes" },
   1385 		{ "wait_exceeded",  "Number of times writer waited for"
   1386 				    " cleaner" },
   1387 		{ "write_exceeded", "Number of times writer invoked flush" },
   1388 		{ "flush_invoked",  "Number of times flush was invoked" },
   1389 		{ "vflush_invoked", "Number of time vflush was called" },
   1390 		{ "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
   1391 		{ "clean_vnlocked", "Number of vnodes skipped for vget failure" },
   1392 		{ "segs_reclaimed", "Number of segments reclaimed" },
   1393 	};
   1394 
   1395 	sysctl_createv(clog, 0, NULL, NULL,
   1396 		       CTLFLAG_PERMANENT,
   1397 		       CTLTYPE_NODE, "vfs", NULL,
   1398 		       NULL, 0, NULL, 0,
   1399 		       CTL_VFS, CTL_EOL);
   1400 	sysctl_createv(clog, 0, NULL, NULL,
   1401 		       CTLFLAG_PERMANENT,
   1402 		       CTLTYPE_NODE, "lfs",
   1403 		       SYSCTL_DESCR("Log-structured file system"),
   1404 		       NULL, 0, NULL, 0,
   1405 		       CTL_VFS, 5, CTL_EOL);
   1406 	/*
   1407 	 * XXX the "5" above could be dynamic, thereby eliminating one
   1408 	 * more instance of the "number to vfs" mapping problem, but
   1409 	 * "5" is the order as taken from sys/mount.h
   1410 	 */
   1411 
   1412 	sysctl_createv(clog, 0, NULL, NULL,
   1413 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1414 		       CTLTYPE_INT, "flushindir", NULL,
   1415 		       NULL, 0, &lfs_writeindir, 0,
   1416 		       CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
   1417 	sysctl_createv(clog, 0, NULL, NULL,
   1418 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1419 		       CTLTYPE_INT, "clean_vnhead", NULL,
   1420 		       NULL, 0, &lfs_clean_vnhead, 0,
   1421 		       CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
   1422 	sysctl_createv(clog, 0, NULL, NULL,
   1423 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1424 		       CTLTYPE_INT, "dostats",
   1425 		       SYSCTL_DESCR("Maintain statistics on LFS operations"),
   1426 		       sysctl_lfs_dostats, 0, &lfs_dostats, 0,
   1427 		       CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
   1428 	sysctl_createv(clog, 0, NULL, NULL,
   1429 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1430 		       CTLTYPE_INT, "pagetrip",
   1431 		       SYSCTL_DESCR("How many dirty pages in fs triggers"
   1432 				    " a flush"),
   1433 		       NULL, 0, &lfs_fs_pagetrip, 0,
   1434 		       CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
   1435 	sysctl_createv(clog, 0, NULL, NULL,
   1436 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1437 		       CTLTYPE_INT, "ignore_lazy_sync",
   1438 		       SYSCTL_DESCR("Lazy Sync is ignored entirely"),
   1439 		       NULL, 0, &lfs_ignore_lazy_sync, 0,
   1440 		       CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
   1441 #ifdef LFS_KERNEL_RFW
   1442 	sysctl_createv(clog, 0, NULL, NULL,
   1443 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1444 		       CTLTYPE_INT, "rfw",
   1445 		       SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
   1446 		       NULL, 0, &lfs_do_rfw, 0,
   1447 		       CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
   1448 #endif
   1449 
   1450 	sysctl_createv(clog, 0, NULL, NULL,
   1451 		       CTLFLAG_PERMANENT,
   1452 		       CTLTYPE_NODE, "stats",
   1453 		       SYSCTL_DESCR("Debugging options"),
   1454 		       NULL, 0, NULL, 0,
   1455 		       CTL_VFS, 5, LFS_STATS, CTL_EOL);
   1456 	for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
   1457 		sysctl_createv(clog, 0, NULL, NULL,
   1458 			       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
   1459 			       CTLTYPE_INT, stat_names[i].sname,
   1460 			       SYSCTL_DESCR(stat_names[i].lname),
   1461 			       NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
   1462 			       0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
   1463 	}
   1464 
   1465 #ifdef DEBUG
   1466 	sysctl_createv(clog, 0, NULL, NULL,
   1467 		       CTLFLAG_PERMANENT,
   1468 		       CTLTYPE_NODE, "debug",
   1469 		       SYSCTL_DESCR("Debugging options"),
   1470 		       NULL, 0, NULL, 0,
   1471 		       CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
   1472 	for (i = 0; i < DLOG_MAX; i++) {
   1473 		sysctl_createv(clog, 0, NULL, NULL,
   1474 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1475 			       CTLTYPE_INT, dlog_names[i].sname,
   1476 			       SYSCTL_DESCR(dlog_names[i].lname),
   1477 			       NULL, 0, &(lfs_debug_log_subsys[i]), 0,
   1478 			       CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
   1479 	}
   1480 #endif
   1481 }
   1482 
   1483 /*
   1484  * ufs_bmaparray callback function for writing.
   1485  *
   1486  * Since blocks will be written to the new segment anyway,
   1487  * we don't care about current daddr of them.
   1488  */
   1489 static bool
   1490 lfs_issequential_hole(const struct ufsmount *ump,
   1491     daddr_t daddr0, daddr_t daddr1)
   1492 {
   1493 	daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
   1494 	daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
   1495 
   1496 	KASSERT(daddr0 == UNWRITTEN ||
   1497 	    (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
   1498 	KASSERT(daddr1 == UNWRITTEN ||
   1499 	    (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
   1500 
   1501 	/* NOTE: all we want to know here is 'hole or not'. */
   1502 	/* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
   1503 
   1504 	/*
   1505 	 * treat UNWRITTENs and all resident blocks as 'contiguous'
   1506 	 */
   1507 	if (daddr0 != 0 && daddr1 != 0)
   1508 		return true;
   1509 
   1510 	/*
   1511 	 * both are in hole?
   1512 	 */
   1513 	if (daddr0 == 0 && daddr1 == 0)
   1514 		return true; /* all holes are 'contiguous' for us. */
   1515 
   1516 	return false;
   1517 }
   1518 
   1519 /*
   1520  * lfs_gop_write functions exactly like genfs_gop_write, except that
   1521  * (1) it requires the seglock to be held by its caller, and sp->fip
   1522  *     to be properly initialized (it will return without re-initializing
   1523  *     sp->fip, and without calling lfs_writeseg).
   1524  * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
   1525  *     to determine how large a block it can write at once (though it does
   1526  *     still use VOP_BMAP to find holes in the file);
   1527  * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
   1528  *     (leaving lfs_writeseg to deal with the cluster blocks, so we might
   1529  *     now have clusters of clusters, ick.)
   1530  */
   1531 static int
   1532 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1533     int flags)
   1534 {
   1535 	int i, error, run, haveeof = 0;
   1536 	int fs_bshift;
   1537 	vaddr_t kva;
   1538 	off_t eof, offset, startoffset = 0;
   1539 	size_t bytes, iobytes, skipbytes;
   1540 	daddr_t lbn, blkno;
   1541 	struct vm_page *pg;
   1542 	struct buf *mbp, *bp;
   1543 	struct vnode *devvp = VTOI(vp)->i_devvp;
   1544 	struct inode *ip = VTOI(vp);
   1545 	struct lfs *fs = ip->i_lfs;
   1546 	struct segment *sp = fs->lfs_sp;
   1547 	UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
   1548 
   1549 	ASSERT_SEGLOCK(fs);
   1550 
   1551 	/* The Ifile lives in the buffer cache */
   1552 	KASSERT(vp != fs->lfs_ivnode);
   1553 
   1554 	/*
   1555 	 * We don't want to fill the disk before the cleaner has a chance
   1556 	 * to make room for us.  If we're in danger of doing that, fail
   1557 	 * with EAGAIN.  The caller will have to notice this, unlock
   1558 	 * so the cleaner can run, relock and try again.
   1559 	 *
   1560 	 * We must write everything, however, if our vnode is being
   1561 	 * reclaimed.
   1562 	 */
   1563 	if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
   1564 		goto tryagain;
   1565 
   1566 	/*
   1567 	 * Sometimes things slip past the filters in lfs_putpages,
   1568 	 * and the pagedaemon tries to write pages---problem is
   1569 	 * that the pagedaemon never acquires the segment lock.
   1570 	 *
   1571 	 * Alternatively, pages that were clean when we called
   1572 	 * genfs_putpages may have become dirty in the meantime.  In this
   1573 	 * case the segment header is not properly set up for blocks
   1574 	 * to be added to it.
   1575 	 *
   1576 	 * Unbusy and unclean the pages, and put them on the ACTIVE
   1577 	 * queue under the hypothesis that they couldn't have got here
   1578 	 * unless they were modified *quite* recently.
   1579 	 *
   1580 	 * XXXUBC that last statement is an oversimplification of course.
   1581 	 */
   1582 	if (!LFS_SEGLOCK_HELD(fs) ||
   1583 	    (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
   1584 	    (pgs[0]->offset & fs->lfs_bmask) != 0) {
   1585 		goto tryagain;
   1586 	}
   1587 
   1588 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1589 	    vp, pgs, npages, flags);
   1590 
   1591 	GOP_SIZE(vp, vp->v_size, &eof, 0);
   1592 	haveeof = 1;
   1593 
   1594 	if (vp->v_type == VREG)
   1595 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1596 	else
   1597 		fs_bshift = DEV_BSHIFT;
   1598 	error = 0;
   1599 	pg = pgs[0];
   1600 	startoffset = pg->offset;
   1601 	KASSERT(eof >= 0);
   1602 
   1603 	if (startoffset >= eof) {
   1604 		goto tryagain;
   1605 	} else
   1606 		bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1607 	skipbytes = 0;
   1608 
   1609 	KASSERT(bytes != 0);
   1610 
   1611 	/* Swap PG_DELWRI for PG_PAGEOUT */
   1612 	for (i = 0; i < npages; i++) {
   1613 		if (pgs[i]->flags & PG_DELWRI) {
   1614 			KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
   1615 			pgs[i]->flags &= ~PG_DELWRI;
   1616 			pgs[i]->flags |= PG_PAGEOUT;
   1617 			uvm_pageout_start(1);
   1618 			mutex_enter(&uvm_pageqlock);
   1619 			uvm_pageunwire(pgs[i]);
   1620 			mutex_exit(&uvm_pageqlock);
   1621 		}
   1622 	}
   1623 
   1624 	/*
   1625 	 * Check to make sure we're starting on a block boundary.
   1626 	 * We'll check later to make sure we always write entire
   1627 	 * blocks (or fragments).
   1628 	 */
   1629 	if (startoffset & fs->lfs_bmask)
   1630 		printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
   1631 		       startoffset, fs->lfs_bmask,
   1632 		       startoffset & fs->lfs_bmask);
   1633 	KASSERT((startoffset & fs->lfs_bmask) == 0);
   1634 	if (bytes & fs->lfs_ffmask) {
   1635 		printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
   1636 		panic("lfs_gop_write: non-integer blocks");
   1637 	}
   1638 
   1639 	/*
   1640 	 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
   1641 	 * If we would, write what we have and try again.  If we don't
   1642 	 * have anything to write, we'll have to sleep.
   1643 	 */
   1644 	if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1645 				      (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
   1646 				       UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
   1647 		DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
   1648 #if 0
   1649 		      " with nfinfo=%d at offset 0x%x\n",
   1650 		      (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
   1651 		      (unsigned)fs->lfs_offset));
   1652 #endif
   1653 		lfs_updatemeta(sp);
   1654 		lfs_release_finfo(fs);
   1655 		(void) lfs_writeseg(fs, sp);
   1656 
   1657 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   1658 
   1659 		/*
   1660 		 * Having given up all of the pager_map we were holding,
   1661 		 * we can now wait for aiodoned to reclaim it for us
   1662 		 * without fear of deadlock.
   1663 		 */
   1664 		kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1665 				     UVMPAGER_MAPIN_WAITOK);
   1666 	}
   1667 
   1668 	mutex_enter(&vp->v_interlock);
   1669 	vp->v_numoutput += 2; /* one for biodone, one for aiodone */
   1670 	mutex_exit(&vp->v_interlock);
   1671 
   1672 	mbp = getiobuf(NULL, true);
   1673 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1674 	    vp, mbp, vp->v_numoutput, bytes);
   1675 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1676 	mbp->b_data = (void *)kva;
   1677 	mbp->b_resid = mbp->b_bcount = bytes;
   1678 	mbp->b_cflags = BC_BUSY|BC_AGE;
   1679 	mbp->b_iodone = uvm_aio_biodone;
   1680 
   1681 	bp = NULL;
   1682 	for (offset = startoffset;
   1683 	    bytes > 0;
   1684 	    offset += iobytes, bytes -= iobytes) {
   1685 		lbn = offset >> fs_bshift;
   1686 		error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
   1687 		    lfs_issequential_hole);
   1688 		if (error) {
   1689 			UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
   1690 			    error,0,0,0);
   1691 			skipbytes += bytes;
   1692 			bytes = 0;
   1693 			break;
   1694 		}
   1695 
   1696 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1697 		    bytes);
   1698 		if (blkno == (daddr_t)-1) {
   1699 			skipbytes += iobytes;
   1700 			continue;
   1701 		}
   1702 
   1703 		/*
   1704 		 * Discover how much we can really pack into this buffer.
   1705 		 */
   1706 		/* If no room in the current segment, finish it up */
   1707 		if (sp->sum_bytes_left < sizeof(int32_t) ||
   1708 		    sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
   1709 			int vers;
   1710 
   1711 			lfs_updatemeta(sp);
   1712 			vers = sp->fip->fi_version;
   1713 			lfs_release_finfo(fs);
   1714 			(void) lfs_writeseg(fs, sp);
   1715 
   1716 			lfs_acquire_finfo(fs, ip->i_number, vers);
   1717 		}
   1718 		/* Check both for space in segment and space in segsum */
   1719 		iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
   1720 					<< fs_bshift);
   1721 		iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
   1722 				       << fs_bshift);
   1723 		KASSERT(iobytes > 0);
   1724 
   1725 		/* if it's really one i/o, don't make a second buf */
   1726 		if (offset == startoffset && iobytes == bytes) {
   1727 			bp = mbp;
   1728 			/* correct overcount if there is no second buffer */
   1729 			mutex_enter(&vp->v_interlock);
   1730 			--vp->v_numoutput;
   1731 			mutex_exit(&vp->v_interlock);
   1732 		} else {
   1733 			bp = getiobuf(NULL, true);
   1734 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1735 			    vp, bp, vp->v_numoutput, 0);
   1736 			bp->b_data = (char *)kva +
   1737 			    (vaddr_t)(offset - pg->offset);
   1738 			bp->b_resid = bp->b_bcount = iobytes;
   1739 			bp->b_cflags = BC_BUSY;
   1740 			bp->b_iodone = uvm_aio_biodone1;
   1741 		}
   1742 
   1743 		/* XXX This is silly ... is this necessary? */
   1744 		mutex_enter(&bufcache_lock);
   1745 		mutex_enter(&vp->v_interlock);
   1746 		bgetvp(vp, bp);
   1747 		mutex_exit(&vp->v_interlock);
   1748 		mutex_exit(&bufcache_lock);
   1749 
   1750 		bp->b_lblkno = lblkno(fs, offset);
   1751 		bp->b_private = mbp;
   1752 		if (devvp->v_type == VBLK) {
   1753 			bp->b_dev = devvp->v_rdev;
   1754 		}
   1755 		VOP_BWRITE(bp);
   1756 		while (lfs_gatherblock(sp, bp, NULL))
   1757 			continue;
   1758 	}
   1759 
   1760 	if (skipbytes) {
   1761 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1762 		mutex_enter(mbp->b_objlock);
   1763 		if (error) {
   1764 			mbp->b_error = error;
   1765 		}
   1766 		mbp->b_resid -= skipbytes;
   1767 		mutex_exit(mbp->b_objlock);
   1768 		if (mbp->b_resid == 0) {
   1769 			biodone(mbp);
   1770 		}
   1771 	}
   1772 	UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
   1773 	return (0);
   1774 
   1775     tryagain:
   1776 	/*
   1777 	 * We can't write the pages, for whatever reason.
   1778 	 * Clean up after ourselves, and make the caller try again.
   1779 	 */
   1780 	mutex_enter(&vp->v_interlock);
   1781 
   1782 	/* Tell why we're here, if we know */
   1783 	if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
   1784 		DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
   1785 	} else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
   1786 		DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
   1787 	} else if (haveeof && startoffset >= eof) {
   1788 		DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
   1789 		      " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
   1790 		      pgs[0]->offset, eof, npages));
   1791 	} else if (LFS_STARVED_FOR_SEGS(fs)) {
   1792 		DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
   1793 	} else {
   1794 		DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
   1795 	}
   1796 
   1797 	mutex_enter(&uvm_pageqlock);
   1798 	for (i = 0; i < npages; i++) {
   1799 		pg = pgs[i];
   1800 
   1801 		if (pg->flags & PG_PAGEOUT)
   1802 			uvm_pageout_done(1);
   1803 		if (pg->flags & PG_DELWRI) {
   1804 			uvm_pageunwire(pg);
   1805 		}
   1806 		uvm_pageactivate(pg);
   1807 		pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
   1808 		DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
   1809 			vp, pg->offset));
   1810 		DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
   1811 		DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
   1812 		DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
   1813 		DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
   1814 		DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
   1815 		      pg->wire_count));
   1816 		DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
   1817 		      pg->loan_count));
   1818 	}
   1819 	/* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
   1820 	uvm_page_unbusy(pgs, npages);
   1821 	mutex_exit(&uvm_pageqlock);
   1822 	mutex_exit(&vp->v_interlock);
   1823 	return EAGAIN;
   1824 }
   1825 
   1826 /*
   1827  * finish vnode/inode initialization.
   1828  * used by lfs_vget and lfs_fastvget.
   1829  */
   1830 void
   1831 lfs_vinit(struct mount *mp, struct vnode **vpp)
   1832 {
   1833 	struct vnode *vp = *vpp;
   1834 	struct inode *ip = VTOI(vp);
   1835 	struct ufsmount *ump = VFSTOUFS(mp);
   1836 	struct lfs *fs = ump->um_lfs;
   1837 	int i;
   1838 
   1839 	ip->i_mode = ip->i_ffs1_mode;
   1840 	ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
   1841 	ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
   1842 	ip->i_flags = ip->i_ffs1_flags;
   1843 	ip->i_gen = ip->i_ffs1_gen;
   1844 	ip->i_uid = ip->i_ffs1_uid;
   1845 	ip->i_gid = ip->i_ffs1_gid;
   1846 
   1847 	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
   1848 	ip->i_lfs_odnlink = ip->i_ffs1_nlink;
   1849 
   1850 	/*
   1851 	 * Initialize the vnode from the inode, check for aliases.  In all
   1852 	 * cases re-init ip, the underlying vnode/inode may have changed.
   1853 	 */
   1854 	ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
   1855 	ip = VTOI(vp);
   1856 
   1857 	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
   1858 	if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
   1859 #ifdef DEBUG
   1860 		for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1861 		    i < NDADDR; i++) {
   1862 			if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
   1863 			    i == 0)
   1864 				continue;
   1865 			if (ip->i_ffs1_db[i] != 0) {
   1866 inconsistent:
   1867 				lfs_dump_dinode(ip->i_din.ffs1_din);
   1868 				panic("inconsistent inode");
   1869 			}
   1870 		}
   1871 		for ( ; i < NDADDR + NIADDR; i++) {
   1872 			if (ip->i_ffs1_ib[i - NDADDR] != 0) {
   1873 				goto inconsistent;
   1874 			}
   1875 		}
   1876 #endif /* DEBUG */
   1877 		for (i = 0; i < NDADDR; i++)
   1878 			if (ip->i_ffs1_db[i] != 0)
   1879 				ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
   1880 	}
   1881 
   1882 #ifdef DIAGNOSTIC
   1883 	if (vp->v_type == VNON) {
   1884 # ifdef DEBUG
   1885 		lfs_dump_dinode(ip->i_din.ffs1_din);
   1886 # endif
   1887 		panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
   1888 		      (unsigned long long)ip->i_number,
   1889 		      (ip->i_mode & IFMT) >> 12);
   1890 	}
   1891 #endif /* DIAGNOSTIC */
   1892 
   1893 	/*
   1894 	 * Finish inode initialization now that aliasing has been resolved.
   1895 	 */
   1896 
   1897 	ip->i_devvp = ump->um_devvp;
   1898 	VREF(ip->i_devvp);
   1899 	genfs_node_init(vp, &lfs_genfsops);
   1900 	uvm_vnp_setsize(vp, ip->i_size);
   1901 
   1902 	/* Initialize hiblk from file size */
   1903 	ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
   1904 
   1905 	*vpp = vp;
   1906 }
   1907 
   1908 /*
   1909  * Resize the filesystem to contain the specified number of segments.
   1910  */
   1911 int
   1912 lfs_resize_fs(struct lfs *fs, int newnsegs)
   1913 {
   1914 	SEGUSE *sup;
   1915 	struct buf *bp, *obp;
   1916 	daddr_t olast, nlast, ilast, noff, start, end;
   1917 	struct vnode *ivp;
   1918 	struct inode *ip;
   1919 	int error, badnews, inc, oldnsegs;
   1920 	int sbbytes, csbbytes, gain, cgain;
   1921 	int i;
   1922 
   1923 	/* Only support v2 and up */
   1924 	if (fs->lfs_version < 2)
   1925 		return EOPNOTSUPP;
   1926 
   1927 	/* If we're doing nothing, do it fast */
   1928 	oldnsegs = fs->lfs_nseg;
   1929 	if (newnsegs == oldnsegs)
   1930 		return 0;
   1931 
   1932 	/* We always have to have two superblocks */
   1933 	if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
   1934 		return EFBIG;
   1935 
   1936 	ivp = fs->lfs_ivnode;
   1937 	ip = VTOI(ivp);
   1938 	error = 0;
   1939 
   1940 	/* Take the segment lock so no one else calls lfs_newseg() */
   1941 	lfs_seglock(fs, SEGM_PROT);
   1942 
   1943 	/*
   1944 	 * Make sure the segments we're going to be losing, if any,
   1945 	 * are in fact empty.  We hold the seglock, so their status
   1946 	 * cannot change underneath us.  Count the superblocks we lose,
   1947 	 * while we're at it.
   1948 	 */
   1949 	sbbytes = csbbytes = 0;
   1950 	cgain = 0;
   1951 	for (i = newnsegs; i < oldnsegs; i++) {
   1952 		LFS_SEGENTRY(sup, fs, i, bp);
   1953 		badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
   1954 		if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1955 			sbbytes += LFS_SBPAD;
   1956 		if (!(sup->su_flags & SEGUSE_DIRTY)) {
   1957 			++cgain;
   1958 			if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1959 				csbbytes += LFS_SBPAD;
   1960 		}
   1961 		brelse(bp, 0);
   1962 		if (badnews) {
   1963 			error = EBUSY;
   1964 			goto out;
   1965 		}
   1966 	}
   1967 
   1968 	/* Note old and new segment table endpoints, and old ifile size */
   1969 	olast = fs->lfs_cleansz + fs->lfs_segtabsz;
   1970 	nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
   1971 	ilast = ivp->v_size >> fs->lfs_bshift;
   1972 	noff = nlast - olast;
   1973 
   1974 	/*
   1975 	 * Make sure no one can use the Ifile while we change it around.
   1976 	 * Even after taking the iflock we need to make sure no one still
   1977 	 * is holding Ifile buffers, so we get each one, to drain them.
   1978 	 * (XXX this could be done better.)
   1979 	 */
   1980 	rw_enter(&fs->lfs_iflock, RW_WRITER);
   1981 	vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
   1982 	for (i = 0; i < ilast; i++) {
   1983 		bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
   1984 		brelse(bp, 0);
   1985 	}
   1986 
   1987 	/* Allocate new Ifile blocks */
   1988 	for (i = ilast; i < ilast + noff; i++) {
   1989 		if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
   1990 			       &bp) != 0)
   1991 			panic("balloc extending ifile");
   1992 		memset(bp->b_data, 0, fs->lfs_bsize);
   1993 		VOP_BWRITE(bp);
   1994 	}
   1995 
   1996 	/* Register new ifile size */
   1997 	ip->i_size += noff * fs->lfs_bsize;
   1998 	ip->i_ffs1_size = ip->i_size;
   1999 	uvm_vnp_setsize(ivp, ip->i_size);
   2000 
   2001 	/* Copy the inode table to its new position */
   2002 	if (noff != 0) {
   2003 		if (noff < 0) {
   2004 			start = nlast;
   2005 			end = ilast + noff;
   2006 			inc = 1;
   2007 		} else {
   2008 			start = ilast + noff - 1;
   2009 			end = nlast - 1;
   2010 			inc = -1;
   2011 		}
   2012 		for (i = start; i != end; i += inc) {
   2013 			if (bread(ivp, i, fs->lfs_bsize, NOCRED,
   2014 			    B_MODIFY, &bp) != 0)
   2015 				panic("resize: bread dst blk failed");
   2016 			if (bread(ivp, i - noff, fs->lfs_bsize,
   2017 			    NOCRED, 0, &obp))
   2018 				panic("resize: bread src blk failed");
   2019 			memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
   2020 			VOP_BWRITE(bp);
   2021 			brelse(obp, 0);
   2022 		}
   2023 	}
   2024 
   2025 	/* If we are expanding, write the new empty SEGUSE entries */
   2026 	if (newnsegs > oldnsegs) {
   2027 		for (i = oldnsegs; i < newnsegs; i++) {
   2028 			if ((error = bread(ivp, i / fs->lfs_sepb +
   2029 					   fs->lfs_cleansz, fs->lfs_bsize,
   2030 					   NOCRED, B_MODIFY, &bp)) != 0)
   2031 				panic("lfs: ifile read: %d", error);
   2032 			while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
   2033 				sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
   2034 				memset(sup, 0, sizeof(*sup));
   2035 				i++;
   2036 			}
   2037 			VOP_BWRITE(bp);
   2038 		}
   2039 	}
   2040 
   2041 	/* Zero out unused superblock offsets */
   2042 	for (i = 2; i < LFS_MAXNUMSB; i++)
   2043 		if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
   2044 			fs->lfs_sboffs[i] = 0x0;
   2045 
   2046 	/*
   2047 	 * Correct superblock entries that depend on fs size.
   2048 	 * The computations of these are as follows:
   2049 	 *
   2050 	 * size  = segtod(fs, nseg)
   2051 	 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
   2052 	 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
   2053 	 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
   2054 	 *         + (segtod(fs, 1) - (offset - curseg))
   2055 	 *	   - segtod(fs, minfreeseg - (minfreeseg / 2))
   2056 	 *
   2057 	 * XXX - we should probably adjust minfreeseg as well.
   2058 	 */
   2059 	gain = (newnsegs - oldnsegs);
   2060 	fs->lfs_nseg = newnsegs;
   2061 	fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
   2062 	fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
   2063 	fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
   2064 	fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
   2065 		       - gain * btofsb(fs, fs->lfs_bsize / 2);
   2066 	if (gain > 0) {
   2067 		fs->lfs_nclean += gain;
   2068 		fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
   2069 	} else {
   2070 		fs->lfs_nclean -= cgain;
   2071 		fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
   2072 				 btofsb(fs, csbbytes);
   2073 	}
   2074 
   2075 	/* Resize segment flag cache */
   2076 	fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
   2077 						  fs->lfs_nseg * sizeof(u_int32_t),
   2078 						  M_SEGMENT, M_WAITOK);
   2079 	fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
   2080 						  fs->lfs_nseg * sizeof(u_int32_t),
   2081 						  M_SEGMENT, M_WAITOK);
   2082 	for (i = oldnsegs; i < newnsegs; i++)
   2083 		fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
   2084 
   2085 	/* Truncate Ifile if necessary */
   2086 	if (noff < 0)
   2087 		lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
   2088 		    NOCRED);
   2089 
   2090 	/* Update cleaner info so the cleaner can die */
   2091 	bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
   2092 	((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
   2093 	((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
   2094 	VOP_BWRITE(bp);
   2095 
   2096 	/* Let Ifile accesses proceed */
   2097 	VOP_UNLOCK(ivp, 0);
   2098 	rw_exit(&fs->lfs_iflock);
   2099 
   2100     out:
   2101 	lfs_segunlock(fs);
   2102 	return error;
   2103 }
   2104