lfs_vfsops.c revision 1.267 1 /* $NetBSD: lfs_vfsops.c,v 1.267 2008/06/28 15:50:20 rumble Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.267 2008/06/28 15:50:20 rumble Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/mbuf.h>
82 #include <sys/file.h>
83 #include <sys/disklabel.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/socket.h>
89 #include <sys/syslog.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/module.h>
95
96 #include <miscfs/specfs/specdev.h>
97
98 #include <ufs/ufs/quota.h>
99 #include <ufs/ufs/inode.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
102
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106 #include <uvm/uvm_pdaemon.h>
107
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
110
111 #include <miscfs/genfs/genfs.h>
112 #include <miscfs/genfs/genfs_node.h>
113
114 MODULE(MODULE_CLASS_VFS, lfs, NULL);
115
116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
117 static bool lfs_issequential_hole(const struct ufsmount *,
118 daddr_t, daddr_t);
119
120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
121
122 void lfs_sysctl_setup(struct sysctllog *);
123 static struct sysctllog *lfs_sysctl_log;
124
125 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
126 extern const struct vnodeopv_desc lfs_specop_opv_desc;
127 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
128
129 pid_t lfs_writer_daemon = 0;
130 int lfs_do_flush = 0;
131 #ifdef LFS_KERNEL_RFW
132 int lfs_do_rfw = 0;
133 #endif
134
135 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
136 &lfs_vnodeop_opv_desc,
137 &lfs_specop_opv_desc,
138 &lfs_fifoop_opv_desc,
139 NULL,
140 };
141
142 struct vfsops lfs_vfsops = {
143 MOUNT_LFS,
144 sizeof (struct ufs_args),
145 lfs_mount,
146 ufs_start,
147 lfs_unmount,
148 ufs_root,
149 ufs_quotactl,
150 lfs_statvfs,
151 lfs_sync,
152 lfs_vget,
153 lfs_fhtovp,
154 lfs_vptofh,
155 lfs_init,
156 lfs_reinit,
157 lfs_done,
158 lfs_mountroot,
159 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
160 vfs_stdextattrctl,
161 (void *)eopnotsupp, /* vfs_suspendctl */
162 genfs_renamelock_enter,
163 genfs_renamelock_exit,
164 (void *)eopnotsupp,
165 lfs_vnodeopv_descs,
166 0,
167 { NULL, NULL },
168 };
169
170 const struct genfs_ops lfs_genfsops = {
171 .gop_size = lfs_gop_size,
172 .gop_alloc = ufs_gop_alloc,
173 .gop_write = lfs_gop_write,
174 .gop_markupdate = ufs_gop_markupdate,
175 };
176
177 static const struct ufs_ops lfs_ufsops = {
178 .uo_itimes = NULL,
179 .uo_update = lfs_update,
180 .uo_truncate = lfs_truncate,
181 .uo_valloc = lfs_valloc,
182 .uo_vfree = lfs_vfree,
183 .uo_balloc = lfs_balloc,
184 };
185
186 struct shortlong {
187 const char *sname;
188 const char *lname;
189 };
190
191 static int
192 sysctl_lfs_dostats(SYSCTLFN_ARGS)
193 {
194 extern struct lfs_stats lfs_stats;
195 extern int lfs_dostats;
196 int error;
197
198 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
199 if (error || newp == NULL)
200 return (error);
201
202 if (lfs_dostats == 0)
203 memset(&lfs_stats, 0, sizeof(lfs_stats));
204
205 return (0);
206 }
207
208 void
209 lfs_sysctl_setup(struct sysctllog *clog)
210 {
211 int i;
212 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
213 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
214 #ifdef DEBUG
215 extern int lfs_debug_log_subsys[DLOG_MAX];
216 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
217 { "rollforward", "Debug roll-forward code" },
218 { "alloc", "Debug inode allocation and free list" },
219 { "avail", "Debug space-available-now accounting" },
220 { "flush", "Debug flush triggers" },
221 { "lockedlist", "Debug locked list accounting" },
222 { "vnode_verbose", "Verbose per-vnode-written debugging" },
223 { "vnode", "Debug vnode use during segment write" },
224 { "segment", "Debug segment writing" },
225 { "seguse", "Debug segment used-bytes accounting" },
226 { "cleaner", "Debug cleaning routines" },
227 { "mount", "Debug mount/unmount routines" },
228 { "pagecache", "Debug UBC interactions" },
229 { "dirop", "Debug directory-operation accounting" },
230 { "malloc", "Debug private malloc accounting" },
231 };
232 #endif /* DEBUG */
233 struct shortlong stat_names[] = { /* Must match lfs.h! */
234 { "segsused", "Number of new segments allocated" },
235 { "psegwrites", "Number of partial-segment writes" },
236 { "psyncwrites", "Number of synchronous partial-segment"
237 " writes" },
238 { "pcleanwrites", "Number of partial-segment writes by the"
239 " cleaner" },
240 { "blocktot", "Number of blocks written" },
241 { "cleanblocks", "Number of blocks written by the cleaner" },
242 { "ncheckpoints", "Number of checkpoints made" },
243 { "nwrites", "Number of whole writes" },
244 { "nsync_writes", "Number of synchronous writes" },
245 { "wait_exceeded", "Number of times writer waited for"
246 " cleaner" },
247 { "write_exceeded", "Number of times writer invoked flush" },
248 { "flush_invoked", "Number of times flush was invoked" },
249 { "vflush_invoked", "Number of time vflush was called" },
250 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
251 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
252 { "segs_reclaimed", "Number of segments reclaimed" },
253 };
254
255 sysctl_createv(&clog, 0, NULL, NULL,
256 CTLFLAG_PERMANENT,
257 CTLTYPE_NODE, "vfs", NULL,
258 NULL, 0, NULL, 0,
259 CTL_VFS, CTL_EOL);
260 sysctl_createv(&clog, 0, NULL, NULL,
261 CTLFLAG_PERMANENT,
262 CTLTYPE_NODE, "lfs",
263 SYSCTL_DESCR("Log-structured file system"),
264 NULL, 0, NULL, 0,
265 CTL_VFS, 5, CTL_EOL);
266 /*
267 * XXX the "5" above could be dynamic, thereby eliminating one
268 * more instance of the "number to vfs" mapping problem, but
269 * "5" is the order as taken from sys/mount.h
270 */
271
272 sysctl_createv(&clog, 0, NULL, NULL,
273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
274 CTLTYPE_INT, "flushindir", NULL,
275 NULL, 0, &lfs_writeindir, 0,
276 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
277 sysctl_createv(&clog, 0, NULL, NULL,
278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
279 CTLTYPE_INT, "clean_vnhead", NULL,
280 NULL, 0, &lfs_clean_vnhead, 0,
281 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
282 sysctl_createv(&clog, 0, NULL, NULL,
283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
284 CTLTYPE_INT, "dostats",
285 SYSCTL_DESCR("Maintain statistics on LFS operations"),
286 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
287 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
288 sysctl_createv(&clog, 0, NULL, NULL,
289 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
290 CTLTYPE_INT, "pagetrip",
291 SYSCTL_DESCR("How many dirty pages in fs triggers"
292 " a flush"),
293 NULL, 0, &lfs_fs_pagetrip, 0,
294 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
295 sysctl_createv(&clog, 0, NULL, NULL,
296 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
297 CTLTYPE_INT, "ignore_lazy_sync",
298 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
299 NULL, 0, &lfs_ignore_lazy_sync, 0,
300 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
301 #ifdef LFS_KERNEL_RFW
302 sysctl_createv(&clog, 0, NULL, NULL,
303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
304 CTLTYPE_INT, "rfw",
305 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
306 NULL, 0, &lfs_do_rfw, 0,
307 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
308 #endif
309
310 sysctl_createv(&clog, 0, NULL, NULL,
311 CTLFLAG_PERMANENT,
312 CTLTYPE_NODE, "stats",
313 SYSCTL_DESCR("Debugging options"),
314 NULL, 0, NULL, 0,
315 CTL_VFS, 5, LFS_STATS, CTL_EOL);
316 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
317 sysctl_createv(&clog, 0, NULL, NULL,
318 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
319 CTLTYPE_INT, stat_names[i].sname,
320 SYSCTL_DESCR(stat_names[i].lname),
321 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
322 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
323 }
324
325 #ifdef DEBUG
326 sysctl_createv(&clog, 0, NULL, NULL,
327 CTLFLAG_PERMANENT,
328 CTLTYPE_NODE, "debug",
329 SYSCTL_DESCR("Debugging options"),
330 NULL, 0, NULL, 0,
331 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
332 for (i = 0; i < DLOG_MAX; i++) {
333 sysctl_createv(&clog, 0, NULL, NULL,
334 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
335 CTLTYPE_INT, dlog_names[i].sname,
336 SYSCTL_DESCR(dlog_names[i].lname),
337 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
338 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
339 }
340 #endif
341 }
342
343 static int
344 lfs_modcmd(modcmd_t cmd, void *arg)
345 {
346 int error;
347
348 switch (cmd) {
349 case MODULE_CMD_INIT:
350 error = vfs_attach(&lfs_vfsops);
351 if (error != 0)
352 break;
353 lfs_sysctl_setup(lfs_sysctl_log);
354 break;
355 case MODULE_CMD_FINI:
356 error = vfs_detach(&lfs_vfsops);
357 if (error != 0)
358 break;
359 sysctl_teardown(&lfs_sysctl_log);
360 break;
361 default:
362 error = ENOTTY;
363 break;
364 }
365
366 return (error);
367 }
368
369 /*
370 * XXX Same structure as FFS inodes? Should we share a common pool?
371 */
372 struct pool lfs_inode_pool;
373 struct pool lfs_dinode_pool;
374 struct pool lfs_inoext_pool;
375 struct pool lfs_lbnentry_pool;
376
377 /*
378 * The writer daemon. UVM keeps track of how many dirty pages we are holding
379 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
380 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
381 */
382 static void
383 lfs_writerd(void *arg)
384 {
385 struct mount *mp, *nmp;
386 struct lfs *fs;
387 int fsflags;
388 int loopcount;
389
390 lfs_writer_daemon = curproc->p_pid;
391
392 mutex_enter(&lfs_lock);
393 for (;;) {
394 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
395 &lfs_lock);
396
397 /*
398 * Look through the list of LFSs to see if any of them
399 * have requested pageouts.
400 */
401 mutex_enter(&mountlist_lock);
402 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
403 mp = nmp) {
404 if (vfs_busy(mp, &nmp)) {
405 continue;
406 }
407 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
408 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
409 fs = VFSTOUFS(mp)->um_lfs;
410 mutex_enter(&lfs_lock);
411 fsflags = 0;
412 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
413 lfs_dirvcount > LFS_MAX_DIROP) &&
414 fs->lfs_dirops == 0)
415 fsflags |= SEGM_CKP;
416 if (fs->lfs_pdflush) {
417 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
418 fs->lfs_pdflush = 0;
419 lfs_flush_fs(fs, fsflags);
420 mutex_exit(&lfs_lock);
421 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
422 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
423 mutex_exit(&lfs_lock);
424 lfs_writer_enter(fs, "wrdirop");
425 lfs_flush_pchain(fs);
426 lfs_writer_leave(fs);
427 } else
428 mutex_exit(&lfs_lock);
429 }
430 vfs_unbusy(mp, false, &nmp);
431 }
432 mutex_exit(&mountlist_lock);
433
434 /*
435 * If global state wants a flush, flush everything.
436 */
437 mutex_enter(&lfs_lock);
438 loopcount = 0;
439 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
440 locked_queue_bytes > LFS_MAX_BYTES ||
441 lfs_subsys_pages > LFS_MAX_PAGES) {
442
443 if (lfs_do_flush) {
444 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
445 }
446 if (locked_queue_count > LFS_MAX_BUFS) {
447 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
448 locked_queue_count, LFS_MAX_BUFS));
449 }
450 if (locked_queue_bytes > LFS_MAX_BYTES) {
451 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
452 locked_queue_bytes, LFS_MAX_BYTES));
453 }
454 if (lfs_subsys_pages > LFS_MAX_PAGES) {
455 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
456 lfs_subsys_pages, LFS_MAX_PAGES));
457 }
458
459 lfs_flush(NULL, SEGM_WRITERD, 0);
460 lfs_do_flush = 0;
461 }
462 }
463 /* NOTREACHED */
464 }
465
466 /*
467 * Initialize the filesystem, most work done by ufs_init.
468 */
469 void
470 lfs_init()
471 {
472
473 malloc_type_attach(M_SEGMENT);
474 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
475 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
476 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
477 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
478 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
479 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
480 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
481 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
482 ufs_init();
483
484 #ifdef DEBUG
485 memset(lfs_log, 0, sizeof(lfs_log));
486 #endif
487 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
488 cv_init(&locked_queue_cv, "lfsbuf");
489 cv_init(&lfs_writing_cv, "lfsflush");
490 }
491
492 void
493 lfs_reinit()
494 {
495 ufs_reinit();
496 }
497
498 void
499 lfs_done()
500 {
501 ufs_done();
502 mutex_destroy(&lfs_lock);
503 cv_destroy(&locked_queue_cv);
504 cv_destroy(&lfs_writing_cv);
505 pool_destroy(&lfs_inode_pool);
506 pool_destroy(&lfs_dinode_pool);
507 pool_destroy(&lfs_inoext_pool);
508 pool_destroy(&lfs_lbnentry_pool);
509 malloc_type_detach(M_SEGMENT);
510 }
511
512 /*
513 * Called by main() when ufs is going to be mounted as root.
514 */
515 int
516 lfs_mountroot()
517 {
518 extern struct vnode *rootvp;
519 struct mount *mp;
520 struct lwp *l = curlwp;
521 int error;
522
523 if (device_class(root_device) != DV_DISK)
524 return (ENODEV);
525
526 if (rootdev == NODEV)
527 return (ENODEV);
528 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
529 vrele(rootvp);
530 return (error);
531 }
532 if ((error = lfs_mountfs(rootvp, mp, l))) {
533 vfs_unbusy(mp, false, NULL);
534 vfs_destroy(mp);
535 return (error);
536 }
537 mutex_enter(&mountlist_lock);
538 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
539 mutex_exit(&mountlist_lock);
540 (void)lfs_statvfs(mp, &mp->mnt_stat);
541 vfs_unbusy(mp, false, NULL);
542 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
543 return (0);
544 }
545
546 /*
547 * VFS Operations.
548 *
549 * mount system call
550 */
551 int
552 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
553 {
554 struct lwp *l = curlwp;
555 struct nameidata nd;
556 struct vnode *devvp;
557 struct ufs_args *args = data;
558 struct ufsmount *ump = NULL;
559 struct lfs *fs = NULL; /* LFS */
560 int error = 0, update;
561 mode_t accessmode;
562
563 if (*data_len < sizeof *args)
564 return EINVAL;
565
566 if (mp->mnt_flag & MNT_GETARGS) {
567 ump = VFSTOUFS(mp);
568 if (ump == NULL)
569 return EIO;
570 args->fspec = NULL;
571 *data_len = sizeof *args;
572 return 0;
573 }
574
575 update = mp->mnt_flag & MNT_UPDATE;
576
577 /* Check arguments */
578 if (args->fspec != NULL) {
579 /*
580 * Look up the name and verify that it's sane.
581 */
582 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec);
583 if ((error = namei(&nd)) != 0)
584 return (error);
585 devvp = nd.ni_vp;
586
587 if (!update) {
588 /*
589 * Be sure this is a valid block device
590 */
591 if (devvp->v_type != VBLK)
592 error = ENOTBLK;
593 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
594 error = ENXIO;
595 } else {
596 /*
597 * Be sure we're still naming the same device
598 * used for our initial mount
599 */
600 ump = VFSTOUFS(mp);
601 if (devvp != ump->um_devvp)
602 error = EINVAL;
603 }
604 } else {
605 if (!update) {
606 /* New mounts must have a filename for the device */
607 return (EINVAL);
608 } else {
609 /* Use the extant mount */
610 ump = VFSTOUFS(mp);
611 devvp = ump->um_devvp;
612 vref(devvp);
613 }
614 }
615
616
617 /*
618 * If mount by non-root, then verify that user has necessary
619 * permissions on the device.
620 */
621 if (error == 0 && kauth_authorize_generic(l->l_cred,
622 KAUTH_GENERIC_ISSUSER, NULL) != 0) {
623 accessmode = VREAD;
624 if (update ?
625 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
626 (mp->mnt_flag & MNT_RDONLY) == 0)
627 accessmode |= VWRITE;
628 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
629 error = VOP_ACCESS(devvp, accessmode, l->l_cred);
630 VOP_UNLOCK(devvp, 0);
631 }
632
633 if (error) {
634 vrele(devvp);
635 return (error);
636 }
637
638 if (!update) {
639 int flags;
640
641 if (mp->mnt_flag & MNT_RDONLY)
642 flags = FREAD;
643 else
644 flags = FREAD|FWRITE;
645 error = VOP_OPEN(devvp, flags, FSCRED);
646 if (error)
647 goto fail;
648 error = lfs_mountfs(devvp, mp, l); /* LFS */
649 if (error) {
650 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
651 (void)VOP_CLOSE(devvp, flags, NOCRED);
652 VOP_UNLOCK(devvp, 0);
653 goto fail;
654 }
655
656 ump = VFSTOUFS(mp);
657 fs = ump->um_lfs;
658 } else {
659 /*
660 * Update the mount.
661 */
662
663 /*
664 * The initial mount got a reference on this
665 * device, so drop the one obtained via
666 * namei(), above.
667 */
668 vrele(devvp);
669
670 ump = VFSTOUFS(mp);
671 fs = ump->um_lfs;
672 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
673 /*
674 * Changing from read-only to read/write.
675 * Note in the superblocks that we're writing.
676 */
677 fs->lfs_ronly = 0;
678 if (fs->lfs_pflags & LFS_PF_CLEAN) {
679 fs->lfs_pflags &= ~LFS_PF_CLEAN;
680 lfs_writesuper(fs, fs->lfs_sboffs[0]);
681 lfs_writesuper(fs, fs->lfs_sboffs[1]);
682 }
683 }
684 if (args->fspec == NULL)
685 return EINVAL;
686 }
687
688 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
689 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
690 if (error == 0)
691 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
692 sizeof(fs->lfs_fsmnt));
693 return error;
694
695 fail:
696 vrele(devvp);
697 return (error);
698 }
699
700
701 /*
702 * Common code for mount and mountroot
703 * LFS specific
704 */
705 int
706 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
707 {
708 struct dlfs *tdfs, *dfs, *adfs;
709 struct lfs *fs;
710 struct ufsmount *ump;
711 struct vnode *vp;
712 struct buf *bp, *abp;
713 struct partinfo dpart;
714 dev_t dev;
715 int error, i, ronly, secsize, fsbsize;
716 kauth_cred_t cred;
717 CLEANERINFO *cip;
718 SEGUSE *sup;
719 daddr_t sb_addr;
720
721 cred = l ? l->l_cred : NOCRED;
722
723 /*
724 * Flush out any old buffers remaining from a previous use.
725 */
726 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
727 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
728 VOP_UNLOCK(devvp, 0);
729 if (error)
730 return (error);
731
732 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
733 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
734 secsize = DEV_BSIZE;
735 else
736 secsize = dpart.disklab->d_secsize;
737
738 /* Don't free random space on error. */
739 bp = NULL;
740 abp = NULL;
741 ump = NULL;
742
743 sb_addr = LFS_LABELPAD / secsize;
744 while (1) {
745 /* Read in the superblock. */
746 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
747 if (error)
748 goto out;
749 dfs = (struct dlfs *)bp->b_data;
750
751 /* Check the basics. */
752 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
753 dfs->dlfs_version > LFS_VERSION ||
754 dfs->dlfs_bsize < sizeof(struct dlfs)) {
755 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
756 error = EINVAL; /* XXX needs translation */
757 goto out;
758 }
759 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
760 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
761 dfs->dlfs_inodefmt));
762 error = EINVAL;
763 goto out;
764 }
765
766 if (dfs->dlfs_version == 1)
767 fsbsize = secsize;
768 else {
769 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
770 dfs->dlfs_fsbtodb);
771 /*
772 * Could be, if the frag size is large enough, that we
773 * don't have the "real" primary superblock. If that's
774 * the case, get the real one, and try again.
775 */
776 if (sb_addr != dfs->dlfs_sboffs[0] <<
777 dfs->dlfs_fsbtodb) {
778 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
779 " 0x%llx is not right, trying 0x%llx\n",
780 (long long)sb_addr,
781 (long long)(dfs->dlfs_sboffs[0] <<
782 dfs->dlfs_fsbtodb)));
783 sb_addr = dfs->dlfs_sboffs[0] <<
784 dfs->dlfs_fsbtodb;
785 brelse(bp, 0);
786 continue;
787 }
788 }
789 break;
790 }
791
792 /*
793 * Check the second superblock to see which is newer; then mount
794 * using the older of the two. This is necessary to ensure that
795 * the filesystem is valid if it was not unmounted cleanly.
796 */
797
798 if (dfs->dlfs_sboffs[1] &&
799 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
800 {
801 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
802 LFS_SBPAD, cred, 0, &abp);
803 if (error)
804 goto out;
805 adfs = (struct dlfs *)abp->b_data;
806
807 if (dfs->dlfs_version == 1) {
808 /* 1s resolution comparison */
809 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
810 tdfs = adfs;
811 else
812 tdfs = dfs;
813 } else {
814 /* monotonic infinite-resolution comparison */
815 if (adfs->dlfs_serial < dfs->dlfs_serial)
816 tdfs = adfs;
817 else
818 tdfs = dfs;
819 }
820
821 /* Check the basics. */
822 if (tdfs->dlfs_magic != LFS_MAGIC ||
823 tdfs->dlfs_bsize > MAXBSIZE ||
824 tdfs->dlfs_version > LFS_VERSION ||
825 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
826 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
827 " sanity failed\n"));
828 error = EINVAL; /* XXX needs translation */
829 goto out;
830 }
831 } else {
832 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
833 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
834 error = EINVAL;
835 goto out;
836 }
837
838 /* Allocate the mount structure, copy the superblock into it. */
839 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
840 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
841
842 /* Compatibility */
843 if (fs->lfs_version < 2) {
844 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
845 fs->lfs_ibsize = fs->lfs_bsize;
846 fs->lfs_start = fs->lfs_sboffs[0];
847 fs->lfs_tstamp = fs->lfs_otstamp;
848 fs->lfs_fsbtodb = 0;
849 }
850 if (fs->lfs_resvseg == 0)
851 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
852 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
853
854 /*
855 * If we aren't going to be able to write meaningfully to this
856 * filesystem, and were not mounted readonly, bomb out now.
857 */
858 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
859 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
860 " we need BUFPAGES >= %lld\n",
861 (long long)((bufmem_hiwater / bufmem_lowater) *
862 LFS_INVERSE_MAX_BYTES(
863 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
864 free(fs, M_UFSMNT);
865 error = EFBIG; /* XXX needs translation */
866 goto out;
867 }
868
869 /* Before rolling forward, lock so vget will sleep for other procs */
870 if (l != NULL) {
871 fs->lfs_flags = LFS_NOTYET;
872 fs->lfs_rfpid = l->l_proc->p_pid;
873 }
874
875 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
876 ump->um_lfs = fs;
877 ump->um_ops = &lfs_ufsops;
878 ump->um_fstype = UFS1;
879 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
880 brelse(bp, BC_INVAL);
881 brelse(abp, BC_INVAL);
882 } else {
883 brelse(bp, 0);
884 brelse(abp, 0);
885 }
886 bp = NULL;
887 abp = NULL;
888
889
890 /* Set up the I/O information */
891 fs->lfs_devbsize = secsize;
892 fs->lfs_iocount = 0;
893 fs->lfs_diropwait = 0;
894 fs->lfs_activesb = 0;
895 fs->lfs_uinodes = 0;
896 fs->lfs_ravail = 0;
897 fs->lfs_favail = 0;
898 fs->lfs_sbactive = 0;
899
900 /* Set up the ifile and lock aflags */
901 fs->lfs_doifile = 0;
902 fs->lfs_writer = 0;
903 fs->lfs_dirops = 0;
904 fs->lfs_nadirop = 0;
905 fs->lfs_seglock = 0;
906 fs->lfs_pdflush = 0;
907 fs->lfs_sleepers = 0;
908 fs->lfs_pages = 0;
909 rw_init(&fs->lfs_fraglock);
910 rw_init(&fs->lfs_iflock);
911 cv_init(&fs->lfs_stopcv, "lfsstop");
912
913 /* Set the file system readonly/modify bits. */
914 fs->lfs_ronly = ronly;
915 if (ronly == 0)
916 fs->lfs_fmod = 1;
917
918 /* Initialize the mount structure. */
919 dev = devvp->v_rdev;
920 mp->mnt_data = ump;
921 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
922 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
923 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
924 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
925 mp->mnt_stat.f_iosize = fs->lfs_bsize;
926 mp->mnt_flag |= MNT_LOCAL;
927 mp->mnt_fs_bshift = fs->lfs_bshift;
928 ump->um_flags = 0;
929 ump->um_mountp = mp;
930 ump->um_dev = dev;
931 ump->um_devvp = devvp;
932 ump->um_bptrtodb = fs->lfs_fsbtodb;
933 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
934 ump->um_nindir = fs->lfs_nindir;
935 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
936 for (i = 0; i < MAXQUOTAS; i++)
937 ump->um_quotas[i] = NULLVP;
938 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
939 ump->um_dirblksiz = DIRBLKSIZ;
940 ump->um_maxfilesize = fs->lfs_maxfilesize;
941 if (ump->um_maxsymlinklen > 0)
942 mp->mnt_iflag |= IMNT_DTYPE;
943 devvp->v_specmountpoint = mp;
944
945 /* Set up reserved memory for pageout */
946 lfs_setup_resblks(fs);
947 /* Set up vdirop tailq */
948 TAILQ_INIT(&fs->lfs_dchainhd);
949 /* and paging tailq */
950 TAILQ_INIT(&fs->lfs_pchainhd);
951 /* and delayed segment accounting for truncation list */
952 LIST_INIT(&fs->lfs_segdhd);
953
954 /*
955 * We use the ifile vnode for almost every operation. Instead of
956 * retrieving it from the hash table each time we retrieve it here,
957 * artificially increment the reference count and keep a pointer
958 * to it in the incore copy of the superblock.
959 */
960 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
961 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
962 goto out;
963 }
964 fs->lfs_ivnode = vp;
965 VREF(vp);
966
967 /* Set up inode bitmap and order free list */
968 lfs_order_freelist(fs);
969
970 /* Set up segment usage flags for the autocleaner. */
971 fs->lfs_nactive = 0;
972 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
973 M_SEGMENT, M_WAITOK);
974 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
975 M_SEGMENT, M_WAITOK);
976 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
977 M_SEGMENT, M_WAITOK);
978 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
979 for (i = 0; i < fs->lfs_nseg; i++) {
980 int changed;
981
982 LFS_SEGENTRY(sup, fs, i, bp);
983 changed = 0;
984 if (!ronly) {
985 if (sup->su_nbytes == 0 &&
986 !(sup->su_flags & SEGUSE_EMPTY)) {
987 sup->su_flags |= SEGUSE_EMPTY;
988 ++changed;
989 } else if (!(sup->su_nbytes == 0) &&
990 (sup->su_flags & SEGUSE_EMPTY)) {
991 sup->su_flags &= ~SEGUSE_EMPTY;
992 ++changed;
993 }
994 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
995 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
996 ++changed;
997 }
998 }
999 fs->lfs_suflags[0][i] = sup->su_flags;
1000 if (changed)
1001 LFS_WRITESEGENTRY(sup, fs, i, bp);
1002 else
1003 brelse(bp, 0);
1004 }
1005
1006 #ifdef LFS_KERNEL_RFW
1007 lfs_roll_forward(fs, mp, l);
1008 #endif
1009
1010 /* If writing, sb is not clean; record in case of immediate crash */
1011 if (!fs->lfs_ronly) {
1012 fs->lfs_pflags &= ~LFS_PF_CLEAN;
1013 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1014 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1015 }
1016
1017 /* Allow vget now that roll-forward is complete */
1018 fs->lfs_flags &= ~(LFS_NOTYET);
1019 wakeup(&fs->lfs_flags);
1020
1021 /*
1022 * Initialize the ifile cleaner info with information from
1023 * the superblock.
1024 */
1025 LFS_CLEANERINFO(cip, fs, bp);
1026 cip->clean = fs->lfs_nclean;
1027 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
1028 cip->avail = fs->lfs_avail;
1029 cip->bfree = fs->lfs_bfree;
1030 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1031
1032 /*
1033 * Mark the current segment as ACTIVE, since we're going to
1034 * be writing to it.
1035 */
1036 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
1037 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1038 fs->lfs_nactive++;
1039 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
1040
1041 /* Now that roll-forward is done, unlock the Ifile */
1042 vput(vp);
1043
1044 /* Start the pagedaemon-anticipating daemon */
1045 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
1046 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1047 panic("fork lfs_writer");
1048
1049 printf("WARNING: the log-structured file system is experimental and "
1050 "may be unstable\n");
1051
1052 return (0);
1053
1054 out:
1055 if (bp)
1056 brelse(bp, 0);
1057 if (abp)
1058 brelse(abp, 0);
1059 if (ump) {
1060 free(ump->um_lfs, M_UFSMNT);
1061 free(ump, M_UFSMNT);
1062 mp->mnt_data = NULL;
1063 }
1064
1065 return (error);
1066 }
1067
1068 /*
1069 * unmount system call
1070 */
1071 int
1072 lfs_unmount(struct mount *mp, int mntflags)
1073 {
1074 struct lwp *l = curlwp;
1075 struct ufsmount *ump;
1076 struct lfs *fs;
1077 int error, flags, ronly;
1078 vnode_t *vp;
1079
1080 flags = 0;
1081 if (mntflags & MNT_FORCE)
1082 flags |= FORCECLOSE;
1083
1084 ump = VFSTOUFS(mp);
1085 fs = ump->um_lfs;
1086
1087 /* Two checkpoints */
1088 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1089 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1090
1091 /* wake up the cleaner so it can die */
1092 lfs_wakeup_cleaner(fs);
1093 mutex_enter(&lfs_lock);
1094 while (fs->lfs_sleepers)
1095 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
1096 &lfs_lock);
1097 mutex_exit(&lfs_lock);
1098
1099 #ifdef QUOTA
1100 if (mp->mnt_flag & MNT_QUOTA) {
1101 int i;
1102 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
1103 if (error)
1104 return (error);
1105 for (i = 0; i < MAXQUOTAS; i++) {
1106 if (ump->um_quotas[i] == NULLVP)
1107 continue;
1108 quotaoff(l, mp, i);
1109 }
1110 /*
1111 * Here we fall through to vflush again to ensure
1112 * that we have gotten rid of all the system vnodes.
1113 */
1114 }
1115 #endif
1116 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1117 return (error);
1118 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1119 return (error);
1120 vp = fs->lfs_ivnode;
1121 mutex_enter(&vp->v_interlock);
1122 if (LIST_FIRST(&vp->v_dirtyblkhd))
1123 panic("lfs_unmount: still dirty blocks on ifile vnode");
1124 mutex_exit(&vp->v_interlock);
1125
1126 /* Explicitly write the superblock, to update serial and pflags */
1127 fs->lfs_pflags |= LFS_PF_CLEAN;
1128 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1129 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1130 mutex_enter(&lfs_lock);
1131 while (fs->lfs_iocount)
1132 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1133 &lfs_lock);
1134 mutex_exit(&lfs_lock);
1135
1136 /* Finish with the Ifile, now that we're done with it */
1137 vgone(fs->lfs_ivnode);
1138
1139 ronly = !fs->lfs_ronly;
1140 if (ump->um_devvp->v_type != VBAD)
1141 ump->um_devvp->v_specmountpoint = NULL;
1142 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1143 error = VOP_CLOSE(ump->um_devvp,
1144 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1145 vput(ump->um_devvp);
1146
1147 /* Complain about page leakage */
1148 if (fs->lfs_pages > 0)
1149 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1150 fs->lfs_pages, lfs_subsys_pages);
1151
1152 /* Free per-mount data structures */
1153 free(fs->lfs_ino_bitmap, M_SEGMENT);
1154 free(fs->lfs_suflags[0], M_SEGMENT);
1155 free(fs->lfs_suflags[1], M_SEGMENT);
1156 free(fs->lfs_suflags, M_SEGMENT);
1157 lfs_free_resblks(fs);
1158 cv_destroy(&fs->lfs_stopcv);
1159 rw_destroy(&fs->lfs_fraglock);
1160 rw_destroy(&fs->lfs_iflock);
1161 free(fs, M_UFSMNT);
1162 free(ump, M_UFSMNT);
1163
1164 mp->mnt_data = NULL;
1165 mp->mnt_flag &= ~MNT_LOCAL;
1166 return (error);
1167 }
1168
1169 /*
1170 * Get file system statistics.
1171 *
1172 * NB: We don't lock to access the superblock here, because it's not
1173 * really that important if we get it wrong.
1174 */
1175 int
1176 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1177 {
1178 struct lfs *fs;
1179 struct ufsmount *ump;
1180
1181 ump = VFSTOUFS(mp);
1182 fs = ump->um_lfs;
1183 if (fs->lfs_magic != LFS_MAGIC)
1184 panic("lfs_statvfs: magic");
1185
1186 sbp->f_bsize = fs->lfs_bsize;
1187 sbp->f_frsize = fs->lfs_fsize;
1188 sbp->f_iosize = fs->lfs_bsize;
1189 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1190
1191 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1192 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1193 #if 0
1194 if (sbp->f_bfree < 0)
1195 sbp->f_bfree = 0;
1196 #endif
1197
1198 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1199 if (sbp->f_bfree > sbp->f_bresvd)
1200 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1201 else
1202 sbp->f_bavail = 0;
1203
1204 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1205 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1206 sbp->f_favail = sbp->f_ffree;
1207 sbp->f_fresvd = 0;
1208 copy_statvfs_info(sbp, mp);
1209 return (0);
1210 }
1211
1212 /*
1213 * Go through the disk queues to initiate sandbagged IO;
1214 * go through the inodes to write those that have been modified;
1215 * initiate the writing of the super block if it has been modified.
1216 *
1217 * Note: we are always called with the filesystem marked `MPBUSY'.
1218 */
1219 int
1220 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1221 {
1222 int error;
1223 struct lfs *fs;
1224
1225 fs = VFSTOUFS(mp)->um_lfs;
1226 if (fs->lfs_ronly)
1227 return 0;
1228
1229 /* Snapshots should not hose the syncer */
1230 /*
1231 * XXX Sync can block here anyway, since we don't have a very
1232 * XXX good idea of how much data is pending. If it's more
1233 * XXX than a segment and lfs_nextseg is close to the end of
1234 * XXX the log, we'll likely block.
1235 */
1236 mutex_enter(&lfs_lock);
1237 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1238 mutex_exit(&lfs_lock);
1239 return 0;
1240 }
1241 mutex_exit(&lfs_lock);
1242
1243 lfs_writer_enter(fs, "lfs_dirops");
1244
1245 /* All syncs must be checkpoints until roll-forward is implemented. */
1246 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1247 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1248 lfs_writer_leave(fs);
1249 #ifdef QUOTA
1250 qsync(mp);
1251 #endif
1252 return (error);
1253 }
1254
1255 extern kmutex_t ufs_hashlock;
1256
1257 /*
1258 * Look up an LFS dinode number to find its incore vnode. If not already
1259 * in core, read it in from the specified device. Return the inode locked.
1260 * Detection and handling of mount points must be done by the calling routine.
1261 */
1262 int
1263 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1264 {
1265 struct lfs *fs;
1266 struct ufs1_dinode *dip;
1267 struct inode *ip;
1268 struct buf *bp;
1269 struct ifile *ifp;
1270 struct vnode *vp;
1271 struct ufsmount *ump;
1272 daddr_t daddr;
1273 dev_t dev;
1274 int error, retries;
1275 struct timespec ts;
1276
1277 memset(&ts, 0, sizeof ts); /* XXX gcc */
1278
1279 ump = VFSTOUFS(mp);
1280 dev = ump->um_dev;
1281 fs = ump->um_lfs;
1282
1283 /*
1284 * If the filesystem is not completely mounted yet, suspend
1285 * any access requests (wait for roll-forward to complete).
1286 */
1287 mutex_enter(&lfs_lock);
1288 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1289 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1290 &lfs_lock);
1291 mutex_exit(&lfs_lock);
1292
1293 retry:
1294 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1295 return (0);
1296
1297 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1298 *vpp = NULL;
1299 return (error);
1300 }
1301
1302 mutex_enter(&ufs_hashlock);
1303 if (ufs_ihashget(dev, ino, 0) != NULL) {
1304 mutex_exit(&ufs_hashlock);
1305 ungetnewvnode(vp);
1306 goto retry;
1307 }
1308
1309 /* Translate the inode number to a disk address. */
1310 if (ino == LFS_IFILE_INUM)
1311 daddr = fs->lfs_idaddr;
1312 else {
1313 /* XXX bounds-check this too */
1314 LFS_IENTRY(ifp, fs, ino, bp);
1315 daddr = ifp->if_daddr;
1316 if (fs->lfs_version > 1) {
1317 ts.tv_sec = ifp->if_atime_sec;
1318 ts.tv_nsec = ifp->if_atime_nsec;
1319 }
1320
1321 brelse(bp, 0);
1322 if (daddr == LFS_UNUSED_DADDR) {
1323 *vpp = NULLVP;
1324 mutex_exit(&ufs_hashlock);
1325 ungetnewvnode(vp);
1326 return (ENOENT);
1327 }
1328 }
1329
1330 /* Allocate/init new vnode/inode. */
1331 lfs_vcreate(mp, ino, vp);
1332
1333 /*
1334 * Put it onto its hash chain and lock it so that other requests for
1335 * this inode will block if they arrive while we are sleeping waiting
1336 * for old data structures to be purged or for the contents of the
1337 * disk portion of this inode to be read.
1338 */
1339 ip = VTOI(vp);
1340 ufs_ihashins(ip);
1341 mutex_exit(&ufs_hashlock);
1342
1343 /*
1344 * XXX
1345 * This may not need to be here, logically it should go down with
1346 * the i_devvp initialization.
1347 * Ask Kirk.
1348 */
1349 ip->i_lfs = ump->um_lfs;
1350
1351 /* Read in the disk contents for the inode, copy into the inode. */
1352 retries = 0;
1353 again:
1354 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1355 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1356 NOCRED, 0, &bp);
1357 if (error) {
1358 /*
1359 * The inode does not contain anything useful, so it would
1360 * be misleading to leave it on its hash chain. With mode
1361 * still zero, it will be unlinked and returned to the free
1362 * list by vput().
1363 */
1364 vput(vp);
1365 brelse(bp, 0);
1366 *vpp = NULL;
1367 return (error);
1368 }
1369
1370 dip = lfs_ifind(fs, ino, bp);
1371 if (dip == NULL) {
1372 /* Assume write has not completed yet; try again */
1373 brelse(bp, BC_INVAL);
1374 ++retries;
1375 if (retries > LFS_IFIND_RETRIES) {
1376 #ifdef DEBUG
1377 /* If the seglock is held look at the bpp to see
1378 what is there anyway */
1379 mutex_enter(&lfs_lock);
1380 if (fs->lfs_seglock > 0) {
1381 struct buf **bpp;
1382 struct ufs1_dinode *dp;
1383 int i;
1384
1385 for (bpp = fs->lfs_sp->bpp;
1386 bpp != fs->lfs_sp->cbpp; ++bpp) {
1387 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1388 bpp != fs->lfs_sp->bpp) {
1389 /* Inode block */
1390 printf("lfs_vget: block 0x%" PRIx64 ": ",
1391 (*bpp)->b_blkno);
1392 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1393 for (i = 0; i < INOPB(fs); i++)
1394 if (dp[i].di_u.inumber)
1395 printf("%d ", dp[i].di_u.inumber);
1396 printf("\n");
1397 }
1398 }
1399 }
1400 mutex_exit(&lfs_lock);
1401 #endif /* DEBUG */
1402 panic("lfs_vget: dinode not found");
1403 }
1404 mutex_enter(&lfs_lock);
1405 if (fs->lfs_iocount) {
1406 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1407 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1408 "lfs ifind", 1, &lfs_lock);
1409 } else
1410 retries = LFS_IFIND_RETRIES;
1411 mutex_exit(&lfs_lock);
1412 goto again;
1413 }
1414 *ip->i_din.ffs1_din = *dip;
1415 brelse(bp, 0);
1416
1417 if (fs->lfs_version > 1) {
1418 ip->i_ffs1_atime = ts.tv_sec;
1419 ip->i_ffs1_atimensec = ts.tv_nsec;
1420 }
1421
1422 lfs_vinit(mp, &vp);
1423
1424 *vpp = vp;
1425
1426 KASSERT(VOP_ISLOCKED(vp));
1427
1428 return (0);
1429 }
1430
1431 /*
1432 * File handle to vnode
1433 */
1434 int
1435 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1436 {
1437 struct lfid lfh;
1438 struct buf *bp;
1439 IFILE *ifp;
1440 int32_t daddr;
1441 struct lfs *fs;
1442 vnode_t *vp;
1443
1444 if (fhp->fid_len != sizeof(struct lfid))
1445 return EINVAL;
1446
1447 memcpy(&lfh, fhp, sizeof(lfh));
1448 if (lfh.lfid_ino < LFS_IFILE_INUM)
1449 return ESTALE;
1450
1451 fs = VFSTOUFS(mp)->um_lfs;
1452 if (lfh.lfid_ident != fs->lfs_ident)
1453 return ESTALE;
1454
1455 if (lfh.lfid_ino >
1456 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1457 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1458 return ESTALE;
1459
1460 mutex_enter(&ufs_ihash_lock);
1461 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
1462 mutex_exit(&ufs_ihash_lock);
1463 if (vp == NULL) {
1464 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1465 daddr = ifp->if_daddr;
1466 brelse(bp, 0);
1467 if (daddr == LFS_UNUSED_DADDR)
1468 return ESTALE;
1469 }
1470
1471 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1472 }
1473
1474 /*
1475 * Vnode pointer to File handle
1476 */
1477 /* ARGSUSED */
1478 int
1479 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1480 {
1481 struct inode *ip;
1482 struct lfid lfh;
1483
1484 if (*fh_size < sizeof(struct lfid)) {
1485 *fh_size = sizeof(struct lfid);
1486 return E2BIG;
1487 }
1488 *fh_size = sizeof(struct lfid);
1489 ip = VTOI(vp);
1490 memset(&lfh, 0, sizeof(lfh));
1491 lfh.lfid_len = sizeof(struct lfid);
1492 lfh.lfid_ino = ip->i_number;
1493 lfh.lfid_gen = ip->i_gen;
1494 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1495 memcpy(fhp, &lfh, sizeof(lfh));
1496 return (0);
1497 }
1498
1499 /*
1500 * ufs_bmaparray callback function for writing.
1501 *
1502 * Since blocks will be written to the new segment anyway,
1503 * we don't care about current daddr of them.
1504 */
1505 static bool
1506 lfs_issequential_hole(const struct ufsmount *ump,
1507 daddr_t daddr0, daddr_t daddr1)
1508 {
1509 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1510 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1511
1512 KASSERT(daddr0 == UNWRITTEN ||
1513 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1514 KASSERT(daddr1 == UNWRITTEN ||
1515 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1516
1517 /* NOTE: all we want to know here is 'hole or not'. */
1518 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1519
1520 /*
1521 * treat UNWRITTENs and all resident blocks as 'contiguous'
1522 */
1523 if (daddr0 != 0 && daddr1 != 0)
1524 return true;
1525
1526 /*
1527 * both are in hole?
1528 */
1529 if (daddr0 == 0 && daddr1 == 0)
1530 return true; /* all holes are 'contiguous' for us. */
1531
1532 return false;
1533 }
1534
1535 /*
1536 * lfs_gop_write functions exactly like genfs_gop_write, except that
1537 * (1) it requires the seglock to be held by its caller, and sp->fip
1538 * to be properly initialized (it will return without re-initializing
1539 * sp->fip, and without calling lfs_writeseg).
1540 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1541 * to determine how large a block it can write at once (though it does
1542 * still use VOP_BMAP to find holes in the file);
1543 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1544 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1545 * now have clusters of clusters, ick.)
1546 */
1547 static int
1548 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1549 int flags)
1550 {
1551 int i, error, run, haveeof = 0;
1552 int fs_bshift;
1553 vaddr_t kva;
1554 off_t eof, offset, startoffset = 0;
1555 size_t bytes, iobytes, skipbytes;
1556 daddr_t lbn, blkno;
1557 struct vm_page *pg;
1558 struct buf *mbp, *bp;
1559 struct vnode *devvp = VTOI(vp)->i_devvp;
1560 struct inode *ip = VTOI(vp);
1561 struct lfs *fs = ip->i_lfs;
1562 struct segment *sp = fs->lfs_sp;
1563 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1564
1565 ASSERT_SEGLOCK(fs);
1566
1567 /* The Ifile lives in the buffer cache */
1568 KASSERT(vp != fs->lfs_ivnode);
1569
1570 /*
1571 * We don't want to fill the disk before the cleaner has a chance
1572 * to make room for us. If we're in danger of doing that, fail
1573 * with EAGAIN. The caller will have to notice this, unlock
1574 * so the cleaner can run, relock and try again.
1575 *
1576 * We must write everything, however, if our vnode is being
1577 * reclaimed.
1578 */
1579 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1580 goto tryagain;
1581
1582 /*
1583 * Sometimes things slip past the filters in lfs_putpages,
1584 * and the pagedaemon tries to write pages---problem is
1585 * that the pagedaemon never acquires the segment lock.
1586 *
1587 * Alternatively, pages that were clean when we called
1588 * genfs_putpages may have become dirty in the meantime. In this
1589 * case the segment header is not properly set up for blocks
1590 * to be added to it.
1591 *
1592 * Unbusy and unclean the pages, and put them on the ACTIVE
1593 * queue under the hypothesis that they couldn't have got here
1594 * unless they were modified *quite* recently.
1595 *
1596 * XXXUBC that last statement is an oversimplification of course.
1597 */
1598 if (!LFS_SEGLOCK_HELD(fs) ||
1599 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1600 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1601 goto tryagain;
1602 }
1603
1604 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1605 vp, pgs, npages, flags);
1606
1607 GOP_SIZE(vp, vp->v_size, &eof, 0);
1608 haveeof = 1;
1609
1610 if (vp->v_type == VREG)
1611 fs_bshift = vp->v_mount->mnt_fs_bshift;
1612 else
1613 fs_bshift = DEV_BSHIFT;
1614 error = 0;
1615 pg = pgs[0];
1616 startoffset = pg->offset;
1617 KASSERT(eof >= 0);
1618
1619 if (startoffset >= eof) {
1620 goto tryagain;
1621 } else
1622 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1623 skipbytes = 0;
1624
1625 KASSERT(bytes != 0);
1626
1627 /* Swap PG_DELWRI for PG_PAGEOUT */
1628 for (i = 0; i < npages; i++) {
1629 if (pgs[i]->flags & PG_DELWRI) {
1630 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1631 pgs[i]->flags &= ~PG_DELWRI;
1632 pgs[i]->flags |= PG_PAGEOUT;
1633 uvm_pageout_start(1);
1634 mutex_enter(&uvm_pageqlock);
1635 uvm_pageunwire(pgs[i]);
1636 mutex_exit(&uvm_pageqlock);
1637 }
1638 }
1639
1640 /*
1641 * Check to make sure we're starting on a block boundary.
1642 * We'll check later to make sure we always write entire
1643 * blocks (or fragments).
1644 */
1645 if (startoffset & fs->lfs_bmask)
1646 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1647 startoffset, fs->lfs_bmask,
1648 startoffset & fs->lfs_bmask);
1649 KASSERT((startoffset & fs->lfs_bmask) == 0);
1650 if (bytes & fs->lfs_ffmask) {
1651 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1652 panic("lfs_gop_write: non-integer blocks");
1653 }
1654
1655 /*
1656 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1657 * If we would, write what we have and try again. If we don't
1658 * have anything to write, we'll have to sleep.
1659 */
1660 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1661 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1662 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1663 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1664 #if 0
1665 " with nfinfo=%d at offset 0x%x\n",
1666 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1667 (unsigned)fs->lfs_offset));
1668 #endif
1669 lfs_updatemeta(sp);
1670 lfs_release_finfo(fs);
1671 (void) lfs_writeseg(fs, sp);
1672
1673 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1674
1675 /*
1676 * Having given up all of the pager_map we were holding,
1677 * we can now wait for aiodoned to reclaim it for us
1678 * without fear of deadlock.
1679 */
1680 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1681 UVMPAGER_MAPIN_WAITOK);
1682 }
1683
1684 mutex_enter(&vp->v_interlock);
1685 vp->v_numoutput += 2; /* one for biodone, one for aiodone */
1686 mutex_exit(&vp->v_interlock);
1687
1688 mbp = getiobuf(NULL, true);
1689 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1690 vp, mbp, vp->v_numoutput, bytes);
1691 mbp->b_bufsize = npages << PAGE_SHIFT;
1692 mbp->b_data = (void *)kva;
1693 mbp->b_resid = mbp->b_bcount = bytes;
1694 mbp->b_cflags = BC_BUSY|BC_AGE;
1695 mbp->b_iodone = uvm_aio_biodone;
1696
1697 bp = NULL;
1698 for (offset = startoffset;
1699 bytes > 0;
1700 offset += iobytes, bytes -= iobytes) {
1701 lbn = offset >> fs_bshift;
1702 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1703 lfs_issequential_hole);
1704 if (error) {
1705 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1706 error,0,0,0);
1707 skipbytes += bytes;
1708 bytes = 0;
1709 break;
1710 }
1711
1712 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1713 bytes);
1714 if (blkno == (daddr_t)-1) {
1715 skipbytes += iobytes;
1716 continue;
1717 }
1718
1719 /*
1720 * Discover how much we can really pack into this buffer.
1721 */
1722 /* If no room in the current segment, finish it up */
1723 if (sp->sum_bytes_left < sizeof(int32_t) ||
1724 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1725 int vers;
1726
1727 lfs_updatemeta(sp);
1728 vers = sp->fip->fi_version;
1729 lfs_release_finfo(fs);
1730 (void) lfs_writeseg(fs, sp);
1731
1732 lfs_acquire_finfo(fs, ip->i_number, vers);
1733 }
1734 /* Check both for space in segment and space in segsum */
1735 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1736 << fs_bshift);
1737 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1738 << fs_bshift);
1739 KASSERT(iobytes > 0);
1740
1741 /* if it's really one i/o, don't make a second buf */
1742 if (offset == startoffset && iobytes == bytes) {
1743 bp = mbp;
1744 /* correct overcount if there is no second buffer */
1745 mutex_enter(&vp->v_interlock);
1746 --vp->v_numoutput;
1747 mutex_exit(&vp->v_interlock);
1748 } else {
1749 bp = getiobuf(NULL, true);
1750 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1751 vp, bp, vp->v_numoutput, 0);
1752 bp->b_data = (char *)kva +
1753 (vaddr_t)(offset - pg->offset);
1754 bp->b_resid = bp->b_bcount = iobytes;
1755 bp->b_cflags = BC_BUSY;
1756 bp->b_iodone = uvm_aio_biodone1;
1757 }
1758
1759 /* XXX This is silly ... is this necessary? */
1760 mutex_enter(&bufcache_lock);
1761 mutex_enter(&vp->v_interlock);
1762 bgetvp(vp, bp);
1763 mutex_exit(&vp->v_interlock);
1764 mutex_exit(&bufcache_lock);
1765
1766 bp->b_lblkno = lblkno(fs, offset);
1767 bp->b_private = mbp;
1768 if (devvp->v_type == VBLK) {
1769 bp->b_dev = devvp->v_rdev;
1770 }
1771 VOP_BWRITE(bp);
1772 while (lfs_gatherblock(sp, bp, NULL))
1773 continue;
1774 }
1775
1776 if (skipbytes) {
1777 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1778 mutex_enter(mbp->b_objlock);
1779 if (error) {
1780 mbp->b_error = error;
1781 }
1782 mbp->b_resid -= skipbytes;
1783 mutex_exit(mbp->b_objlock);
1784 if (mbp->b_resid == 0) {
1785 biodone(mbp);
1786 }
1787 }
1788 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1789 return (0);
1790
1791 tryagain:
1792 /*
1793 * We can't write the pages, for whatever reason.
1794 * Clean up after ourselves, and make the caller try again.
1795 */
1796 mutex_enter(&vp->v_interlock);
1797
1798 /* Tell why we're here, if we know */
1799 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1800 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1801 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1802 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1803 } else if (haveeof && startoffset >= eof) {
1804 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1805 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1806 pgs[0]->offset, eof, npages));
1807 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1808 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1809 } else {
1810 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1811 }
1812
1813 mutex_enter(&uvm_pageqlock);
1814 for (i = 0; i < npages; i++) {
1815 pg = pgs[i];
1816
1817 if (pg->flags & PG_PAGEOUT)
1818 uvm_pageout_done(1);
1819 if (pg->flags & PG_DELWRI) {
1820 uvm_pageunwire(pg);
1821 }
1822 uvm_pageactivate(pg);
1823 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1824 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1825 vp, pg->offset));
1826 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1827 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1828 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1829 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1830 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1831 pg->wire_count));
1832 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1833 pg->loan_count));
1834 }
1835 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1836 uvm_page_unbusy(pgs, npages);
1837 mutex_exit(&uvm_pageqlock);
1838 mutex_exit(&vp->v_interlock);
1839 return EAGAIN;
1840 }
1841
1842 /*
1843 * finish vnode/inode initialization.
1844 * used by lfs_vget and lfs_fastvget.
1845 */
1846 void
1847 lfs_vinit(struct mount *mp, struct vnode **vpp)
1848 {
1849 struct vnode *vp = *vpp;
1850 struct inode *ip = VTOI(vp);
1851 struct ufsmount *ump = VFSTOUFS(mp);
1852 struct lfs *fs = ump->um_lfs;
1853 int i;
1854
1855 ip->i_mode = ip->i_ffs1_mode;
1856 ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
1857 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1858 ip->i_flags = ip->i_ffs1_flags;
1859 ip->i_gen = ip->i_ffs1_gen;
1860 ip->i_uid = ip->i_ffs1_uid;
1861 ip->i_gid = ip->i_ffs1_gid;
1862
1863 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1864 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1865
1866 /*
1867 * Initialize the vnode from the inode, check for aliases. In all
1868 * cases re-init ip, the underlying vnode/inode may have changed.
1869 */
1870 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1871 ip = VTOI(vp);
1872
1873 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1874 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1875 #ifdef DEBUG
1876 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1877 i < NDADDR; i++) {
1878 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1879 i == 0)
1880 continue;
1881 if (ip->i_ffs1_db[i] != 0) {
1882 inconsistent:
1883 lfs_dump_dinode(ip->i_din.ffs1_din);
1884 panic("inconsistent inode");
1885 }
1886 }
1887 for ( ; i < NDADDR + NIADDR; i++) {
1888 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1889 goto inconsistent;
1890 }
1891 }
1892 #endif /* DEBUG */
1893 for (i = 0; i < NDADDR; i++)
1894 if (ip->i_ffs1_db[i] != 0)
1895 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1896 }
1897
1898 #ifdef DIAGNOSTIC
1899 if (vp->v_type == VNON) {
1900 # ifdef DEBUG
1901 lfs_dump_dinode(ip->i_din.ffs1_din);
1902 # endif
1903 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1904 (unsigned long long)ip->i_number,
1905 (ip->i_mode & IFMT) >> 12);
1906 }
1907 #endif /* DIAGNOSTIC */
1908
1909 /*
1910 * Finish inode initialization now that aliasing has been resolved.
1911 */
1912
1913 ip->i_devvp = ump->um_devvp;
1914 VREF(ip->i_devvp);
1915 genfs_node_init(vp, &lfs_genfsops);
1916 uvm_vnp_setsize(vp, ip->i_size);
1917
1918 /* Initialize hiblk from file size */
1919 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1920
1921 *vpp = vp;
1922 }
1923
1924 /*
1925 * Resize the filesystem to contain the specified number of segments.
1926 */
1927 int
1928 lfs_resize_fs(struct lfs *fs, int newnsegs)
1929 {
1930 SEGUSE *sup;
1931 struct buf *bp, *obp;
1932 daddr_t olast, nlast, ilast, noff, start, end;
1933 struct vnode *ivp;
1934 struct inode *ip;
1935 int error, badnews, inc, oldnsegs;
1936 int sbbytes, csbbytes, gain, cgain;
1937 int i;
1938
1939 /* Only support v2 and up */
1940 if (fs->lfs_version < 2)
1941 return EOPNOTSUPP;
1942
1943 /* If we're doing nothing, do it fast */
1944 oldnsegs = fs->lfs_nseg;
1945 if (newnsegs == oldnsegs)
1946 return 0;
1947
1948 /* We always have to have two superblocks */
1949 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1950 return EFBIG;
1951
1952 ivp = fs->lfs_ivnode;
1953 ip = VTOI(ivp);
1954 error = 0;
1955
1956 /* Take the segment lock so no one else calls lfs_newseg() */
1957 lfs_seglock(fs, SEGM_PROT);
1958
1959 /*
1960 * Make sure the segments we're going to be losing, if any,
1961 * are in fact empty. We hold the seglock, so their status
1962 * cannot change underneath us. Count the superblocks we lose,
1963 * while we're at it.
1964 */
1965 sbbytes = csbbytes = 0;
1966 cgain = 0;
1967 for (i = newnsegs; i < oldnsegs; i++) {
1968 LFS_SEGENTRY(sup, fs, i, bp);
1969 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1970 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1971 sbbytes += LFS_SBPAD;
1972 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1973 ++cgain;
1974 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1975 csbbytes += LFS_SBPAD;
1976 }
1977 brelse(bp, 0);
1978 if (badnews) {
1979 error = EBUSY;
1980 goto out;
1981 }
1982 }
1983
1984 /* Note old and new segment table endpoints, and old ifile size */
1985 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1986 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1987 ilast = ivp->v_size >> fs->lfs_bshift;
1988 noff = nlast - olast;
1989
1990 /*
1991 * Make sure no one can use the Ifile while we change it around.
1992 * Even after taking the iflock we need to make sure no one still
1993 * is holding Ifile buffers, so we get each one, to drain them.
1994 * (XXX this could be done better.)
1995 */
1996 rw_enter(&fs->lfs_iflock, RW_WRITER);
1997 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1998 for (i = 0; i < ilast; i++) {
1999 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
2000 brelse(bp, 0);
2001 }
2002
2003 /* Allocate new Ifile blocks */
2004 for (i = ilast; i < ilast + noff; i++) {
2005 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
2006 &bp) != 0)
2007 panic("balloc extending ifile");
2008 memset(bp->b_data, 0, fs->lfs_bsize);
2009 VOP_BWRITE(bp);
2010 }
2011
2012 /* Register new ifile size */
2013 ip->i_size += noff * fs->lfs_bsize;
2014 ip->i_ffs1_size = ip->i_size;
2015 uvm_vnp_setsize(ivp, ip->i_size);
2016
2017 /* Copy the inode table to its new position */
2018 if (noff != 0) {
2019 if (noff < 0) {
2020 start = nlast;
2021 end = ilast + noff;
2022 inc = 1;
2023 } else {
2024 start = ilast + noff - 1;
2025 end = nlast - 1;
2026 inc = -1;
2027 }
2028 for (i = start; i != end; i += inc) {
2029 if (bread(ivp, i, fs->lfs_bsize, NOCRED,
2030 B_MODIFY, &bp) != 0)
2031 panic("resize: bread dst blk failed");
2032 if (bread(ivp, i - noff, fs->lfs_bsize,
2033 NOCRED, 0, &obp))
2034 panic("resize: bread src blk failed");
2035 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2036 VOP_BWRITE(bp);
2037 brelse(obp, 0);
2038 }
2039 }
2040
2041 /* If we are expanding, write the new empty SEGUSE entries */
2042 if (newnsegs > oldnsegs) {
2043 for (i = oldnsegs; i < newnsegs; i++) {
2044 if ((error = bread(ivp, i / fs->lfs_sepb +
2045 fs->lfs_cleansz, fs->lfs_bsize,
2046 NOCRED, B_MODIFY, &bp)) != 0)
2047 panic("lfs: ifile read: %d", error);
2048 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2049 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2050 memset(sup, 0, sizeof(*sup));
2051 i++;
2052 }
2053 VOP_BWRITE(bp);
2054 }
2055 }
2056
2057 /* Zero out unused superblock offsets */
2058 for (i = 2; i < LFS_MAXNUMSB; i++)
2059 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2060 fs->lfs_sboffs[i] = 0x0;
2061
2062 /*
2063 * Correct superblock entries that depend on fs size.
2064 * The computations of these are as follows:
2065 *
2066 * size = segtod(fs, nseg)
2067 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2068 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2069 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2070 * + (segtod(fs, 1) - (offset - curseg))
2071 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2072 *
2073 * XXX - we should probably adjust minfreeseg as well.
2074 */
2075 gain = (newnsegs - oldnsegs);
2076 fs->lfs_nseg = newnsegs;
2077 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2078 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2079 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2080 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2081 - gain * btofsb(fs, fs->lfs_bsize / 2);
2082 if (gain > 0) {
2083 fs->lfs_nclean += gain;
2084 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2085 } else {
2086 fs->lfs_nclean -= cgain;
2087 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2088 btofsb(fs, csbbytes);
2089 }
2090
2091 /* Resize segment flag cache */
2092 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2093 fs->lfs_nseg * sizeof(u_int32_t),
2094 M_SEGMENT, M_WAITOK);
2095 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2096 fs->lfs_nseg * sizeof(u_int32_t),
2097 M_SEGMENT, M_WAITOK);
2098 for (i = oldnsegs; i < newnsegs; i++)
2099 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2100
2101 /* Truncate Ifile if necessary */
2102 if (noff < 0)
2103 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2104 NOCRED);
2105
2106 /* Update cleaner info so the cleaner can die */
2107 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
2108 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2109 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2110 VOP_BWRITE(bp);
2111
2112 /* Let Ifile accesses proceed */
2113 VOP_UNLOCK(ivp, 0);
2114 rw_exit(&fs->lfs_iflock);
2115
2116 out:
2117 lfs_segunlock(fs);
2118 return error;
2119 }
2120