Home | History | Annotate | Line # | Download | only in lfs
lfs_vfsops.c revision 1.268
      1 /*	$NetBSD: lfs_vfsops.c,v 1.268 2008/11/13 11:09:45 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Konrad E. Schroder <perseant (at) hhhh.org>.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 /*-
     33  * Copyright (c) 1989, 1991, 1993, 1994
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)lfs_vfsops.c	8.20 (Berkeley) 6/10/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.268 2008/11/13 11:09:45 ad Exp $");
     65 
     66 #if defined(_KERNEL_OPT)
     67 #include "opt_lfs.h"
     68 #include "opt_quota.h"
     69 #endif
     70 
     71 #include <sys/param.h>
     72 #include <sys/systm.h>
     73 #include <sys/namei.h>
     74 #include <sys/proc.h>
     75 #include <sys/kernel.h>
     76 #include <sys/vnode.h>
     77 #include <sys/mount.h>
     78 #include <sys/kthread.h>
     79 #include <sys/buf.h>
     80 #include <sys/device.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/file.h>
     83 #include <sys/disklabel.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/errno.h>
     86 #include <sys/malloc.h>
     87 #include <sys/pool.h>
     88 #include <sys/socket.h>
     89 #include <sys/syslog.h>
     90 #include <uvm/uvm_extern.h>
     91 #include <sys/sysctl.h>
     92 #include <sys/conf.h>
     93 #include <sys/kauth.h>
     94 #include <sys/module.h>
     95 
     96 #include <miscfs/specfs/specdev.h>
     97 
     98 #include <ufs/ufs/quota.h>
     99 #include <ufs/ufs/inode.h>
    100 #include <ufs/ufs/ufsmount.h>
    101 #include <ufs/ufs/ufs_extern.h>
    102 
    103 #include <uvm/uvm.h>
    104 #include <uvm/uvm_stat.h>
    105 #include <uvm/uvm_pager.h>
    106 #include <uvm/uvm_pdaemon.h>
    107 
    108 #include <ufs/lfs/lfs.h>
    109 #include <ufs/lfs/lfs_extern.h>
    110 
    111 #include <miscfs/genfs/genfs.h>
    112 #include <miscfs/genfs/genfs_node.h>
    113 
    114 MODULE(MODULE_CLASS_VFS, lfs, NULL);
    115 
    116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
    117 static bool lfs_issequential_hole(const struct ufsmount *,
    118     daddr_t, daddr_t);
    119 
    120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
    121 
    122 void lfs_sysctl_setup(struct sysctllog *);
    123 static struct sysctllog *lfs_sysctl_log;
    124 
    125 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
    126 extern const struct vnodeopv_desc lfs_specop_opv_desc;
    127 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
    128 
    129 pid_t lfs_writer_daemon = 0;
    130 int lfs_do_flush = 0;
    131 #ifdef LFS_KERNEL_RFW
    132 int lfs_do_rfw = 0;
    133 #endif
    134 
    135 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
    136 	&lfs_vnodeop_opv_desc,
    137 	&lfs_specop_opv_desc,
    138 	&lfs_fifoop_opv_desc,
    139 	NULL,
    140 };
    141 
    142 struct vfsops lfs_vfsops = {
    143 	MOUNT_LFS,
    144 	sizeof (struct ufs_args),
    145 	lfs_mount,
    146 	ufs_start,
    147 	lfs_unmount,
    148 	ufs_root,
    149 	ufs_quotactl,
    150 	lfs_statvfs,
    151 	lfs_sync,
    152 	lfs_vget,
    153 	lfs_fhtovp,
    154 	lfs_vptofh,
    155 	lfs_init,
    156 	lfs_reinit,
    157 	lfs_done,
    158 	lfs_mountroot,
    159 	(int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
    160 	vfs_stdextattrctl,
    161 	(void *)eopnotsupp,	/* vfs_suspendctl */
    162 	genfs_renamelock_enter,
    163 	genfs_renamelock_exit,
    164 	(void *)eopnotsupp,
    165 	lfs_vnodeopv_descs,
    166 	0,
    167 	{ NULL, NULL },
    168 };
    169 
    170 const struct genfs_ops lfs_genfsops = {
    171 	.gop_size = lfs_gop_size,
    172 	.gop_alloc = ufs_gop_alloc,
    173 	.gop_write = lfs_gop_write,
    174 	.gop_markupdate = ufs_gop_markupdate,
    175 };
    176 
    177 static const struct ufs_ops lfs_ufsops = {
    178 	.uo_itimes = NULL,
    179 	.uo_update = lfs_update,
    180 	.uo_truncate = lfs_truncate,
    181 	.uo_valloc = lfs_valloc,
    182 	.uo_vfree = lfs_vfree,
    183 	.uo_balloc = lfs_balloc,
    184 	.uo_unmark_vnode = lfs_unmark_vnode,
    185 };
    186 
    187 struct shortlong {
    188 	const char *sname;
    189 	const char *lname;
    190 };
    191 
    192 static int
    193 sysctl_lfs_dostats(SYSCTLFN_ARGS)
    194 {
    195 	extern struct lfs_stats lfs_stats;
    196 	extern int lfs_dostats;
    197 	int error;
    198 
    199 	error = sysctl_lookup(SYSCTLFN_CALL(rnode));
    200 	if (error || newp == NULL)
    201 		return (error);
    202 
    203 	if (lfs_dostats == 0)
    204 		memset(&lfs_stats, 0, sizeof(lfs_stats));
    205 
    206 	return (0);
    207 }
    208 
    209 void
    210 lfs_sysctl_setup(struct sysctllog *clog)
    211 {
    212 	int i;
    213 	extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
    214 		   lfs_fs_pagetrip, lfs_ignore_lazy_sync;
    215 #ifdef DEBUG
    216 	extern int lfs_debug_log_subsys[DLOG_MAX];
    217 	struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
    218 		{ "rollforward", "Debug roll-forward code" },
    219 		{ "alloc",	"Debug inode allocation and free list" },
    220 		{ "avail",	"Debug space-available-now accounting" },
    221 		{ "flush",	"Debug flush triggers" },
    222 		{ "lockedlist",	"Debug locked list accounting" },
    223 		{ "vnode_verbose", "Verbose per-vnode-written debugging" },
    224 		{ "vnode",	"Debug vnode use during segment write" },
    225 		{ "segment",	"Debug segment writing" },
    226 		{ "seguse",	"Debug segment used-bytes accounting" },
    227 		{ "cleaner",	"Debug cleaning routines" },
    228 		{ "mount",	"Debug mount/unmount routines" },
    229 		{ "pagecache",	"Debug UBC interactions" },
    230 		{ "dirop",	"Debug directory-operation accounting" },
    231 		{ "malloc",	"Debug private malloc accounting" },
    232 	};
    233 #endif /* DEBUG */
    234 	struct shortlong stat_names[] = { /* Must match lfs.h! */
    235 		{ "segsused",	    "Number of new segments allocated" },
    236 		{ "psegwrites",	    "Number of partial-segment writes" },
    237 		{ "psyncwrites",    "Number of synchronous partial-segment"
    238 				    " writes" },
    239 		{ "pcleanwrites",   "Number of partial-segment writes by the"
    240 				    " cleaner" },
    241 		{ "blocktot",       "Number of blocks written" },
    242 		{ "cleanblocks",    "Number of blocks written by the cleaner" },
    243 		{ "ncheckpoints",   "Number of checkpoints made" },
    244 		{ "nwrites",        "Number of whole writes" },
    245 		{ "nsync_writes",   "Number of synchronous writes" },
    246 		{ "wait_exceeded",  "Number of times writer waited for"
    247 				    " cleaner" },
    248 		{ "write_exceeded", "Number of times writer invoked flush" },
    249 		{ "flush_invoked",  "Number of times flush was invoked" },
    250 		{ "vflush_invoked", "Number of time vflush was called" },
    251 		{ "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
    252 		{ "clean_vnlocked", "Number of vnodes skipped for vget failure" },
    253 		{ "segs_reclaimed", "Number of segments reclaimed" },
    254 	};
    255 
    256 	sysctl_createv(&clog, 0, NULL, NULL,
    257 		       CTLFLAG_PERMANENT,
    258 		       CTLTYPE_NODE, "vfs", NULL,
    259 		       NULL, 0, NULL, 0,
    260 		       CTL_VFS, CTL_EOL);
    261 	sysctl_createv(&clog, 0, NULL, NULL,
    262 		       CTLFLAG_PERMANENT,
    263 		       CTLTYPE_NODE, "lfs",
    264 		       SYSCTL_DESCR("Log-structured file system"),
    265 		       NULL, 0, NULL, 0,
    266 		       CTL_VFS, 5, CTL_EOL);
    267 	/*
    268 	 * XXX the "5" above could be dynamic, thereby eliminating one
    269 	 * more instance of the "number to vfs" mapping problem, but
    270 	 * "5" is the order as taken from sys/mount.h
    271 	 */
    272 
    273 	sysctl_createv(&clog, 0, NULL, NULL,
    274 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    275 		       CTLTYPE_INT, "flushindir", NULL,
    276 		       NULL, 0, &lfs_writeindir, 0,
    277 		       CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
    278 	sysctl_createv(&clog, 0, NULL, NULL,
    279 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    280 		       CTLTYPE_INT, "clean_vnhead", NULL,
    281 		       NULL, 0, &lfs_clean_vnhead, 0,
    282 		       CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
    283 	sysctl_createv(&clog, 0, NULL, NULL,
    284 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    285 		       CTLTYPE_INT, "dostats",
    286 		       SYSCTL_DESCR("Maintain statistics on LFS operations"),
    287 		       sysctl_lfs_dostats, 0, &lfs_dostats, 0,
    288 		       CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
    289 	sysctl_createv(&clog, 0, NULL, NULL,
    290 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    291 		       CTLTYPE_INT, "pagetrip",
    292 		       SYSCTL_DESCR("How many dirty pages in fs triggers"
    293 				    " a flush"),
    294 		       NULL, 0, &lfs_fs_pagetrip, 0,
    295 		       CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
    296 	sysctl_createv(&clog, 0, NULL, NULL,
    297 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    298 		       CTLTYPE_INT, "ignore_lazy_sync",
    299 		       SYSCTL_DESCR("Lazy Sync is ignored entirely"),
    300 		       NULL, 0, &lfs_ignore_lazy_sync, 0,
    301 		       CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
    302 #ifdef LFS_KERNEL_RFW
    303 	sysctl_createv(&clog, 0, NULL, NULL,
    304 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    305 		       CTLTYPE_INT, "rfw",
    306 		       SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
    307 		       NULL, 0, &lfs_do_rfw, 0,
    308 		       CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
    309 #endif
    310 
    311 	sysctl_createv(&clog, 0, NULL, NULL,
    312 		       CTLFLAG_PERMANENT,
    313 		       CTLTYPE_NODE, "stats",
    314 		       SYSCTL_DESCR("Debugging options"),
    315 		       NULL, 0, NULL, 0,
    316 		       CTL_VFS, 5, LFS_STATS, CTL_EOL);
    317 	for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
    318 		sysctl_createv(&clog, 0, NULL, NULL,
    319 			       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
    320 			       CTLTYPE_INT, stat_names[i].sname,
    321 			       SYSCTL_DESCR(stat_names[i].lname),
    322 			       NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
    323 			       0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
    324 	}
    325 
    326 #ifdef DEBUG
    327 	sysctl_createv(&clog, 0, NULL, NULL,
    328 		       CTLFLAG_PERMANENT,
    329 		       CTLTYPE_NODE, "debug",
    330 		       SYSCTL_DESCR("Debugging options"),
    331 		       NULL, 0, NULL, 0,
    332 		       CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
    333 	for (i = 0; i < DLOG_MAX; i++) {
    334 		sysctl_createv(&clog, 0, NULL, NULL,
    335 			       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    336 			       CTLTYPE_INT, dlog_names[i].sname,
    337 			       SYSCTL_DESCR(dlog_names[i].lname),
    338 			       NULL, 0, &(lfs_debug_log_subsys[i]), 0,
    339 			       CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
    340 	}
    341 #endif
    342 }
    343 
    344 static int
    345 lfs_modcmd(modcmd_t cmd, void *arg)
    346 {
    347 	int error;
    348 
    349 	switch (cmd) {
    350 	case MODULE_CMD_INIT:
    351 		error = vfs_attach(&lfs_vfsops);
    352 		if (error != 0)
    353 			break;
    354 		lfs_sysctl_setup(lfs_sysctl_log);
    355 		break;
    356 	case MODULE_CMD_FINI:
    357 		error = vfs_detach(&lfs_vfsops);
    358 		if (error != 0)
    359 			break;
    360 		sysctl_teardown(&lfs_sysctl_log);
    361 		break;
    362 	default:
    363 		error = ENOTTY;
    364 		break;
    365 	}
    366 
    367 	return (error);
    368 }
    369 
    370 /*
    371  * XXX Same structure as FFS inodes?  Should we share a common pool?
    372  */
    373 struct pool lfs_inode_pool;
    374 struct pool lfs_dinode_pool;
    375 struct pool lfs_inoext_pool;
    376 struct pool lfs_lbnentry_pool;
    377 
    378 /*
    379  * The writer daemon.  UVM keeps track of how many dirty pages we are holding
    380  * in lfs_subsys_pages; the daemon flushes the filesystem when this value
    381  * crosses the (user-defined) threshhold LFS_MAX_PAGES.
    382  */
    383 static void
    384 lfs_writerd(void *arg)
    385 {
    386 	struct mount *mp, *nmp;
    387 	struct lfs *fs;
    388 	int fsflags;
    389 	int loopcount;
    390 
    391 	lfs_writer_daemon = curproc->p_pid;
    392 
    393 	mutex_enter(&lfs_lock);
    394 	for (;;) {
    395 		mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
    396 		    &lfs_lock);
    397 
    398 		/*
    399 		 * Look through the list of LFSs to see if any of them
    400 		 * have requested pageouts.
    401 		 */
    402 		mutex_enter(&mountlist_lock);
    403 		for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
    404 		     mp = nmp) {
    405 			if (vfs_busy(mp, &nmp)) {
    406 				continue;
    407 			}
    408 			if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
    409 			    sizeof(mp->mnt_stat.f_fstypename)) == 0) {
    410 				fs = VFSTOUFS(mp)->um_lfs;
    411 				mutex_enter(&lfs_lock);
    412 				fsflags = 0;
    413 				if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
    414 				     lfs_dirvcount > LFS_MAX_DIROP) &&
    415 				    fs->lfs_dirops == 0)
    416 					fsflags |= SEGM_CKP;
    417 				if (fs->lfs_pdflush) {
    418 					DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
    419 					fs->lfs_pdflush = 0;
    420 					lfs_flush_fs(fs, fsflags);
    421 					mutex_exit(&lfs_lock);
    422 				} else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
    423 					DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
    424 					mutex_exit(&lfs_lock);
    425 					lfs_writer_enter(fs, "wrdirop");
    426 					lfs_flush_pchain(fs);
    427 					lfs_writer_leave(fs);
    428 				} else
    429 					mutex_exit(&lfs_lock);
    430 			}
    431 			vfs_unbusy(mp, false, &nmp);
    432 		}
    433 		mutex_exit(&mountlist_lock);
    434 
    435 		/*
    436 		 * If global state wants a flush, flush everything.
    437 		 */
    438 		mutex_enter(&lfs_lock);
    439 		loopcount = 0;
    440 		if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
    441 			locked_queue_bytes > LFS_MAX_BYTES ||
    442 			lfs_subsys_pages > LFS_MAX_PAGES) {
    443 
    444 			if (lfs_do_flush) {
    445 				DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
    446 			}
    447 			if (locked_queue_count > LFS_MAX_BUFS) {
    448 				DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
    449 				      locked_queue_count, LFS_MAX_BUFS));
    450 			}
    451 			if (locked_queue_bytes > LFS_MAX_BYTES) {
    452 				DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
    453 				      locked_queue_bytes, LFS_MAX_BYTES));
    454 			}
    455 			if (lfs_subsys_pages > LFS_MAX_PAGES) {
    456 				DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
    457 				      lfs_subsys_pages, LFS_MAX_PAGES));
    458 			}
    459 
    460 			lfs_flush(NULL, SEGM_WRITERD, 0);
    461 			lfs_do_flush = 0;
    462 		}
    463 	}
    464 	/* NOTREACHED */
    465 }
    466 
    467 /*
    468  * Initialize the filesystem, most work done by ufs_init.
    469  */
    470 void
    471 lfs_init()
    472 {
    473 
    474 	malloc_type_attach(M_SEGMENT);
    475 	pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
    476 	    "lfsinopl", &pool_allocator_nointr, IPL_NONE);
    477 	pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
    478 	    "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
    479 	pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
    480 	    "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
    481 	pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
    482 	    "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
    483 	ufs_init();
    484 
    485 #ifdef DEBUG
    486 	memset(lfs_log, 0, sizeof(lfs_log));
    487 #endif
    488 	mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
    489 	cv_init(&locked_queue_cv, "lfsbuf");
    490 	cv_init(&lfs_writing_cv, "lfsflush");
    491 }
    492 
    493 void
    494 lfs_reinit()
    495 {
    496 	ufs_reinit();
    497 }
    498 
    499 void
    500 lfs_done()
    501 {
    502 	ufs_done();
    503 	mutex_destroy(&lfs_lock);
    504 	cv_destroy(&locked_queue_cv);
    505 	cv_destroy(&lfs_writing_cv);
    506 	pool_destroy(&lfs_inode_pool);
    507 	pool_destroy(&lfs_dinode_pool);
    508 	pool_destroy(&lfs_inoext_pool);
    509 	pool_destroy(&lfs_lbnentry_pool);
    510 	malloc_type_detach(M_SEGMENT);
    511 }
    512 
    513 /*
    514  * Called by main() when ufs is going to be mounted as root.
    515  */
    516 int
    517 lfs_mountroot()
    518 {
    519 	extern struct vnode *rootvp;
    520 	struct mount *mp;
    521 	struct lwp *l = curlwp;
    522 	int error;
    523 
    524 	if (device_class(root_device) != DV_DISK)
    525 		return (ENODEV);
    526 
    527 	if (rootdev == NODEV)
    528 		return (ENODEV);
    529 	if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
    530 		vrele(rootvp);
    531 		return (error);
    532 	}
    533 	if ((error = lfs_mountfs(rootvp, mp, l))) {
    534 		vfs_unbusy(mp, false, NULL);
    535 		vfs_destroy(mp);
    536 		return (error);
    537 	}
    538 	mutex_enter(&mountlist_lock);
    539 	CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
    540 	mutex_exit(&mountlist_lock);
    541 	(void)lfs_statvfs(mp, &mp->mnt_stat);
    542 	vfs_unbusy(mp, false, NULL);
    543 	setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
    544 	return (0);
    545 }
    546 
    547 /*
    548  * VFS Operations.
    549  *
    550  * mount system call
    551  */
    552 int
    553 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
    554 {
    555 	struct lwp *l = curlwp;
    556 	struct nameidata nd;
    557 	struct vnode *devvp;
    558 	struct ufs_args *args = data;
    559 	struct ufsmount *ump = NULL;
    560 	struct lfs *fs = NULL;				/* LFS */
    561 	int error = 0, update;
    562 	mode_t accessmode;
    563 
    564 	if (*data_len < sizeof *args)
    565 		return EINVAL;
    566 
    567 	if (mp->mnt_flag & MNT_GETARGS) {
    568 		ump = VFSTOUFS(mp);
    569 		if (ump == NULL)
    570 			return EIO;
    571 		args->fspec = NULL;
    572 		*data_len = sizeof *args;
    573 		return 0;
    574 	}
    575 
    576 	update = mp->mnt_flag & MNT_UPDATE;
    577 
    578 	/* Check arguments */
    579 	if (args->fspec != NULL) {
    580 		/*
    581 		 * Look up the name and verify that it's sane.
    582 		 */
    583 		NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec);
    584 		if ((error = namei(&nd)) != 0)
    585 			return (error);
    586 		devvp = nd.ni_vp;
    587 
    588 		if (!update) {
    589 			/*
    590 			 * Be sure this is a valid block device
    591 			 */
    592 			if (devvp->v_type != VBLK)
    593 				error = ENOTBLK;
    594 			else if (bdevsw_lookup(devvp->v_rdev) == NULL)
    595 				error = ENXIO;
    596 		} else {
    597 			/*
    598 			 * Be sure we're still naming the same device
    599 			 * used for our initial mount
    600 			 */
    601 			ump = VFSTOUFS(mp);
    602 			if (devvp != ump->um_devvp)
    603 				error = EINVAL;
    604 		}
    605 	} else {
    606 		if (!update) {
    607 			/* New mounts must have a filename for the device */
    608 			return (EINVAL);
    609 		} else {
    610 			/* Use the extant mount */
    611 			ump = VFSTOUFS(mp);
    612 			devvp = ump->um_devvp;
    613 			vref(devvp);
    614 		}
    615 	}
    616 
    617 
    618 	/*
    619 	 * If mount by non-root, then verify that user has necessary
    620 	 * permissions on the device.
    621 	 */
    622 	if (error == 0 && kauth_authorize_generic(l->l_cred,
    623 	    KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    624 		accessmode = VREAD;
    625 		if (update ?
    626 		    (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
    627 		    (mp->mnt_flag & MNT_RDONLY) == 0)
    628 			accessmode |= VWRITE;
    629 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    630 		error = VOP_ACCESS(devvp, accessmode, l->l_cred);
    631 		VOP_UNLOCK(devvp, 0);
    632 	}
    633 
    634 	if (error) {
    635 		vrele(devvp);
    636 		return (error);
    637 	}
    638 
    639 	if (!update) {
    640 		int flags;
    641 
    642 		if (mp->mnt_flag & MNT_RDONLY)
    643 			flags = FREAD;
    644 		else
    645 			flags = FREAD|FWRITE;
    646 		error = VOP_OPEN(devvp, flags, FSCRED);
    647 		if (error)
    648 			goto fail;
    649 		error = lfs_mountfs(devvp, mp, l);		/* LFS */
    650 		if (error) {
    651 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    652 			(void)VOP_CLOSE(devvp, flags, NOCRED);
    653 			VOP_UNLOCK(devvp, 0);
    654 			goto fail;
    655 		}
    656 
    657 		ump = VFSTOUFS(mp);
    658 		fs = ump->um_lfs;
    659 	} else {
    660 		/*
    661 		 * Update the mount.
    662 		 */
    663 
    664 		/*
    665 		 * The initial mount got a reference on this
    666 		 * device, so drop the one obtained via
    667 		 * namei(), above.
    668 		 */
    669 		vrele(devvp);
    670 
    671 		ump = VFSTOUFS(mp);
    672 		fs = ump->um_lfs;
    673 		if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
    674 			/*
    675 			 * Changing from read-only to read/write.
    676 			 * Note in the superblocks that we're writing.
    677 			 */
    678 			fs->lfs_ronly = 0;
    679 			if (fs->lfs_pflags & LFS_PF_CLEAN) {
    680 				fs->lfs_pflags &= ~LFS_PF_CLEAN;
    681 				lfs_writesuper(fs, fs->lfs_sboffs[0]);
    682 				lfs_writesuper(fs, fs->lfs_sboffs[1]);
    683 			}
    684 		}
    685 		if (args->fspec == NULL)
    686 			return EINVAL;
    687 	}
    688 
    689 	error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
    690 	    UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
    691 	if (error == 0)
    692 		(void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
    693 			      sizeof(fs->lfs_fsmnt));
    694 	return error;
    695 
    696 fail:
    697 	vrele(devvp);
    698 	return (error);
    699 }
    700 
    701 
    702 /*
    703  * Common code for mount and mountroot
    704  * LFS specific
    705  */
    706 int
    707 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
    708 {
    709 	struct dlfs *tdfs, *dfs, *adfs;
    710 	struct lfs *fs;
    711 	struct ufsmount *ump;
    712 	struct vnode *vp;
    713 	struct buf *bp, *abp;
    714 	struct partinfo dpart;
    715 	dev_t dev;
    716 	int error, i, ronly, secsize, fsbsize;
    717 	kauth_cred_t cred;
    718 	CLEANERINFO *cip;
    719 	SEGUSE *sup;
    720 	daddr_t sb_addr;
    721 
    722 	cred = l ? l->l_cred : NOCRED;
    723 
    724 	/*
    725 	 * Flush out any old buffers remaining from a previous use.
    726 	 */
    727 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
    728 	error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
    729 	VOP_UNLOCK(devvp, 0);
    730 	if (error)
    731 		return (error);
    732 
    733 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
    734 	if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
    735 		secsize = DEV_BSIZE;
    736 	else
    737 		secsize = dpart.disklab->d_secsize;
    738 
    739 	/* Don't free random space on error. */
    740 	bp = NULL;
    741 	abp = NULL;
    742 	ump = NULL;
    743 
    744 	sb_addr = LFS_LABELPAD / secsize;
    745 	while (1) {
    746 		/* Read in the superblock. */
    747 		error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
    748 		if (error)
    749 			goto out;
    750 		dfs = (struct dlfs *)bp->b_data;
    751 
    752 		/* Check the basics. */
    753 		if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
    754 		    dfs->dlfs_version > LFS_VERSION ||
    755 		    dfs->dlfs_bsize < sizeof(struct dlfs)) {
    756 			DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
    757 			error = EINVAL;		/* XXX needs translation */
    758 			goto out;
    759 		}
    760 		if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
    761 			DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
    762 			       dfs->dlfs_inodefmt));
    763 			error = EINVAL;
    764 			goto out;
    765 		}
    766 
    767 		if (dfs->dlfs_version == 1)
    768 			fsbsize = secsize;
    769 		else {
    770 			fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
    771 				dfs->dlfs_fsbtodb);
    772 			/*
    773 			 * Could be, if the frag size is large enough, that we
    774 			 * don't have the "real" primary superblock.  If that's
    775 			 * the case, get the real one, and try again.
    776 			 */
    777 			if (sb_addr != dfs->dlfs_sboffs[0] <<
    778 				       dfs->dlfs_fsbtodb) {
    779 				DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
    780 				      " 0x%llx is not right, trying 0x%llx\n",
    781 				      (long long)sb_addr,
    782 				      (long long)(dfs->dlfs_sboffs[0] <<
    783 						  dfs->dlfs_fsbtodb)));
    784 				sb_addr = dfs->dlfs_sboffs[0] <<
    785 					  dfs->dlfs_fsbtodb;
    786 				brelse(bp, 0);
    787 				continue;
    788 			}
    789 		}
    790 		break;
    791 	}
    792 
    793 	/*
    794 	 * Check the second superblock to see which is newer; then mount
    795 	 * using the older of the two.	This is necessary to ensure that
    796 	 * the filesystem is valid if it was not unmounted cleanly.
    797 	 */
    798 
    799 	if (dfs->dlfs_sboffs[1] &&
    800 	    dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
    801 	{
    802 		error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
    803 			LFS_SBPAD, cred, 0, &abp);
    804 		if (error)
    805 			goto out;
    806 		adfs = (struct dlfs *)abp->b_data;
    807 
    808 		if (dfs->dlfs_version == 1) {
    809 			/* 1s resolution comparison */
    810 			if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
    811 				tdfs = adfs;
    812 			else
    813 				tdfs = dfs;
    814 		} else {
    815 			/* monotonic infinite-resolution comparison */
    816 			if (adfs->dlfs_serial < dfs->dlfs_serial)
    817 				tdfs = adfs;
    818 			else
    819 				tdfs = dfs;
    820 		}
    821 
    822 		/* Check the basics. */
    823 		if (tdfs->dlfs_magic != LFS_MAGIC ||
    824 		    tdfs->dlfs_bsize > MAXBSIZE ||
    825 		    tdfs->dlfs_version > LFS_VERSION ||
    826 		    tdfs->dlfs_bsize < sizeof(struct dlfs)) {
    827 			DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
    828 			      " sanity failed\n"));
    829 			error = EINVAL;		/* XXX needs translation */
    830 			goto out;
    831 		}
    832 	} else {
    833 		DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
    834 		      " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
    835 		error = EINVAL;
    836 		goto out;
    837 	}
    838 
    839 	/* Allocate the mount structure, copy the superblock into it. */
    840 	fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
    841 	memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
    842 
    843 	/* Compatibility */
    844 	if (fs->lfs_version < 2) {
    845 		fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
    846 		fs->lfs_ibsize = fs->lfs_bsize;
    847 		fs->lfs_start = fs->lfs_sboffs[0];
    848 		fs->lfs_tstamp = fs->lfs_otstamp;
    849 		fs->lfs_fsbtodb = 0;
    850 	}
    851 	if (fs->lfs_resvseg == 0)
    852 		fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
    853 			MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
    854 
    855 	/*
    856 	 * If we aren't going to be able to write meaningfully to this
    857 	 * filesystem, and were not mounted readonly, bomb out now.
    858 	 */
    859 	if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
    860 		DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
    861 		      " we need BUFPAGES >= %lld\n",
    862 		      (long long)((bufmem_hiwater / bufmem_lowater) *
    863 				  LFS_INVERSE_MAX_BYTES(
    864 					  fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
    865 		free(fs, M_UFSMNT);
    866 		error = EFBIG; /* XXX needs translation */
    867 		goto out;
    868 	}
    869 
    870 	/* Before rolling forward, lock so vget will sleep for other procs */
    871 	if (l != NULL) {
    872 		fs->lfs_flags = LFS_NOTYET;
    873 		fs->lfs_rfpid = l->l_proc->p_pid;
    874 	}
    875 
    876 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
    877 	ump->um_lfs = fs;
    878 	ump->um_ops = &lfs_ufsops;
    879 	ump->um_fstype = UFS1;
    880 	if (sizeof(struct lfs) < LFS_SBPAD) {			/* XXX why? */
    881 		brelse(bp, BC_INVAL);
    882 		brelse(abp, BC_INVAL);
    883 	} else {
    884 		brelse(bp, 0);
    885 		brelse(abp, 0);
    886 	}
    887 	bp = NULL;
    888 	abp = NULL;
    889 
    890 
    891 	/* Set up the I/O information */
    892 	fs->lfs_devbsize = secsize;
    893 	fs->lfs_iocount = 0;
    894 	fs->lfs_diropwait = 0;
    895 	fs->lfs_activesb = 0;
    896 	fs->lfs_uinodes = 0;
    897 	fs->lfs_ravail = 0;
    898 	fs->lfs_favail = 0;
    899 	fs->lfs_sbactive = 0;
    900 
    901 	/* Set up the ifile and lock aflags */
    902 	fs->lfs_doifile = 0;
    903 	fs->lfs_writer = 0;
    904 	fs->lfs_dirops = 0;
    905 	fs->lfs_nadirop = 0;
    906 	fs->lfs_seglock = 0;
    907 	fs->lfs_pdflush = 0;
    908 	fs->lfs_sleepers = 0;
    909 	fs->lfs_pages = 0;
    910 	rw_init(&fs->lfs_fraglock);
    911 	rw_init(&fs->lfs_iflock);
    912 	cv_init(&fs->lfs_stopcv, "lfsstop");
    913 
    914 	/* Set the file system readonly/modify bits. */
    915 	fs->lfs_ronly = ronly;
    916 	if (ronly == 0)
    917 		fs->lfs_fmod = 1;
    918 
    919 	/* Initialize the mount structure. */
    920 	dev = devvp->v_rdev;
    921 	mp->mnt_data = ump;
    922 	mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
    923 	mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
    924 	mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
    925 	mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
    926 	mp->mnt_stat.f_iosize = fs->lfs_bsize;
    927 	mp->mnt_flag |= MNT_LOCAL;
    928 	mp->mnt_fs_bshift = fs->lfs_bshift;
    929 	ump->um_flags = 0;
    930 	ump->um_mountp = mp;
    931 	ump->um_dev = dev;
    932 	ump->um_devvp = devvp;
    933 	ump->um_bptrtodb = fs->lfs_fsbtodb;
    934 	ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
    935 	ump->um_nindir = fs->lfs_nindir;
    936 	ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
    937 	for (i = 0; i < MAXQUOTAS; i++)
    938 		ump->um_quotas[i] = NULLVP;
    939 	ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
    940 	ump->um_dirblksiz = DIRBLKSIZ;
    941 	ump->um_maxfilesize = fs->lfs_maxfilesize;
    942 	if (ump->um_maxsymlinklen > 0)
    943 		mp->mnt_iflag |= IMNT_DTYPE;
    944 	devvp->v_specmountpoint = mp;
    945 
    946 	/* Set up reserved memory for pageout */
    947 	lfs_setup_resblks(fs);
    948 	/* Set up vdirop tailq */
    949 	TAILQ_INIT(&fs->lfs_dchainhd);
    950 	/* and paging tailq */
    951 	TAILQ_INIT(&fs->lfs_pchainhd);
    952 	/* and delayed segment accounting for truncation list */
    953 	LIST_INIT(&fs->lfs_segdhd);
    954 
    955 	/*
    956 	 * We use the ifile vnode for almost every operation.  Instead of
    957 	 * retrieving it from the hash table each time we retrieve it here,
    958 	 * artificially increment the reference count and keep a pointer
    959 	 * to it in the incore copy of the superblock.
    960 	 */
    961 	if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
    962 		DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
    963 		goto out;
    964 	}
    965 	fs->lfs_ivnode = vp;
    966 	VREF(vp);
    967 
    968 	/* Set up inode bitmap and order free list */
    969 	lfs_order_freelist(fs);
    970 
    971 	/* Set up segment usage flags for the autocleaner. */
    972 	fs->lfs_nactive = 0;
    973 	fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
    974 						M_SEGMENT, M_WAITOK);
    975 	fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    976 						 M_SEGMENT, M_WAITOK);
    977 	fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
    978 						 M_SEGMENT, M_WAITOK);
    979 	memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
    980 	for (i = 0; i < fs->lfs_nseg; i++) {
    981 		int changed;
    982 
    983 		LFS_SEGENTRY(sup, fs, i, bp);
    984 		changed = 0;
    985 		if (!ronly) {
    986 			if (sup->su_nbytes == 0 &&
    987 			    !(sup->su_flags & SEGUSE_EMPTY)) {
    988 				sup->su_flags |= SEGUSE_EMPTY;
    989 				++changed;
    990 			} else if (!(sup->su_nbytes == 0) &&
    991 				   (sup->su_flags & SEGUSE_EMPTY)) {
    992 				sup->su_flags &= ~SEGUSE_EMPTY;
    993 				++changed;
    994 			}
    995 			if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
    996 				sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
    997 				++changed;
    998 			}
    999 		}
   1000 		fs->lfs_suflags[0][i] = sup->su_flags;
   1001 		if (changed)
   1002 			LFS_WRITESEGENTRY(sup, fs, i, bp);
   1003 		else
   1004 			brelse(bp, 0);
   1005 	}
   1006 
   1007 #ifdef LFS_KERNEL_RFW
   1008 	lfs_roll_forward(fs, mp, l);
   1009 #endif
   1010 
   1011 	/* If writing, sb is not clean; record in case of immediate crash */
   1012 	if (!fs->lfs_ronly) {
   1013 		fs->lfs_pflags &= ~LFS_PF_CLEAN;
   1014 		lfs_writesuper(fs, fs->lfs_sboffs[0]);
   1015 		lfs_writesuper(fs, fs->lfs_sboffs[1]);
   1016 	}
   1017 
   1018 	/* Allow vget now that roll-forward is complete */
   1019 	fs->lfs_flags &= ~(LFS_NOTYET);
   1020 	wakeup(&fs->lfs_flags);
   1021 
   1022 	/*
   1023 	 * Initialize the ifile cleaner info with information from
   1024 	 * the superblock.
   1025 	 */
   1026 	LFS_CLEANERINFO(cip, fs, bp);
   1027 	cip->clean = fs->lfs_nclean;
   1028 	cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
   1029 	cip->avail = fs->lfs_avail;
   1030 	cip->bfree = fs->lfs_bfree;
   1031 	(void) LFS_BWRITE_LOG(bp); /* Ifile */
   1032 
   1033 	/*
   1034 	 * Mark the current segment as ACTIVE, since we're going to
   1035 	 * be writing to it.
   1036 	 */
   1037 	LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
   1038 	sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
   1039 	fs->lfs_nactive++;
   1040 	LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);  /* Ifile */
   1041 
   1042 	/* Now that roll-forward is done, unlock the Ifile */
   1043 	vput(vp);
   1044 
   1045 	/* Start the pagedaemon-anticipating daemon */
   1046 	if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
   1047 	    lfs_writerd, NULL, NULL, "lfs_writer") != 0)
   1048 		panic("fork lfs_writer");
   1049 
   1050 	printf("WARNING: the log-structured file system is experimental and "
   1051 	    "may be unstable\n");
   1052 
   1053 	return (0);
   1054 
   1055 out:
   1056 	if (bp)
   1057 		brelse(bp, 0);
   1058 	if (abp)
   1059 		brelse(abp, 0);
   1060 	if (ump) {
   1061 		free(ump->um_lfs, M_UFSMNT);
   1062 		free(ump, M_UFSMNT);
   1063 		mp->mnt_data = NULL;
   1064 	}
   1065 
   1066 	return (error);
   1067 }
   1068 
   1069 /*
   1070  * unmount system call
   1071  */
   1072 int
   1073 lfs_unmount(struct mount *mp, int mntflags)
   1074 {
   1075 	struct lwp *l = curlwp;
   1076 	struct ufsmount *ump;
   1077 	struct lfs *fs;
   1078 	int error, flags, ronly;
   1079 	vnode_t *vp;
   1080 
   1081 	flags = 0;
   1082 	if (mntflags & MNT_FORCE)
   1083 		flags |= FORCECLOSE;
   1084 
   1085 	ump = VFSTOUFS(mp);
   1086 	fs = ump->um_lfs;
   1087 
   1088 	/* Two checkpoints */
   1089 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
   1090 	lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
   1091 
   1092 	/* wake up the cleaner so it can die */
   1093 	lfs_wakeup_cleaner(fs);
   1094 	mutex_enter(&lfs_lock);
   1095 	while (fs->lfs_sleepers)
   1096 		mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
   1097 			&lfs_lock);
   1098 	mutex_exit(&lfs_lock);
   1099 
   1100 #ifdef QUOTA
   1101 	if (mp->mnt_flag & MNT_QUOTA) {
   1102 		int i;
   1103 		error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
   1104 		if (error)
   1105 			return (error);
   1106 		for (i = 0; i < MAXQUOTAS; i++) {
   1107 			if (ump->um_quotas[i] == NULLVP)
   1108 				continue;
   1109 			quotaoff(l, mp, i);
   1110 		}
   1111 		/*
   1112 		 * Here we fall through to vflush again to ensure
   1113 		 * that we have gotten rid of all the system vnodes.
   1114 		 */
   1115 	}
   1116 #endif
   1117 	if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
   1118 		return (error);
   1119 	if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
   1120 		return (error);
   1121 	vp = fs->lfs_ivnode;
   1122 	mutex_enter(&vp->v_interlock);
   1123 	if (LIST_FIRST(&vp->v_dirtyblkhd))
   1124 		panic("lfs_unmount: still dirty blocks on ifile vnode");
   1125 	mutex_exit(&vp->v_interlock);
   1126 
   1127 	/* Explicitly write the superblock, to update serial and pflags */
   1128 	fs->lfs_pflags |= LFS_PF_CLEAN;
   1129 	lfs_writesuper(fs, fs->lfs_sboffs[0]);
   1130 	lfs_writesuper(fs, fs->lfs_sboffs[1]);
   1131 	mutex_enter(&lfs_lock);
   1132 	while (fs->lfs_iocount)
   1133 		mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
   1134 			&lfs_lock);
   1135 	mutex_exit(&lfs_lock);
   1136 
   1137 	/* Finish with the Ifile, now that we're done with it */
   1138 	vgone(fs->lfs_ivnode);
   1139 
   1140 	ronly = !fs->lfs_ronly;
   1141 	if (ump->um_devvp->v_type != VBAD)
   1142 		ump->um_devvp->v_specmountpoint = NULL;
   1143 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
   1144 	error = VOP_CLOSE(ump->um_devvp,
   1145 	    ronly ? FREAD : FREAD|FWRITE, NOCRED);
   1146 	vput(ump->um_devvp);
   1147 
   1148 	/* Complain about page leakage */
   1149 	if (fs->lfs_pages > 0)
   1150 		printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
   1151 			fs->lfs_pages, lfs_subsys_pages);
   1152 
   1153 	/* Free per-mount data structures */
   1154 	free(fs->lfs_ino_bitmap, M_SEGMENT);
   1155 	free(fs->lfs_suflags[0], M_SEGMENT);
   1156 	free(fs->lfs_suflags[1], M_SEGMENT);
   1157 	free(fs->lfs_suflags, M_SEGMENT);
   1158 	lfs_free_resblks(fs);
   1159 	cv_destroy(&fs->lfs_stopcv);
   1160 	rw_destroy(&fs->lfs_fraglock);
   1161 	rw_destroy(&fs->lfs_iflock);
   1162 	free(fs, M_UFSMNT);
   1163 	free(ump, M_UFSMNT);
   1164 
   1165 	mp->mnt_data = NULL;
   1166 	mp->mnt_flag &= ~MNT_LOCAL;
   1167 	return (error);
   1168 }
   1169 
   1170 /*
   1171  * Get file system statistics.
   1172  *
   1173  * NB: We don't lock to access the superblock here, because it's not
   1174  * really that important if we get it wrong.
   1175  */
   1176 int
   1177 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
   1178 {
   1179 	struct lfs *fs;
   1180 	struct ufsmount *ump;
   1181 
   1182 	ump = VFSTOUFS(mp);
   1183 	fs = ump->um_lfs;
   1184 	if (fs->lfs_magic != LFS_MAGIC)
   1185 		panic("lfs_statvfs: magic");
   1186 
   1187 	sbp->f_bsize = fs->lfs_bsize;
   1188 	sbp->f_frsize = fs->lfs_fsize;
   1189 	sbp->f_iosize = fs->lfs_bsize;
   1190 	sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
   1191 
   1192 	sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
   1193 	KASSERT(sbp->f_bfree <= fs->lfs_dsize);
   1194 #if 0
   1195 	if (sbp->f_bfree < 0)
   1196 		sbp->f_bfree = 0;
   1197 #endif
   1198 
   1199 	sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
   1200 	if (sbp->f_bfree > sbp->f_bresvd)
   1201 		sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
   1202 	else
   1203 		sbp->f_bavail = 0;
   1204 
   1205 	sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
   1206 	sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
   1207 	sbp->f_favail = sbp->f_ffree;
   1208 	sbp->f_fresvd = 0;
   1209 	copy_statvfs_info(sbp, mp);
   1210 	return (0);
   1211 }
   1212 
   1213 /*
   1214  * Go through the disk queues to initiate sandbagged IO;
   1215  * go through the inodes to write those that have been modified;
   1216  * initiate the writing of the super block if it has been modified.
   1217  *
   1218  * Note: we are always called with the filesystem marked `MPBUSY'.
   1219  */
   1220 int
   1221 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
   1222 {
   1223 	int error;
   1224 	struct lfs *fs;
   1225 
   1226 	fs = VFSTOUFS(mp)->um_lfs;
   1227 	if (fs->lfs_ronly)
   1228 		return 0;
   1229 
   1230 	/* Snapshots should not hose the syncer */
   1231 	/*
   1232 	 * XXX Sync can block here anyway, since we don't have a very
   1233 	 * XXX good idea of how much data is pending.  If it's more
   1234 	 * XXX than a segment and lfs_nextseg is close to the end of
   1235 	 * XXX the log, we'll likely block.
   1236 	 */
   1237 	mutex_enter(&lfs_lock);
   1238 	if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
   1239 		mutex_exit(&lfs_lock);
   1240 		return 0;
   1241 	}
   1242 	mutex_exit(&lfs_lock);
   1243 
   1244 	lfs_writer_enter(fs, "lfs_dirops");
   1245 
   1246 	/* All syncs must be checkpoints until roll-forward is implemented. */
   1247 	DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
   1248 	error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
   1249 	lfs_writer_leave(fs);
   1250 #ifdef QUOTA
   1251 	qsync(mp);
   1252 #endif
   1253 	return (error);
   1254 }
   1255 
   1256 extern kmutex_t ufs_hashlock;
   1257 
   1258 /*
   1259  * Look up an LFS dinode number to find its incore vnode.  If not already
   1260  * in core, read it in from the specified device.  Return the inode locked.
   1261  * Detection and handling of mount points must be done by the calling routine.
   1262  */
   1263 int
   1264 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
   1265 {
   1266 	struct lfs *fs;
   1267 	struct ufs1_dinode *dip;
   1268 	struct inode *ip;
   1269 	struct buf *bp;
   1270 	struct ifile *ifp;
   1271 	struct vnode *vp;
   1272 	struct ufsmount *ump;
   1273 	daddr_t daddr;
   1274 	dev_t dev;
   1275 	int error, retries;
   1276 	struct timespec ts;
   1277 
   1278 	memset(&ts, 0, sizeof ts);	/* XXX gcc */
   1279 
   1280 	ump = VFSTOUFS(mp);
   1281 	dev = ump->um_dev;
   1282 	fs = ump->um_lfs;
   1283 
   1284 	/*
   1285 	 * If the filesystem is not completely mounted yet, suspend
   1286 	 * any access requests (wait for roll-forward to complete).
   1287 	 */
   1288 	mutex_enter(&lfs_lock);
   1289 	while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
   1290 		mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
   1291 			&lfs_lock);
   1292 	mutex_exit(&lfs_lock);
   1293 
   1294 retry:
   1295 	if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
   1296 		return (0);
   1297 
   1298 	if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
   1299 		*vpp = NULL;
   1300 		 return (error);
   1301 	}
   1302 
   1303 	mutex_enter(&ufs_hashlock);
   1304 	if (ufs_ihashget(dev, ino, 0) != NULL) {
   1305 		mutex_exit(&ufs_hashlock);
   1306 		ungetnewvnode(vp);
   1307 		goto retry;
   1308 	}
   1309 
   1310 	/* Translate the inode number to a disk address. */
   1311 	if (ino == LFS_IFILE_INUM)
   1312 		daddr = fs->lfs_idaddr;
   1313 	else {
   1314 		/* XXX bounds-check this too */
   1315 		LFS_IENTRY(ifp, fs, ino, bp);
   1316 		daddr = ifp->if_daddr;
   1317 		if (fs->lfs_version > 1) {
   1318 			ts.tv_sec = ifp->if_atime_sec;
   1319 			ts.tv_nsec = ifp->if_atime_nsec;
   1320 		}
   1321 
   1322 		brelse(bp, 0);
   1323 		if (daddr == LFS_UNUSED_DADDR) {
   1324 			*vpp = NULLVP;
   1325 			mutex_exit(&ufs_hashlock);
   1326 			ungetnewvnode(vp);
   1327 			return (ENOENT);
   1328 		}
   1329 	}
   1330 
   1331 	/* Allocate/init new vnode/inode. */
   1332 	lfs_vcreate(mp, ino, vp);
   1333 
   1334 	/*
   1335 	 * Put it onto its hash chain and lock it so that other requests for
   1336 	 * this inode will block if they arrive while we are sleeping waiting
   1337 	 * for old data structures to be purged or for the contents of the
   1338 	 * disk portion of this inode to be read.
   1339 	 */
   1340 	ip = VTOI(vp);
   1341 	ufs_ihashins(ip);
   1342 	mutex_exit(&ufs_hashlock);
   1343 
   1344 	/*
   1345 	 * XXX
   1346 	 * This may not need to be here, logically it should go down with
   1347 	 * the i_devvp initialization.
   1348 	 * Ask Kirk.
   1349 	 */
   1350 	ip->i_lfs = ump->um_lfs;
   1351 
   1352 	/* Read in the disk contents for the inode, copy into the inode. */
   1353 	retries = 0;
   1354     again:
   1355 	error = bread(ump->um_devvp, fsbtodb(fs, daddr),
   1356 		(fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
   1357 		NOCRED, 0, &bp);
   1358 	if (error) {
   1359 		/*
   1360 		 * The inode does not contain anything useful, so it would
   1361 		 * be misleading to leave it on its hash chain. With mode
   1362 		 * still zero, it will be unlinked and returned to the free
   1363 		 * list by vput().
   1364 		 */
   1365 		vput(vp);
   1366 		brelse(bp, 0);
   1367 		*vpp = NULL;
   1368 		return (error);
   1369 	}
   1370 
   1371 	dip = lfs_ifind(fs, ino, bp);
   1372 	if (dip == NULL) {
   1373 		/* Assume write has not completed yet; try again */
   1374 		brelse(bp, BC_INVAL);
   1375 		++retries;
   1376 		if (retries > LFS_IFIND_RETRIES) {
   1377 #ifdef DEBUG
   1378 			/* If the seglock is held look at the bpp to see
   1379 			   what is there anyway */
   1380 			mutex_enter(&lfs_lock);
   1381 			if (fs->lfs_seglock > 0) {
   1382 				struct buf **bpp;
   1383 				struct ufs1_dinode *dp;
   1384 				int i;
   1385 
   1386 				for (bpp = fs->lfs_sp->bpp;
   1387 				     bpp != fs->lfs_sp->cbpp; ++bpp) {
   1388 					if ((*bpp)->b_vp == fs->lfs_ivnode &&
   1389 					    bpp != fs->lfs_sp->bpp) {
   1390 						/* Inode block */
   1391 						printf("lfs_vget: block 0x%" PRIx64 ": ",
   1392 						       (*bpp)->b_blkno);
   1393 						dp = (struct ufs1_dinode *)(*bpp)->b_data;
   1394 						for (i = 0; i < INOPB(fs); i++)
   1395 							if (dp[i].di_u.inumber)
   1396 								printf("%d ", dp[i].di_u.inumber);
   1397 						printf("\n");
   1398 					}
   1399 				}
   1400 			}
   1401 			mutex_exit(&lfs_lock);
   1402 #endif /* DEBUG */
   1403 			panic("lfs_vget: dinode not found");
   1404 		}
   1405 		mutex_enter(&lfs_lock);
   1406 		if (fs->lfs_iocount) {
   1407 			DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
   1408 			(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
   1409 				      "lfs ifind", 1, &lfs_lock);
   1410 		} else
   1411 			retries = LFS_IFIND_RETRIES;
   1412 		mutex_exit(&lfs_lock);
   1413 		goto again;
   1414 	}
   1415 	*ip->i_din.ffs1_din = *dip;
   1416 	brelse(bp, 0);
   1417 
   1418 	if (fs->lfs_version > 1) {
   1419 		ip->i_ffs1_atime = ts.tv_sec;
   1420 		ip->i_ffs1_atimensec = ts.tv_nsec;
   1421 	}
   1422 
   1423 	lfs_vinit(mp, &vp);
   1424 
   1425 	*vpp = vp;
   1426 
   1427 	KASSERT(VOP_ISLOCKED(vp));
   1428 
   1429 	return (0);
   1430 }
   1431 
   1432 /*
   1433  * File handle to vnode
   1434  */
   1435 int
   1436 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
   1437 {
   1438 	struct lfid lfh;
   1439 	struct buf *bp;
   1440 	IFILE *ifp;
   1441 	int32_t daddr;
   1442 	struct lfs *fs;
   1443 	vnode_t *vp;
   1444 
   1445 	if (fhp->fid_len != sizeof(struct lfid))
   1446 		return EINVAL;
   1447 
   1448 	memcpy(&lfh, fhp, sizeof(lfh));
   1449 	if (lfh.lfid_ino < LFS_IFILE_INUM)
   1450 		return ESTALE;
   1451 
   1452 	fs = VFSTOUFS(mp)->um_lfs;
   1453 	if (lfh.lfid_ident != fs->lfs_ident)
   1454 		return ESTALE;
   1455 
   1456 	if (lfh.lfid_ino >
   1457 	    ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
   1458 	     fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
   1459 		return ESTALE;
   1460 
   1461 	mutex_enter(&ufs_ihash_lock);
   1462 	vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
   1463 	mutex_exit(&ufs_ihash_lock);
   1464 	if (vp == NULL) {
   1465 		LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
   1466 		daddr = ifp->if_daddr;
   1467 		brelse(bp, 0);
   1468 		if (daddr == LFS_UNUSED_DADDR)
   1469 			return ESTALE;
   1470 	}
   1471 
   1472 	return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
   1473 }
   1474 
   1475 /*
   1476  * Vnode pointer to File handle
   1477  */
   1478 /* ARGSUSED */
   1479 int
   1480 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
   1481 {
   1482 	struct inode *ip;
   1483 	struct lfid lfh;
   1484 
   1485 	if (*fh_size < sizeof(struct lfid)) {
   1486 		*fh_size = sizeof(struct lfid);
   1487 		return E2BIG;
   1488 	}
   1489 	*fh_size = sizeof(struct lfid);
   1490 	ip = VTOI(vp);
   1491 	memset(&lfh, 0, sizeof(lfh));
   1492 	lfh.lfid_len = sizeof(struct lfid);
   1493 	lfh.lfid_ino = ip->i_number;
   1494 	lfh.lfid_gen = ip->i_gen;
   1495 	lfh.lfid_ident = ip->i_lfs->lfs_ident;
   1496 	memcpy(fhp, &lfh, sizeof(lfh));
   1497 	return (0);
   1498 }
   1499 
   1500 /*
   1501  * ufs_bmaparray callback function for writing.
   1502  *
   1503  * Since blocks will be written to the new segment anyway,
   1504  * we don't care about current daddr of them.
   1505  */
   1506 static bool
   1507 lfs_issequential_hole(const struct ufsmount *ump,
   1508     daddr_t daddr0, daddr_t daddr1)
   1509 {
   1510 	daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
   1511 	daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
   1512 
   1513 	KASSERT(daddr0 == UNWRITTEN ||
   1514 	    (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
   1515 	KASSERT(daddr1 == UNWRITTEN ||
   1516 	    (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
   1517 
   1518 	/* NOTE: all we want to know here is 'hole or not'. */
   1519 	/* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
   1520 
   1521 	/*
   1522 	 * treat UNWRITTENs and all resident blocks as 'contiguous'
   1523 	 */
   1524 	if (daddr0 != 0 && daddr1 != 0)
   1525 		return true;
   1526 
   1527 	/*
   1528 	 * both are in hole?
   1529 	 */
   1530 	if (daddr0 == 0 && daddr1 == 0)
   1531 		return true; /* all holes are 'contiguous' for us. */
   1532 
   1533 	return false;
   1534 }
   1535 
   1536 /*
   1537  * lfs_gop_write functions exactly like genfs_gop_write, except that
   1538  * (1) it requires the seglock to be held by its caller, and sp->fip
   1539  *     to be properly initialized (it will return without re-initializing
   1540  *     sp->fip, and without calling lfs_writeseg).
   1541  * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
   1542  *     to determine how large a block it can write at once (though it does
   1543  *     still use VOP_BMAP to find holes in the file);
   1544  * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
   1545  *     (leaving lfs_writeseg to deal with the cluster blocks, so we might
   1546  *     now have clusters of clusters, ick.)
   1547  */
   1548 static int
   1549 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1550     int flags)
   1551 {
   1552 	int i, error, run, haveeof = 0;
   1553 	int fs_bshift;
   1554 	vaddr_t kva;
   1555 	off_t eof, offset, startoffset = 0;
   1556 	size_t bytes, iobytes, skipbytes;
   1557 	daddr_t lbn, blkno;
   1558 	struct vm_page *pg;
   1559 	struct buf *mbp, *bp;
   1560 	struct vnode *devvp = VTOI(vp)->i_devvp;
   1561 	struct inode *ip = VTOI(vp);
   1562 	struct lfs *fs = ip->i_lfs;
   1563 	struct segment *sp = fs->lfs_sp;
   1564 	UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
   1565 
   1566 	ASSERT_SEGLOCK(fs);
   1567 
   1568 	/* The Ifile lives in the buffer cache */
   1569 	KASSERT(vp != fs->lfs_ivnode);
   1570 
   1571 	/*
   1572 	 * We don't want to fill the disk before the cleaner has a chance
   1573 	 * to make room for us.  If we're in danger of doing that, fail
   1574 	 * with EAGAIN.  The caller will have to notice this, unlock
   1575 	 * so the cleaner can run, relock and try again.
   1576 	 *
   1577 	 * We must write everything, however, if our vnode is being
   1578 	 * reclaimed.
   1579 	 */
   1580 	if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
   1581 		goto tryagain;
   1582 
   1583 	/*
   1584 	 * Sometimes things slip past the filters in lfs_putpages,
   1585 	 * and the pagedaemon tries to write pages---problem is
   1586 	 * that the pagedaemon never acquires the segment lock.
   1587 	 *
   1588 	 * Alternatively, pages that were clean when we called
   1589 	 * genfs_putpages may have become dirty in the meantime.  In this
   1590 	 * case the segment header is not properly set up for blocks
   1591 	 * to be added to it.
   1592 	 *
   1593 	 * Unbusy and unclean the pages, and put them on the ACTIVE
   1594 	 * queue under the hypothesis that they couldn't have got here
   1595 	 * unless they were modified *quite* recently.
   1596 	 *
   1597 	 * XXXUBC that last statement is an oversimplification of course.
   1598 	 */
   1599 	if (!LFS_SEGLOCK_HELD(fs) ||
   1600 	    (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
   1601 	    (pgs[0]->offset & fs->lfs_bmask) != 0) {
   1602 		goto tryagain;
   1603 	}
   1604 
   1605 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1606 	    vp, pgs, npages, flags);
   1607 
   1608 	GOP_SIZE(vp, vp->v_size, &eof, 0);
   1609 	haveeof = 1;
   1610 
   1611 	if (vp->v_type == VREG)
   1612 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1613 	else
   1614 		fs_bshift = DEV_BSHIFT;
   1615 	error = 0;
   1616 	pg = pgs[0];
   1617 	startoffset = pg->offset;
   1618 	KASSERT(eof >= 0);
   1619 
   1620 	if (startoffset >= eof) {
   1621 		goto tryagain;
   1622 	} else
   1623 		bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1624 	skipbytes = 0;
   1625 
   1626 	KASSERT(bytes != 0);
   1627 
   1628 	/* Swap PG_DELWRI for PG_PAGEOUT */
   1629 	for (i = 0; i < npages; i++) {
   1630 		if (pgs[i]->flags & PG_DELWRI) {
   1631 			KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
   1632 			pgs[i]->flags &= ~PG_DELWRI;
   1633 			pgs[i]->flags |= PG_PAGEOUT;
   1634 			uvm_pageout_start(1);
   1635 			mutex_enter(&uvm_pageqlock);
   1636 			uvm_pageunwire(pgs[i]);
   1637 			mutex_exit(&uvm_pageqlock);
   1638 		}
   1639 	}
   1640 
   1641 	/*
   1642 	 * Check to make sure we're starting on a block boundary.
   1643 	 * We'll check later to make sure we always write entire
   1644 	 * blocks (or fragments).
   1645 	 */
   1646 	if (startoffset & fs->lfs_bmask)
   1647 		printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
   1648 		       startoffset, fs->lfs_bmask,
   1649 		       startoffset & fs->lfs_bmask);
   1650 	KASSERT((startoffset & fs->lfs_bmask) == 0);
   1651 	if (bytes & fs->lfs_ffmask) {
   1652 		printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
   1653 		panic("lfs_gop_write: non-integer blocks");
   1654 	}
   1655 
   1656 	/*
   1657 	 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
   1658 	 * If we would, write what we have and try again.  If we don't
   1659 	 * have anything to write, we'll have to sleep.
   1660 	 */
   1661 	if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1662 				      (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
   1663 				       UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
   1664 		DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
   1665 #if 0
   1666 		      " with nfinfo=%d at offset 0x%x\n",
   1667 		      (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
   1668 		      (unsigned)fs->lfs_offset));
   1669 #endif
   1670 		lfs_updatemeta(sp);
   1671 		lfs_release_finfo(fs);
   1672 		(void) lfs_writeseg(fs, sp);
   1673 
   1674 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   1675 
   1676 		/*
   1677 		 * Having given up all of the pager_map we were holding,
   1678 		 * we can now wait for aiodoned to reclaim it for us
   1679 		 * without fear of deadlock.
   1680 		 */
   1681 		kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
   1682 				     UVMPAGER_MAPIN_WAITOK);
   1683 	}
   1684 
   1685 	mutex_enter(&vp->v_interlock);
   1686 	vp->v_numoutput += 2; /* one for biodone, one for aiodone */
   1687 	mutex_exit(&vp->v_interlock);
   1688 
   1689 	mbp = getiobuf(NULL, true);
   1690 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1691 	    vp, mbp, vp->v_numoutput, bytes);
   1692 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1693 	mbp->b_data = (void *)kva;
   1694 	mbp->b_resid = mbp->b_bcount = bytes;
   1695 	mbp->b_cflags = BC_BUSY|BC_AGE;
   1696 	mbp->b_iodone = uvm_aio_biodone;
   1697 
   1698 	bp = NULL;
   1699 	for (offset = startoffset;
   1700 	    bytes > 0;
   1701 	    offset += iobytes, bytes -= iobytes) {
   1702 		lbn = offset >> fs_bshift;
   1703 		error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
   1704 		    lfs_issequential_hole);
   1705 		if (error) {
   1706 			UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
   1707 			    error,0,0,0);
   1708 			skipbytes += bytes;
   1709 			bytes = 0;
   1710 			break;
   1711 		}
   1712 
   1713 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1714 		    bytes);
   1715 		if (blkno == (daddr_t)-1) {
   1716 			skipbytes += iobytes;
   1717 			continue;
   1718 		}
   1719 
   1720 		/*
   1721 		 * Discover how much we can really pack into this buffer.
   1722 		 */
   1723 		/* If no room in the current segment, finish it up */
   1724 		if (sp->sum_bytes_left < sizeof(int32_t) ||
   1725 		    sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
   1726 			int vers;
   1727 
   1728 			lfs_updatemeta(sp);
   1729 			vers = sp->fip->fi_version;
   1730 			lfs_release_finfo(fs);
   1731 			(void) lfs_writeseg(fs, sp);
   1732 
   1733 			lfs_acquire_finfo(fs, ip->i_number, vers);
   1734 		}
   1735 		/* Check both for space in segment and space in segsum */
   1736 		iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
   1737 					<< fs_bshift);
   1738 		iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
   1739 				       << fs_bshift);
   1740 		KASSERT(iobytes > 0);
   1741 
   1742 		/* if it's really one i/o, don't make a second buf */
   1743 		if (offset == startoffset && iobytes == bytes) {
   1744 			bp = mbp;
   1745 			/* correct overcount if there is no second buffer */
   1746 			mutex_enter(&vp->v_interlock);
   1747 			--vp->v_numoutput;
   1748 			mutex_exit(&vp->v_interlock);
   1749 		} else {
   1750 			bp = getiobuf(NULL, true);
   1751 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1752 			    vp, bp, vp->v_numoutput, 0);
   1753 			bp->b_data = (char *)kva +
   1754 			    (vaddr_t)(offset - pg->offset);
   1755 			bp->b_resid = bp->b_bcount = iobytes;
   1756 			bp->b_cflags = BC_BUSY;
   1757 			bp->b_iodone = uvm_aio_biodone1;
   1758 		}
   1759 
   1760 		/* XXX This is silly ... is this necessary? */
   1761 		mutex_enter(&bufcache_lock);
   1762 		mutex_enter(&vp->v_interlock);
   1763 		bgetvp(vp, bp);
   1764 		mutex_exit(&vp->v_interlock);
   1765 		mutex_exit(&bufcache_lock);
   1766 
   1767 		bp->b_lblkno = lblkno(fs, offset);
   1768 		bp->b_private = mbp;
   1769 		if (devvp->v_type == VBLK) {
   1770 			bp->b_dev = devvp->v_rdev;
   1771 		}
   1772 		VOP_BWRITE(bp);
   1773 		while (lfs_gatherblock(sp, bp, NULL))
   1774 			continue;
   1775 	}
   1776 
   1777 	if (skipbytes) {
   1778 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1779 		mutex_enter(mbp->b_objlock);
   1780 		if (error) {
   1781 			mbp->b_error = error;
   1782 		}
   1783 		mbp->b_resid -= skipbytes;
   1784 		mutex_exit(mbp->b_objlock);
   1785 		if (mbp->b_resid == 0) {
   1786 			biodone(mbp);
   1787 		}
   1788 	}
   1789 	UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
   1790 	return (0);
   1791 
   1792     tryagain:
   1793 	/*
   1794 	 * We can't write the pages, for whatever reason.
   1795 	 * Clean up after ourselves, and make the caller try again.
   1796 	 */
   1797 	mutex_enter(&vp->v_interlock);
   1798 
   1799 	/* Tell why we're here, if we know */
   1800 	if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
   1801 		DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
   1802 	} else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
   1803 		DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
   1804 	} else if (haveeof && startoffset >= eof) {
   1805 		DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
   1806 		      " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
   1807 		      pgs[0]->offset, eof, npages));
   1808 	} else if (LFS_STARVED_FOR_SEGS(fs)) {
   1809 		DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
   1810 	} else {
   1811 		DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
   1812 	}
   1813 
   1814 	mutex_enter(&uvm_pageqlock);
   1815 	for (i = 0; i < npages; i++) {
   1816 		pg = pgs[i];
   1817 
   1818 		if (pg->flags & PG_PAGEOUT)
   1819 			uvm_pageout_done(1);
   1820 		if (pg->flags & PG_DELWRI) {
   1821 			uvm_pageunwire(pg);
   1822 		}
   1823 		uvm_pageactivate(pg);
   1824 		pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
   1825 		DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
   1826 			vp, pg->offset));
   1827 		DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
   1828 		DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
   1829 		DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
   1830 		DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
   1831 		DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
   1832 		      pg->wire_count));
   1833 		DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
   1834 		      pg->loan_count));
   1835 	}
   1836 	/* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
   1837 	uvm_page_unbusy(pgs, npages);
   1838 	mutex_exit(&uvm_pageqlock);
   1839 	mutex_exit(&vp->v_interlock);
   1840 	return EAGAIN;
   1841 }
   1842 
   1843 /*
   1844  * finish vnode/inode initialization.
   1845  * used by lfs_vget and lfs_fastvget.
   1846  */
   1847 void
   1848 lfs_vinit(struct mount *mp, struct vnode **vpp)
   1849 {
   1850 	struct vnode *vp = *vpp;
   1851 	struct inode *ip = VTOI(vp);
   1852 	struct ufsmount *ump = VFSTOUFS(mp);
   1853 	struct lfs *fs = ump->um_lfs;
   1854 	int i;
   1855 
   1856 	ip->i_mode = ip->i_ffs1_mode;
   1857 	ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
   1858 	ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
   1859 	ip->i_flags = ip->i_ffs1_flags;
   1860 	ip->i_gen = ip->i_ffs1_gen;
   1861 	ip->i_uid = ip->i_ffs1_uid;
   1862 	ip->i_gid = ip->i_ffs1_gid;
   1863 
   1864 	ip->i_lfs_effnblks = ip->i_ffs1_blocks;
   1865 	ip->i_lfs_odnlink = ip->i_ffs1_nlink;
   1866 
   1867 	/*
   1868 	 * Initialize the vnode from the inode, check for aliases.  In all
   1869 	 * cases re-init ip, the underlying vnode/inode may have changed.
   1870 	 */
   1871 	ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
   1872 	ip = VTOI(vp);
   1873 
   1874 	memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
   1875 	if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
   1876 #ifdef DEBUG
   1877 		for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
   1878 		    i < NDADDR; i++) {
   1879 			if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
   1880 			    i == 0)
   1881 				continue;
   1882 			if (ip->i_ffs1_db[i] != 0) {
   1883 inconsistent:
   1884 				lfs_dump_dinode(ip->i_din.ffs1_din);
   1885 				panic("inconsistent inode");
   1886 			}
   1887 		}
   1888 		for ( ; i < NDADDR + NIADDR; i++) {
   1889 			if (ip->i_ffs1_ib[i - NDADDR] != 0) {
   1890 				goto inconsistent;
   1891 			}
   1892 		}
   1893 #endif /* DEBUG */
   1894 		for (i = 0; i < NDADDR; i++)
   1895 			if (ip->i_ffs1_db[i] != 0)
   1896 				ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
   1897 	}
   1898 
   1899 #ifdef DIAGNOSTIC
   1900 	if (vp->v_type == VNON) {
   1901 # ifdef DEBUG
   1902 		lfs_dump_dinode(ip->i_din.ffs1_din);
   1903 # endif
   1904 		panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
   1905 		      (unsigned long long)ip->i_number,
   1906 		      (ip->i_mode & IFMT) >> 12);
   1907 	}
   1908 #endif /* DIAGNOSTIC */
   1909 
   1910 	/*
   1911 	 * Finish inode initialization now that aliasing has been resolved.
   1912 	 */
   1913 
   1914 	ip->i_devvp = ump->um_devvp;
   1915 	VREF(ip->i_devvp);
   1916 	genfs_node_init(vp, &lfs_genfsops);
   1917 	uvm_vnp_setsize(vp, ip->i_size);
   1918 
   1919 	/* Initialize hiblk from file size */
   1920 	ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
   1921 
   1922 	*vpp = vp;
   1923 }
   1924 
   1925 /*
   1926  * Resize the filesystem to contain the specified number of segments.
   1927  */
   1928 int
   1929 lfs_resize_fs(struct lfs *fs, int newnsegs)
   1930 {
   1931 	SEGUSE *sup;
   1932 	struct buf *bp, *obp;
   1933 	daddr_t olast, nlast, ilast, noff, start, end;
   1934 	struct vnode *ivp;
   1935 	struct inode *ip;
   1936 	int error, badnews, inc, oldnsegs;
   1937 	int sbbytes, csbbytes, gain, cgain;
   1938 	int i;
   1939 
   1940 	/* Only support v2 and up */
   1941 	if (fs->lfs_version < 2)
   1942 		return EOPNOTSUPP;
   1943 
   1944 	/* If we're doing nothing, do it fast */
   1945 	oldnsegs = fs->lfs_nseg;
   1946 	if (newnsegs == oldnsegs)
   1947 		return 0;
   1948 
   1949 	/* We always have to have two superblocks */
   1950 	if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
   1951 		return EFBIG;
   1952 
   1953 	ivp = fs->lfs_ivnode;
   1954 	ip = VTOI(ivp);
   1955 	error = 0;
   1956 
   1957 	/* Take the segment lock so no one else calls lfs_newseg() */
   1958 	lfs_seglock(fs, SEGM_PROT);
   1959 
   1960 	/*
   1961 	 * Make sure the segments we're going to be losing, if any,
   1962 	 * are in fact empty.  We hold the seglock, so their status
   1963 	 * cannot change underneath us.  Count the superblocks we lose,
   1964 	 * while we're at it.
   1965 	 */
   1966 	sbbytes = csbbytes = 0;
   1967 	cgain = 0;
   1968 	for (i = newnsegs; i < oldnsegs; i++) {
   1969 		LFS_SEGENTRY(sup, fs, i, bp);
   1970 		badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
   1971 		if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1972 			sbbytes += LFS_SBPAD;
   1973 		if (!(sup->su_flags & SEGUSE_DIRTY)) {
   1974 			++cgain;
   1975 			if (sup->su_flags & SEGUSE_SUPERBLOCK)
   1976 				csbbytes += LFS_SBPAD;
   1977 		}
   1978 		brelse(bp, 0);
   1979 		if (badnews) {
   1980 			error = EBUSY;
   1981 			goto out;
   1982 		}
   1983 	}
   1984 
   1985 	/* Note old and new segment table endpoints, and old ifile size */
   1986 	olast = fs->lfs_cleansz + fs->lfs_segtabsz;
   1987 	nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
   1988 	ilast = ivp->v_size >> fs->lfs_bshift;
   1989 	noff = nlast - olast;
   1990 
   1991 	/*
   1992 	 * Make sure no one can use the Ifile while we change it around.
   1993 	 * Even after taking the iflock we need to make sure no one still
   1994 	 * is holding Ifile buffers, so we get each one, to drain them.
   1995 	 * (XXX this could be done better.)
   1996 	 */
   1997 	rw_enter(&fs->lfs_iflock, RW_WRITER);
   1998 	vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
   1999 	for (i = 0; i < ilast; i++) {
   2000 		bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
   2001 		brelse(bp, 0);
   2002 	}
   2003 
   2004 	/* Allocate new Ifile blocks */
   2005 	for (i = ilast; i < ilast + noff; i++) {
   2006 		if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
   2007 			       &bp) != 0)
   2008 			panic("balloc extending ifile");
   2009 		memset(bp->b_data, 0, fs->lfs_bsize);
   2010 		VOP_BWRITE(bp);
   2011 	}
   2012 
   2013 	/* Register new ifile size */
   2014 	ip->i_size += noff * fs->lfs_bsize;
   2015 	ip->i_ffs1_size = ip->i_size;
   2016 	uvm_vnp_setsize(ivp, ip->i_size);
   2017 
   2018 	/* Copy the inode table to its new position */
   2019 	if (noff != 0) {
   2020 		if (noff < 0) {
   2021 			start = nlast;
   2022 			end = ilast + noff;
   2023 			inc = 1;
   2024 		} else {
   2025 			start = ilast + noff - 1;
   2026 			end = nlast - 1;
   2027 			inc = -1;
   2028 		}
   2029 		for (i = start; i != end; i += inc) {
   2030 			if (bread(ivp, i, fs->lfs_bsize, NOCRED,
   2031 			    B_MODIFY, &bp) != 0)
   2032 				panic("resize: bread dst blk failed");
   2033 			if (bread(ivp, i - noff, fs->lfs_bsize,
   2034 			    NOCRED, 0, &obp))
   2035 				panic("resize: bread src blk failed");
   2036 			memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
   2037 			VOP_BWRITE(bp);
   2038 			brelse(obp, 0);
   2039 		}
   2040 	}
   2041 
   2042 	/* If we are expanding, write the new empty SEGUSE entries */
   2043 	if (newnsegs > oldnsegs) {
   2044 		for (i = oldnsegs; i < newnsegs; i++) {
   2045 			if ((error = bread(ivp, i / fs->lfs_sepb +
   2046 					   fs->lfs_cleansz, fs->lfs_bsize,
   2047 					   NOCRED, B_MODIFY, &bp)) != 0)
   2048 				panic("lfs: ifile read: %d", error);
   2049 			while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
   2050 				sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
   2051 				memset(sup, 0, sizeof(*sup));
   2052 				i++;
   2053 			}
   2054 			VOP_BWRITE(bp);
   2055 		}
   2056 	}
   2057 
   2058 	/* Zero out unused superblock offsets */
   2059 	for (i = 2; i < LFS_MAXNUMSB; i++)
   2060 		if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
   2061 			fs->lfs_sboffs[i] = 0x0;
   2062 
   2063 	/*
   2064 	 * Correct superblock entries that depend on fs size.
   2065 	 * The computations of these are as follows:
   2066 	 *
   2067 	 * size  = segtod(fs, nseg)
   2068 	 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
   2069 	 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
   2070 	 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
   2071 	 *         + (segtod(fs, 1) - (offset - curseg))
   2072 	 *	   - segtod(fs, minfreeseg - (minfreeseg / 2))
   2073 	 *
   2074 	 * XXX - we should probably adjust minfreeseg as well.
   2075 	 */
   2076 	gain = (newnsegs - oldnsegs);
   2077 	fs->lfs_nseg = newnsegs;
   2078 	fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
   2079 	fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
   2080 	fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
   2081 	fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
   2082 		       - gain * btofsb(fs, fs->lfs_bsize / 2);
   2083 	if (gain > 0) {
   2084 		fs->lfs_nclean += gain;
   2085 		fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
   2086 	} else {
   2087 		fs->lfs_nclean -= cgain;
   2088 		fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
   2089 				 btofsb(fs, csbbytes);
   2090 	}
   2091 
   2092 	/* Resize segment flag cache */
   2093 	fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
   2094 						  fs->lfs_nseg * sizeof(u_int32_t),
   2095 						  M_SEGMENT, M_WAITOK);
   2096 	fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
   2097 						  fs->lfs_nseg * sizeof(u_int32_t),
   2098 						  M_SEGMENT, M_WAITOK);
   2099 	for (i = oldnsegs; i < newnsegs; i++)
   2100 		fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
   2101 
   2102 	/* Truncate Ifile if necessary */
   2103 	if (noff < 0)
   2104 		lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
   2105 		    NOCRED);
   2106 
   2107 	/* Update cleaner info so the cleaner can die */
   2108 	bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
   2109 	((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
   2110 	((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
   2111 	VOP_BWRITE(bp);
   2112 
   2113 	/* Let Ifile accesses proceed */
   2114 	VOP_UNLOCK(ivp, 0);
   2115 	rw_exit(&fs->lfs_iflock);
   2116 
   2117     out:
   2118 	lfs_segunlock(fs);
   2119 	return error;
   2120 }
   2121