lfs_vfsops.c revision 1.290 1 /* $NetBSD: lfs_vfsops.c,v 1.290 2011/07/11 08:27:40 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.290 2011/07/11 08:27:40 hannken Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/mbuf.h>
82 #include <sys/file.h>
83 #include <sys/disklabel.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/socket.h>
89 #include <sys/syslog.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/module.h>
95 #include <sys/syscallvar.h>
96 #include <sys/syscall.h>
97 #include <sys/syscallargs.h>
98
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/ufs/quota.h>
102 #include <ufs/ufs/inode.h>
103 #include <ufs/ufs/ufsmount.h>
104 #include <ufs/ufs/ufs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_stat.h>
108 #include <uvm/uvm_pager.h>
109 #include <uvm/uvm_pdaemon.h>
110
111 #include <ufs/lfs/lfs.h>
112 #include <ufs/lfs/lfs_extern.h>
113
114 #include <miscfs/genfs/genfs.h>
115 #include <miscfs/genfs/genfs_node.h>
116
117 MODULE(MODULE_CLASS_VFS, lfs, "ffs");
118
119 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
120 static bool lfs_issequential_hole(const struct ufsmount *,
121 daddr_t, daddr_t);
122
123 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
124
125 static struct sysctllog *lfs_sysctl_log;
126
127 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
128 extern const struct vnodeopv_desc lfs_specop_opv_desc;
129 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
130
131 pid_t lfs_writer_daemon = 0;
132 int lfs_do_flush = 0;
133 #ifdef LFS_KERNEL_RFW
134 int lfs_do_rfw = 0;
135 #endif
136
137 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
138 &lfs_vnodeop_opv_desc,
139 &lfs_specop_opv_desc,
140 &lfs_fifoop_opv_desc,
141 NULL,
142 };
143
144 struct vfsops lfs_vfsops = {
145 MOUNT_LFS,
146 sizeof (struct ufs_args),
147 lfs_mount,
148 ufs_start,
149 lfs_unmount,
150 ufs_root,
151 ufs_quotactl,
152 lfs_statvfs,
153 lfs_sync,
154 lfs_vget,
155 lfs_fhtovp,
156 lfs_vptofh,
157 lfs_init,
158 lfs_reinit,
159 lfs_done,
160 lfs_mountroot,
161 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
162 vfs_stdextattrctl,
163 (void *)eopnotsupp, /* vfs_suspendctl */
164 genfs_renamelock_enter,
165 genfs_renamelock_exit,
166 (void *)eopnotsupp,
167 lfs_vnodeopv_descs,
168 0,
169 { NULL, NULL },
170 };
171
172 const struct genfs_ops lfs_genfsops = {
173 .gop_size = lfs_gop_size,
174 .gop_alloc = ufs_gop_alloc,
175 .gop_write = lfs_gop_write,
176 .gop_markupdate = ufs_gop_markupdate,
177 };
178
179 static const struct ufs_ops lfs_ufsops = {
180 .uo_itimes = NULL,
181 .uo_update = lfs_update,
182 .uo_truncate = lfs_truncate,
183 .uo_valloc = lfs_valloc,
184 .uo_vfree = lfs_vfree,
185 .uo_balloc = lfs_balloc,
186 .uo_unmark_vnode = lfs_unmark_vnode,
187 };
188
189 struct shortlong {
190 const char *sname;
191 const char *lname;
192 };
193
194 static int
195 sysctl_lfs_dostats(SYSCTLFN_ARGS)
196 {
197 extern struct lfs_stats lfs_stats;
198 extern int lfs_dostats;
199 int error;
200
201 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
202 if (error || newp == NULL)
203 return (error);
204
205 if (lfs_dostats == 0)
206 memset(&lfs_stats, 0, sizeof(lfs_stats));
207
208 return (0);
209 }
210
211 static void
212 lfs_sysctl_setup(struct sysctllog **clog)
213 {
214 int i;
215 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
216 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
217 #ifdef DEBUG
218 extern int lfs_debug_log_subsys[DLOG_MAX];
219 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
220 { "rollforward", "Debug roll-forward code" },
221 { "alloc", "Debug inode allocation and free list" },
222 { "avail", "Debug space-available-now accounting" },
223 { "flush", "Debug flush triggers" },
224 { "lockedlist", "Debug locked list accounting" },
225 { "vnode_verbose", "Verbose per-vnode-written debugging" },
226 { "vnode", "Debug vnode use during segment write" },
227 { "segment", "Debug segment writing" },
228 { "seguse", "Debug segment used-bytes accounting" },
229 { "cleaner", "Debug cleaning routines" },
230 { "mount", "Debug mount/unmount routines" },
231 { "pagecache", "Debug UBC interactions" },
232 { "dirop", "Debug directory-operation accounting" },
233 { "malloc", "Debug private malloc accounting" },
234 };
235 #endif /* DEBUG */
236 struct shortlong stat_names[] = { /* Must match lfs.h! */
237 { "segsused", "Number of new segments allocated" },
238 { "psegwrites", "Number of partial-segment writes" },
239 { "psyncwrites", "Number of synchronous partial-segment"
240 " writes" },
241 { "pcleanwrites", "Number of partial-segment writes by the"
242 " cleaner" },
243 { "blocktot", "Number of blocks written" },
244 { "cleanblocks", "Number of blocks written by the cleaner" },
245 { "ncheckpoints", "Number of checkpoints made" },
246 { "nwrites", "Number of whole writes" },
247 { "nsync_writes", "Number of synchronous writes" },
248 { "wait_exceeded", "Number of times writer waited for"
249 " cleaner" },
250 { "write_exceeded", "Number of times writer invoked flush" },
251 { "flush_invoked", "Number of times flush was invoked" },
252 { "vflush_invoked", "Number of time vflush was called" },
253 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
254 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
255 { "segs_reclaimed", "Number of segments reclaimed" },
256 };
257
258 sysctl_createv(clog, 0, NULL, NULL,
259 CTLFLAG_PERMANENT,
260 CTLTYPE_NODE, "vfs", NULL,
261 NULL, 0, NULL, 0,
262 CTL_VFS, CTL_EOL);
263 sysctl_createv(clog, 0, NULL, NULL,
264 CTLFLAG_PERMANENT,
265 CTLTYPE_NODE, "lfs",
266 SYSCTL_DESCR("Log-structured file system"),
267 NULL, 0, NULL, 0,
268 CTL_VFS, 5, CTL_EOL);
269 /*
270 * XXX the "5" above could be dynamic, thereby eliminating one
271 * more instance of the "number to vfs" mapping problem, but
272 * "5" is the order as taken from sys/mount.h
273 */
274
275 sysctl_createv(clog, 0, NULL, NULL,
276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
277 CTLTYPE_INT, "flushindir", NULL,
278 NULL, 0, &lfs_writeindir, 0,
279 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
280 sysctl_createv(clog, 0, NULL, NULL,
281 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
282 CTLTYPE_INT, "clean_vnhead", NULL,
283 NULL, 0, &lfs_clean_vnhead, 0,
284 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
285 sysctl_createv(clog, 0, NULL, NULL,
286 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
287 CTLTYPE_INT, "dostats",
288 SYSCTL_DESCR("Maintain statistics on LFS operations"),
289 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
290 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
291 sysctl_createv(clog, 0, NULL, NULL,
292 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
293 CTLTYPE_INT, "pagetrip",
294 SYSCTL_DESCR("How many dirty pages in fs triggers"
295 " a flush"),
296 NULL, 0, &lfs_fs_pagetrip, 0,
297 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
298 sysctl_createv(clog, 0, NULL, NULL,
299 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
300 CTLTYPE_INT, "ignore_lazy_sync",
301 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
302 NULL, 0, &lfs_ignore_lazy_sync, 0,
303 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
304 #ifdef LFS_KERNEL_RFW
305 sysctl_createv(clog, 0, NULL, NULL,
306 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
307 CTLTYPE_INT, "rfw",
308 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
309 NULL, 0, &lfs_do_rfw, 0,
310 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
311 #endif
312
313 sysctl_createv(clog, 0, NULL, NULL,
314 CTLFLAG_PERMANENT,
315 CTLTYPE_NODE, "stats",
316 SYSCTL_DESCR("Debugging options"),
317 NULL, 0, NULL, 0,
318 CTL_VFS, 5, LFS_STATS, CTL_EOL);
319 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
320 sysctl_createv(clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
322 CTLTYPE_INT, stat_names[i].sname,
323 SYSCTL_DESCR(stat_names[i].lname),
324 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
325 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
326 }
327
328 #ifdef DEBUG
329 sysctl_createv(clog, 0, NULL, NULL,
330 CTLFLAG_PERMANENT,
331 CTLTYPE_NODE, "debug",
332 SYSCTL_DESCR("Debugging options"),
333 NULL, 0, NULL, 0,
334 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
335 for (i = 0; i < DLOG_MAX; i++) {
336 sysctl_createv(clog, 0, NULL, NULL,
337 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
338 CTLTYPE_INT, dlog_names[i].sname,
339 SYSCTL_DESCR(dlog_names[i].lname),
340 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
341 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
342 }
343 #endif
344 }
345
346 /* old cleaner syscall interface. see VOP_FCNTL() */
347 static const struct syscall_package lfs_syscalls[] = {
348 { SYS_lfs_bmapv, 0, (sy_call_t *)sys_lfs_bmapv },
349 { SYS_lfs_markv, 0, (sy_call_t *)sys_lfs_markv },
350 { SYS_lfs_segclean, 0, (sy_call_t *)sys___lfs_segwait50 },
351 { 0, 0, NULL },
352 };
353
354 static int
355 lfs_modcmd(modcmd_t cmd, void *arg)
356 {
357 int error;
358
359 switch (cmd) {
360 case MODULE_CMD_INIT:
361 error = syscall_establish(NULL, lfs_syscalls);
362 if (error)
363 return error;
364 error = vfs_attach(&lfs_vfsops);
365 if (error != 0) {
366 syscall_disestablish(NULL, lfs_syscalls);
367 break;
368 }
369 lfs_sysctl_setup(&lfs_sysctl_log);
370 break;
371 case MODULE_CMD_FINI:
372 error = vfs_detach(&lfs_vfsops);
373 if (error != 0)
374 break;
375 syscall_disestablish(NULL, lfs_syscalls);
376 sysctl_teardown(&lfs_sysctl_log);
377 break;
378 default:
379 error = ENOTTY;
380 break;
381 }
382
383 return (error);
384 }
385
386 /*
387 * XXX Same structure as FFS inodes? Should we share a common pool?
388 */
389 struct pool lfs_inode_pool;
390 struct pool lfs_dinode_pool;
391 struct pool lfs_inoext_pool;
392 struct pool lfs_lbnentry_pool;
393
394 /*
395 * The writer daemon. UVM keeps track of how many dirty pages we are holding
396 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
397 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
398 */
399 static void
400 lfs_writerd(void *arg)
401 {
402 struct mount *mp, *nmp;
403 struct lfs *fs;
404 int fsflags;
405 int loopcount;
406
407 lfs_writer_daemon = curproc->p_pid;
408
409 mutex_enter(&lfs_lock);
410 for (;;) {
411 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
412 &lfs_lock);
413
414 /*
415 * Look through the list of LFSs to see if any of them
416 * have requested pageouts.
417 */
418 mutex_enter(&mountlist_lock);
419 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
420 mp = nmp) {
421 if (vfs_busy(mp, &nmp)) {
422 continue;
423 }
424 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
425 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
426 fs = VFSTOUFS(mp)->um_lfs;
427 mutex_enter(&lfs_lock);
428 fsflags = 0;
429 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
430 lfs_dirvcount > LFS_MAX_DIROP) &&
431 fs->lfs_dirops == 0)
432 fsflags |= SEGM_CKP;
433 if (fs->lfs_pdflush) {
434 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
435 fs->lfs_pdflush = 0;
436 lfs_flush_fs(fs, fsflags);
437 mutex_exit(&lfs_lock);
438 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
439 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
440 mutex_exit(&lfs_lock);
441 lfs_writer_enter(fs, "wrdirop");
442 lfs_flush_pchain(fs);
443 lfs_writer_leave(fs);
444 } else
445 mutex_exit(&lfs_lock);
446 }
447 vfs_unbusy(mp, false, &nmp);
448 }
449 mutex_exit(&mountlist_lock);
450
451 /*
452 * If global state wants a flush, flush everything.
453 */
454 mutex_enter(&lfs_lock);
455 loopcount = 0;
456 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
457 locked_queue_bytes > LFS_MAX_BYTES ||
458 lfs_subsys_pages > LFS_MAX_PAGES) {
459
460 if (lfs_do_flush) {
461 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
462 }
463 if (locked_queue_count > LFS_MAX_BUFS) {
464 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
465 locked_queue_count, LFS_MAX_BUFS));
466 }
467 if (locked_queue_bytes > LFS_MAX_BYTES) {
468 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
469 locked_queue_bytes, LFS_MAX_BYTES));
470 }
471 if (lfs_subsys_pages > LFS_MAX_PAGES) {
472 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
473 lfs_subsys_pages, LFS_MAX_PAGES));
474 }
475
476 lfs_flush(NULL, SEGM_WRITERD, 0);
477 lfs_do_flush = 0;
478 }
479 }
480 /* NOTREACHED */
481 }
482
483 /*
484 * Initialize the filesystem, most work done by ufs_init.
485 */
486 void
487 lfs_init(void)
488 {
489
490 malloc_type_attach(M_SEGMENT);
491 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
492 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
493 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
494 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
495 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
496 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
497 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
498 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
499 ufs_init();
500
501 #ifdef DEBUG
502 memset(lfs_log, 0, sizeof(lfs_log));
503 #endif
504 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
505 cv_init(&locked_queue_cv, "lfsbuf");
506 cv_init(&lfs_writing_cv, "lfsflush");
507 }
508
509 void
510 lfs_reinit(void)
511 {
512 ufs_reinit();
513 }
514
515 void
516 lfs_done(void)
517 {
518 ufs_done();
519 mutex_destroy(&lfs_lock);
520 cv_destroy(&locked_queue_cv);
521 cv_destroy(&lfs_writing_cv);
522 pool_destroy(&lfs_inode_pool);
523 pool_destroy(&lfs_dinode_pool);
524 pool_destroy(&lfs_inoext_pool);
525 pool_destroy(&lfs_lbnentry_pool);
526 malloc_type_detach(M_SEGMENT);
527 }
528
529 /*
530 * Called by main() when ufs is going to be mounted as root.
531 */
532 int
533 lfs_mountroot(void)
534 {
535 extern struct vnode *rootvp;
536 struct lfs *fs = NULL; /* LFS */
537 struct mount *mp;
538 struct lwp *l = curlwp;
539 struct ufsmount *ump;
540 int error;
541
542 if (device_class(root_device) != DV_DISK)
543 return (ENODEV);
544
545 if (rootdev == NODEV)
546 return (ENODEV);
547 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
548 vrele(rootvp);
549 return (error);
550 }
551 if ((error = lfs_mountfs(rootvp, mp, l))) {
552 vfs_unbusy(mp, false, NULL);
553 vfs_destroy(mp);
554 return (error);
555 }
556 mutex_enter(&mountlist_lock);
557 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
558 mutex_exit(&mountlist_lock);
559 ump = VFSTOUFS(mp);
560 fs = ump->um_lfs;
561 memset(fs->lfs_fsmnt, 0, sizeof(fs->lfs_fsmnt));
562 (void)copystr(mp->mnt_stat.f_mntonname, fs->lfs_fsmnt, MNAMELEN - 1, 0);
563 (void)lfs_statvfs(mp, &mp->mnt_stat);
564 vfs_unbusy(mp, false, NULL);
565 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
566 return (0);
567 }
568
569 /*
570 * VFS Operations.
571 *
572 * mount system call
573 */
574 int
575 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
576 {
577 struct lwp *l = curlwp;
578 struct vnode *devvp;
579 struct ufs_args *args = data;
580 struct ufsmount *ump = NULL;
581 struct lfs *fs = NULL; /* LFS */
582 int error = 0, update;
583 mode_t accessmode;
584
585 if (*data_len < sizeof *args)
586 return EINVAL;
587
588 if (mp->mnt_flag & MNT_GETARGS) {
589 ump = VFSTOUFS(mp);
590 if (ump == NULL)
591 return EIO;
592 args->fspec = NULL;
593 *data_len = sizeof *args;
594 return 0;
595 }
596
597 update = mp->mnt_flag & MNT_UPDATE;
598
599 /* Check arguments */
600 if (args->fspec != NULL) {
601 /*
602 * Look up the name and verify that it's sane.
603 */
604 error = namei_simple_user(args->fspec,
605 NSM_FOLLOW_NOEMULROOT, &devvp);
606 if (error != 0)
607 return (error);
608
609 if (!update) {
610 /*
611 * Be sure this is a valid block device
612 */
613 if (devvp->v_type != VBLK)
614 error = ENOTBLK;
615 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
616 error = ENXIO;
617 } else {
618 /*
619 * Be sure we're still naming the same device
620 * used for our initial mount
621 */
622 ump = VFSTOUFS(mp);
623 if (devvp != ump->um_devvp) {
624 if (devvp->v_rdev != ump->um_devvp->v_rdev)
625 error = EINVAL;
626 else {
627 vrele(devvp);
628 devvp = ump->um_devvp;
629 vref(devvp);
630 }
631 }
632 }
633 } else {
634 if (!update) {
635 /* New mounts must have a filename for the device */
636 return (EINVAL);
637 } else {
638 /* Use the extant mount */
639 ump = VFSTOUFS(mp);
640 devvp = ump->um_devvp;
641 vref(devvp);
642 }
643 }
644
645
646 /*
647 * If mount by non-root, then verify that user has necessary
648 * permissions on the device.
649 */
650 if (error == 0) {
651 accessmode = VREAD;
652 if (update ?
653 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
654 (mp->mnt_flag & MNT_RDONLY) == 0)
655 accessmode |= VWRITE;
656 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
657 error = genfs_can_mount(devvp, accessmode, l->l_cred);
658 VOP_UNLOCK(devvp);
659 }
660
661 if (error) {
662 vrele(devvp);
663 return (error);
664 }
665
666 if (!update) {
667 int flags;
668
669 if (mp->mnt_flag & MNT_RDONLY)
670 flags = FREAD;
671 else
672 flags = FREAD|FWRITE;
673 error = VOP_OPEN(devvp, flags, FSCRED);
674 if (error)
675 goto fail;
676 error = lfs_mountfs(devvp, mp, l); /* LFS */
677 if (error) {
678 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
679 (void)VOP_CLOSE(devvp, flags, NOCRED);
680 VOP_UNLOCK(devvp);
681 goto fail;
682 }
683
684 ump = VFSTOUFS(mp);
685 fs = ump->um_lfs;
686 } else {
687 /*
688 * Update the mount.
689 */
690
691 /*
692 * The initial mount got a reference on this
693 * device, so drop the one obtained via
694 * namei(), above.
695 */
696 vrele(devvp);
697
698 ump = VFSTOUFS(mp);
699 fs = ump->um_lfs;
700 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
701 /*
702 * Changing from read-only to read/write.
703 * Note in the superblocks that we're writing.
704 */
705 fs->lfs_ronly = 0;
706 if (fs->lfs_pflags & LFS_PF_CLEAN) {
707 fs->lfs_pflags &= ~LFS_PF_CLEAN;
708 lfs_writesuper(fs, fs->lfs_sboffs[0]);
709 lfs_writesuper(fs, fs->lfs_sboffs[1]);
710 }
711 }
712 if (args->fspec == NULL)
713 return EINVAL;
714 }
715
716 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
717 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
718 if (error == 0)
719 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
720 sizeof(fs->lfs_fsmnt));
721 return error;
722
723 fail:
724 vrele(devvp);
725 return (error);
726 }
727
728
729 /*
730 * Common code for mount and mountroot
731 * LFS specific
732 */
733 int
734 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
735 {
736 struct dlfs *tdfs, *dfs, *adfs;
737 struct lfs *fs;
738 struct ufsmount *ump;
739 struct vnode *vp;
740 struct buf *bp, *abp;
741 dev_t dev;
742 int error, i, ronly, fsbsize;
743 kauth_cred_t cred;
744 CLEANERINFO *cip;
745 SEGUSE *sup;
746 daddr_t sb_addr;
747
748 cred = l ? l->l_cred : NOCRED;
749
750 /*
751 * Flush out any old buffers remaining from a previous use.
752 */
753 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
754 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
755 VOP_UNLOCK(devvp);
756 if (error)
757 return (error);
758
759 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
760
761 /* Don't free random space on error. */
762 bp = NULL;
763 abp = NULL;
764 ump = NULL;
765
766 sb_addr = LFS_LABELPAD / DEV_BSIZE;
767 while (1) {
768 /* Read in the superblock. */
769 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
770 if (error)
771 goto out;
772 dfs = (struct dlfs *)bp->b_data;
773
774 /* Check the basics. */
775 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
776 dfs->dlfs_version > LFS_VERSION ||
777 dfs->dlfs_bsize < sizeof(struct dlfs)) {
778 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
779 error = EINVAL; /* XXX needs translation */
780 goto out;
781 }
782 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
783 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
784 dfs->dlfs_inodefmt));
785 error = EINVAL;
786 goto out;
787 }
788
789 if (dfs->dlfs_version == 1)
790 fsbsize = DEV_BSIZE;
791 else {
792 fsbsize = 1 << dfs->dlfs_ffshift;
793 /*
794 * Could be, if the frag size is large enough, that we
795 * don't have the "real" primary superblock. If that's
796 * the case, get the real one, and try again.
797 */
798 if (sb_addr != (dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT))) {
799 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
800 " 0x%llx is not right, trying 0x%llx\n",
801 (long long)sb_addr,
802 (long long)(dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT))));
803 sb_addr = dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT);
804 brelse(bp, 0);
805 continue;
806 }
807 }
808 break;
809 }
810
811 /*
812 * Check the second superblock to see which is newer; then mount
813 * using the older of the two. This is necessary to ensure that
814 * the filesystem is valid if it was not unmounted cleanly.
815 */
816
817 if (dfs->dlfs_sboffs[1] &&
818 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
819 {
820 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / DEV_BSIZE),
821 LFS_SBPAD, cred, 0, &abp);
822 if (error)
823 goto out;
824 adfs = (struct dlfs *)abp->b_data;
825
826 if (dfs->dlfs_version == 1) {
827 /* 1s resolution comparison */
828 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
829 tdfs = adfs;
830 else
831 tdfs = dfs;
832 } else {
833 /* monotonic infinite-resolution comparison */
834 if (adfs->dlfs_serial < dfs->dlfs_serial)
835 tdfs = adfs;
836 else
837 tdfs = dfs;
838 }
839
840 /* Check the basics. */
841 if (tdfs->dlfs_magic != LFS_MAGIC ||
842 tdfs->dlfs_bsize > MAXBSIZE ||
843 tdfs->dlfs_version > LFS_VERSION ||
844 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
845 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
846 " sanity failed\n"));
847 error = EINVAL; /* XXX needs translation */
848 goto out;
849 }
850 } else {
851 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
852 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
853 error = EINVAL;
854 goto out;
855 }
856
857 /* Allocate the mount structure, copy the superblock into it. */
858 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
859 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
860
861 /* Compatibility */
862 if (fs->lfs_version < 2) {
863 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
864 fs->lfs_ibsize = fs->lfs_bsize;
865 fs->lfs_start = fs->lfs_sboffs[0];
866 fs->lfs_tstamp = fs->lfs_otstamp;
867 fs->lfs_fsbtodb = 0;
868 }
869 if (fs->lfs_resvseg == 0)
870 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
871 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
872
873 /*
874 * If we aren't going to be able to write meaningfully to this
875 * filesystem, and were not mounted readonly, bomb out now.
876 */
877 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
878 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
879 " we need BUFPAGES >= %lld\n",
880 (long long)((bufmem_hiwater / bufmem_lowater) *
881 LFS_INVERSE_MAX_BYTES(
882 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
883 free(fs, M_UFSMNT);
884 error = EFBIG; /* XXX needs translation */
885 goto out;
886 }
887
888 /* Before rolling forward, lock so vget will sleep for other procs */
889 if (l != NULL) {
890 fs->lfs_flags = LFS_NOTYET;
891 fs->lfs_rfpid = l->l_proc->p_pid;
892 }
893
894 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
895 ump->um_lfs = fs;
896 ump->um_ops = &lfs_ufsops;
897 ump->um_fstype = UFS1;
898 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
899 brelse(bp, BC_INVAL);
900 brelse(abp, BC_INVAL);
901 } else {
902 brelse(bp, 0);
903 brelse(abp, 0);
904 }
905 bp = NULL;
906 abp = NULL;
907
908
909 /* Set up the I/O information */
910 fs->lfs_devbsize = DEV_BSIZE;
911 fs->lfs_iocount = 0;
912 fs->lfs_diropwait = 0;
913 fs->lfs_activesb = 0;
914 fs->lfs_uinodes = 0;
915 fs->lfs_ravail = 0;
916 fs->lfs_favail = 0;
917 fs->lfs_sbactive = 0;
918
919 /* Set up the ifile and lock aflags */
920 fs->lfs_doifile = 0;
921 fs->lfs_writer = 0;
922 fs->lfs_dirops = 0;
923 fs->lfs_nadirop = 0;
924 fs->lfs_seglock = 0;
925 fs->lfs_pdflush = 0;
926 fs->lfs_sleepers = 0;
927 fs->lfs_pages = 0;
928 rw_init(&fs->lfs_fraglock);
929 rw_init(&fs->lfs_iflock);
930 cv_init(&fs->lfs_stopcv, "lfsstop");
931
932 /* Set the file system readonly/modify bits. */
933 fs->lfs_ronly = ronly;
934 if (ronly == 0)
935 fs->lfs_fmod = 1;
936
937 /* Initialize the mount structure. */
938 dev = devvp->v_rdev;
939 mp->mnt_data = ump;
940 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
941 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
942 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
943 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
944 mp->mnt_stat.f_iosize = fs->lfs_bsize;
945 mp->mnt_flag |= MNT_LOCAL;
946 mp->mnt_fs_bshift = fs->lfs_bshift;
947 ump->um_flags = 0;
948 ump->um_mountp = mp;
949 ump->um_dev = dev;
950 ump->um_devvp = devvp;
951 ump->um_bptrtodb = fs->lfs_ffshift - DEV_BSHIFT;
952 ump->um_seqinc = fs->lfs_frag;
953 ump->um_nindir = fs->lfs_nindir;
954 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
955 for (i = 0; i < MAXQUOTAS; i++)
956 ump->um_quotas[i] = NULLVP;
957 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
958 ump->um_dirblksiz = DIRBLKSIZ;
959 ump->um_maxfilesize = fs->lfs_maxfilesize;
960 if (ump->um_maxsymlinklen > 0)
961 mp->mnt_iflag |= IMNT_DTYPE;
962 devvp->v_specmountpoint = mp;
963
964 /* Set up reserved memory for pageout */
965 lfs_setup_resblks(fs);
966 /* Set up vdirop tailq */
967 TAILQ_INIT(&fs->lfs_dchainhd);
968 /* and paging tailq */
969 TAILQ_INIT(&fs->lfs_pchainhd);
970 /* and delayed segment accounting for truncation list */
971 LIST_INIT(&fs->lfs_segdhd);
972
973 /*
974 * We use the ifile vnode for almost every operation. Instead of
975 * retrieving it from the hash table each time we retrieve it here,
976 * artificially increment the reference count and keep a pointer
977 * to it in the incore copy of the superblock.
978 */
979 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
980 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
981 goto out;
982 }
983 fs->lfs_ivnode = vp;
984 vref(vp);
985
986 /* Set up inode bitmap and order free list */
987 lfs_order_freelist(fs);
988
989 /* Set up segment usage flags for the autocleaner. */
990 fs->lfs_nactive = 0;
991 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
992 M_SEGMENT, M_WAITOK);
993 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
994 M_SEGMENT, M_WAITOK);
995 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
996 M_SEGMENT, M_WAITOK);
997 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
998 for (i = 0; i < fs->lfs_nseg; i++) {
999 int changed;
1000
1001 LFS_SEGENTRY(sup, fs, i, bp);
1002 changed = 0;
1003 if (!ronly) {
1004 if (sup->su_nbytes == 0 &&
1005 !(sup->su_flags & SEGUSE_EMPTY)) {
1006 sup->su_flags |= SEGUSE_EMPTY;
1007 ++changed;
1008 } else if (!(sup->su_nbytes == 0) &&
1009 (sup->su_flags & SEGUSE_EMPTY)) {
1010 sup->su_flags &= ~SEGUSE_EMPTY;
1011 ++changed;
1012 }
1013 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
1014 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
1015 ++changed;
1016 }
1017 }
1018 fs->lfs_suflags[0][i] = sup->su_flags;
1019 if (changed)
1020 LFS_WRITESEGENTRY(sup, fs, i, bp);
1021 else
1022 brelse(bp, 0);
1023 }
1024
1025 #ifdef LFS_KERNEL_RFW
1026 lfs_roll_forward(fs, mp, l);
1027 #endif
1028
1029 /* If writing, sb is not clean; record in case of immediate crash */
1030 if (!fs->lfs_ronly) {
1031 fs->lfs_pflags &= ~LFS_PF_CLEAN;
1032 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1033 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1034 }
1035
1036 /* Allow vget now that roll-forward is complete */
1037 fs->lfs_flags &= ~(LFS_NOTYET);
1038 wakeup(&fs->lfs_flags);
1039
1040 /*
1041 * Initialize the ifile cleaner info with information from
1042 * the superblock.
1043 */
1044 LFS_CLEANERINFO(cip, fs, bp);
1045 cip->clean = fs->lfs_nclean;
1046 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
1047 cip->avail = fs->lfs_avail;
1048 cip->bfree = fs->lfs_bfree;
1049 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1050
1051 /*
1052 * Mark the current segment as ACTIVE, since we're going to
1053 * be writing to it.
1054 */
1055 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
1056 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1057 fs->lfs_nactive++;
1058 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
1059
1060 /* Now that roll-forward is done, unlock the Ifile */
1061 vput(vp);
1062
1063 /* Start the pagedaemon-anticipating daemon */
1064 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
1065 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1066 panic("fork lfs_writer");
1067 /*
1068 * XXX: Get extra reference to LFS vfsops. This prevents unload,
1069 * but also prevents kernel panic due to text being unloaded
1070 * from below lfs_writerd. When lfs_writerd can exit, remove
1071 * this!!!
1072 */
1073 vfs_getopsbyname(MOUNT_LFS);
1074
1075 printf("WARNING: the log-structured file system is experimental\n"
1076 "WARNING: it may cause system crashes and/or corrupt data\n");
1077
1078 return (0);
1079
1080 out:
1081 if (bp)
1082 brelse(bp, 0);
1083 if (abp)
1084 brelse(abp, 0);
1085 if (ump) {
1086 free(ump->um_lfs, M_UFSMNT);
1087 free(ump, M_UFSMNT);
1088 mp->mnt_data = NULL;
1089 }
1090
1091 return (error);
1092 }
1093
1094 /*
1095 * unmount system call
1096 */
1097 int
1098 lfs_unmount(struct mount *mp, int mntflags)
1099 {
1100 struct lwp *l = curlwp;
1101 struct ufsmount *ump;
1102 struct lfs *fs;
1103 int error, flags, ronly;
1104 vnode_t *vp;
1105
1106 flags = 0;
1107 if (mntflags & MNT_FORCE)
1108 flags |= FORCECLOSE;
1109
1110 ump = VFSTOUFS(mp);
1111 fs = ump->um_lfs;
1112
1113 /* Two checkpoints */
1114 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1115 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1116
1117 /* wake up the cleaner so it can die */
1118 lfs_wakeup_cleaner(fs);
1119 mutex_enter(&lfs_lock);
1120 while (fs->lfs_sleepers)
1121 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
1122 &lfs_lock);
1123 mutex_exit(&lfs_lock);
1124
1125 #ifdef QUOTA
1126 if ((error = quota1_umount(mp, flags)) != 0)
1127 return (error);
1128 #endif
1129 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1130 return (error);
1131 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1132 return (error);
1133 vp = fs->lfs_ivnode;
1134 mutex_enter(vp->v_interlock);
1135 if (LIST_FIRST(&vp->v_dirtyblkhd))
1136 panic("lfs_unmount: still dirty blocks on ifile vnode");
1137 mutex_exit(vp->v_interlock);
1138
1139 /* Explicitly write the superblock, to update serial and pflags */
1140 fs->lfs_pflags |= LFS_PF_CLEAN;
1141 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1142 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1143 mutex_enter(&lfs_lock);
1144 while (fs->lfs_iocount)
1145 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1146 &lfs_lock);
1147 mutex_exit(&lfs_lock);
1148
1149 /* Finish with the Ifile, now that we're done with it */
1150 vgone(fs->lfs_ivnode);
1151
1152 ronly = !fs->lfs_ronly;
1153 if (ump->um_devvp->v_type != VBAD)
1154 ump->um_devvp->v_specmountpoint = NULL;
1155 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1156 error = VOP_CLOSE(ump->um_devvp,
1157 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1158 vput(ump->um_devvp);
1159
1160 /* Complain about page leakage */
1161 if (fs->lfs_pages > 0)
1162 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1163 fs->lfs_pages, lfs_subsys_pages);
1164
1165 /* Free per-mount data structures */
1166 free(fs->lfs_ino_bitmap, M_SEGMENT);
1167 free(fs->lfs_suflags[0], M_SEGMENT);
1168 free(fs->lfs_suflags[1], M_SEGMENT);
1169 free(fs->lfs_suflags, M_SEGMENT);
1170 lfs_free_resblks(fs);
1171 cv_destroy(&fs->lfs_stopcv);
1172 rw_destroy(&fs->lfs_fraglock);
1173 rw_destroy(&fs->lfs_iflock);
1174 free(fs, M_UFSMNT);
1175 free(ump, M_UFSMNT);
1176
1177 mp->mnt_data = NULL;
1178 mp->mnt_flag &= ~MNT_LOCAL;
1179 return (error);
1180 }
1181
1182 /*
1183 * Get file system statistics.
1184 *
1185 * NB: We don't lock to access the superblock here, because it's not
1186 * really that important if we get it wrong.
1187 */
1188 int
1189 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1190 {
1191 struct lfs *fs;
1192 struct ufsmount *ump;
1193
1194 ump = VFSTOUFS(mp);
1195 fs = ump->um_lfs;
1196 if (fs->lfs_magic != LFS_MAGIC)
1197 panic("lfs_statvfs: magic");
1198
1199 sbp->f_bsize = fs->lfs_bsize;
1200 sbp->f_frsize = fs->lfs_fsize;
1201 sbp->f_iosize = fs->lfs_bsize;
1202 sbp->f_blocks = LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks;
1203
1204 sbp->f_bfree = LFS_EST_BFREE(fs);
1205 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1206 #if 0
1207 if (sbp->f_bfree < 0)
1208 sbp->f_bfree = 0;
1209 #endif
1210
1211 sbp->f_bresvd = LFS_EST_RSVD(fs);
1212 if (sbp->f_bfree > sbp->f_bresvd)
1213 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1214 else
1215 sbp->f_bavail = 0;
1216
1217 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1218 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1219 sbp->f_favail = sbp->f_ffree;
1220 sbp->f_fresvd = 0;
1221 copy_statvfs_info(sbp, mp);
1222 return (0);
1223 }
1224
1225 /*
1226 * Go through the disk queues to initiate sandbagged IO;
1227 * go through the inodes to write those that have been modified;
1228 * initiate the writing of the super block if it has been modified.
1229 *
1230 * Note: we are always called with the filesystem marked `MPBUSY'.
1231 */
1232 int
1233 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1234 {
1235 int error;
1236 struct lfs *fs;
1237
1238 fs = VFSTOUFS(mp)->um_lfs;
1239 if (fs->lfs_ronly)
1240 return 0;
1241
1242 /* Snapshots should not hose the syncer */
1243 /*
1244 * XXX Sync can block here anyway, since we don't have a very
1245 * XXX good idea of how much data is pending. If it's more
1246 * XXX than a segment and lfs_nextseg is close to the end of
1247 * XXX the log, we'll likely block.
1248 */
1249 mutex_enter(&lfs_lock);
1250 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1251 mutex_exit(&lfs_lock);
1252 return 0;
1253 }
1254 mutex_exit(&lfs_lock);
1255
1256 lfs_writer_enter(fs, "lfs_dirops");
1257
1258 /* All syncs must be checkpoints until roll-forward is implemented. */
1259 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1260 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1261 lfs_writer_leave(fs);
1262 #ifdef QUOTA
1263 qsync(mp);
1264 #endif
1265 return (error);
1266 }
1267
1268 /*
1269 * Look up an LFS dinode number to find its incore vnode. If not already
1270 * in core, read it in from the specified device. Return the inode locked.
1271 * Detection and handling of mount points must be done by the calling routine.
1272 */
1273 int
1274 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1275 {
1276 struct lfs *fs;
1277 struct ufs1_dinode *dip;
1278 struct inode *ip;
1279 struct buf *bp;
1280 struct ifile *ifp;
1281 struct vnode *vp;
1282 struct ufsmount *ump;
1283 daddr_t daddr;
1284 dev_t dev;
1285 int error, retries;
1286 struct timespec ts;
1287
1288 memset(&ts, 0, sizeof ts); /* XXX gcc */
1289
1290 ump = VFSTOUFS(mp);
1291 dev = ump->um_dev;
1292 fs = ump->um_lfs;
1293
1294 /*
1295 * If the filesystem is not completely mounted yet, suspend
1296 * any access requests (wait for roll-forward to complete).
1297 */
1298 mutex_enter(&lfs_lock);
1299 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1300 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1301 &lfs_lock);
1302 mutex_exit(&lfs_lock);
1303
1304 retry:
1305 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1306 return (0);
1307
1308 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1309 if (error) {
1310 *vpp = NULL;
1311 return (error);
1312 }
1313
1314 mutex_enter(&ufs_hashlock);
1315 if (ufs_ihashget(dev, ino, 0) != NULL) {
1316 mutex_exit(&ufs_hashlock);
1317 ungetnewvnode(vp);
1318 goto retry;
1319 }
1320
1321 /* Translate the inode number to a disk address. */
1322 if (ino == LFS_IFILE_INUM)
1323 daddr = fs->lfs_idaddr;
1324 else {
1325 /* XXX bounds-check this too */
1326 LFS_IENTRY(ifp, fs, ino, bp);
1327 daddr = ifp->if_daddr;
1328 if (fs->lfs_version > 1) {
1329 ts.tv_sec = ifp->if_atime_sec;
1330 ts.tv_nsec = ifp->if_atime_nsec;
1331 }
1332
1333 brelse(bp, 0);
1334 if (daddr == LFS_UNUSED_DADDR) {
1335 *vpp = NULLVP;
1336 mutex_exit(&ufs_hashlock);
1337 ungetnewvnode(vp);
1338 return (ENOENT);
1339 }
1340 }
1341
1342 /* Allocate/init new vnode/inode. */
1343 lfs_vcreate(mp, ino, vp);
1344
1345 /*
1346 * Put it onto its hash chain and lock it so that other requests for
1347 * this inode will block if they arrive while we are sleeping waiting
1348 * for old data structures to be purged or for the contents of the
1349 * disk portion of this inode to be read.
1350 */
1351 ip = VTOI(vp);
1352 ufs_ihashins(ip);
1353 mutex_exit(&ufs_hashlock);
1354
1355 /*
1356 * XXX
1357 * This may not need to be here, logically it should go down with
1358 * the i_devvp initialization.
1359 * Ask Kirk.
1360 */
1361 ip->i_lfs = ump->um_lfs;
1362
1363 /* Read in the disk contents for the inode, copy into the inode. */
1364 retries = 0;
1365 again:
1366 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1367 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1368 NOCRED, 0, &bp);
1369 if (error) {
1370 /*
1371 * The inode does not contain anything useful, so it would
1372 * be misleading to leave it on its hash chain. With mode
1373 * still zero, it will be unlinked and returned to the free
1374 * list by vput().
1375 */
1376 vput(vp);
1377 brelse(bp, 0);
1378 *vpp = NULL;
1379 return (error);
1380 }
1381
1382 dip = lfs_ifind(fs, ino, bp);
1383 if (dip == NULL) {
1384 /* Assume write has not completed yet; try again */
1385 brelse(bp, BC_INVAL);
1386 ++retries;
1387 if (retries > LFS_IFIND_RETRIES) {
1388 #ifdef DEBUG
1389 /* If the seglock is held look at the bpp to see
1390 what is there anyway */
1391 mutex_enter(&lfs_lock);
1392 if (fs->lfs_seglock > 0) {
1393 struct buf **bpp;
1394 struct ufs1_dinode *dp;
1395 int i;
1396
1397 for (bpp = fs->lfs_sp->bpp;
1398 bpp != fs->lfs_sp->cbpp; ++bpp) {
1399 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1400 bpp != fs->lfs_sp->bpp) {
1401 /* Inode block */
1402 printf("lfs_vget: block 0x%" PRIx64 ": ",
1403 (*bpp)->b_blkno);
1404 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1405 for (i = 0; i < INOPB(fs); i++)
1406 if (dp[i].di_u.inumber)
1407 printf("%d ", dp[i].di_u.inumber);
1408 printf("\n");
1409 }
1410 }
1411 }
1412 mutex_exit(&lfs_lock);
1413 #endif /* DEBUG */
1414 panic("lfs_vget: dinode not found");
1415 }
1416 mutex_enter(&lfs_lock);
1417 if (fs->lfs_iocount) {
1418 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1419 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1420 "lfs ifind", 1, &lfs_lock);
1421 } else
1422 retries = LFS_IFIND_RETRIES;
1423 mutex_exit(&lfs_lock);
1424 goto again;
1425 }
1426 *ip->i_din.ffs1_din = *dip;
1427 brelse(bp, 0);
1428
1429 if (fs->lfs_version > 1) {
1430 ip->i_ffs1_atime = ts.tv_sec;
1431 ip->i_ffs1_atimensec = ts.tv_nsec;
1432 }
1433
1434 lfs_vinit(mp, &vp);
1435
1436 *vpp = vp;
1437
1438 KASSERT(VOP_ISLOCKED(vp));
1439
1440 return (0);
1441 }
1442
1443 /*
1444 * File handle to vnode
1445 */
1446 int
1447 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1448 {
1449 struct lfid lfh;
1450 struct buf *bp;
1451 IFILE *ifp;
1452 int32_t daddr;
1453 struct lfs *fs;
1454 vnode_t *vp;
1455
1456 if (fhp->fid_len != sizeof(struct lfid))
1457 return EINVAL;
1458
1459 memcpy(&lfh, fhp, sizeof(lfh));
1460 if (lfh.lfid_ino < LFS_IFILE_INUM)
1461 return ESTALE;
1462
1463 fs = VFSTOUFS(mp)->um_lfs;
1464 if (lfh.lfid_ident != fs->lfs_ident)
1465 return ESTALE;
1466
1467 if (lfh.lfid_ino >
1468 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1469 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1470 return ESTALE;
1471
1472 mutex_enter(&ufs_ihash_lock);
1473 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
1474 mutex_exit(&ufs_ihash_lock);
1475 if (vp == NULL) {
1476 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1477 daddr = ifp->if_daddr;
1478 brelse(bp, 0);
1479 if (daddr == LFS_UNUSED_DADDR)
1480 return ESTALE;
1481 }
1482
1483 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1484 }
1485
1486 /*
1487 * Vnode pointer to File handle
1488 */
1489 /* ARGSUSED */
1490 int
1491 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1492 {
1493 struct inode *ip;
1494 struct lfid lfh;
1495
1496 if (*fh_size < sizeof(struct lfid)) {
1497 *fh_size = sizeof(struct lfid);
1498 return E2BIG;
1499 }
1500 *fh_size = sizeof(struct lfid);
1501 ip = VTOI(vp);
1502 memset(&lfh, 0, sizeof(lfh));
1503 lfh.lfid_len = sizeof(struct lfid);
1504 lfh.lfid_ino = ip->i_number;
1505 lfh.lfid_gen = ip->i_gen;
1506 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1507 memcpy(fhp, &lfh, sizeof(lfh));
1508 return (0);
1509 }
1510
1511 /*
1512 * ufs_bmaparray callback function for writing.
1513 *
1514 * Since blocks will be written to the new segment anyway,
1515 * we don't care about current daddr of them.
1516 */
1517 static bool
1518 lfs_issequential_hole(const struct ufsmount *ump,
1519 daddr_t daddr0, daddr_t daddr1)
1520 {
1521 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1522 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1523
1524 KASSERT(daddr0 == UNWRITTEN ||
1525 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1526 KASSERT(daddr1 == UNWRITTEN ||
1527 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1528
1529 /* NOTE: all we want to know here is 'hole or not'. */
1530 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1531
1532 /*
1533 * treat UNWRITTENs and all resident blocks as 'contiguous'
1534 */
1535 if (daddr0 != 0 && daddr1 != 0)
1536 return true;
1537
1538 /*
1539 * both are in hole?
1540 */
1541 if (daddr0 == 0 && daddr1 == 0)
1542 return true; /* all holes are 'contiguous' for us. */
1543
1544 return false;
1545 }
1546
1547 /*
1548 * lfs_gop_write functions exactly like genfs_gop_write, except that
1549 * (1) it requires the seglock to be held by its caller, and sp->fip
1550 * to be properly initialized (it will return without re-initializing
1551 * sp->fip, and without calling lfs_writeseg).
1552 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1553 * to determine how large a block it can write at once (though it does
1554 * still use VOP_BMAP to find holes in the file);
1555 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1556 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1557 * now have clusters of clusters, ick.)
1558 */
1559 static int
1560 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1561 int flags)
1562 {
1563 int i, error, run, haveeof = 0;
1564 int fs_bshift;
1565 vaddr_t kva;
1566 off_t eof, offset, startoffset = 0;
1567 size_t bytes, iobytes, skipbytes;
1568 bool async = (flags & PGO_SYNCIO) == 0;
1569 daddr_t lbn, blkno;
1570 struct vm_page *pg;
1571 struct buf *mbp, *bp;
1572 struct vnode *devvp = VTOI(vp)->i_devvp;
1573 struct inode *ip = VTOI(vp);
1574 struct lfs *fs = ip->i_lfs;
1575 struct segment *sp = fs->lfs_sp;
1576 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1577
1578 ASSERT_SEGLOCK(fs);
1579
1580 /* The Ifile lives in the buffer cache */
1581 KASSERT(vp != fs->lfs_ivnode);
1582
1583 /*
1584 * We don't want to fill the disk before the cleaner has a chance
1585 * to make room for us. If we're in danger of doing that, fail
1586 * with EAGAIN. The caller will have to notice this, unlock
1587 * so the cleaner can run, relock and try again.
1588 *
1589 * We must write everything, however, if our vnode is being
1590 * reclaimed.
1591 */
1592 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1593 goto tryagain;
1594
1595 /*
1596 * Sometimes things slip past the filters in lfs_putpages,
1597 * and the pagedaemon tries to write pages---problem is
1598 * that the pagedaemon never acquires the segment lock.
1599 *
1600 * Alternatively, pages that were clean when we called
1601 * genfs_putpages may have become dirty in the meantime. In this
1602 * case the segment header is not properly set up for blocks
1603 * to be added to it.
1604 *
1605 * Unbusy and unclean the pages, and put them on the ACTIVE
1606 * queue under the hypothesis that they couldn't have got here
1607 * unless they were modified *quite* recently.
1608 *
1609 * XXXUBC that last statement is an oversimplification of course.
1610 */
1611 if (!LFS_SEGLOCK_HELD(fs) ||
1612 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1613 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1614 goto tryagain;
1615 }
1616
1617 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1618 vp, pgs, npages, flags);
1619
1620 GOP_SIZE(vp, vp->v_size, &eof, 0);
1621 haveeof = 1;
1622
1623 if (vp->v_type == VREG)
1624 fs_bshift = vp->v_mount->mnt_fs_bshift;
1625 else
1626 fs_bshift = DEV_BSHIFT;
1627 error = 0;
1628 pg = pgs[0];
1629 startoffset = pg->offset;
1630 KASSERT(eof >= 0);
1631
1632 if (startoffset >= eof) {
1633 goto tryagain;
1634 } else
1635 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1636 skipbytes = 0;
1637
1638 KASSERT(bytes != 0);
1639
1640 /* Swap PG_DELWRI for PG_PAGEOUT */
1641 for (i = 0; i < npages; i++) {
1642 if (pgs[i]->flags & PG_DELWRI) {
1643 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1644 pgs[i]->flags &= ~PG_DELWRI;
1645 pgs[i]->flags |= PG_PAGEOUT;
1646 uvm_pageout_start(1);
1647 mutex_enter(&uvm_pageqlock);
1648 uvm_pageunwire(pgs[i]);
1649 mutex_exit(&uvm_pageqlock);
1650 }
1651 }
1652
1653 /*
1654 * Check to make sure we're starting on a block boundary.
1655 * We'll check later to make sure we always write entire
1656 * blocks (or fragments).
1657 */
1658 if (startoffset & fs->lfs_bmask)
1659 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1660 startoffset, fs->lfs_bmask,
1661 startoffset & fs->lfs_bmask);
1662 KASSERT((startoffset & fs->lfs_bmask) == 0);
1663 if (bytes & fs->lfs_ffmask) {
1664 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1665 panic("lfs_gop_write: non-integer blocks");
1666 }
1667
1668 /*
1669 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1670 * If we would, write what we have and try again. If we don't
1671 * have anything to write, we'll have to sleep.
1672 */
1673 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1674 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1675 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1676 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1677 #if 0
1678 " with nfinfo=%d at offset 0x%x\n",
1679 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1680 (unsigned)fs->lfs_offset));
1681 #endif
1682 lfs_updatemeta(sp);
1683 lfs_release_finfo(fs);
1684 (void) lfs_writeseg(fs, sp);
1685
1686 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1687
1688 /*
1689 * Having given up all of the pager_map we were holding,
1690 * we can now wait for aiodoned to reclaim it for us
1691 * without fear of deadlock.
1692 */
1693 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1694 UVMPAGER_MAPIN_WAITOK);
1695 }
1696
1697 mbp = getiobuf(NULL, true);
1698 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1699 vp, mbp, vp->v_numoutput, bytes);
1700 mbp->b_bufsize = npages << PAGE_SHIFT;
1701 mbp->b_data = (void *)kva;
1702 mbp->b_resid = mbp->b_bcount = bytes;
1703 mbp->b_cflags = BC_BUSY|BC_AGE;
1704 mbp->b_iodone = uvm_aio_biodone;
1705
1706 bp = NULL;
1707 for (offset = startoffset;
1708 bytes > 0;
1709 offset += iobytes, bytes -= iobytes) {
1710 lbn = offset >> fs_bshift;
1711 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1712 lfs_issequential_hole);
1713 if (error) {
1714 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1715 error,0,0,0);
1716 skipbytes += bytes;
1717 bytes = 0;
1718 break;
1719 }
1720
1721 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1722 bytes);
1723 if (blkno == (daddr_t)-1) {
1724 skipbytes += iobytes;
1725 continue;
1726 }
1727
1728 /*
1729 * Discover how much we can really pack into this buffer.
1730 */
1731 /* If no room in the current segment, finish it up */
1732 if (sp->sum_bytes_left < sizeof(int32_t) ||
1733 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1734 int vers;
1735
1736 lfs_updatemeta(sp);
1737 vers = sp->fip->fi_version;
1738 lfs_release_finfo(fs);
1739 (void) lfs_writeseg(fs, sp);
1740
1741 lfs_acquire_finfo(fs, ip->i_number, vers);
1742 }
1743 /* Check both for space in segment and space in segsum */
1744 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1745 << fs_bshift);
1746 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1747 << fs_bshift);
1748 KASSERT(iobytes > 0);
1749
1750 /* if it's really one i/o, don't make a second buf */
1751 if (offset == startoffset && iobytes == bytes) {
1752 bp = mbp;
1753 /*
1754 * All the LFS output is done by the segwriter. It
1755 * will increment numoutput by one for all the bufs it
1756 * recieves. However this buffer needs one extra to
1757 * account for aiodone.
1758 */
1759 mutex_enter(vp->v_interlock);
1760 vp->v_numoutput++;
1761 mutex_exit(vp->v_interlock);
1762 } else {
1763 bp = getiobuf(NULL, true);
1764 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1765 vp, bp, vp->v_numoutput, 0);
1766 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1767 /*
1768 * LFS doesn't like async I/O here, dies with
1769 * and assert in lfs_bwrite(). Is that assert
1770 * valid? I retained non-async behaviour when
1771 * converted this to use nestiobuf --pooka
1772 */
1773 bp->b_flags &= ~B_ASYNC;
1774 }
1775
1776 /* XXX This is silly ... is this necessary? */
1777 mutex_enter(&bufcache_lock);
1778 mutex_enter(vp->v_interlock);
1779 bgetvp(vp, bp);
1780 mutex_exit(vp->v_interlock);
1781 mutex_exit(&bufcache_lock);
1782
1783 bp->b_lblkno = lblkno(fs, offset);
1784 bp->b_private = mbp;
1785 if (devvp->v_type == VBLK) {
1786 bp->b_dev = devvp->v_rdev;
1787 }
1788 VOP_BWRITE(bp->b_vp, bp);
1789 while (lfs_gatherblock(sp, bp, NULL))
1790 continue;
1791 }
1792
1793 nestiobuf_done(mbp, skipbytes, error);
1794 if (skipbytes) {
1795 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1796 }
1797 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1798
1799 if (!async) {
1800 /* Start a segment write. */
1801 UVMHIST_LOG(ubchist, "flushing", 0,0,0,0);
1802 mutex_enter(&lfs_lock);
1803 lfs_flush(fs, 0, 1);
1804 mutex_exit(&lfs_lock);
1805 }
1806 return (0);
1807
1808 tryagain:
1809 /*
1810 * We can't write the pages, for whatever reason.
1811 * Clean up after ourselves, and make the caller try again.
1812 */
1813 mutex_enter(vp->v_interlock);
1814
1815 /* Tell why we're here, if we know */
1816 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1817 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1818 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1819 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1820 } else if (haveeof && startoffset >= eof) {
1821 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1822 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1823 pgs[0]->offset, eof, npages));
1824 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1825 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1826 } else {
1827 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1828 }
1829
1830 mutex_enter(&uvm_pageqlock);
1831 for (i = 0; i < npages; i++) {
1832 pg = pgs[i];
1833
1834 if (pg->flags & PG_PAGEOUT)
1835 uvm_pageout_done(1);
1836 if (pg->flags & PG_DELWRI) {
1837 uvm_pageunwire(pg);
1838 }
1839 uvm_pageactivate(pg);
1840 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1841 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1842 vp, pg->offset));
1843 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1844 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1845 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1846 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1847 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1848 pg->wire_count));
1849 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1850 pg->loan_count));
1851 }
1852 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1853 uvm_page_unbusy(pgs, npages);
1854 mutex_exit(&uvm_pageqlock);
1855 mutex_exit(vp->v_interlock);
1856 return EAGAIN;
1857 }
1858
1859 /*
1860 * finish vnode/inode initialization.
1861 * used by lfs_vget and lfs_fastvget.
1862 */
1863 void
1864 lfs_vinit(struct mount *mp, struct vnode **vpp)
1865 {
1866 struct vnode *vp = *vpp;
1867 struct inode *ip = VTOI(vp);
1868 struct ufsmount *ump = VFSTOUFS(mp);
1869 struct lfs *fs = ump->um_lfs;
1870 int i;
1871
1872 ip->i_mode = ip->i_ffs1_mode;
1873 ip->i_nlink = ip->i_ffs1_nlink;
1874 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1875 ip->i_flags = ip->i_ffs1_flags;
1876 ip->i_gen = ip->i_ffs1_gen;
1877 ip->i_uid = ip->i_ffs1_uid;
1878 ip->i_gid = ip->i_ffs1_gid;
1879
1880 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1881 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1882
1883 /*
1884 * Initialize the vnode from the inode, check for aliases. In all
1885 * cases re-init ip, the underlying vnode/inode may have changed.
1886 */
1887 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1888 ip = VTOI(vp);
1889
1890 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1891 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1892 #ifdef DEBUG
1893 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1894 i < NDADDR; i++) {
1895 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1896 i == 0)
1897 continue;
1898 if (ip->i_ffs1_db[i] != 0) {
1899 inconsistent:
1900 lfs_dump_dinode(ip->i_din.ffs1_din);
1901 panic("inconsistent inode");
1902 }
1903 }
1904 for ( ; i < NDADDR + NIADDR; i++) {
1905 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1906 goto inconsistent;
1907 }
1908 }
1909 #endif /* DEBUG */
1910 for (i = 0; i < NDADDR; i++)
1911 if (ip->i_ffs1_db[i] != 0)
1912 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1913 }
1914
1915 #ifdef DIAGNOSTIC
1916 if (vp->v_type == VNON) {
1917 # ifdef DEBUG
1918 lfs_dump_dinode(ip->i_din.ffs1_din);
1919 # endif
1920 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1921 (unsigned long long)ip->i_number,
1922 (ip->i_mode & IFMT) >> 12);
1923 }
1924 #endif /* DIAGNOSTIC */
1925
1926 /*
1927 * Finish inode initialization now that aliasing has been resolved.
1928 */
1929
1930 ip->i_devvp = ump->um_devvp;
1931 vref(ip->i_devvp);
1932 genfs_node_init(vp, &lfs_genfsops);
1933 uvm_vnp_setsize(vp, ip->i_size);
1934
1935 /* Initialize hiblk from file size */
1936 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1937
1938 *vpp = vp;
1939 }
1940
1941 /*
1942 * Resize the filesystem to contain the specified number of segments.
1943 */
1944 int
1945 lfs_resize_fs(struct lfs *fs, int newnsegs)
1946 {
1947 SEGUSE *sup;
1948 struct buf *bp, *obp;
1949 daddr_t olast, nlast, ilast, noff, start, end;
1950 struct vnode *ivp;
1951 struct inode *ip;
1952 int error, badnews, inc, oldnsegs;
1953 int sbbytes, csbbytes, gain, cgain;
1954 int i;
1955
1956 /* Only support v2 and up */
1957 if (fs->lfs_version < 2)
1958 return EOPNOTSUPP;
1959
1960 /* If we're doing nothing, do it fast */
1961 oldnsegs = fs->lfs_nseg;
1962 if (newnsegs == oldnsegs)
1963 return 0;
1964
1965 /* We always have to have two superblocks */
1966 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1967 return EFBIG;
1968
1969 ivp = fs->lfs_ivnode;
1970 ip = VTOI(ivp);
1971 error = 0;
1972
1973 /* Take the segment lock so no one else calls lfs_newseg() */
1974 lfs_seglock(fs, SEGM_PROT);
1975
1976 /*
1977 * Make sure the segments we're going to be losing, if any,
1978 * are in fact empty. We hold the seglock, so their status
1979 * cannot change underneath us. Count the superblocks we lose,
1980 * while we're at it.
1981 */
1982 sbbytes = csbbytes = 0;
1983 cgain = 0;
1984 for (i = newnsegs; i < oldnsegs; i++) {
1985 LFS_SEGENTRY(sup, fs, i, bp);
1986 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1987 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1988 sbbytes += LFS_SBPAD;
1989 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1990 ++cgain;
1991 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1992 csbbytes += LFS_SBPAD;
1993 }
1994 brelse(bp, 0);
1995 if (badnews) {
1996 error = EBUSY;
1997 goto out;
1998 }
1999 }
2000
2001 /* Note old and new segment table endpoints, and old ifile size */
2002 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
2003 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
2004 ilast = ivp->v_size >> fs->lfs_bshift;
2005 noff = nlast - olast;
2006
2007 /*
2008 * Make sure no one can use the Ifile while we change it around.
2009 * Even after taking the iflock we need to make sure no one still
2010 * is holding Ifile buffers, so we get each one, to drain them.
2011 * (XXX this could be done better.)
2012 */
2013 rw_enter(&fs->lfs_iflock, RW_WRITER);
2014 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
2015 for (i = 0; i < ilast; i++) {
2016 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
2017 brelse(bp, 0);
2018 }
2019
2020 /* Allocate new Ifile blocks */
2021 for (i = ilast; i < ilast + noff; i++) {
2022 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
2023 &bp) != 0)
2024 panic("balloc extending ifile");
2025 memset(bp->b_data, 0, fs->lfs_bsize);
2026 VOP_BWRITE(bp->b_vp, bp);
2027 }
2028
2029 /* Register new ifile size */
2030 ip->i_size += noff * fs->lfs_bsize;
2031 ip->i_ffs1_size = ip->i_size;
2032 uvm_vnp_setsize(ivp, ip->i_size);
2033
2034 /* Copy the inode table to its new position */
2035 if (noff != 0) {
2036 if (noff < 0) {
2037 start = nlast;
2038 end = ilast + noff;
2039 inc = 1;
2040 } else {
2041 start = ilast + noff - 1;
2042 end = nlast - 1;
2043 inc = -1;
2044 }
2045 for (i = start; i != end; i += inc) {
2046 if (bread(ivp, i, fs->lfs_bsize, NOCRED,
2047 B_MODIFY, &bp) != 0)
2048 panic("resize: bread dst blk failed");
2049 if (bread(ivp, i - noff, fs->lfs_bsize,
2050 NOCRED, 0, &obp))
2051 panic("resize: bread src blk failed");
2052 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2053 VOP_BWRITE(bp->b_vp, bp);
2054 brelse(obp, 0);
2055 }
2056 }
2057
2058 /* If we are expanding, write the new empty SEGUSE entries */
2059 if (newnsegs > oldnsegs) {
2060 for (i = oldnsegs; i < newnsegs; i++) {
2061 if ((error = bread(ivp, i / fs->lfs_sepb +
2062 fs->lfs_cleansz, fs->lfs_bsize,
2063 NOCRED, B_MODIFY, &bp)) != 0)
2064 panic("lfs: ifile read: %d", error);
2065 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2066 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2067 memset(sup, 0, sizeof(*sup));
2068 i++;
2069 }
2070 VOP_BWRITE(bp->b_vp, bp);
2071 }
2072 }
2073
2074 /* Zero out unused superblock offsets */
2075 for (i = 2; i < LFS_MAXNUMSB; i++)
2076 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2077 fs->lfs_sboffs[i] = 0x0;
2078
2079 /*
2080 * Correct superblock entries that depend on fs size.
2081 * The computations of these are as follows:
2082 *
2083 * size = segtod(fs, nseg)
2084 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2085 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2086 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2087 * + (segtod(fs, 1) - (offset - curseg))
2088 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2089 *
2090 * XXX - we should probably adjust minfreeseg as well.
2091 */
2092 gain = (newnsegs - oldnsegs);
2093 fs->lfs_nseg = newnsegs;
2094 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2095 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2096 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2097 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2098 - gain * btofsb(fs, fs->lfs_bsize / 2);
2099 if (gain > 0) {
2100 fs->lfs_nclean += gain;
2101 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2102 } else {
2103 fs->lfs_nclean -= cgain;
2104 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2105 btofsb(fs, csbbytes);
2106 }
2107
2108 /* Resize segment flag cache */
2109 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2110 fs->lfs_nseg * sizeof(u_int32_t),
2111 M_SEGMENT, M_WAITOK);
2112 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2113 fs->lfs_nseg * sizeof(u_int32_t),
2114 M_SEGMENT, M_WAITOK);
2115 for (i = oldnsegs; i < newnsegs; i++)
2116 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2117
2118 /* Truncate Ifile if necessary */
2119 if (noff < 0)
2120 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2121 NOCRED);
2122
2123 /* Update cleaner info so the cleaner can die */
2124 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
2125 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2126 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2127 VOP_BWRITE(bp->b_vp, bp);
2128
2129 /* Let Ifile accesses proceed */
2130 VOP_UNLOCK(ivp);
2131 rw_exit(&fs->lfs_iflock);
2132
2133 out:
2134 lfs_segunlock(fs);
2135 return error;
2136 }
2137