lfs_vfsops.c revision 1.316 1 /* $NetBSD: lfs_vfsops.c,v 1.316 2013/11/23 13:35:37 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.316 2013/11/23 13:35:37 christos Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/mbuf.h>
82 #include <sys/file.h>
83 #include <sys/disklabel.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/socket.h>
89 #include <sys/syslog.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/module.h>
95 #include <sys/syscallvar.h>
96 #include <sys/syscall.h>
97 #include <sys/syscallargs.h>
98
99 #include <miscfs/specfs/specdev.h>
100
101 #include <ufs/lfs/ulfs_quotacommon.h>
102 #include <ufs/lfs/ulfs_inode.h>
103 #include <ufs/lfs/ulfsmount.h>
104 #include <ufs/lfs/ulfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_stat.h>
108 #include <uvm/uvm_pager.h>
109 #include <uvm/uvm_pdaemon.h>
110
111 #include <ufs/lfs/lfs.h>
112 #include <ufs/lfs/lfs_kernel.h>
113 #include <ufs/lfs/lfs_extern.h>
114
115 #include <miscfs/genfs/genfs.h>
116 #include <miscfs/genfs/genfs_node.h>
117
118 MODULE(MODULE_CLASS_VFS, lfs, NULL);
119
120 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
121 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
122 static int lfs_extattrctl(struct mount *, int, struct vnode *, int,
123 const char *);
124
125 static struct sysctllog *lfs_sysctl_log;
126
127 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
128 extern const struct vnodeopv_desc lfs_specop_opv_desc;
129 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
130
131 pid_t lfs_writer_daemon = 0;
132 lwpid_t lfs_writer_lid = 0;
133 int lfs_do_flush = 0;
134 #ifdef LFS_KERNEL_RFW
135 int lfs_do_rfw = 0;
136 #endif
137
138 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
139 &lfs_vnodeop_opv_desc,
140 &lfs_specop_opv_desc,
141 &lfs_fifoop_opv_desc,
142 NULL,
143 };
144
145 struct vfsops lfs_vfsops = {
146 MOUNT_LFS,
147 sizeof (struct ulfs_args),
148 lfs_mount,
149 ulfs_start,
150 lfs_unmount,
151 ulfs_root,
152 ulfs_quotactl,
153 lfs_statvfs,
154 lfs_sync,
155 lfs_vget,
156 lfs_fhtovp,
157 lfs_vptofh,
158 lfs_init,
159 lfs_reinit,
160 lfs_done,
161 lfs_mountroot,
162 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
163 lfs_extattrctl,
164 (void *)eopnotsupp, /* vfs_suspendctl */
165 genfs_renamelock_enter,
166 genfs_renamelock_exit,
167 (void *)eopnotsupp,
168 lfs_vnodeopv_descs,
169 0,
170 { NULL, NULL },
171 };
172
173 const struct genfs_ops lfs_genfsops = {
174 .gop_size = lfs_gop_size,
175 .gop_alloc = ulfs_gop_alloc,
176 .gop_write = lfs_gop_write,
177 .gop_markupdate = ulfs_gop_markupdate,
178 };
179
180 struct shortlong {
181 const char *sname;
182 const char *lname;
183 };
184
185 static int
186 sysctl_lfs_dostats(SYSCTLFN_ARGS)
187 {
188 extern struct lfs_stats lfs_stats;
189 extern int lfs_dostats;
190 int error;
191
192 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
193 if (error || newp == NULL)
194 return (error);
195
196 if (lfs_dostats == 0)
197 memset(&lfs_stats, 0, sizeof(lfs_stats));
198
199 return (0);
200 }
201
202 static void
203 lfs_sysctl_setup(struct sysctllog **clog)
204 {
205 int i;
206 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
207 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
208 #ifdef DEBUG
209 extern int lfs_debug_log_subsys[DLOG_MAX];
210 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
211 { "rollforward", "Debug roll-forward code" },
212 { "alloc", "Debug inode allocation and free list" },
213 { "avail", "Debug space-available-now accounting" },
214 { "flush", "Debug flush triggers" },
215 { "lockedlist", "Debug locked list accounting" },
216 { "vnode_verbose", "Verbose per-vnode-written debugging" },
217 { "vnode", "Debug vnode use during segment write" },
218 { "segment", "Debug segment writing" },
219 { "seguse", "Debug segment used-bytes accounting" },
220 { "cleaner", "Debug cleaning routines" },
221 { "mount", "Debug mount/unmount routines" },
222 { "pagecache", "Debug UBC interactions" },
223 { "dirop", "Debug directory-operation accounting" },
224 { "malloc", "Debug private malloc accounting" },
225 };
226 #endif /* DEBUG */
227 struct shortlong stat_names[] = { /* Must match lfs.h! */
228 { "segsused", "Number of new segments allocated" },
229 { "psegwrites", "Number of partial-segment writes" },
230 { "psyncwrites", "Number of synchronous partial-segment"
231 " writes" },
232 { "pcleanwrites", "Number of partial-segment writes by the"
233 " cleaner" },
234 { "blocktot", "Number of blocks written" },
235 { "cleanblocks", "Number of blocks written by the cleaner" },
236 { "ncheckpoints", "Number of checkpoints made" },
237 { "nwrites", "Number of whole writes" },
238 { "nsync_writes", "Number of synchronous writes" },
239 { "wait_exceeded", "Number of times writer waited for"
240 " cleaner" },
241 { "write_exceeded", "Number of times writer invoked flush" },
242 { "flush_invoked", "Number of times flush was invoked" },
243 { "vflush_invoked", "Number of time vflush was called" },
244 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
245 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
246 { "segs_reclaimed", "Number of segments reclaimed" },
247 };
248
249 sysctl_createv(clog, 0, NULL, NULL,
250 CTLFLAG_PERMANENT,
251 CTLTYPE_NODE, "vfs", NULL,
252 NULL, 0, NULL, 0,
253 CTL_VFS, CTL_EOL);
254 sysctl_createv(clog, 0, NULL, NULL,
255 CTLFLAG_PERMANENT,
256 CTLTYPE_NODE, "lfs",
257 SYSCTL_DESCR("Log-structured file system"),
258 NULL, 0, NULL, 0,
259 CTL_VFS, 5, CTL_EOL);
260 /*
261 * XXX the "5" above could be dynamic, thereby eliminating one
262 * more instance of the "number to vfs" mapping problem, but
263 * "5" is the order as taken from sys/mount.h
264 */
265
266 sysctl_createv(clog, 0, NULL, NULL,
267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
268 CTLTYPE_INT, "flushindir", NULL,
269 NULL, 0, &lfs_writeindir, 0,
270 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
271 sysctl_createv(clog, 0, NULL, NULL,
272 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
273 CTLTYPE_INT, "clean_vnhead", NULL,
274 NULL, 0, &lfs_clean_vnhead, 0,
275 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
276 sysctl_createv(clog, 0, NULL, NULL,
277 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
278 CTLTYPE_INT, "dostats",
279 SYSCTL_DESCR("Maintain statistics on LFS operations"),
280 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
281 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
282 sysctl_createv(clog, 0, NULL, NULL,
283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
284 CTLTYPE_INT, "pagetrip",
285 SYSCTL_DESCR("How many dirty pages in fs triggers"
286 " a flush"),
287 NULL, 0, &lfs_fs_pagetrip, 0,
288 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
289 sysctl_createv(clog, 0, NULL, NULL,
290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
291 CTLTYPE_INT, "ignore_lazy_sync",
292 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
293 NULL, 0, &lfs_ignore_lazy_sync, 0,
294 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
295 #ifdef LFS_KERNEL_RFW
296 sysctl_createv(clog, 0, NULL, NULL,
297 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
298 CTLTYPE_INT, "rfw",
299 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
300 NULL, 0, &lfs_do_rfw, 0,
301 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
302 #endif
303
304 sysctl_createv(clog, 0, NULL, NULL,
305 CTLFLAG_PERMANENT,
306 CTLTYPE_NODE, "stats",
307 SYSCTL_DESCR("Debugging options"),
308 NULL, 0, NULL, 0,
309 CTL_VFS, 5, LFS_STATS, CTL_EOL);
310 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
311 sysctl_createv(clog, 0, NULL, NULL,
312 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
313 CTLTYPE_INT, stat_names[i].sname,
314 SYSCTL_DESCR(stat_names[i].lname),
315 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
316 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
317 }
318
319 #ifdef DEBUG
320 sysctl_createv(clog, 0, NULL, NULL,
321 CTLFLAG_PERMANENT,
322 CTLTYPE_NODE, "debug",
323 SYSCTL_DESCR("Debugging options"),
324 NULL, 0, NULL, 0,
325 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
326 for (i = 0; i < DLOG_MAX; i++) {
327 sysctl_createv(clog, 0, NULL, NULL,
328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
329 CTLTYPE_INT, dlog_names[i].sname,
330 SYSCTL_DESCR(dlog_names[i].lname),
331 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
332 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
333 }
334 #endif
335 }
336
337 /* old cleaner syscall interface. see VOP_FCNTL() */
338 static const struct syscall_package lfs_syscalls[] = {
339 { SYS_lfs_bmapv, 0, (sy_call_t *)sys_lfs_bmapv },
340 { SYS_lfs_markv, 0, (sy_call_t *)sys_lfs_markv },
341 { SYS_lfs_segclean, 0, (sy_call_t *)sys___lfs_segwait50 },
342 { 0, 0, NULL },
343 };
344
345 static int
346 lfs_modcmd(modcmd_t cmd, void *arg)
347 {
348 int error;
349
350 switch (cmd) {
351 case MODULE_CMD_INIT:
352 error = syscall_establish(NULL, lfs_syscalls);
353 if (error)
354 return error;
355 error = vfs_attach(&lfs_vfsops);
356 if (error != 0) {
357 syscall_disestablish(NULL, lfs_syscalls);
358 break;
359 }
360 lfs_sysctl_setup(&lfs_sysctl_log);
361 break;
362 case MODULE_CMD_FINI:
363 error = vfs_detach(&lfs_vfsops);
364 if (error != 0)
365 break;
366 syscall_disestablish(NULL, lfs_syscalls);
367 sysctl_teardown(&lfs_sysctl_log);
368 break;
369 default:
370 error = ENOTTY;
371 break;
372 }
373
374 return (error);
375 }
376
377 /*
378 * XXX Same structure as FFS inodes? Should we share a common pool?
379 */
380 struct pool lfs_inode_pool;
381 struct pool lfs_dinode_pool;
382 struct pool lfs_inoext_pool;
383 struct pool lfs_lbnentry_pool;
384
385 /*
386 * The writer daemon. UVM keeps track of how many dirty pages we are holding
387 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
388 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
389 */
390 static void
391 lfs_writerd(void *arg)
392 {
393 struct mount *mp, *nmp;
394 struct lfs *fs;
395 struct vfsops *vfs = NULL;
396 int fsflags;
397 int skipc;
398 int lfsc;
399 int wrote_something = 0;
400
401 mutex_enter(&lfs_lock);
402 lfs_writer_daemon = curproc->p_pid;
403 lfs_writer_lid = curlwp->l_lid;
404 mutex_exit(&lfs_lock);
405
406 /* Take an extra reference to the LFS vfsops. */
407 vfs = vfs_getopsbyname(MOUNT_LFS);
408
409 mutex_enter(&lfs_lock);
410 for (;;) {
411 KASSERT(mutex_owned(&lfs_lock));
412 if (wrote_something == 0)
413 mtsleep(&lfs_writer_daemon, PVM, "lfswriter", hz/10 + 1,
414 &lfs_lock);
415
416 KASSERT(mutex_owned(&lfs_lock));
417 wrote_something = 0;
418
419 /*
420 * If global state wants a flush, flush everything.
421 */
422 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
423 locked_queue_bytes > LFS_MAX_BYTES ||
424 lfs_subsys_pages > LFS_MAX_PAGES) {
425
426 if (lfs_do_flush) {
427 DLOG((DLOG_FLUSH, "lfs_writerd: lfs_do_flush\n"));
428 }
429 if (locked_queue_count > LFS_MAX_BUFS) {
430 DLOG((DLOG_FLUSH, "lfs_writerd: lqc = %d, max %d\n",
431 locked_queue_count, LFS_MAX_BUFS));
432 }
433 if (locked_queue_bytes > LFS_MAX_BYTES) {
434 DLOG((DLOG_FLUSH, "lfs_writerd: lqb = %ld, max %ld\n",
435 locked_queue_bytes, LFS_MAX_BYTES));
436 }
437 if (lfs_subsys_pages > LFS_MAX_PAGES) {
438 DLOG((DLOG_FLUSH, "lfs_writerd: lssp = %d, max %d\n",
439 lfs_subsys_pages, LFS_MAX_PAGES));
440 }
441
442 lfs_flush(NULL, SEGM_WRITERD, 0);
443 lfs_do_flush = 0;
444 KASSERT(mutex_owned(&lfs_lock));
445 continue;
446 }
447 KASSERT(mutex_owned(&lfs_lock));
448 mutex_exit(&lfs_lock);
449
450 /*
451 * Look through the list of LFSs to see if any of them
452 * have requested pageouts.
453 */
454 mutex_enter(&mountlist_lock);
455 lfsc = 0;
456 skipc = 0;
457 for (mp = TAILQ_FIRST(&mountlist); mp != TAILQ_END(&mountlist);
458 mp = nmp) {
459 if (vfs_busy(mp, &nmp)) {
460 ++skipc;
461 continue;
462 }
463 KASSERT(!mutex_owned(&lfs_lock));
464 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
465 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
466 ++lfsc;
467 fs = VFSTOULFS(mp)->um_lfs;
468 int32_t ooffset = 0;
469 fsflags = SEGM_SINGLE;
470
471 mutex_enter(&lfs_lock);
472 ooffset = fs->lfs_offset;
473
474 if (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
475 /* Don't try to write if we're suspended */
476 mutex_exit(&lfs_lock);
477 vfs_unbusy(mp, false, &nmp);
478 continue;
479 }
480 if (LFS_STARVED_FOR_SEGS(fs)) {
481 mutex_exit(&lfs_lock);
482
483 DLOG((DLOG_FLUSH, "lfs_writerd: need cleaning before writing possible\n"));
484 lfs_wakeup_cleaner(fs);
485 vfs_unbusy(mp, false, &nmp);
486 continue;
487 }
488
489 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
490 lfs_dirvcount > LFS_MAX_DIROP) &&
491 fs->lfs_dirops == 0) {
492 fsflags &= ~SEGM_SINGLE;
493 fsflags |= SEGM_CKP;
494 DLOG((DLOG_FLUSH, "lfs_writerd: checkpoint\n"));
495 lfs_flush_fs(fs, fsflags);
496 } else if (fs->lfs_pdflush) {
497 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
498 lfs_flush_fs(fs, fsflags);
499 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
500 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
501 mutex_exit(&lfs_lock);
502 lfs_writer_enter(fs, "wrdirop");
503 lfs_flush_pchain(fs);
504 lfs_writer_leave(fs);
505 mutex_enter(&lfs_lock);
506 }
507 if (fs->lfs_offset != ooffset)
508 ++wrote_something;
509 mutex_exit(&lfs_lock);
510 }
511 KASSERT(!mutex_owned(&lfs_lock));
512 vfs_unbusy(mp, false, &nmp);
513 }
514 if (lfsc + skipc == 0) {
515 mutex_enter(&lfs_lock);
516 lfs_writer_daemon = 0;
517 lfs_writer_lid = 0;
518 mutex_exit(&lfs_lock);
519 mutex_exit(&mountlist_lock);
520 break;
521 }
522 mutex_exit(&mountlist_lock);
523
524 mutex_enter(&lfs_lock);
525 }
526 KASSERT(!mutex_owned(&lfs_lock));
527 KASSERT(!mutex_owned(&mountlist_lock));
528
529 /* Give up our extra reference so the module can be unloaded. */
530 mutex_enter(&vfs_list_lock);
531 if (vfs != NULL)
532 vfs->vfs_refcount--;
533 mutex_exit(&vfs_list_lock);
534
535 /* Done! */
536 kthread_exit(0);
537 }
538
539 /*
540 * Initialize the filesystem, most work done by ulfs_init.
541 */
542 void
543 lfs_init(void)
544 {
545
546 malloc_type_attach(M_SEGMENT);
547 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
548 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
549 pool_init(&lfs_dinode_pool, sizeof(struct ulfs1_dinode), 0, 0, 0,
550 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
551 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
552 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
553 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
554 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
555 ulfs_init();
556
557 #ifdef DEBUG
558 memset(lfs_log, 0, sizeof(lfs_log));
559 #endif
560 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
561 cv_init(&locked_queue_cv, "lfsbuf");
562 cv_init(&lfs_writing_cv, "lfsflush");
563 }
564
565 void
566 lfs_reinit(void)
567 {
568 ulfs_reinit();
569 }
570
571 void
572 lfs_done(void)
573 {
574 ulfs_done();
575 mutex_destroy(&lfs_lock);
576 cv_destroy(&locked_queue_cv);
577 cv_destroy(&lfs_writing_cv);
578 pool_destroy(&lfs_inode_pool);
579 pool_destroy(&lfs_dinode_pool);
580 pool_destroy(&lfs_inoext_pool);
581 pool_destroy(&lfs_lbnentry_pool);
582 malloc_type_detach(M_SEGMENT);
583 }
584
585 /*
586 * Called by main() when ulfs is going to be mounted as root.
587 */
588 int
589 lfs_mountroot(void)
590 {
591 extern struct vnode *rootvp;
592 struct lfs *fs = NULL; /* LFS */
593 struct mount *mp;
594 struct lwp *l = curlwp;
595 struct ulfsmount *ump;
596 int error;
597
598 if (device_class(root_device) != DV_DISK)
599 return (ENODEV);
600
601 if (rootdev == NODEV)
602 return (ENODEV);
603 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
604 vrele(rootvp);
605 return (error);
606 }
607 if ((error = lfs_mountfs(rootvp, mp, l))) {
608 vfs_unbusy(mp, false, NULL);
609 vfs_destroy(mp);
610 return (error);
611 }
612 mountlist_append(mp);
613 ump = VFSTOULFS(mp);
614 fs = ump->um_lfs;
615 memset(fs->lfs_fsmnt, 0, sizeof(fs->lfs_fsmnt));
616 (void)copystr(mp->mnt_stat.f_mntonname, fs->lfs_fsmnt, MNAMELEN - 1, 0);
617 (void)lfs_statvfs(mp, &mp->mnt_stat);
618 vfs_unbusy(mp, false, NULL);
619 setrootfstime((time_t)(VFSTOULFS(mp)->um_lfs->lfs_tstamp));
620 return (0);
621 }
622
623 /*
624 * VFS Operations.
625 *
626 * mount system call
627 */
628 int
629 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
630 {
631 struct lwp *l = curlwp;
632 struct vnode *devvp;
633 struct ulfs_args *args = data;
634 struct ulfsmount *ump = NULL;
635 struct lfs *fs = NULL; /* LFS */
636 int error = 0, update;
637 mode_t accessmode;
638
639 if (*data_len < sizeof *args)
640 return EINVAL;
641
642 if (mp->mnt_flag & MNT_GETARGS) {
643 ump = VFSTOULFS(mp);
644 if (ump == NULL)
645 return EIO;
646 args->fspec = NULL;
647 *data_len = sizeof *args;
648 return 0;
649 }
650
651 update = mp->mnt_flag & MNT_UPDATE;
652
653 /* Check arguments */
654 if (args->fspec != NULL) {
655 /*
656 * Look up the name and verify that it's sane.
657 */
658 error = namei_simple_user(args->fspec,
659 NSM_FOLLOW_NOEMULROOT, &devvp);
660 if (error != 0)
661 return (error);
662
663 if (!update) {
664 /*
665 * Be sure this is a valid block device
666 */
667 if (devvp->v_type != VBLK)
668 error = ENOTBLK;
669 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
670 error = ENXIO;
671 } else {
672 /*
673 * Be sure we're still naming the same device
674 * used for our initial mount
675 */
676 ump = VFSTOULFS(mp);
677 if (devvp != ump->um_devvp) {
678 if (devvp->v_rdev != ump->um_devvp->v_rdev)
679 error = EINVAL;
680 else {
681 vrele(devvp);
682 devvp = ump->um_devvp;
683 vref(devvp);
684 }
685 }
686 }
687 } else {
688 if (!update) {
689 /* New mounts must have a filename for the device */
690 return (EINVAL);
691 } else {
692 /* Use the extant mount */
693 ump = VFSTOULFS(mp);
694 devvp = ump->um_devvp;
695 vref(devvp);
696 }
697 }
698
699
700 /*
701 * If mount by non-root, then verify that user has necessary
702 * permissions on the device.
703 */
704 if (error == 0) {
705 accessmode = VREAD;
706 if (update ?
707 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
708 (mp->mnt_flag & MNT_RDONLY) == 0)
709 accessmode |= VWRITE;
710 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
711 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
712 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
713 KAUTH_ARG(accessmode));
714 VOP_UNLOCK(devvp);
715 }
716
717 if (error) {
718 vrele(devvp);
719 return (error);
720 }
721
722 if (!update) {
723 int flags;
724
725 if (mp->mnt_flag & MNT_RDONLY)
726 flags = FREAD;
727 else
728 flags = FREAD|FWRITE;
729 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
730 error = VOP_OPEN(devvp, flags, FSCRED);
731 VOP_UNLOCK(devvp);
732 if (error)
733 goto fail;
734 error = lfs_mountfs(devvp, mp, l); /* LFS */
735 if (error) {
736 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
737 (void)VOP_CLOSE(devvp, flags, NOCRED);
738 VOP_UNLOCK(devvp);
739 goto fail;
740 }
741
742 ump = VFSTOULFS(mp);
743 fs = ump->um_lfs;
744 } else {
745 /*
746 * Update the mount.
747 */
748
749 /*
750 * The initial mount got a reference on this
751 * device, so drop the one obtained via
752 * namei(), above.
753 */
754 vrele(devvp);
755
756 ump = VFSTOULFS(mp);
757 fs = ump->um_lfs;
758
759 if (fs->lfs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
760 /*
761 * Changing from read/write to read-only.
762 * XXX: shouldn't we sync here? or does vfs do that?
763 */
764 #ifdef LFS_QUOTA2
765 /* XXX: quotas should remain on when readonly */
766 if (fs->lfs_use_quota2) {
767 error = lfsquota2_umount(mp, 0);
768 if (error) {
769 return error;
770 }
771 }
772 #endif
773 }
774
775 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
776 /*
777 * Changing from read-only to read/write.
778 * Note in the superblocks that we're writing.
779 */
780
781 /* XXX: quotas should have been on even if readonly */
782 if (fs->lfs_use_quota2) {
783 #ifdef LFS_QUOTA2
784 error = lfs_quota2_mount(mp);
785 #else
786 uprintf("%s: no kernel support for this "
787 "filesystem's quotas\n",
788 mp->mnt_stat.f_mntonname);
789 if (mp->mnt_flag & MNT_FORCE) {
790 uprintf("%s: mounting anyway; "
791 "fsck afterwards\n",
792 mp->mnt_stat.f_mntonname);
793 } else {
794 error = EINVAL;
795 }
796 #endif
797 if (error) {
798 return error;
799 }
800 }
801
802 fs->lfs_ronly = 0;
803 if (fs->lfs_pflags & LFS_PF_CLEAN) {
804 fs->lfs_pflags &= ~LFS_PF_CLEAN;
805 lfs_writesuper(fs, fs->lfs_sboffs[0]);
806 lfs_writesuper(fs, fs->lfs_sboffs[1]);
807 }
808 }
809 if (args->fspec == NULL)
810 return EINVAL;
811 }
812
813 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
814 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
815 if (error == 0)
816 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
817 sizeof(fs->lfs_fsmnt));
818 return error;
819
820 fail:
821 vrele(devvp);
822 return (error);
823 }
824
825
826 /*
827 * Common code for mount and mountroot
828 * LFS specific
829 */
830 int
831 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
832 {
833 struct dlfs *tdfs, *dfs, *adfs;
834 struct lfs *fs;
835 struct ulfsmount *ump;
836 struct vnode *vp;
837 struct buf *bp, *abp;
838 dev_t dev;
839 int error, i, ronly, fsbsize;
840 kauth_cred_t cred;
841 CLEANERINFO *cip;
842 SEGUSE *sup;
843 daddr_t sb_addr;
844
845 cred = l ? l->l_cred : NOCRED;
846
847 /*
848 * Flush out any old buffers remaining from a previous use.
849 */
850 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
851 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
852 VOP_UNLOCK(devvp);
853 if (error)
854 return (error);
855
856 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
857
858 /* Don't free random space on error. */
859 bp = NULL;
860 abp = NULL;
861 ump = NULL;
862
863 sb_addr = LFS_LABELPAD / DEV_BSIZE;
864 while (1) {
865 /* Read in the superblock. */
866 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
867 if (error)
868 goto out;
869 dfs = (struct dlfs *)bp->b_data;
870
871 /* Check the basics. */
872 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
873 dfs->dlfs_version > LFS_VERSION ||
874 dfs->dlfs_bsize < sizeof(struct dlfs)) {
875 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
876 error = EINVAL; /* XXX needs translation */
877 goto out;
878 }
879 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
880 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
881 dfs->dlfs_inodefmt));
882 error = EINVAL;
883 goto out;
884 }
885
886 if (dfs->dlfs_version == 1)
887 fsbsize = DEV_BSIZE;
888 else {
889 fsbsize = 1 << dfs->dlfs_ffshift;
890 /*
891 * Could be, if the frag size is large enough, that we
892 * don't have the "real" primary superblock. If that's
893 * the case, get the real one, and try again.
894 */
895 if (sb_addr != (dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT))) {
896 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
897 " 0x%llx is not right, trying 0x%llx\n",
898 (long long)sb_addr,
899 (long long)(dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT))));
900 sb_addr = dfs->dlfs_sboffs[0] << (dfs->dlfs_ffshift - DEV_BSHIFT);
901 brelse(bp, 0);
902 continue;
903 }
904 }
905 break;
906 }
907
908 /*
909 * Check the second superblock to see which is newer; then mount
910 * using the older of the two. This is necessary to ensure that
911 * the filesystem is valid if it was not unmounted cleanly.
912 */
913
914 if (dfs->dlfs_sboffs[1] &&
915 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
916 {
917 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / DEV_BSIZE),
918 LFS_SBPAD, cred, 0, &abp);
919 if (error)
920 goto out;
921 adfs = (struct dlfs *)abp->b_data;
922
923 if (dfs->dlfs_version == 1) {
924 /* 1s resolution comparison */
925 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
926 tdfs = adfs;
927 else
928 tdfs = dfs;
929 } else {
930 /* monotonic infinite-resolution comparison */
931 if (adfs->dlfs_serial < dfs->dlfs_serial)
932 tdfs = adfs;
933 else
934 tdfs = dfs;
935 }
936
937 /* Check the basics. */
938 if (tdfs->dlfs_magic != LFS_MAGIC ||
939 tdfs->dlfs_bsize > MAXBSIZE ||
940 tdfs->dlfs_version > LFS_VERSION ||
941 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
942 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
943 " sanity failed\n"));
944 error = EINVAL; /* XXX needs translation */
945 goto out;
946 }
947 } else {
948 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
949 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
950 error = EINVAL;
951 goto out;
952 }
953
954 /* Allocate the mount structure, copy the superblock into it. */
955 fs = kmem_zalloc(sizeof(struct lfs), KM_SLEEP);
956 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
957
958 /* Compatibility */
959 if (fs->lfs_version < 2) {
960 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
961 fs->lfs_ibsize = fs->lfs_bsize;
962 fs->lfs_start = fs->lfs_sboffs[0];
963 fs->lfs_tstamp = fs->lfs_otstamp;
964 fs->lfs_fsbtodb = 0;
965 }
966 if (fs->lfs_resvseg == 0)
967 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
968 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
969
970 /*
971 * If we aren't going to be able to write meaningfully to this
972 * filesystem, and were not mounted readonly, bomb out now.
973 */
974 if (lfs_fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
975 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
976 " we need BUFPAGES >= %lld\n",
977 (long long)((bufmem_hiwater / bufmem_lowater) *
978 LFS_INVERSE_MAX_BYTES(
979 lfs_fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
980 kmem_free(fs, sizeof(struct lfs));
981 error = EFBIG; /* XXX needs translation */
982 goto out;
983 }
984
985 /* Before rolling forward, lock so vget will sleep for other procs */
986 if (l != NULL) {
987 fs->lfs_flags = LFS_NOTYET;
988 fs->lfs_rfpid = l->l_proc->p_pid;
989 }
990
991 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
992 ump->um_lfs = fs;
993 ump->um_fstype = ULFS1;
994 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
995 brelse(bp, BC_INVAL);
996 brelse(abp, BC_INVAL);
997 } else {
998 brelse(bp, 0);
999 brelse(abp, 0);
1000 }
1001 bp = NULL;
1002 abp = NULL;
1003
1004
1005 /* Set up the I/O information */
1006 fs->lfs_devbsize = DEV_BSIZE;
1007 fs->lfs_iocount = 0;
1008 fs->lfs_diropwait = 0;
1009 fs->lfs_activesb = 0;
1010 fs->lfs_uinodes = 0;
1011 fs->lfs_ravail = 0;
1012 fs->lfs_favail = 0;
1013 fs->lfs_sbactive = 0;
1014
1015 /* Set up the ifile and lock aflags */
1016 fs->lfs_doifile = 0;
1017 fs->lfs_writer = 0;
1018 fs->lfs_dirops = 0;
1019 fs->lfs_nadirop = 0;
1020 fs->lfs_seglock = 0;
1021 fs->lfs_pdflush = 0;
1022 fs->lfs_sleepers = 0;
1023 fs->lfs_pages = 0;
1024 rw_init(&fs->lfs_fraglock);
1025 rw_init(&fs->lfs_iflock);
1026 cv_init(&fs->lfs_stopcv, "lfsstop");
1027
1028 /* Set the file system readonly/modify bits. */
1029 fs->lfs_ronly = ronly;
1030 if (ronly == 0)
1031 fs->lfs_fmod = 1;
1032
1033 /* ulfs-level information */
1034 fs->um_flags = 0;
1035 fs->um_bptrtodb = fs->lfs_ffshift - DEV_BSHIFT;
1036 fs->um_seqinc = fs->lfs_frag;
1037 fs->um_nindir = fs->lfs_nindir;
1038 fs->um_lognindir = ffs(fs->lfs_nindir) - 1;
1039 fs->um_maxsymlinklen = fs->lfs_maxsymlinklen;
1040 fs->um_dirblksiz = LFS_DIRBLKSIZ;
1041 fs->um_maxfilesize = fs->lfs_maxfilesize;
1042
1043 /* quota stuff */
1044 /* XXX: these need to come from the on-disk superblock to be used */
1045 fs->lfs_use_quota2 = 0;
1046 fs->lfs_quota_magic = 0;
1047 fs->lfs_quota_flags = 0;
1048 fs->lfs_quotaino[0] = 0;
1049 fs->lfs_quotaino[1] = 0;
1050
1051 /* Initialize the mount structure. */
1052 dev = devvp->v_rdev;
1053 mp->mnt_data = ump;
1054 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1055 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
1056 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1057 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
1058 mp->mnt_stat.f_iosize = fs->lfs_bsize;
1059 mp->mnt_flag |= MNT_LOCAL;
1060 mp->mnt_fs_bshift = fs->lfs_bshift;
1061 if (fs->um_maxsymlinklen > 0)
1062 mp->mnt_iflag |= IMNT_DTYPE;
1063
1064 ump->um_mountp = mp;
1065 ump->um_dev = dev;
1066 ump->um_devvp = devvp;
1067 for (i = 0; i < ULFS_MAXQUOTAS; i++)
1068 ump->um_quotas[i] = NULLVP;
1069 spec_node_setmountedfs(devvp, mp);
1070
1071 /* Set up reserved memory for pageout */
1072 lfs_setup_resblks(fs);
1073 /* Set up vdirop tailq */
1074 TAILQ_INIT(&fs->lfs_dchainhd);
1075 /* and paging tailq */
1076 TAILQ_INIT(&fs->lfs_pchainhd);
1077 /* and delayed segment accounting for truncation list */
1078 LIST_INIT(&fs->lfs_segdhd);
1079
1080 /*
1081 * We use the ifile vnode for almost every operation. Instead of
1082 * retrieving it from the hash table each time we retrieve it here,
1083 * artificially increment the reference count and keep a pointer
1084 * to it in the incore copy of the superblock.
1085 */
1086 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
1087 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
1088 goto out;
1089 }
1090 fs->lfs_ivnode = vp;
1091 vref(vp);
1092
1093 /* Set up inode bitmap and order free list */
1094 lfs_order_freelist(fs);
1095
1096 /* Set up segment usage flags for the autocleaner. */
1097 fs->lfs_nactive = 0;
1098 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
1099 M_SEGMENT, M_WAITOK);
1100 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
1101 M_SEGMENT, M_WAITOK);
1102 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
1103 M_SEGMENT, M_WAITOK);
1104 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
1105 for (i = 0; i < fs->lfs_nseg; i++) {
1106 int changed;
1107
1108 LFS_SEGENTRY(sup, fs, i, bp);
1109 changed = 0;
1110 if (!ronly) {
1111 if (sup->su_nbytes == 0 &&
1112 !(sup->su_flags & SEGUSE_EMPTY)) {
1113 sup->su_flags |= SEGUSE_EMPTY;
1114 ++changed;
1115 } else if (!(sup->su_nbytes == 0) &&
1116 (sup->su_flags & SEGUSE_EMPTY)) {
1117 sup->su_flags &= ~SEGUSE_EMPTY;
1118 ++changed;
1119 }
1120 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
1121 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
1122 ++changed;
1123 }
1124 }
1125 fs->lfs_suflags[0][i] = sup->su_flags;
1126 if (changed)
1127 LFS_WRITESEGENTRY(sup, fs, i, bp);
1128 else
1129 brelse(bp, 0);
1130 }
1131
1132 /*
1133 * XXX: if the fs has quotas, quotas should be on even if
1134 * readonly. Otherwise you can't query the quota info!
1135 * However, that's not how the quota2 code got written and I
1136 * don't know if it'll behave itself if enabled while
1137 * readonly, so for now use the same enable logic as ffs.
1138 *
1139 * XXX: also, if you use the -f behavior allowed here (and
1140 * equivalently above for remount) it will corrupt the fs. It
1141 * ought not to allow that. It should allow mounting readonly
1142 * if there are quotas and the kernel doesn't have the quota
1143 * code, but only readonly.
1144 *
1145 * XXX: and if you use the -f behavior allowed here it will
1146 * likely crash at unmount time (or remount time) because we
1147 * think quotas are active.
1148 *
1149 * Although none of this applies until there's a way to set
1150 * lfs_use_quota2 and have quotas in the fs at all.
1151 */
1152 if (!ronly && fs->lfs_use_quota2) {
1153 #ifdef LFS_QUOTA2
1154 error = lfs_quota2_mount(mp);
1155 #else
1156 uprintf("%s: no kernel support for this filesystem's quotas\n",
1157 mp->mnt_stat.f_mntonname);
1158 if (mp->mnt_flag & MNT_FORCE) {
1159 uprintf("%s: mounting anyway; fsck afterwards\n",
1160 mp->mnt_stat.f_mntonname);
1161 } else {
1162 error = EINVAL;
1163 }
1164 #endif
1165 if (error) {
1166 /* XXX XXX must clean up the stuff immediately above */
1167 printf("lfs_mountfs: sorry, leaking some memory\n");
1168 goto out;
1169 }
1170 }
1171
1172 #ifdef LFS_EXTATTR
1173 /*
1174 * Initialize file-backed extended attributes for ULFS1 file
1175 * systems.
1176 *
1177 * XXX: why is this limited to ULFS1?
1178 */
1179 if (ump->um_fstype == ULFS1) {
1180 ulfs_extattr_uepm_init(&ump->um_extattr);
1181 }
1182 #endif
1183
1184 #ifdef LFS_KERNEL_RFW
1185 lfs_roll_forward(fs, mp, l);
1186 #endif
1187
1188 /* If writing, sb is not clean; record in case of immediate crash */
1189 if (!fs->lfs_ronly) {
1190 fs->lfs_pflags &= ~LFS_PF_CLEAN;
1191 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1192 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1193 }
1194
1195 /* Allow vget now that roll-forward is complete */
1196 fs->lfs_flags &= ~(LFS_NOTYET);
1197 wakeup(&fs->lfs_flags);
1198
1199 /*
1200 * Initialize the ifile cleaner info with information from
1201 * the superblock.
1202 */
1203 LFS_CLEANERINFO(cip, fs, bp);
1204 cip->clean = fs->lfs_nclean;
1205 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
1206 cip->avail = fs->lfs_avail;
1207 cip->bfree = fs->lfs_bfree;
1208 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1209
1210 /*
1211 * Mark the current segment as ACTIVE, since we're going to
1212 * be writing to it.
1213 */
1214 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_offset), bp);
1215 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1216 fs->lfs_nactive++;
1217 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, fs->lfs_offset), bp); /* Ifile */
1218
1219 /* Now that roll-forward is done, unlock the Ifile */
1220 vput(vp);
1221
1222 /* Start the pagedaemon-anticipating daemon */
1223 mutex_enter(&lfs_lock);
1224 if (lfs_writer_daemon == 0 && lfs_writer_lid == 0 &&
1225 kthread_create(PRI_BIO, 0, NULL,
1226 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1227 panic("fork lfs_writer");
1228 mutex_exit(&lfs_lock);
1229
1230 printf("WARNING: the log-structured file system is experimental\n"
1231 "WARNING: it may cause system crashes and/or corrupt data\n");
1232
1233 return (0);
1234
1235 out:
1236 if (bp)
1237 brelse(bp, 0);
1238 if (abp)
1239 brelse(abp, 0);
1240 if (ump) {
1241 kmem_free(ump->um_lfs, sizeof(struct lfs));
1242 kmem_free(ump, sizeof(*ump));
1243 mp->mnt_data = NULL;
1244 }
1245
1246 return (error);
1247 }
1248
1249 /*
1250 * unmount system call
1251 */
1252 int
1253 lfs_unmount(struct mount *mp, int mntflags)
1254 {
1255 struct lwp *l = curlwp;
1256 struct ulfsmount *ump;
1257 struct lfs *fs;
1258 int error, flags, ronly;
1259 vnode_t *vp;
1260
1261 flags = 0;
1262 if (mntflags & MNT_FORCE)
1263 flags |= FORCECLOSE;
1264
1265 ump = VFSTOULFS(mp);
1266 fs = ump->um_lfs;
1267
1268 /* Two checkpoints */
1269 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1270 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1271
1272 /* wake up the cleaner so it can die */
1273 /* XXX: shouldn't this be *after* the error cases below? */
1274 lfs_wakeup_cleaner(fs);
1275 mutex_enter(&lfs_lock);
1276 while (fs->lfs_sleepers)
1277 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
1278 &lfs_lock);
1279 mutex_exit(&lfs_lock);
1280
1281 #ifdef LFS_EXTATTR
1282 if (ump->um_fstype == ULFS1) {
1283 if (ump->um_extattr.uepm_flags & ULFS_EXTATTR_UEPM_STARTED) {
1284 ulfs_extattr_stop(mp, curlwp);
1285 }
1286 if (ump->um_extattr.uepm_flags & ULFS_EXTATTR_UEPM_INITIALIZED) {
1287 ulfs_extattr_uepm_destroy(&ump->um_extattr);
1288 }
1289 }
1290 #endif
1291 #ifdef LFS_QUOTA
1292 if ((error = lfsquota1_umount(mp, flags)) != 0)
1293 return (error);
1294 #endif
1295 #ifdef LFS_QUOTA2
1296 if ((error = lfsquota2_umount(mp, flags)) != 0)
1297 return (error);
1298 #endif
1299 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1300 return (error);
1301 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1302 return (error);
1303 vp = fs->lfs_ivnode;
1304 mutex_enter(vp->v_interlock);
1305 if (LIST_FIRST(&vp->v_dirtyblkhd))
1306 panic("lfs_unmount: still dirty blocks on ifile vnode");
1307 mutex_exit(vp->v_interlock);
1308
1309 /* Explicitly write the superblock, to update serial and pflags */
1310 fs->lfs_pflags |= LFS_PF_CLEAN;
1311 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1312 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1313 mutex_enter(&lfs_lock);
1314 while (fs->lfs_iocount)
1315 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1316 &lfs_lock);
1317 mutex_exit(&lfs_lock);
1318
1319 /* Finish with the Ifile, now that we're done with it */
1320 vgone(fs->lfs_ivnode);
1321
1322 ronly = !fs->lfs_ronly;
1323 if (ump->um_devvp->v_type != VBAD)
1324 spec_node_setmountedfs(ump->um_devvp, NULL);
1325 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1326 error = VOP_CLOSE(ump->um_devvp,
1327 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1328 vput(ump->um_devvp);
1329
1330 /* Complain about page leakage */
1331 if (fs->lfs_pages > 0)
1332 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1333 fs->lfs_pages, lfs_subsys_pages);
1334
1335 /* Free per-mount data structures */
1336 free(fs->lfs_ino_bitmap, M_SEGMENT);
1337 free(fs->lfs_suflags[0], M_SEGMENT);
1338 free(fs->lfs_suflags[1], M_SEGMENT);
1339 free(fs->lfs_suflags, M_SEGMENT);
1340 lfs_free_resblks(fs);
1341 cv_destroy(&fs->lfs_stopcv);
1342 rw_destroy(&fs->lfs_fraglock);
1343 rw_destroy(&fs->lfs_iflock);
1344
1345 kmem_free(fs, sizeof(struct lfs));
1346 kmem_free(ump, sizeof(*ump));
1347
1348 mp->mnt_data = NULL;
1349 mp->mnt_flag &= ~MNT_LOCAL;
1350 return (error);
1351 }
1352
1353 /*
1354 * Get file system statistics.
1355 *
1356 * NB: We don't lock to access the superblock here, because it's not
1357 * really that important if we get it wrong.
1358 */
1359 int
1360 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1361 {
1362 struct lfs *fs;
1363 struct ulfsmount *ump;
1364
1365 ump = VFSTOULFS(mp);
1366 fs = ump->um_lfs;
1367 if (fs->lfs_magic != LFS_MAGIC)
1368 panic("lfs_statvfs: magic");
1369
1370 sbp->f_bsize = fs->lfs_bsize;
1371 sbp->f_frsize = fs->lfs_fsize;
1372 sbp->f_iosize = fs->lfs_bsize;
1373 sbp->f_blocks = LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks;
1374
1375 sbp->f_bfree = LFS_EST_BFREE(fs);
1376 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1377 #if 0
1378 if (sbp->f_bfree < 0)
1379 sbp->f_bfree = 0;
1380 #endif
1381
1382 sbp->f_bresvd = LFS_EST_RSVD(fs);
1383 if (sbp->f_bfree > sbp->f_bresvd)
1384 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1385 else
1386 sbp->f_bavail = 0;
1387
1388 sbp->f_files = fs->lfs_bfree / lfs_btofsb(fs, fs->lfs_ibsize)
1389 * LFS_INOPB(fs);
1390 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1391 sbp->f_favail = sbp->f_ffree;
1392 sbp->f_fresvd = 0;
1393 copy_statvfs_info(sbp, mp);
1394 return (0);
1395 }
1396
1397 /*
1398 * Go through the disk queues to initiate sandbagged IO;
1399 * go through the inodes to write those that have been modified;
1400 * initiate the writing of the super block if it has been modified.
1401 *
1402 * Note: we are always called with the filesystem marked `MPBUSY'.
1403 */
1404 int
1405 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1406 {
1407 int error;
1408 struct lfs *fs;
1409
1410 fs = VFSTOULFS(mp)->um_lfs;
1411 if (fs->lfs_ronly)
1412 return 0;
1413
1414 /* Snapshots should not hose the syncer */
1415 /*
1416 * XXX Sync can block here anyway, since we don't have a very
1417 * XXX good idea of how much data is pending. If it's more
1418 * XXX than a segment and lfs_nextseg is close to the end of
1419 * XXX the log, we'll likely block.
1420 */
1421 mutex_enter(&lfs_lock);
1422 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1423 mutex_exit(&lfs_lock);
1424 return 0;
1425 }
1426 mutex_exit(&lfs_lock);
1427
1428 lfs_writer_enter(fs, "lfs_dirops");
1429
1430 /* All syncs must be checkpoints until roll-forward is implemented. */
1431 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1432 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1433 lfs_writer_leave(fs);
1434 #ifdef LFS_QUOTA
1435 lfs_qsync(mp);
1436 #endif
1437 return (error);
1438 }
1439
1440 /*
1441 * Look up an LFS dinode number to find its incore vnode. If not already
1442 * in core, read it in from the specified device. Return the inode locked.
1443 * Detection and handling of mount points must be done by the calling routine.
1444 */
1445 int
1446 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1447 {
1448 struct lfs *fs;
1449 struct ulfs1_dinode *dip;
1450 struct inode *ip;
1451 struct buf *bp;
1452 struct ifile *ifp;
1453 struct vnode *vp;
1454 struct ulfsmount *ump;
1455 daddr_t daddr;
1456 dev_t dev;
1457 int error, retries;
1458 struct timespec ts;
1459
1460 memset(&ts, 0, sizeof ts); /* XXX gcc */
1461
1462 ump = VFSTOULFS(mp);
1463 dev = ump->um_dev;
1464 fs = ump->um_lfs;
1465
1466 /*
1467 * If the filesystem is not completely mounted yet, suspend
1468 * any access requests (wait for roll-forward to complete).
1469 */
1470 mutex_enter(&lfs_lock);
1471 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1472 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1473 &lfs_lock);
1474 mutex_exit(&lfs_lock);
1475
1476 retry:
1477 if ((*vpp = ulfs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1478 return (0);
1479
1480 error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
1481 if (error) {
1482 *vpp = NULL;
1483 return (error);
1484 }
1485
1486 mutex_enter(&ulfs_hashlock);
1487 if (ulfs_ihashget(dev, ino, 0) != NULL) {
1488 mutex_exit(&ulfs_hashlock);
1489 ungetnewvnode(vp);
1490 goto retry;
1491 }
1492
1493 /* Translate the inode number to a disk address. */
1494 if (ino == LFS_IFILE_INUM)
1495 daddr = fs->lfs_idaddr;
1496 else {
1497 /* XXX bounds-check this too */
1498 LFS_IENTRY(ifp, fs, ino, bp);
1499 daddr = ifp->if_daddr;
1500 if (fs->lfs_version > 1) {
1501 ts.tv_sec = ifp->if_atime_sec;
1502 ts.tv_nsec = ifp->if_atime_nsec;
1503 }
1504
1505 brelse(bp, 0);
1506 if (daddr == LFS_UNUSED_DADDR) {
1507 *vpp = NULLVP;
1508 mutex_exit(&ulfs_hashlock);
1509 ungetnewvnode(vp);
1510 return (ENOENT);
1511 }
1512 }
1513
1514 /* Allocate/init new vnode/inode. */
1515 lfs_vcreate(mp, ino, vp);
1516
1517 /*
1518 * Put it onto its hash chain and lock it so that other requests for
1519 * this inode will block if they arrive while we are sleeping waiting
1520 * for old data structures to be purged or for the contents of the
1521 * disk portion of this inode to be read.
1522 */
1523 ip = VTOI(vp);
1524 ulfs_ihashins(ip);
1525 mutex_exit(&ulfs_hashlock);
1526
1527 /*
1528 * XXX
1529 * This may not need to be here, logically it should go down with
1530 * the i_devvp initialization.
1531 * Ask Kirk.
1532 */
1533 ip->i_lfs = ump->um_lfs;
1534
1535 /* Read in the disk contents for the inode, copy into the inode. */
1536 retries = 0;
1537 again:
1538 error = bread(ump->um_devvp, LFS_FSBTODB(fs, daddr),
1539 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1540 NOCRED, 0, &bp);
1541 if (error) {
1542 /*
1543 * The inode does not contain anything useful, so it would
1544 * be misleading to leave it on its hash chain. With mode
1545 * still zero, it will be unlinked and returned to the free
1546 * list by vput().
1547 */
1548 vput(vp);
1549 *vpp = NULL;
1550 return (error);
1551 }
1552
1553 dip = lfs_ifind(fs, ino, bp);
1554 if (dip == NULL) {
1555 /* Assume write has not completed yet; try again */
1556 brelse(bp, BC_INVAL);
1557 ++retries;
1558 if (retries > LFS_IFIND_RETRIES) {
1559 #ifdef DEBUG
1560 /* If the seglock is held look at the bpp to see
1561 what is there anyway */
1562 mutex_enter(&lfs_lock);
1563 if (fs->lfs_seglock > 0) {
1564 struct buf **bpp;
1565 struct ulfs1_dinode *dp;
1566 int i;
1567
1568 for (bpp = fs->lfs_sp->bpp;
1569 bpp != fs->lfs_sp->cbpp; ++bpp) {
1570 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1571 bpp != fs->lfs_sp->bpp) {
1572 /* Inode block */
1573 printf("lfs_vget: block 0x%" PRIx64 ": ",
1574 (*bpp)->b_blkno);
1575 dp = (struct ulfs1_dinode *)(*bpp)->b_data;
1576 for (i = 0; i < LFS_INOPB(fs); i++)
1577 if (dp[i].di_inumber)
1578 printf("%d ", dp[i].di_inumber);
1579 printf("\n");
1580 }
1581 }
1582 }
1583 mutex_exit(&lfs_lock);
1584 #endif /* DEBUG */
1585 panic("lfs_vget: dinode not found");
1586 }
1587 mutex_enter(&lfs_lock);
1588 if (fs->lfs_iocount) {
1589 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1590 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1591 "lfs ifind", 1, &lfs_lock);
1592 } else
1593 retries = LFS_IFIND_RETRIES;
1594 mutex_exit(&lfs_lock);
1595 goto again;
1596 }
1597 *ip->i_din.ffs1_din = *dip;
1598 brelse(bp, 0);
1599
1600 if (fs->lfs_version > 1) {
1601 ip->i_ffs1_atime = ts.tv_sec;
1602 ip->i_ffs1_atimensec = ts.tv_nsec;
1603 }
1604
1605 lfs_vinit(mp, &vp);
1606
1607 *vpp = vp;
1608
1609 KASSERT(VOP_ISLOCKED(vp));
1610
1611 return (0);
1612 }
1613
1614 /*
1615 * File handle to vnode
1616 */
1617 int
1618 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1619 {
1620 struct lfid lfh;
1621 struct buf *bp;
1622 IFILE *ifp;
1623 int32_t daddr;
1624 struct lfs *fs;
1625 vnode_t *vp;
1626
1627 if (fhp->fid_len != sizeof(struct lfid))
1628 return EINVAL;
1629
1630 memcpy(&lfh, fhp, sizeof(lfh));
1631 if (lfh.lfid_ino < LFS_IFILE_INUM)
1632 return ESTALE;
1633
1634 fs = VFSTOULFS(mp)->um_lfs;
1635 if (lfh.lfid_ident != fs->lfs_ident)
1636 return ESTALE;
1637
1638 if (lfh.lfid_ino >
1639 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1640 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1641 return ESTALE;
1642
1643 mutex_enter(&ulfs_ihash_lock);
1644 vp = ulfs_ihashlookup(VFSTOULFS(mp)->um_dev, lfh.lfid_ino);
1645 mutex_exit(&ulfs_ihash_lock);
1646 if (vp == NULL) {
1647 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1648 daddr = ifp->if_daddr;
1649 brelse(bp, 0);
1650 if (daddr == LFS_UNUSED_DADDR)
1651 return ESTALE;
1652 }
1653
1654 return (ulfs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1655 }
1656
1657 /*
1658 * Vnode pointer to File handle
1659 */
1660 /* ARGSUSED */
1661 int
1662 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1663 {
1664 struct inode *ip;
1665 struct lfid lfh;
1666
1667 if (*fh_size < sizeof(struct lfid)) {
1668 *fh_size = sizeof(struct lfid);
1669 return E2BIG;
1670 }
1671 *fh_size = sizeof(struct lfid);
1672 ip = VTOI(vp);
1673 memset(&lfh, 0, sizeof(lfh));
1674 lfh.lfid_len = sizeof(struct lfid);
1675 lfh.lfid_ino = ip->i_number;
1676 lfh.lfid_gen = ip->i_gen;
1677 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1678 memcpy(fhp, &lfh, sizeof(lfh));
1679 return (0);
1680 }
1681
1682 /*
1683 * ulfs_bmaparray callback function for writing.
1684 *
1685 * Since blocks will be written to the new segment anyway,
1686 * we don't care about current daddr of them.
1687 */
1688 static bool
1689 lfs_issequential_hole(const struct lfs *fs,
1690 daddr_t daddr0, daddr_t daddr1)
1691 {
1692 (void)fs; /* not used */
1693
1694 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1695 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1696
1697 KASSERT(daddr0 == UNWRITTEN ||
1698 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1699 KASSERT(daddr1 == UNWRITTEN ||
1700 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1701
1702 /* NOTE: all we want to know here is 'hole or not'. */
1703 /* NOTE: UNASSIGNED is converted to 0 by ulfs_bmaparray. */
1704
1705 /*
1706 * treat UNWRITTENs and all resident blocks as 'contiguous'
1707 */
1708 if (daddr0 != 0 && daddr1 != 0)
1709 return true;
1710
1711 /*
1712 * both are in hole?
1713 */
1714 if (daddr0 == 0 && daddr1 == 0)
1715 return true; /* all holes are 'contiguous' for us. */
1716
1717 return false;
1718 }
1719
1720 /*
1721 * lfs_gop_write functions exactly like genfs_gop_write, except that
1722 * (1) it requires the seglock to be held by its caller, and sp->fip
1723 * to be properly initialized (it will return without re-initializing
1724 * sp->fip, and without calling lfs_writeseg).
1725 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1726 * to determine how large a block it can write at once (though it does
1727 * still use VOP_BMAP to find holes in the file);
1728 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1729 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1730 * now have clusters of clusters, ick.)
1731 */
1732 static int
1733 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1734 int flags)
1735 {
1736 int i, error, run, haveeof = 0;
1737 int fs_bshift;
1738 vaddr_t kva;
1739 off_t eof, offset, startoffset = 0;
1740 size_t bytes, iobytes, skipbytes;
1741 bool async = (flags & PGO_SYNCIO) == 0;
1742 daddr_t lbn, blkno;
1743 struct vm_page *pg;
1744 struct buf *mbp, *bp;
1745 struct vnode *devvp = VTOI(vp)->i_devvp;
1746 struct inode *ip = VTOI(vp);
1747 struct lfs *fs = ip->i_lfs;
1748 struct segment *sp = fs->lfs_sp;
1749 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1750 const char * failreason = NULL;
1751
1752 ASSERT_SEGLOCK(fs);
1753
1754 /* The Ifile lives in the buffer cache */
1755 KASSERT(vp != fs->lfs_ivnode);
1756
1757 /*
1758 * We don't want to fill the disk before the cleaner has a chance
1759 * to make room for us. If we're in danger of doing that, fail
1760 * with EAGAIN. The caller will have to notice this, unlock
1761 * so the cleaner can run, relock and try again.
1762 *
1763 * We must write everything, however, if our vnode is being
1764 * reclaimed.
1765 */
1766 if (LFS_STARVED_FOR_SEGS(fs) && !(vp->v_iflag & VI_XLOCK)) {
1767 failreason = "Starved for segs and not flushing vp";
1768 goto tryagain;
1769 }
1770
1771 /*
1772 * Sometimes things slip past the filters in lfs_putpages,
1773 * and the pagedaemon tries to write pages---problem is
1774 * that the pagedaemon never acquires the segment lock.
1775 *
1776 * Alternatively, pages that were clean when we called
1777 * genfs_putpages may have become dirty in the meantime. In this
1778 * case the segment header is not properly set up for blocks
1779 * to be added to it.
1780 *
1781 * Unbusy and unclean the pages, and put them on the ACTIVE
1782 * queue under the hypothesis that they couldn't have got here
1783 * unless they were modified *quite* recently.
1784 *
1785 * XXXUBC that last statement is an oversimplification of course.
1786 */
1787 if (!LFS_SEGLOCK_HELD(fs)) {
1788 failreason = "Seglock not held";
1789 goto tryagain;
1790 }
1791 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1792 failreason = "Inode with no_gop_write";
1793 goto tryagain;
1794 }
1795 if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1796 failreason = "Bad page offset";
1797 goto tryagain;
1798 }
1799
1800 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1801 vp, pgs, npages, flags);
1802
1803 GOP_SIZE(vp, vp->v_size, &eof, 0);
1804 haveeof = 1;
1805
1806 if (vp->v_type == VREG)
1807 fs_bshift = vp->v_mount->mnt_fs_bshift;
1808 else
1809 fs_bshift = DEV_BSHIFT;
1810 error = 0;
1811 pg = pgs[0];
1812 startoffset = pg->offset;
1813 KASSERT(eof >= 0);
1814
1815 if (startoffset >= eof) {
1816 failreason = "Offset beyond EOF";
1817 goto tryagain;
1818 } else
1819 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1820 skipbytes = 0;
1821
1822 KASSERT(bytes != 0);
1823
1824 /* Swap PG_DELWRI for PG_PAGEOUT */
1825 for (i = 0; i < npages; i++) {
1826 if (pgs[i]->flags & PG_DELWRI) {
1827 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1828 pgs[i]->flags &= ~PG_DELWRI;
1829 pgs[i]->flags |= PG_PAGEOUT;
1830 uvm_pageout_start(1);
1831 mutex_enter(vp->v_interlock);
1832 mutex_enter(&uvm_pageqlock);
1833 uvm_pageunwire(pgs[i]);
1834 mutex_exit(&uvm_pageqlock);
1835 mutex_exit(vp->v_interlock);
1836 }
1837 }
1838
1839 /*
1840 * Check to make sure we're starting on a block boundary.
1841 * We'll check later to make sure we always write entire
1842 * blocks (or fragments).
1843 */
1844 if (startoffset & fs->lfs_bmask)
1845 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1846 startoffset, fs->lfs_bmask,
1847 startoffset & fs->lfs_bmask);
1848 KASSERT((startoffset & fs->lfs_bmask) == 0);
1849 if (bytes & fs->lfs_ffmask) {
1850 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1851 panic("lfs_gop_write: non-integer blocks");
1852 }
1853
1854 /*
1855 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1856 * If we would, write what we have and try again. If we don't
1857 * have anything to write, we'll have to sleep.
1858 */
1859 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1860 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1861 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1862 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1863 #if 0
1864 " with nfinfo=%d at offset 0x%x\n",
1865 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1866 (unsigned)fs->lfs_offset));
1867 #endif
1868 lfs_updatemeta(sp);
1869 lfs_release_finfo(fs);
1870 (void) lfs_writeseg(fs, sp);
1871
1872 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1873
1874 /*
1875 * Having given up all of the pager_map we were holding,
1876 * we can now wait for aiodoned to reclaim it for us
1877 * without fear of deadlock.
1878 */
1879 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1880 UVMPAGER_MAPIN_WAITOK);
1881 }
1882
1883 mbp = getiobuf(NULL, true);
1884 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1885 vp, mbp, vp->v_numoutput, bytes);
1886 mbp->b_bufsize = npages << PAGE_SHIFT;
1887 mbp->b_data = (void *)kva;
1888 mbp->b_resid = mbp->b_bcount = bytes;
1889 mbp->b_cflags = BC_BUSY|BC_AGE;
1890 mbp->b_iodone = uvm_aio_biodone;
1891
1892 bp = NULL;
1893 for (offset = startoffset;
1894 bytes > 0;
1895 offset += iobytes, bytes -= iobytes) {
1896 lbn = offset >> fs_bshift;
1897 error = ulfs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1898 lfs_issequential_hole);
1899 if (error) {
1900 UVMHIST_LOG(ubchist, "ulfs_bmaparray() -> %d",
1901 error,0,0,0);
1902 skipbytes += bytes;
1903 bytes = 0;
1904 break;
1905 }
1906
1907 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1908 bytes);
1909 if (blkno == (daddr_t)-1) {
1910 skipbytes += iobytes;
1911 continue;
1912 }
1913
1914 /*
1915 * Discover how much we can really pack into this buffer.
1916 */
1917 /* If no room in the current segment, finish it up */
1918 if (sp->sum_bytes_left < sizeof(int32_t) ||
1919 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1920 int vers;
1921
1922 lfs_updatemeta(sp);
1923 vers = sp->fip->fi_version;
1924 lfs_release_finfo(fs);
1925 (void) lfs_writeseg(fs, sp);
1926
1927 lfs_acquire_finfo(fs, ip->i_number, vers);
1928 }
1929 /* Check both for space in segment and space in segsum */
1930 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1931 << fs_bshift);
1932 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1933 << fs_bshift);
1934 KASSERT(iobytes > 0);
1935
1936 /* if it's really one i/o, don't make a second buf */
1937 if (offset == startoffset && iobytes == bytes) {
1938 bp = mbp;
1939 /*
1940 * All the LFS output is done by the segwriter. It
1941 * will increment numoutput by one for all the bufs it
1942 * recieves. However this buffer needs one extra to
1943 * account for aiodone.
1944 */
1945 mutex_enter(vp->v_interlock);
1946 vp->v_numoutput++;
1947 mutex_exit(vp->v_interlock);
1948 } else {
1949 bp = getiobuf(NULL, true);
1950 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1951 vp, bp, vp->v_numoutput, 0);
1952 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1953 /*
1954 * LFS doesn't like async I/O here, dies with
1955 * an assert in lfs_bwrite(). Is that assert
1956 * valid? I retained non-async behaviour when
1957 * converted this to use nestiobuf --pooka
1958 */
1959 bp->b_flags &= ~B_ASYNC;
1960 }
1961
1962 /* XXX This is silly ... is this necessary? */
1963 mutex_enter(&bufcache_lock);
1964 mutex_enter(vp->v_interlock);
1965 bgetvp(vp, bp);
1966 mutex_exit(vp->v_interlock);
1967 mutex_exit(&bufcache_lock);
1968
1969 bp->b_lblkno = lfs_lblkno(fs, offset);
1970 bp->b_private = mbp;
1971 if (devvp->v_type == VBLK) {
1972 bp->b_dev = devvp->v_rdev;
1973 }
1974 VOP_BWRITE(bp->b_vp, bp);
1975 while (lfs_gatherblock(sp, bp, NULL))
1976 continue;
1977 }
1978
1979 nestiobuf_done(mbp, skipbytes, error);
1980 if (skipbytes) {
1981 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1982 }
1983 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1984
1985 if (!async) {
1986 /* Start a segment write. */
1987 UVMHIST_LOG(ubchist, "flushing", 0,0,0,0);
1988 mutex_enter(&lfs_lock);
1989 lfs_flush(fs, 0, 1);
1990 mutex_exit(&lfs_lock);
1991 }
1992
1993 if ((sp->seg_flags & SEGM_SINGLE) && fs->lfs_curseg != fs->lfs_startseg)
1994 return EAGAIN;
1995
1996 return (0);
1997
1998 tryagain:
1999 /*
2000 * We can't write the pages, for whatever reason.
2001 * Clean up after ourselves, and make the caller try again.
2002 */
2003 mutex_enter(vp->v_interlock);
2004
2005 /* Tell why we're here, if we know */
2006 if (failreason != NULL) {
2007 DLOG((DLOG_PAGE, "lfs_gop_write: %s\n", failreason));
2008 }
2009 if (haveeof && startoffset >= eof) {
2010 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
2011 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
2012 pgs[0]->offset, eof, npages));
2013 }
2014
2015 mutex_enter(&uvm_pageqlock);
2016 for (i = 0; i < npages; i++) {
2017 pg = pgs[i];
2018
2019 if (pg->flags & PG_PAGEOUT)
2020 uvm_pageout_done(1);
2021 if (pg->flags & PG_DELWRI) {
2022 uvm_pageunwire(pg);
2023 }
2024 uvm_pageactivate(pg);
2025 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
2026 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
2027 vp, pg->offset));
2028 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
2029 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
2030 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
2031 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
2032 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
2033 pg->wire_count));
2034 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
2035 pg->loan_count));
2036 }
2037 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
2038 uvm_page_unbusy(pgs, npages);
2039 mutex_exit(&uvm_pageqlock);
2040 mutex_exit(vp->v_interlock);
2041 return EAGAIN;
2042 }
2043
2044 /*
2045 * finish vnode/inode initialization.
2046 * used by lfs_vget and lfs_fastvget.
2047 */
2048 void
2049 lfs_vinit(struct mount *mp, struct vnode **vpp)
2050 {
2051 struct vnode *vp = *vpp;
2052 struct inode *ip = VTOI(vp);
2053 struct ulfsmount *ump = VFSTOULFS(mp);
2054 struct lfs *fs = ump->um_lfs;
2055 int i;
2056
2057 ip->i_mode = ip->i_ffs1_mode;
2058 ip->i_nlink = ip->i_ffs1_nlink;
2059 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
2060 ip->i_flags = ip->i_ffs1_flags;
2061 ip->i_gen = ip->i_ffs1_gen;
2062 ip->i_uid = ip->i_ffs1_uid;
2063 ip->i_gid = ip->i_ffs1_gid;
2064
2065 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
2066 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
2067
2068 /*
2069 * Initialize the vnode from the inode, check for aliases. In all
2070 * cases re-init ip, the underlying vnode/inode may have changed.
2071 */
2072 ulfs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
2073 ip = VTOI(vp);
2074
2075 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
2076 if (vp->v_type != VLNK || ip->i_size >= ip->i_lfs->um_maxsymlinklen) {
2077 #ifdef DEBUG
2078 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
2079 i < ULFS_NDADDR; i++) {
2080 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
2081 i == 0)
2082 continue;
2083 if (ip->i_ffs1_db[i] != 0) {
2084 lfs_dump_dinode(ip->i_din.ffs1_din);
2085 panic("inconsistent inode (direct)");
2086 }
2087 }
2088 for ( ; i < ULFS_NDADDR + ULFS_NIADDR; i++) {
2089 if (ip->i_ffs1_ib[i - ULFS_NDADDR] != 0) {
2090 lfs_dump_dinode(ip->i_din.ffs1_din);
2091 panic("inconsistent inode (indirect)");
2092 }
2093 }
2094 #endif /* DEBUG */
2095 for (i = 0; i < ULFS_NDADDR; i++)
2096 if (ip->i_ffs1_db[i] != 0)
2097 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
2098 }
2099
2100 #ifdef DIAGNOSTIC
2101 if (vp->v_type == VNON) {
2102 # ifdef DEBUG
2103 lfs_dump_dinode(ip->i_din.ffs1_din);
2104 # endif
2105 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
2106 (unsigned long long)ip->i_number,
2107 (ip->i_mode & LFS_IFMT) >> 12);
2108 }
2109 #endif /* DIAGNOSTIC */
2110
2111 /*
2112 * Finish inode initialization now that aliasing has been resolved.
2113 */
2114
2115 ip->i_devvp = ump->um_devvp;
2116 vref(ip->i_devvp);
2117 #if defined(LFS_QUOTA) || defined(LFS_QUOTA2)
2118 ulfsquota_init(ip);
2119 #endif
2120 genfs_node_init(vp, &lfs_genfsops);
2121 uvm_vnp_setsize(vp, ip->i_size);
2122
2123 /* Initialize hiblk from file size */
2124 ip->i_lfs_hiblk = lfs_lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
2125
2126 *vpp = vp;
2127 }
2128
2129 /*
2130 * Resize the filesystem to contain the specified number of segments.
2131 */
2132 int
2133 lfs_resize_fs(struct lfs *fs, int newnsegs)
2134 {
2135 SEGUSE *sup;
2136 struct buf *bp, *obp;
2137 daddr_t olast, nlast, ilast, noff, start, end;
2138 struct vnode *ivp;
2139 struct inode *ip;
2140 int error, badnews, inc, oldnsegs;
2141 int sbbytes, csbbytes, gain, cgain;
2142 int i;
2143
2144 /* Only support v2 and up */
2145 if (fs->lfs_version < 2)
2146 return EOPNOTSUPP;
2147
2148 /* If we're doing nothing, do it fast */
2149 oldnsegs = fs->lfs_nseg;
2150 if (newnsegs == oldnsegs)
2151 return 0;
2152
2153 /* We always have to have two superblocks */
2154 if (newnsegs <= lfs_dtosn(fs, fs->lfs_sboffs[1]))
2155 return EFBIG;
2156
2157 ivp = fs->lfs_ivnode;
2158 ip = VTOI(ivp);
2159 error = 0;
2160
2161 /* Take the segment lock so no one else calls lfs_newseg() */
2162 lfs_seglock(fs, SEGM_PROT);
2163
2164 /*
2165 * Make sure the segments we're going to be losing, if any,
2166 * are in fact empty. We hold the seglock, so their status
2167 * cannot change underneath us. Count the superblocks we lose,
2168 * while we're at it.
2169 */
2170 sbbytes = csbbytes = 0;
2171 cgain = 0;
2172 for (i = newnsegs; i < oldnsegs; i++) {
2173 LFS_SEGENTRY(sup, fs, i, bp);
2174 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
2175 if (sup->su_flags & SEGUSE_SUPERBLOCK)
2176 sbbytes += LFS_SBPAD;
2177 if (!(sup->su_flags & SEGUSE_DIRTY)) {
2178 ++cgain;
2179 if (sup->su_flags & SEGUSE_SUPERBLOCK)
2180 csbbytes += LFS_SBPAD;
2181 }
2182 brelse(bp, 0);
2183 if (badnews) {
2184 error = EBUSY;
2185 goto out;
2186 }
2187 }
2188
2189 /* Note old and new segment table endpoints, and old ifile size */
2190 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
2191 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
2192 ilast = ivp->v_size >> fs->lfs_bshift;
2193 noff = nlast - olast;
2194
2195 /*
2196 * Make sure no one can use the Ifile while we change it around.
2197 * Even after taking the iflock we need to make sure no one still
2198 * is holding Ifile buffers, so we get each one, to drain them.
2199 * (XXX this could be done better.)
2200 */
2201 rw_enter(&fs->lfs_iflock, RW_WRITER);
2202 for (i = 0; i < ilast; i++) {
2203 /* XXX what to do if bread fails? */
2204 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
2205 brelse(bp, 0);
2206 }
2207
2208 /* Allocate new Ifile blocks */
2209 for (i = ilast; i < ilast + noff; i++) {
2210 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
2211 &bp) != 0)
2212 panic("balloc extending ifile");
2213 memset(bp->b_data, 0, fs->lfs_bsize);
2214 VOP_BWRITE(bp->b_vp, bp);
2215 }
2216
2217 /* Register new ifile size */
2218 ip->i_size += noff * fs->lfs_bsize;
2219 ip->i_ffs1_size = ip->i_size;
2220 uvm_vnp_setsize(ivp, ip->i_size);
2221
2222 /* Copy the inode table to its new position */
2223 if (noff != 0) {
2224 if (noff < 0) {
2225 start = nlast;
2226 end = ilast + noff;
2227 inc = 1;
2228 } else {
2229 start = ilast + noff - 1;
2230 end = nlast - 1;
2231 inc = -1;
2232 }
2233 for (i = start; i != end; i += inc) {
2234 if (bread(ivp, i, fs->lfs_bsize, NOCRED,
2235 B_MODIFY, &bp) != 0)
2236 panic("resize: bread dst blk failed");
2237 if (bread(ivp, i - noff, fs->lfs_bsize,
2238 NOCRED, 0, &obp))
2239 panic("resize: bread src blk failed");
2240 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2241 VOP_BWRITE(bp->b_vp, bp);
2242 brelse(obp, 0);
2243 }
2244 }
2245
2246 /* If we are expanding, write the new empty SEGUSE entries */
2247 if (newnsegs > oldnsegs) {
2248 for (i = oldnsegs; i < newnsegs; i++) {
2249 if ((error = bread(ivp, i / fs->lfs_sepb +
2250 fs->lfs_cleansz, fs->lfs_bsize,
2251 NOCRED, B_MODIFY, &bp)) != 0)
2252 panic("lfs: ifile read: %d", error);
2253 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2254 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2255 memset(sup, 0, sizeof(*sup));
2256 i++;
2257 }
2258 VOP_BWRITE(bp->b_vp, bp);
2259 }
2260 }
2261
2262 /* Zero out unused superblock offsets */
2263 for (i = 2; i < LFS_MAXNUMSB; i++)
2264 if (lfs_dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2265 fs->lfs_sboffs[i] = 0x0;
2266
2267 /*
2268 * Correct superblock entries that depend on fs size.
2269 * The computations of these are as follows:
2270 *
2271 * size = lfs_segtod(fs, nseg)
2272 * dsize = lfs_segtod(fs, nseg - minfreeseg) - lfs_btofsb(#super * LFS_SBPAD)
2273 * bfree = dsize - lfs_btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2274 * avail = lfs_segtod(fs, nclean) - lfs_btofsb(#clean_super * LFS_SBPAD)
2275 * + (lfs_segtod(fs, 1) - (offset - curseg))
2276 * - lfs_segtod(fs, minfreeseg - (minfreeseg / 2))
2277 *
2278 * XXX - we should probably adjust minfreeseg as well.
2279 */
2280 gain = (newnsegs - oldnsegs);
2281 fs->lfs_nseg = newnsegs;
2282 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2283 fs->lfs_size += gain * lfs_btofsb(fs, fs->lfs_ssize);
2284 fs->lfs_dsize += gain * lfs_btofsb(fs, fs->lfs_ssize) - lfs_btofsb(fs, sbbytes);
2285 fs->lfs_bfree += gain * lfs_btofsb(fs, fs->lfs_ssize) - lfs_btofsb(fs, sbbytes)
2286 - gain * lfs_btofsb(fs, fs->lfs_bsize / 2);
2287 if (gain > 0) {
2288 fs->lfs_nclean += gain;
2289 fs->lfs_avail += gain * lfs_btofsb(fs, fs->lfs_ssize);
2290 } else {
2291 fs->lfs_nclean -= cgain;
2292 fs->lfs_avail -= cgain * lfs_btofsb(fs, fs->lfs_ssize) -
2293 lfs_btofsb(fs, csbbytes);
2294 }
2295
2296 /* Resize segment flag cache */
2297 fs->lfs_suflags[0] = realloc(fs->lfs_suflags[0],
2298 fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK);
2299 fs->lfs_suflags[1] = realloc(fs->lfs_suflags[1],
2300 fs->lfs_nseg * sizeof(u_int32_t), M_SEGMENT, M_WAITOK);
2301 for (i = oldnsegs; i < newnsegs; i++)
2302 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2303
2304 /* Truncate Ifile if necessary */
2305 if (noff < 0)
2306 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2307 NOCRED);
2308
2309 /* Update cleaner info so the cleaner can die */
2310 /* XXX what to do if bread fails? */
2311 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
2312 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2313 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2314 VOP_BWRITE(bp->b_vp, bp);
2315
2316 /* Let Ifile accesses proceed */
2317 rw_exit(&fs->lfs_iflock);
2318
2319 out:
2320 lfs_segunlock(fs);
2321 return error;
2322 }
2323
2324 /*
2325 * Extended attribute dispatch
2326 */
2327 static int
2328 lfs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2329 int attrnamespace, const char *attrname)
2330 {
2331 #ifdef LFS_EXTATTR
2332 struct ulfsmount *ump;
2333
2334 ump = VFSTOULFS(mp);
2335 if (ump->um_fstype == ULFS1) {
2336 return ulfs_extattrctl(mp, cmd, vp, attrnamespace, attrname);
2337 }
2338 #endif
2339 return vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname);
2340 }
2341