lfs_vfsops.c revision 1.372 1 /* $NetBSD: lfs_vfsops.c,v 1.372 2020/02/23 08:40:49 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant (at) hhhh.org>.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.372 2020/02/23 08:40:49 riastradh Exp $");
65
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/file.h>
82 #include <sys/disklabel.h>
83 #include <sys/ioctl.h>
84 #include <sys/errno.h>
85 #include <sys/malloc.h>
86 #include <sys/pool.h>
87 #include <sys/socket.h>
88 #include <sys/syslog.h>
89 #include <uvm/uvm_extern.h>
90 #include <sys/sysctl.h>
91 #include <sys/conf.h>
92 #include <sys/kauth.h>
93 #include <sys/module.h>
94 #include <sys/syscallvar.h>
95 #include <sys/syscall.h>
96 #include <sys/syscallargs.h>
97
98 #include <miscfs/specfs/specdev.h>
99
100 #include <ufs/lfs/ulfs_quotacommon.h>
101 #include <ufs/lfs/ulfs_inode.h>
102 #include <ufs/lfs/ulfsmount.h>
103 #include <ufs/lfs/ulfs_bswap.h>
104 #include <ufs/lfs/ulfs_extern.h>
105
106 #include <uvm/uvm.h>
107 #include <uvm/uvm_stat.h>
108 #include <uvm/uvm_pager.h>
109 #include <uvm/uvm_pdaemon.h>
110
111 #include <ufs/lfs/lfs.h>
112 #include <ufs/lfs/lfs_accessors.h>
113 #include <ufs/lfs/lfs_kernel.h>
114 #include <ufs/lfs/lfs_extern.h>
115
116 #include <miscfs/genfs/genfs.h>
117 #include <miscfs/genfs/genfs_node.h>
118
119 MODULE(MODULE_CLASS_VFS, lfs, NULL);
120
121 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
122 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
123 static int lfs_flushfiles(struct mount *, int);
124
125 static struct sysctllog *lfs_sysctl_log;
126
127 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
128 extern const struct vnodeopv_desc lfs_specop_opv_desc;
129 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
130
131 struct lwp * lfs_writer_daemon = NULL;
132 kcondvar_t lfs_writerd_cv;
133
134 int lfs_do_flush = 0;
135 #ifdef LFS_KERNEL_RFW
136 int lfs_do_rfw = 0;
137 #endif
138
139 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
140 &lfs_vnodeop_opv_desc,
141 &lfs_specop_opv_desc,
142 &lfs_fifoop_opv_desc,
143 NULL,
144 };
145
146 struct vfsops lfs_vfsops = {
147 .vfs_name = MOUNT_LFS,
148 .vfs_min_mount_data = sizeof (struct ulfs_args),
149 .vfs_mount = lfs_mount,
150 .vfs_start = ulfs_start,
151 .vfs_unmount = lfs_unmount,
152 .vfs_root = ulfs_root,
153 .vfs_quotactl = ulfs_quotactl,
154 .vfs_statvfs = lfs_statvfs,
155 .vfs_sync = lfs_sync,
156 .vfs_vget = lfs_vget,
157 .vfs_loadvnode = lfs_loadvnode,
158 .vfs_newvnode = lfs_newvnode,
159 .vfs_fhtovp = lfs_fhtovp,
160 .vfs_vptofh = lfs_vptofh,
161 .vfs_init = lfs_init,
162 .vfs_reinit = lfs_reinit,
163 .vfs_done = lfs_done,
164 .vfs_mountroot = lfs_mountroot,
165 .vfs_snapshot = (void *)eopnotsupp,
166 .vfs_extattrctl = lfs_extattrctl,
167 .vfs_suspendctl = genfs_suspendctl,
168 .vfs_renamelock_enter = genfs_renamelock_enter,
169 .vfs_renamelock_exit = genfs_renamelock_exit,
170 .vfs_fsync = (void *)eopnotsupp,
171 .vfs_opv_descs = lfs_vnodeopv_descs
172 };
173
174 const struct genfs_ops lfs_genfsops = {
175 .gop_size = lfs_gop_size,
176 .gop_alloc = ulfs_gop_alloc,
177 .gop_write = lfs_gop_write,
178 .gop_markupdate = ulfs_gop_markupdate,
179 .gop_putrange = genfs_gop_putrange,
180 };
181
182 struct shortlong {
183 const char *sname;
184 const char *lname;
185 };
186
187 static int
188 sysctl_lfs_dostats(SYSCTLFN_ARGS)
189 {
190 extern struct lfs_stats lfs_stats;
191 extern int lfs_dostats;
192 int error;
193
194 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
195 if (error || newp == NULL)
196 return (error);
197
198 if (lfs_dostats == 0)
199 memset(&lfs_stats, 0, sizeof(lfs_stats));
200
201 return (0);
202 }
203
204 static void
205 lfs_sysctl_setup(struct sysctllog **clog)
206 {
207 int i;
208 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
209 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
210 #ifdef DEBUG
211 extern int lfs_debug_log_subsys[DLOG_MAX];
212 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
213 { "rollforward", "Debug roll-forward code" },
214 { "alloc", "Debug inode allocation and free list" },
215 { "avail", "Debug space-available-now accounting" },
216 { "flush", "Debug flush triggers" },
217 { "lockedlist", "Debug locked list accounting" },
218 { "vnode_verbose", "Verbose per-vnode-written debugging" },
219 { "vnode", "Debug vnode use during segment write" },
220 { "segment", "Debug segment writing" },
221 { "seguse", "Debug segment used-bytes accounting" },
222 { "cleaner", "Debug cleaning routines" },
223 { "mount", "Debug mount/unmount routines" },
224 { "pagecache", "Debug UBC interactions" },
225 { "dirop", "Debug directory-operation accounting" },
226 { "malloc", "Debug private malloc accounting" },
227 };
228 #endif /* DEBUG */
229 struct shortlong stat_names[] = { /* Must match lfs.h! */
230 { "segsused", "Number of new segments allocated" },
231 { "psegwrites", "Number of partial-segment writes" },
232 { "psyncwrites", "Number of synchronous partial-segment"
233 " writes" },
234 { "pcleanwrites", "Number of partial-segment writes by the"
235 " cleaner" },
236 { "blocktot", "Number of blocks written" },
237 { "cleanblocks", "Number of blocks written by the cleaner" },
238 { "ncheckpoints", "Number of checkpoints made" },
239 { "nwrites", "Number of whole writes" },
240 { "nsync_writes", "Number of synchronous writes" },
241 { "wait_exceeded", "Number of times writer waited for"
242 " cleaner" },
243 { "write_exceeded", "Number of times writer invoked flush" },
244 { "flush_invoked", "Number of times flush was invoked" },
245 { "vflush_invoked", "Number of time vflush was called" },
246 { "clean_inlocked", "Number of vnodes skipped for being dead" },
247 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
248 { "segs_reclaimed", "Number of segments reclaimed" },
249 };
250
251 sysctl_createv(clog, 0, NULL, NULL,
252 CTLFLAG_PERMANENT,
253 CTLTYPE_NODE, "lfs",
254 SYSCTL_DESCR("Log-structured file system"),
255 NULL, 0, NULL, 0,
256 CTL_VFS, 5, CTL_EOL);
257 /*
258 * XXX the "5" above could be dynamic, thereby eliminating one
259 * more instance of the "number to vfs" mapping problem, but
260 * "5" is the order as taken from sys/mount.h
261 */
262
263 sysctl_createv(clog, 0, NULL, NULL,
264 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
265 CTLTYPE_INT, "flushindir", NULL,
266 NULL, 0, &lfs_writeindir, 0,
267 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
268 sysctl_createv(clog, 0, NULL, NULL,
269 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
270 CTLTYPE_INT, "clean_vnhead", NULL,
271 NULL, 0, &lfs_clean_vnhead, 0,
272 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
273 sysctl_createv(clog, 0, NULL, NULL,
274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
275 CTLTYPE_INT, "dostats",
276 SYSCTL_DESCR("Maintain statistics on LFS operations"),
277 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
278 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
279 sysctl_createv(clog, 0, NULL, NULL,
280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
281 CTLTYPE_INT, "pagetrip",
282 SYSCTL_DESCR("How many dirty pages in fs triggers"
283 " a flush"),
284 NULL, 0, &lfs_fs_pagetrip, 0,
285 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
286 sysctl_createv(clog, 0, NULL, NULL,
287 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
288 CTLTYPE_INT, "ignore_lazy_sync",
289 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
290 NULL, 0, &lfs_ignore_lazy_sync, 0,
291 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
292 #ifdef LFS_KERNEL_RFW
293 sysctl_createv(clog, 0, NULL, NULL,
294 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
295 CTLTYPE_INT, "rfw",
296 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
297 NULL, 0, &lfs_do_rfw, 0,
298 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
299 #endif
300
301 sysctl_createv(clog, 0, NULL, NULL,
302 CTLFLAG_PERMANENT,
303 CTLTYPE_NODE, "stats",
304 SYSCTL_DESCR("Debugging options"),
305 NULL, 0, NULL, 0,
306 CTL_VFS, 5, LFS_STATS, CTL_EOL);
307 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
308 sysctl_createv(clog, 0, NULL, NULL,
309 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
310 CTLTYPE_INT, stat_names[i].sname,
311 SYSCTL_DESCR(stat_names[i].lname),
312 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
313 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
314 }
315
316 #ifdef DEBUG
317 sysctl_createv(clog, 0, NULL, NULL,
318 CTLFLAG_PERMANENT,
319 CTLTYPE_NODE, "debug",
320 SYSCTL_DESCR("Debugging options"),
321 NULL, 0, NULL, 0,
322 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
323 for (i = 0; i < DLOG_MAX; i++) {
324 sysctl_createv(clog, 0, NULL, NULL,
325 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
326 CTLTYPE_INT, dlog_names[i].sname,
327 SYSCTL_DESCR(dlog_names[i].lname),
328 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
329 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
330 }
331 #endif
332 }
333
334 /* old cleaner syscall interface. see VOP_FCNTL() */
335 static const struct syscall_package lfs_syscalls[] = {
336 { SYS_lfs_bmapv, 0, (sy_call_t *)sys_lfs_bmapv },
337 { SYS_lfs_markv, 0, (sy_call_t *)sys_lfs_markv },
338 { SYS___lfs_segwait50, 0, (sy_call_t *)sys___lfs_segwait50 },
339 { SYS_lfs_segclean, 0, (sy_call_t *)sys_lfs_segclean },
340 { 0, 0, NULL },
341 };
342
343 static int
344 lfs_modcmd(modcmd_t cmd, void *arg)
345 {
346 int error;
347
348 switch (cmd) {
349 case MODULE_CMD_INIT:
350 error = syscall_establish(NULL, lfs_syscalls);
351 if (error)
352 return error;
353 error = vfs_attach(&lfs_vfsops);
354 if (error != 0) {
355 syscall_disestablish(NULL, lfs_syscalls);
356 break;
357 }
358 lfs_sysctl_setup(&lfs_sysctl_log);
359 cv_init(&lfs_allclean_wakeup, "segment");
360 break;
361 case MODULE_CMD_FINI:
362 error = vfs_detach(&lfs_vfsops);
363 if (error != 0)
364 break;
365 syscall_disestablish(NULL, lfs_syscalls);
366 sysctl_teardown(&lfs_sysctl_log);
367 cv_destroy(&lfs_allclean_wakeup);
368 break;
369 default:
370 error = ENOTTY;
371 break;
372 }
373
374 return (error);
375 }
376
377 /*
378 * XXX Same structure as FFS inodes? Should we share a common pool?
379 */
380 struct pool lfs_inode_pool;
381 struct pool lfs_dinode_pool;
382 struct pool lfs_inoext_pool;
383 struct pool lfs_lbnentry_pool;
384
385 /*
386 * The writer daemon. UVM keeps track of how many dirty pages we are holding
387 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
388 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
389 */
390 static void
391 lfs_writerd(void *arg)
392 {
393 mount_iterator_t *iter;
394 struct mount *mp;
395 struct lfs *fs;
396 struct vfsops *vfs = NULL;
397 int fsflags;
398 int lfsc;
399 int wrote_something = 0;
400
401 mutex_enter(&lfs_lock);
402 KASSERTMSG(lfs_writer_daemon == NULL, "more than one LFS writer daemon");
403 lfs_writer_daemon = curlwp;
404 mutex_exit(&lfs_lock);
405
406 /* Take an extra reference to the LFS vfsops. */
407 vfs = vfs_getopsbyname(MOUNT_LFS);
408
409 mutex_enter(&lfs_lock);
410 for (;;) {
411 KASSERT(mutex_owned(&lfs_lock));
412 if (wrote_something == 0)
413 cv_timedwait(&lfs_writerd_cv, &lfs_lock, hz/10 + 1);
414 KASSERT(mutex_owned(&lfs_lock));
415 wrote_something = 0;
416
417 /*
418 * If global state wants a flush, flush everything.
419 */
420 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
421 locked_queue_bytes > LFS_MAX_BYTES ||
422 lfs_subsys_pages > LFS_MAX_PAGES) {
423
424 if (lfs_do_flush) {
425 DLOG((DLOG_FLUSH, "lfs_writerd: lfs_do_flush\n"));
426 }
427 if (locked_queue_count > LFS_MAX_BUFS) {
428 DLOG((DLOG_FLUSH, "lfs_writerd: lqc = %d, max %d\n",
429 locked_queue_count, LFS_MAX_BUFS));
430 }
431 if (locked_queue_bytes > LFS_MAX_BYTES) {
432 DLOG((DLOG_FLUSH, "lfs_writerd: lqb = %ld, max %ld\n",
433 locked_queue_bytes, LFS_MAX_BYTES));
434 }
435 if (lfs_subsys_pages > LFS_MAX_PAGES) {
436 DLOG((DLOG_FLUSH, "lfs_writerd: lssp = %d, max %d\n",
437 lfs_subsys_pages, LFS_MAX_PAGES));
438 }
439
440 lfs_flush(NULL, SEGM_WRITERD, 0);
441 lfs_do_flush = 0;
442 KASSERT(mutex_owned(&lfs_lock));
443 continue;
444 }
445 KASSERT(mutex_owned(&lfs_lock));
446 mutex_exit(&lfs_lock);
447
448 /*
449 * Look through the list of LFSs to see if any of them
450 * have requested pageouts.
451 */
452 mountlist_iterator_init(&iter);
453 lfsc = 0;
454 while ((mp = mountlist_iterator_next(iter)) != NULL) {
455 KASSERT(!mutex_owned(&lfs_lock));
456 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
457 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
458 ++lfsc;
459 fs = VFSTOULFS(mp)->um_lfs;
460 daddr_t ooffset = 0;
461 fsflags = SEGM_SINGLE;
462
463 mutex_enter(&lfs_lock);
464 ooffset = lfs_sb_getoffset(fs);
465
466 if (lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs) && fs->lfs_nowrap) {
467 /* Don't try to write if we're suspended */
468 mutex_exit(&lfs_lock);
469 continue;
470 }
471 if (LFS_STARVED_FOR_SEGS(fs)) {
472 mutex_exit(&lfs_lock);
473
474 DLOG((DLOG_FLUSH, "lfs_writerd: need cleaning before writing possible\n"));
475 lfs_wakeup_cleaner(fs);
476 continue;
477 }
478
479 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
480 lfs_dirvcount > LFS_MAX_DIROP) &&
481 fs->lfs_dirops == 0) {
482 fsflags &= ~SEGM_SINGLE;
483 fsflags |= SEGM_CKP;
484 DLOG((DLOG_FLUSH, "lfs_writerd: checkpoint\n"));
485 lfs_flush_fs(fs, fsflags);
486 } else if (fs->lfs_pdflush) {
487 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
488 lfs_flush_fs(fs, fsflags);
489 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
490 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
491 mutex_exit(&lfs_lock);
492 lfs_writer_enter(fs, "wrdirop");
493 lfs_flush_pchain(fs);
494 lfs_writer_leave(fs);
495 mutex_enter(&lfs_lock);
496 }
497 if (lfs_sb_getoffset(fs) != ooffset)
498 ++wrote_something;
499 mutex_exit(&lfs_lock);
500 }
501 KASSERT(!mutex_owned(&lfs_lock));
502 }
503 if (lfsc == 0) {
504 mutex_enter(&lfs_lock);
505 lfs_writer_daemon = NULL;
506 mutex_exit(&lfs_lock);
507 mountlist_iterator_destroy(iter);
508 break;
509 }
510 mountlist_iterator_destroy(iter);
511
512 mutex_enter(&lfs_lock);
513 }
514 KASSERT(!mutex_owned(&lfs_lock));
515
516 /* Give up our extra reference so the module can be unloaded. */
517 mutex_enter(&vfs_list_lock);
518 if (vfs != NULL)
519 vfs->vfs_refcount--;
520 mutex_exit(&vfs_list_lock);
521
522 /* Done! */
523 kthread_exit(0);
524 }
525
526 /*
527 * Initialize the filesystem, most work done by ulfs_init.
528 */
529 void
530 lfs_init(void)
531 {
532
533 /*
534 * XXX: should we use separate pools for 32-bit and 64-bit
535 * dinodes?
536 */
537 malloc_type_attach(M_SEGMENT);
538 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
539 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
540 pool_init(&lfs_dinode_pool, sizeof(union lfs_dinode), 0, 0, 0,
541 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
542 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
543 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
544 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
545 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
546 ulfs_init();
547
548 #ifdef DEBUG
549 memset(lfs_log, 0, sizeof(lfs_log));
550 #endif
551 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
552 cv_init(&lfs_writerd_cv, "lfswrite");
553 cv_init(&locked_queue_cv, "lfsbuf");
554 cv_init(&lfs_writing_cv, "lfsflush");
555 }
556
557 void
558 lfs_reinit(void)
559 {
560 ulfs_reinit();
561 }
562
563 void
564 lfs_done(void)
565 {
566 ulfs_done();
567 mutex_destroy(&lfs_lock);
568 cv_destroy(&lfs_writerd_cv);
569 cv_destroy(&locked_queue_cv);
570 cv_destroy(&lfs_writing_cv);
571 pool_destroy(&lfs_inode_pool);
572 pool_destroy(&lfs_dinode_pool);
573 pool_destroy(&lfs_inoext_pool);
574 pool_destroy(&lfs_lbnentry_pool);
575 malloc_type_detach(M_SEGMENT);
576 }
577
578 /*
579 * Called by main() when ulfs is going to be mounted as root.
580 */
581 int
582 lfs_mountroot(void)
583 {
584 extern struct vnode *rootvp;
585 struct lfs *fs = NULL; /* LFS */
586 struct mount *mp;
587 struct lwp *l = curlwp;
588 struct ulfsmount *ump;
589 int error;
590
591 if (device_class(root_device) != DV_DISK)
592 return (ENODEV);
593
594 if (rootdev == NODEV)
595 return (ENODEV);
596 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
597 vrele(rootvp);
598 return (error);
599 }
600 if ((error = lfs_mountfs(rootvp, mp, l))) {
601 vfs_unbusy(mp);
602 vfs_rele(mp);
603 return (error);
604 }
605 mountlist_append(mp);
606 ump = VFSTOULFS(mp);
607 fs = ump->um_lfs;
608 lfs_sb_setfsmnt(fs, mp->mnt_stat.f_mntonname);
609 (void)lfs_statvfs(mp, &mp->mnt_stat);
610 vfs_unbusy(mp);
611 setrootfstime((time_t)lfs_sb_gettstamp(VFSTOULFS(mp)->um_lfs));
612 return (0);
613 }
614
615 /*
616 * VFS Operations.
617 *
618 * mount system call
619 */
620 int
621 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
622 {
623 struct lwp *l = curlwp;
624 struct vnode *devvp;
625 struct ulfs_args *args = data;
626 struct ulfsmount *ump = NULL;
627 struct lfs *fs = NULL; /* LFS */
628 int error = 0, update;
629 mode_t accessmode;
630
631 if (args == NULL)
632 return EINVAL;
633 if (*data_len < sizeof *args)
634 return EINVAL;
635
636 if (mp->mnt_flag & MNT_GETARGS) {
637 ump = VFSTOULFS(mp);
638 if (ump == NULL)
639 return EIO;
640 args->fspec = NULL;
641 *data_len = sizeof *args;
642 return 0;
643 }
644
645 update = mp->mnt_flag & MNT_UPDATE;
646
647 /* Check arguments */
648 if (args->fspec != NULL) {
649 /*
650 * Look up the name and verify that it's sane.
651 */
652 error = namei_simple_user(args->fspec,
653 NSM_FOLLOW_NOEMULROOT, &devvp);
654 if (error != 0)
655 return (error);
656
657 if (!update) {
658 /*
659 * Be sure this is a valid block device
660 */
661 if (devvp->v_type != VBLK)
662 error = ENOTBLK;
663 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
664 error = ENXIO;
665 } else {
666 /*
667 * Be sure we're still naming the same device
668 * used for our initial mount
669 *
670 * XXX dholland 20151010: if namei gives us a
671 * different vnode for the same device,
672 * wouldn't it be better to use it going
673 * forward rather than ignore it in favor of
674 * the old one?
675 */
676 ump = VFSTOULFS(mp);
677 fs = ump->um_lfs;
678 if (devvp != fs->lfs_devvp) {
679 if (devvp->v_rdev != fs->lfs_devvp->v_rdev)
680 error = EINVAL;
681 else {
682 vrele(devvp);
683 devvp = fs->lfs_devvp;
684 vref(devvp);
685 }
686 }
687 }
688 } else {
689 if (!update) {
690 /* New mounts must have a filename for the device */
691 return (EINVAL);
692 } else {
693 /* Use the extant mount */
694 ump = VFSTOULFS(mp);
695 fs = ump->um_lfs;
696 devvp = fs->lfs_devvp;
697 vref(devvp);
698 }
699 }
700
701
702 /*
703 * If mount by non-root, then verify that user has necessary
704 * permissions on the device.
705 */
706 if (error == 0) {
707 accessmode = VREAD;
708 if (update ?
709 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
710 (mp->mnt_flag & MNT_RDONLY) == 0)
711 accessmode |= VWRITE;
712 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
713 error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_MOUNT,
714 KAUTH_REQ_SYSTEM_MOUNT_DEVICE, mp, devvp,
715 KAUTH_ARG(accessmode));
716 VOP_UNLOCK(devvp);
717 }
718
719 if (error) {
720 vrele(devvp);
721 return (error);
722 }
723
724 if (!update) {
725 int flags;
726
727 if (mp->mnt_flag & MNT_RDONLY)
728 flags = FREAD;
729 else
730 flags = FREAD|FWRITE;
731 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
732 error = VOP_OPEN(devvp, flags, FSCRED);
733 VOP_UNLOCK(devvp);
734 if (error)
735 goto fail;
736 error = lfs_mountfs(devvp, mp, l); /* LFS */
737 if (error) {
738 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
739 (void)VOP_CLOSE(devvp, flags, NOCRED);
740 VOP_UNLOCK(devvp);
741 goto fail;
742 }
743
744 ump = VFSTOULFS(mp);
745 fs = ump->um_lfs;
746 } else {
747 /*
748 * Update the mount.
749 */
750
751 /*
752 * The initial mount got a reference on this
753 * device, so drop the one obtained via
754 * namei(), above.
755 */
756 vrele(devvp);
757
758 ump = VFSTOULFS(mp);
759 fs = ump->um_lfs;
760
761 if (!fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDONLY)) {
762 /*
763 * Changing from read/write to read-only.
764 */
765 int flags = WRITECLOSE;
766 if (mp->mnt_flag & MNT_FORCE)
767 flags |= FORCECLOSE;
768 error = lfs_flushfiles(mp, flags);
769 if (error)
770 return error;
771 fs->lfs_ronly = 1;
772 } else if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
773 /*
774 * Changing from read-only to read/write.
775 * Note in the superblocks that we're writing.
776 */
777
778 /* XXX: quotas should have been on even if readonly */
779 if (fs->lfs_use_quota2) {
780 #ifdef LFS_QUOTA2
781 error = lfs_quota2_mount(mp);
782 #else
783 uprintf("%s: no kernel support for this "
784 "filesystem's quotas\n",
785 mp->mnt_stat.f_mntonname);
786 if (mp->mnt_flag & MNT_FORCE) {
787 uprintf("%s: mounting anyway; "
788 "fsck afterwards\n",
789 mp->mnt_stat.f_mntonname);
790 } else {
791 error = EINVAL;
792 }
793 #endif
794 if (error) {
795 return error;
796 }
797 }
798
799 fs->lfs_ronly = 0;
800 if (lfs_sb_getpflags(fs) & LFS_PF_CLEAN) {
801 lfs_sb_setpflags(fs, lfs_sb_getpflags(fs) & ~LFS_PF_CLEAN);
802 lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
803 lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
804 }
805 }
806
807 if (args->fspec == NULL)
808 return 0;
809 }
810
811 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
812 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
813 if (error == 0)
814 lfs_sb_setfsmnt(fs, mp->mnt_stat.f_mntonname);
815 return error;
816
817 fail:
818 vrele(devvp);
819 return (error);
820 }
821
822 /*
823 * Helper for mountfs. Note that the fs pointer may be a dummy one
824 * pointing into a superblock buffer. (Which is gross; see below.)
825 */
826 static int
827 lfs_checkmagic(struct lfs *fs)
828 {
829 switch (fs->lfs_dlfs_u.u_32.dlfs_magic) {
830 case LFS_MAGIC:
831 fs->lfs_is64 = false;
832 fs->lfs_dobyteswap = false;
833 break;
834 case LFS64_MAGIC:
835 fs->lfs_is64 = true;
836 fs->lfs_dobyteswap = false;
837 break;
838 #ifdef LFS_EI
839 case LFS_MAGIC_SWAPPED:
840 fs->lfs_is64 = false;
841 fs->lfs_dobyteswap = true;
842 break;
843 case LFS64_MAGIC_SWAPPED:
844 fs->lfs_is64 = true;
845 fs->lfs_dobyteswap = true;
846 break;
847 #endif
848 default:
849 /* XXX needs translation */
850 return EINVAL;
851 }
852 return 0;
853 }
854
855 /*
856 * Common code for mount and mountroot
857 * LFS specific
858 */
859 int
860 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
861 {
862 struct lfs *primarysb, *altsb, *thesb;
863 struct buf *primarybuf, *altbuf;
864 struct lfs *fs;
865 struct ulfsmount *ump;
866 struct vnode *vp;
867 dev_t dev;
868 int error, i, ronly, fsbsize;
869 kauth_cred_t cred;
870 CLEANERINFO *cip;
871 SEGUSE *sup;
872 daddr_t sb_addr;
873
874 cred = l ? l->l_cred : NOCRED;
875
876 /* The superblock is supposed to be 512 bytes. */
877 __CTASSERT(sizeof(struct dlfs) == DEV_BSIZE);
878
879 /*
880 * Flush out any old buffers remaining from a previous use.
881 */
882 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
883 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
884 VOP_UNLOCK(devvp);
885 if (error)
886 return (error);
887
888 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
889
890 /* Don't free random space on error. */
891 primarybuf = NULL;
892 altbuf = NULL;
893 ump = NULL;
894
895 sb_addr = LFS_LABELPAD / DEV_BSIZE;
896 while (1) {
897 /*
898 * Read in the superblock.
899 *
900 * Note that because LFS_SBPAD is substantially larger
901 * (8K) than the actual on-disk superblock (512 bytes)
902 * the buffer contains enough space to be used as a
903 * whole struct lfs (in-memory superblock) - we do this
904 * only so we can set and use the is64 and dobyteswap
905 * members. XXX this is gross and the logic here should
906 * be reworked.
907 */
908 error = bread(devvp, sb_addr, LFS_SBPAD, 0, &primarybuf);
909 if (error)
910 goto out;
911 primarysb = (struct lfs *)primarybuf->b_data;
912
913 /* Check the basics. */
914 error = lfs_checkmagic(primarysb);
915 if (error) {
916 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock wrong magic\n"));
917 goto out;
918 }
919 if (lfs_sb_getbsize(primarysb) > MAXBSIZE ||
920 lfs_sb_getversion(primarysb) > LFS_VERSION ||
921 lfs_sb_getbsize(primarysb) < sizeof(struct dlfs)) {
922 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
923 /* XXX needs translation */
924 error = EINVAL;
925 goto out;
926 }
927 if (lfs_sb_getinodefmt(primarysb) > LFS_MAXINODEFMT) {
928 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
929 lfs_sb_getinodefmt(primarysb)));
930 error = EINVAL;
931 goto out;
932 }
933
934 if (lfs_sb_getversion(primarysb) == 1)
935 fsbsize = DEV_BSIZE;
936 else {
937 fsbsize = 1 << lfs_sb_getffshift(primarysb);
938 /*
939 * Could be, if the frag size is large enough, that we
940 * don't have the "real" primary superblock. If that's
941 * the case, get the real one, and try again.
942 */
943 if (sb_addr != (lfs_sb_getsboff(primarysb, 0) << (lfs_sb_getffshift(primarysb) - DEV_BSHIFT))) {
944 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
945 " 0x%llx is not right, trying 0x%llx\n",
946 (long long)sb_addr,
947 (long long)(lfs_sb_getsboff(primarysb, 0) << (lfs_sb_getffshift(primarysb) - DEV_BSHIFT))));
948 sb_addr = lfs_sb_getsboff(primarysb, 0) << (lfs_sb_getffshift(primarysb) - DEV_BSHIFT);
949 brelse(primarybuf, BC_INVAL);
950 continue;
951 }
952 }
953 break;
954 }
955
956 /*
957 * Check the second superblock to see which is newer; then mount
958 * using the older of the two. This is necessary to ensure that
959 * the filesystem is valid if it was not unmounted cleanly.
960 */
961
962 if (lfs_sb_getsboff(primarysb, 1) &&
963 lfs_sb_getsboff(primarysb, 1) - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
964 {
965 error = bread(devvp, lfs_sb_getsboff(primarysb, 1) * (fsbsize / DEV_BSIZE),
966 LFS_SBPAD, 0, &altbuf);
967 if (error)
968 goto out;
969 altsb = (struct lfs *)altbuf->b_data;
970
971 /*
972 * Note: this used to do the sanity check only if the
973 * timestamp/serial comparison required use of altsb;
974 * this way is less tolerant, but if altsb is corrupted
975 * enough that the magic number, version, and blocksize
976 * are bogus, why would the timestamp or serial fields
977 * mean anything either? If this kind of thing happens,
978 * you need to fsck anyway.
979 */
980
981 error = lfs_checkmagic(altsb);
982 if (error)
983 goto out;
984
985 /* Check the basics. */
986 if (lfs_sb_getbsize(altsb) > MAXBSIZE ||
987 lfs_sb_getversion(altsb) > LFS_VERSION ||
988 lfs_sb_getbsize(altsb) < sizeof(struct dlfs)) {
989 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
990 " sanity failed\n"));
991 error = EINVAL; /* XXX needs translation */
992 goto out;
993 }
994
995 if (lfs_sb_getversion(primarysb) == 1) {
996 /* 1s resolution comparison */
997 if (lfs_sb_gettstamp(altsb) < lfs_sb_gettstamp(primarysb))
998 thesb = altsb;
999 else
1000 thesb = primarysb;
1001 } else {
1002 /* monotonic infinite-resolution comparison */
1003 if (lfs_sb_getserial(altsb) < lfs_sb_getserial(primarysb))
1004 thesb = altsb;
1005 else
1006 thesb = primarysb;
1007 }
1008 } else {
1009 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock location"
1010 " daddr=0x%x\n", lfs_sb_getsboff(primarysb, 1)));
1011 error = EINVAL;
1012 goto out;
1013 }
1014
1015 /*
1016 * Allocate the mount structure, copy the superblock into it.
1017 * Note that the 32-bit and 64-bit superblocks are the same size.
1018 */
1019 fs = kmem_zalloc(sizeof(struct lfs), KM_SLEEP);
1020 memcpy(&fs->lfs_dlfs_u.u_32, &thesb->lfs_dlfs_u.u_32,
1021 sizeof(struct dlfs));
1022 fs->lfs_is64 = thesb->lfs_is64;
1023 fs->lfs_dobyteswap = thesb->lfs_dobyteswap;
1024 fs->lfs_hasolddirfmt = false; /* set for real below */
1025
1026 /* Compatibility */
1027 if (lfs_sb_getversion(fs) < 2) {
1028 lfs_sb_setsumsize(fs, LFS_V1_SUMMARY_SIZE);
1029 lfs_sb_setibsize(fs, lfs_sb_getbsize(fs));
1030 lfs_sb_sets0addr(fs, lfs_sb_getsboff(fs, 0));
1031 lfs_sb_settstamp(fs, lfs_sb_getotstamp(fs));
1032 lfs_sb_setfsbtodb(fs, 0);
1033 }
1034 if (lfs_sb_getresvseg(fs) == 0)
1035 lfs_sb_setresvseg(fs, MIN(lfs_sb_getminfreeseg(fs) - 1, \
1036 MAX(MIN_RESV_SEGS, lfs_sb_getminfreeseg(fs) / 2 + 1)));
1037
1038 /*
1039 * If we aren't going to be able to write meaningfully to this
1040 * filesystem, and were not mounted readonly, bomb out now.
1041 */
1042 if (lfs_fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
1043 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
1044 " we need BUFPAGES >= %lld\n",
1045 (long long)((bufmem_hiwater / bufmem_lowater) *
1046 LFS_INVERSE_MAX_BYTES(
1047 lfs_fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
1048 kmem_free(fs, sizeof(struct lfs));
1049 error = EFBIG; /* XXX needs translation */
1050 goto out;
1051 }
1052
1053 /* Before rolling forward, lock so vget will sleep for other procs */
1054 if (l != NULL) {
1055 fs->lfs_flags = LFS_NOTYET;
1056 fs->lfs_rfpid = l->l_proc->p_pid;
1057 }
1058
1059 ump = kmem_zalloc(sizeof(*ump), KM_SLEEP);
1060 ump->um_lfs = fs;
1061 ump->um_fstype = fs->lfs_is64 ? ULFS2 : ULFS1;
1062 /* ump->um_cleaner_thread = NULL; */
1063 brelse(primarybuf, BC_INVAL);
1064 brelse(altbuf, BC_INVAL);
1065 primarybuf = NULL;
1066 altbuf = NULL;
1067
1068
1069 /* Set up the I/O information */
1070 fs->lfs_devbsize = DEV_BSIZE;
1071 fs->lfs_iocount = 0;
1072 fs->lfs_diropwait = 0;
1073 fs->lfs_activesb = 0;
1074 lfs_sb_setuinodes(fs, 0);
1075 fs->lfs_ravail = 0;
1076 fs->lfs_favail = 0;
1077 fs->lfs_sbactive = 0;
1078
1079 /* Set up the ifile and lock aflags */
1080 fs->lfs_doifile = 0;
1081 fs->lfs_writer = 0;
1082 fs->lfs_dirops = 0;
1083 fs->lfs_nadirop = 0;
1084 fs->lfs_seglock = 0;
1085 fs->lfs_pdflush = 0;
1086 fs->lfs_sleepers = 0;
1087 fs->lfs_pages = 0;
1088 rw_init(&fs->lfs_fraglock);
1089 rw_init(&fs->lfs_iflock);
1090 cv_init(&fs->lfs_sleeperscv, "lfs_slp");
1091 cv_init(&fs->lfs_diropscv, "lfs_dirop");
1092 cv_init(&fs->lfs_stopcv, "lfsstop");
1093 cv_init(&fs->lfs_nextsegsleep, "segment");
1094
1095 /* Set the file system readonly/modify bits. */
1096 fs->lfs_ronly = ronly;
1097 if (ronly == 0)
1098 fs->lfs_fmod = 1;
1099
1100 /* Device we're using */
1101 dev = devvp->v_rdev;
1102 fs->lfs_dev = dev;
1103 fs->lfs_devvp = devvp;
1104
1105 /* ulfs-level information */
1106 fs->um_flags = 0;
1107 fs->um_bptrtodb = lfs_sb_getffshift(fs) - DEV_BSHIFT;
1108 fs->um_seqinc = lfs_sb_getfrag(fs);
1109 fs->um_nindir = lfs_sb_getnindir(fs);
1110 fs->um_lognindir = ffs(lfs_sb_getnindir(fs)) - 1;
1111 fs->um_maxsymlinklen = lfs_sb_getmaxsymlinklen(fs);
1112 fs->um_dirblksiz = LFS_DIRBLKSIZ;
1113 fs->um_maxfilesize = lfs_sb_getmaxfilesize(fs);
1114
1115 /* quota stuff */
1116 /* XXX: these need to come from the on-disk superblock to be used */
1117 fs->lfs_use_quota2 = 0;
1118 fs->lfs_quota_magic = 0;
1119 fs->lfs_quota_flags = 0;
1120 fs->lfs_quotaino[0] = 0;
1121 fs->lfs_quotaino[1] = 0;
1122
1123 /* Initialize the mount structure. */
1124 mp->mnt_data = ump;
1125 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1126 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
1127 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1128 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
1129 mp->mnt_stat.f_iosize = lfs_sb_getbsize(fs);
1130 mp->mnt_flag |= MNT_LOCAL;
1131 mp->mnt_fs_bshift = lfs_sb_getbshift(fs);
1132 mp->mnt_iflag |= IMNT_CAN_RWTORO;
1133 if (fs->um_maxsymlinklen > 0)
1134 mp->mnt_iflag |= IMNT_DTYPE;
1135 else
1136 fs->lfs_hasolddirfmt = true;
1137
1138 ump->um_mountp = mp;
1139 for (i = 0; i < ULFS_MAXQUOTAS; i++)
1140 ump->um_quotas[i] = NULLVP;
1141 spec_node_setmountedfs(devvp, mp);
1142
1143 /* Set up reserved memory for pageout */
1144 lfs_setup_resblks(fs);
1145 /* Set up vdirop tailq */
1146 TAILQ_INIT(&fs->lfs_dchainhd);
1147 /* and paging tailq */
1148 TAILQ_INIT(&fs->lfs_pchainhd);
1149 /* and delayed segment accounting for truncation list */
1150 LIST_INIT(&fs->lfs_segdhd);
1151
1152 /*
1153 * We use the ifile vnode for almost every operation. Instead of
1154 * retrieving it from the hash table each time we retrieve it here,
1155 * artificially increment the reference count and keep a pointer
1156 * to it in the incore copy of the superblock.
1157 */
1158 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, LK_EXCLUSIVE, &vp)) != 0) {
1159 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
1160 goto out;
1161 }
1162 fs->lfs_ivnode = vp;
1163 vref(vp);
1164
1165 /* Set up inode bitmap and order free list */
1166 lfs_order_freelist(fs);
1167
1168 /* Set up segment usage flags for the autocleaner. */
1169 fs->lfs_nactive = 0;
1170 fs->lfs_suflags = malloc(2 * sizeof(u_int32_t *),
1171 M_SEGMENT, M_WAITOK);
1172 fs->lfs_suflags[0] = malloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t),
1173 M_SEGMENT, M_WAITOK);
1174 fs->lfs_suflags[1] = malloc(lfs_sb_getnseg(fs) * sizeof(u_int32_t),
1175 M_SEGMENT, M_WAITOK);
1176 memset(fs->lfs_suflags[1], 0, lfs_sb_getnseg(fs) * sizeof(u_int32_t));
1177 for (i = 0; i < lfs_sb_getnseg(fs); i++) {
1178 int changed;
1179 struct buf *bp;
1180
1181 LFS_SEGENTRY(sup, fs, i, bp);
1182 changed = 0;
1183 if (!ronly) {
1184 if (sup->su_nbytes == 0 &&
1185 !(sup->su_flags & SEGUSE_EMPTY)) {
1186 sup->su_flags |= SEGUSE_EMPTY;
1187 ++changed;
1188 } else if (!(sup->su_nbytes == 0) &&
1189 (sup->su_flags & SEGUSE_EMPTY)) {
1190 sup->su_flags &= ~SEGUSE_EMPTY;
1191 ++changed;
1192 }
1193 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
1194 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
1195 ++changed;
1196 }
1197 }
1198 fs->lfs_suflags[0][i] = sup->su_flags;
1199 if (changed)
1200 LFS_WRITESEGENTRY(sup, fs, i, bp);
1201 else
1202 brelse(bp, 0);
1203 }
1204
1205 /*
1206 * XXX: if the fs has quotas, quotas should be on even if
1207 * readonly. Otherwise you can't query the quota info!
1208 * However, that's not how the quota2 code got written and I
1209 * don't know if it'll behave itself if enabled while
1210 * readonly, so for now use the same enable logic as ffs.
1211 *
1212 * XXX: also, if you use the -f behavior allowed here (and
1213 * equivalently above for remount) it will corrupt the fs. It
1214 * ought not to allow that. It should allow mounting readonly
1215 * if there are quotas and the kernel doesn't have the quota
1216 * code, but only readonly.
1217 *
1218 * XXX: and if you use the -f behavior allowed here it will
1219 * likely crash at unmount time (or remount time) because we
1220 * think quotas are active.
1221 *
1222 * Although none of this applies until there's a way to set
1223 * lfs_use_quota2 and have quotas in the fs at all.
1224 */
1225 if (!ronly && fs->lfs_use_quota2) {
1226 #ifdef LFS_QUOTA2
1227 error = lfs_quota2_mount(mp);
1228 #else
1229 uprintf("%s: no kernel support for this filesystem's quotas\n",
1230 mp->mnt_stat.f_mntonname);
1231 if (mp->mnt_flag & MNT_FORCE) {
1232 uprintf("%s: mounting anyway; fsck afterwards\n",
1233 mp->mnt_stat.f_mntonname);
1234 } else {
1235 error = EINVAL;
1236 }
1237 #endif
1238 if (error) {
1239 /* XXX XXX must clean up the stuff immediately above */
1240 printf("lfs_mountfs: sorry, leaking some memory\n");
1241 goto out;
1242 }
1243 }
1244
1245 #ifdef LFS_KERNEL_RFW
1246 lfs_roll_forward(fs, mp, l);
1247 #endif
1248
1249 /* If writing, sb is not clean; record in case of immediate crash */
1250 if (!fs->lfs_ronly) {
1251 lfs_sb_setpflags(fs, lfs_sb_getpflags(fs) & ~LFS_PF_CLEAN);
1252 lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
1253 lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
1254 }
1255
1256 /* Allow vget now that roll-forward is complete */
1257 fs->lfs_flags &= ~(LFS_NOTYET);
1258 wakeup(&fs->lfs_flags);
1259
1260 /*
1261 * Initialize the ifile cleaner info with information from
1262 * the superblock.
1263 */
1264 {
1265 struct buf *bp;
1266
1267 LFS_CLEANERINFO(cip, fs, bp);
1268 lfs_ci_setclean(fs, cip, lfs_sb_getnclean(fs));
1269 lfs_ci_setdirty(fs, cip, lfs_sb_getnseg(fs) - lfs_sb_getnclean(fs));
1270 lfs_ci_setavail(fs, cip, lfs_sb_getavail(fs));
1271 lfs_ci_setbfree(fs, cip, lfs_sb_getbfree(fs));
1272 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1273 }
1274
1275 /*
1276 * Mark the current segment as ACTIVE, since we're going to
1277 * be writing to it.
1278 */
1279 {
1280 struct buf *bp;
1281
1282 LFS_SEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getoffset(fs)), bp);
1283 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1284 fs->lfs_nactive++;
1285 LFS_WRITESEGENTRY(sup, fs, lfs_dtosn(fs, lfs_sb_getoffset(fs)), bp); /* Ifile */
1286 }
1287
1288 /* Now that roll-forward is done, unlock the Ifile */
1289 vput(vp);
1290
1291 /* Start the pagedaemon-anticipating daemon */
1292 mutex_enter(&lfs_lock);
1293 if (lfs_writer_daemon == NULL &&
1294 kthread_create(PRI_BIO, 0, NULL,
1295 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1296 panic("fork lfs_writer");
1297 mutex_exit(&lfs_lock);
1298
1299 printf("WARNING: the log-structured file system is experimental\n"
1300 "WARNING: it may cause system crashes and/or corrupt data\n");
1301
1302 return (0);
1303
1304 out:
1305 if (primarybuf)
1306 brelse(primarybuf, BC_INVAL);
1307 if (altbuf)
1308 brelse(altbuf, BC_INVAL);
1309 if (ump) {
1310 kmem_free(ump->um_lfs, sizeof(struct lfs));
1311 kmem_free(ump, sizeof(*ump));
1312 mp->mnt_data = NULL;
1313 }
1314
1315 return (error);
1316 }
1317
1318 /*
1319 * unmount system call
1320 */
1321 int
1322 lfs_unmount(struct mount *mp, int mntflags)
1323 {
1324 struct ulfsmount *ump;
1325 struct lfs *fs;
1326 int error, ronly;
1327
1328 ump = VFSTOULFS(mp);
1329 fs = ump->um_lfs;
1330
1331 error = lfs_flushfiles(mp, mntflags & MNT_FORCE ? FORCECLOSE : 0);
1332 if (error)
1333 return error;
1334
1335 /* Finish with the Ifile, now that we're done with it */
1336 vgone(fs->lfs_ivnode);
1337
1338 ronly = !fs->lfs_ronly;
1339 if (fs->lfs_devvp->v_type != VBAD)
1340 spec_node_setmountedfs(fs->lfs_devvp, NULL);
1341 vn_lock(fs->lfs_devvp, LK_EXCLUSIVE | LK_RETRY);
1342 error = VOP_CLOSE(fs->lfs_devvp,
1343 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1344 vput(fs->lfs_devvp);
1345
1346 /* Complain about page leakage */
1347 if (fs->lfs_pages > 0)
1348 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1349 fs->lfs_pages, lfs_subsys_pages);
1350
1351 /* Free per-mount data structures */
1352 free(fs->lfs_ino_bitmap, M_SEGMENT);
1353 free(fs->lfs_suflags[0], M_SEGMENT);
1354 free(fs->lfs_suflags[1], M_SEGMENT);
1355 free(fs->lfs_suflags, M_SEGMENT);
1356 lfs_free_resblks(fs);
1357 cv_destroy(&fs->lfs_sleeperscv);
1358 cv_destroy(&fs->lfs_diropscv);
1359 cv_destroy(&fs->lfs_stopcv);
1360 cv_destroy(&fs->lfs_nextsegsleep);
1361
1362 rw_destroy(&fs->lfs_fraglock);
1363 rw_destroy(&fs->lfs_iflock);
1364
1365 kmem_free(fs, sizeof(struct lfs));
1366 kmem_free(ump, sizeof(*ump));
1367
1368 mp->mnt_data = NULL;
1369 mp->mnt_flag &= ~MNT_LOCAL;
1370 return (error);
1371 }
1372
1373 static int
1374 lfs_flushfiles(struct mount *mp, int flags)
1375 {
1376 struct lwp *l = curlwp;
1377 struct ulfsmount *ump;
1378 struct lfs *fs;
1379 struct vnode *vp;
1380 int error;
1381
1382 ump = VFSTOULFS(mp);
1383 fs = ump->um_lfs;
1384
1385 /* Two checkpoints */
1386 if (!fs->lfs_ronly) {
1387 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1388 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1389 }
1390
1391 /* wake up the cleaner so it can die */
1392 /* XXX: shouldn't this be *after* the error cases below? */
1393 lfs_wakeup_cleaner(fs);
1394 mutex_enter(&lfs_lock);
1395 while (fs->lfs_sleepers)
1396 cv_wait(&fs->lfs_sleeperscv, &lfs_lock);
1397 mutex_exit(&lfs_lock);
1398
1399 #ifdef LFS_EXTATTR
1400 if (ump->um_fstype == ULFS1) {
1401 if (ump->um_extattr.uepm_flags & ULFS_EXTATTR_UEPM_STARTED) {
1402 ulfs_extattr_stop(mp, curlwp);
1403 }
1404 if (ump->um_extattr.uepm_flags & ULFS_EXTATTR_UEPM_INITIALIZED) {
1405 ulfs_extattr_uepm_destroy(&ump->um_extattr);
1406 mp->mnt_flag &= ~MNT_EXTATTR;
1407 }
1408 }
1409 #endif
1410 #ifdef LFS_QUOTA
1411 if ((error = lfsquota1_umount(mp, flags)) != 0)
1412 return (error);
1413 #endif
1414 #ifdef LFS_QUOTA2
1415 if ((error = lfsquota2_umount(mp, flags)) != 0)
1416 return (error);
1417 #endif
1418 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1419 return (error);
1420 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1421 return (error);
1422 vp = fs->lfs_ivnode;
1423 mutex_enter(vp->v_interlock);
1424 if (LIST_FIRST(&vp->v_dirtyblkhd))
1425 panic("lfs_unmount: still dirty blocks on ifile vnode");
1426 mutex_exit(vp->v_interlock);
1427
1428 /* Explicitly write the superblock, to update serial and pflags */
1429 if (!fs->lfs_ronly) {
1430 lfs_sb_setpflags(fs, lfs_sb_getpflags(fs) | LFS_PF_CLEAN);
1431 lfs_writesuper(fs, lfs_sb_getsboff(fs, 0));
1432 lfs_writesuper(fs, lfs_sb_getsboff(fs, 1));
1433 }
1434 mutex_enter(&lfs_lock);
1435 while (fs->lfs_iocount)
1436 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1437 &lfs_lock);
1438 mutex_exit(&lfs_lock);
1439
1440 return 0;
1441 }
1442
1443 /*
1444 * Get file system statistics.
1445 *
1446 * NB: We don't lock to access the superblock here, because it's not
1447 * really that important if we get it wrong.
1448 */
1449 int
1450 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1451 {
1452 struct lfs *fs;
1453 struct ulfsmount *ump;
1454
1455 ump = VFSTOULFS(mp);
1456 fs = ump->um_lfs;
1457
1458 sbp->f_bsize = lfs_sb_getbsize(fs);
1459 sbp->f_frsize = lfs_sb_getfsize(fs);
1460 sbp->f_iosize = lfs_sb_getbsize(fs);
1461 sbp->f_blocks = LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks;
1462
1463 sbp->f_bfree = LFS_EST_BFREE(fs);
1464 /*
1465 * XXX this should be lfs_sb_getsize (measured in frags)
1466 * rather than dsize (measured in diskblocks). However,
1467 * getsize needs a format version check (for version 1 it
1468 * needs to be blockstofrags'd) so for the moment I'm going to
1469 * leave this... it won't fire wrongly as frags are at least
1470 * as big as diskblocks.
1471 */
1472 KASSERT(sbp->f_bfree <= lfs_sb_getdsize(fs));
1473 #if 0
1474 if (sbp->f_bfree < 0)
1475 sbp->f_bfree = 0;
1476 #endif
1477
1478 sbp->f_bresvd = LFS_EST_RSVD(fs);
1479 if (sbp->f_bfree > sbp->f_bresvd)
1480 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1481 else
1482 sbp->f_bavail = 0;
1483
1484 /* XXX: huh? - dholland 20150728 */
1485 sbp->f_files = lfs_sb_getbfree(fs) / lfs_btofsb(fs, lfs_sb_getibsize(fs))
1486 * LFS_INOPB(fs);
1487 sbp->f_ffree = sbp->f_files - lfs_sb_getnfiles(fs);
1488 sbp->f_favail = sbp->f_ffree;
1489 sbp->f_fresvd = 0;
1490 copy_statvfs_info(sbp, mp);
1491 return (0);
1492 }
1493
1494 /*
1495 * Go through the disk queues to initiate sandbagged IO;
1496 * go through the inodes to write those that have been modified;
1497 * initiate the writing of the super block if it has been modified.
1498 *
1499 * Note: we are always called with the filesystem marked `MPBUSY'.
1500 */
1501 int
1502 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1503 {
1504 int error;
1505 struct lfs *fs;
1506
1507 fs = VFSTOULFS(mp)->um_lfs;
1508 if (fs->lfs_ronly)
1509 return 0;
1510
1511 /* Snapshots should not hose the syncer */
1512 /*
1513 * XXX Sync can block here anyway, since we don't have a very
1514 * XXX good idea of how much data is pending. If it's more
1515 * XXX than a segment and lfs_nextseg is close to the end of
1516 * XXX the log, we'll likely block.
1517 */
1518 mutex_enter(&lfs_lock);
1519 if (fs->lfs_nowrap && lfs_sb_getnextseg(fs) < lfs_sb_getcurseg(fs)) {
1520 mutex_exit(&lfs_lock);
1521 return 0;
1522 }
1523 mutex_exit(&lfs_lock);
1524
1525 lfs_writer_enter(fs, "lfs_dirops");
1526
1527 /* All syncs must be checkpoints until roll-forward is implemented. */
1528 DLOG((DLOG_FLUSH, "lfs_sync at 0x%jx\n",
1529 (uintmax_t)lfs_sb_getoffset(fs)));
1530 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1531 lfs_writer_leave(fs);
1532 #ifdef LFS_QUOTA
1533 lfs_qsync(mp);
1534 #endif
1535 return (error);
1536 }
1537
1538 /*
1539 * Look up an LFS dinode number to find its incore vnode. If not already
1540 * in core, read it in from the specified device. Return the inode locked.
1541 * Detection and handling of mount points must be done by the calling routine.
1542 */
1543 int
1544 lfs_vget(struct mount *mp, ino_t ino, int lktype, struct vnode **vpp)
1545 {
1546 int error;
1547
1548 error = vcache_get(mp, &ino, sizeof(ino), vpp);
1549 if (error)
1550 return error;
1551 error = vn_lock(*vpp, lktype);
1552 if (error) {
1553 vrele(*vpp);
1554 *vpp = NULL;
1555 return error;
1556 }
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * Create a new vnode/inode pair and initialize what fields we can.
1563 */
1564 static void
1565 lfs_init_vnode(struct ulfsmount *ump, ino_t ino, struct vnode *vp)
1566 {
1567 struct lfs *fs = ump->um_lfs;
1568 struct inode *ip;
1569 union lfs_dinode *dp;
1570
1571 ASSERT_NO_SEGLOCK(fs);
1572
1573 /* Initialize the inode. */
1574 ip = pool_get(&lfs_inode_pool, PR_WAITOK);
1575 memset(ip, 0, sizeof(*ip));
1576 dp = pool_get(&lfs_dinode_pool, PR_WAITOK);
1577 memset(dp, 0, sizeof(*dp));
1578 ip->inode_ext.lfs = pool_get(&lfs_inoext_pool, PR_WAITOK);
1579 memset(ip->inode_ext.lfs, 0, sizeof(*ip->inode_ext.lfs));
1580 ip->i_din = dp;
1581 ip->i_ump = ump;
1582 ip->i_vnode = vp;
1583 ip->i_dev = fs->lfs_dev;
1584 lfs_dino_setinumber(fs, dp, ino);
1585 ip->i_number = ino;
1586 ip->i_lfs = fs;
1587 ip->i_lfs_effnblks = 0;
1588 SPLAY_INIT(&ip->i_lfs_lbtree);
1589 ip->i_lfs_nbtree = 0;
1590 LIST_INIT(&ip->i_lfs_segdhd);
1591
1592 vp->v_tag = VT_LFS;
1593 vp->v_op = lfs_vnodeop_p;
1594 vp->v_data = ip;
1595 }
1596
1597 /*
1598 * Undo lfs_init_vnode().
1599 */
1600 static void
1601 lfs_deinit_vnode(struct ulfsmount *ump, struct vnode *vp)
1602 {
1603 struct inode *ip = VTOI(vp);
1604
1605 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1606 pool_put(&lfs_dinode_pool, ip->i_din);
1607 pool_put(&lfs_inode_pool, ip);
1608 vp->v_data = NULL;
1609 }
1610
1611 /*
1612 * Read an inode from disk and initialize this vnode / inode pair.
1613 * Caller assures no other thread will try to load this inode.
1614 */
1615 int
1616 lfs_loadvnode(struct mount *mp, struct vnode *vp,
1617 const void *key, size_t key_len, const void **new_key)
1618 {
1619 struct lfs *fs;
1620 union lfs_dinode *dip;
1621 struct inode *ip;
1622 struct buf *bp;
1623 IFILE *ifp;
1624 struct ulfsmount *ump;
1625 ino_t ino;
1626 daddr_t daddr;
1627 int error, retries;
1628 struct timespec ts;
1629
1630 KASSERT(key_len == sizeof(ino));
1631 memcpy(&ino, key, key_len);
1632
1633 memset(&ts, 0, sizeof ts); /* XXX gcc */
1634
1635 ump = VFSTOULFS(mp);
1636 fs = ump->um_lfs;
1637
1638 /*
1639 * If the filesystem is not completely mounted yet, suspend
1640 * any access requests (wait for roll-forward to complete).
1641 */
1642 mutex_enter(&lfs_lock);
1643 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1644 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1645 &lfs_lock);
1646 mutex_exit(&lfs_lock);
1647
1648 /* Translate the inode number to a disk address. */
1649 if (ino == LFS_IFILE_INUM)
1650 daddr = lfs_sb_getidaddr(fs);
1651 else {
1652 /* XXX bounds-check this too */
1653 LFS_IENTRY(ifp, fs, ino, bp);
1654 daddr = lfs_if_getdaddr(fs, ifp);
1655 if (lfs_sb_getversion(fs) > 1) {
1656 ts.tv_sec = lfs_if_getatime_sec(fs, ifp);
1657 ts.tv_nsec = lfs_if_getatime_nsec(fs, ifp);
1658 }
1659
1660 brelse(bp, 0);
1661 if (daddr == LFS_UNUSED_DADDR)
1662 return (ENOENT);
1663 }
1664
1665 /* Allocate/init new vnode/inode. */
1666 lfs_init_vnode(ump, ino, vp);
1667 ip = VTOI(vp);
1668
1669 /* If the cleaner supplied the inode, use it. */
1670 if (curlwp == fs->lfs_cleaner_thread && fs->lfs_cleaner_hint != NULL &&
1671 fs->lfs_cleaner_hint->bi_lbn == LFS_UNUSED_LBN) {
1672 dip = fs->lfs_cleaner_hint->bi_bp;
1673 if (fs->lfs_is64) {
1674 error = copyin(dip, &ip->i_din->u_64,
1675 sizeof(struct lfs64_dinode));
1676 } else {
1677 error = copyin(dip, &ip->i_din->u_32,
1678 sizeof(struct lfs32_dinode));
1679 }
1680 if (error) {
1681 lfs_deinit_vnode(ump, vp);
1682 return error;
1683 }
1684 KASSERT(ip->i_number == ino);
1685 goto out;
1686 }
1687
1688 /* Read in the disk contents for the inode, copy into the inode. */
1689 retries = 0;
1690 again:
1691 error = bread(fs->lfs_devvp, LFS_FSBTODB(fs, daddr),
1692 (lfs_sb_getversion(fs) == 1 ? lfs_sb_getbsize(fs) : lfs_sb_getibsize(fs)),
1693 0, &bp);
1694 if (error) {
1695 lfs_deinit_vnode(ump, vp);
1696 return error;
1697 }
1698
1699 dip = lfs_ifind(fs, ino, bp);
1700 if (dip == NULL) {
1701 /* Assume write has not completed yet; try again */
1702 brelse(bp, BC_INVAL);
1703 ++retries;
1704 if (retries <= LFS_IFIND_RETRIES) {
1705 mutex_enter(&lfs_lock);
1706 if (fs->lfs_iocount) {
1707 DLOG((DLOG_VNODE,
1708 "%s: dinode %d not found, retrying...\n",
1709 __func__, ino));
1710 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1711 "lfs ifind", 1, &lfs_lock);
1712 } else
1713 retries = LFS_IFIND_RETRIES;
1714 mutex_exit(&lfs_lock);
1715 goto again;
1716 }
1717 #ifdef DEBUG
1718 /* If the seglock is held look at the bpp to see
1719 what is there anyway */
1720 mutex_enter(&lfs_lock);
1721 if (fs->lfs_seglock > 0) {
1722 struct buf **bpp;
1723 union lfs_dinode *dp;
1724 int i;
1725
1726 for (bpp = fs->lfs_sp->bpp;
1727 bpp != fs->lfs_sp->cbpp; ++bpp) {
1728 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1729 bpp != fs->lfs_sp->bpp) {
1730 /* Inode block */
1731 printf("%s: block 0x%" PRIx64 ": ",
1732 __func__, (*bpp)->b_blkno);
1733 for (i = 0; i < LFS_INOPB(fs); i++) {
1734 dp = DINO_IN_BLOCK(fs,
1735 (*bpp)->b_data, i);
1736 if (lfs_dino_getinumber(fs, dp))
1737 printf("%ju ",
1738 (uintmax_t)lfs_dino_getinumber(fs, dp));
1739 }
1740 printf("\n");
1741 }
1742 }
1743 }
1744 mutex_exit(&lfs_lock);
1745 #endif /* DEBUG */
1746 panic("lfs_loadvnode: dinode not found");
1747 }
1748 lfs_copy_dinode(fs, ip->i_din, dip);
1749 brelse(bp, 0);
1750
1751 out:
1752 if (lfs_sb_getversion(fs) > 1) {
1753 lfs_dino_setatime(fs, ip->i_din, ts.tv_sec);
1754 lfs_dino_setatimensec(fs, ip->i_din, ts.tv_nsec);
1755 }
1756
1757 lfs_vinit(mp, &vp);
1758
1759 *new_key = &ip->i_number;
1760 return 0;
1761 }
1762
1763 /*
1764 * Create a new inode and initialize this vnode / inode pair.
1765 */
1766 int
1767 lfs_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp,
1768 struct vattr *vap, kauth_cred_t cred, void *extra,
1769 size_t *key_len, const void **new_key)
1770 {
1771 ino_t ino;
1772 struct inode *ip;
1773 struct ulfsmount *ump;
1774 struct lfs *fs;
1775 int error, mode, gen;
1776
1777 KASSERT(dvp != NULL || vap->va_fileid > 0);
1778 KASSERT(dvp != NULL && dvp->v_mount == mp);
1779 KASSERT(vap->va_type != VNON);
1780
1781 *key_len = sizeof(ino);
1782 ump = VFSTOULFS(mp);
1783 fs = ump->um_lfs;
1784 mode = MAKEIMODE(vap->va_type, vap->va_mode);
1785
1786 /*
1787 * Allocate fresh inode. With "dvp == NULL" take the inode number
1788 * and version from "vap".
1789 */
1790 if (dvp == NULL) {
1791 ino = vap->va_fileid;
1792 gen = vap->va_gen;
1793 error = lfs_valloc_fixed(fs, ino, gen);
1794 } else {
1795 error = lfs_valloc(dvp, mode, cred, &ino, &gen);
1796 }
1797 if (error)
1798 return error;
1799
1800 /* Attach inode to vnode. */
1801 lfs_init_vnode(ump, ino, vp);
1802 ip = VTOI(vp);
1803
1804 mutex_enter(&lfs_lock);
1805 LFS_SET_UINO(ip, IN_CHANGE);
1806 mutex_exit(&lfs_lock);
1807
1808 /* Note no blocks yet */
1809 ip->i_lfs_hiblk = -1;
1810
1811 /* Set a new generation number for this inode. */
1812 ip->i_gen = gen;
1813 lfs_dino_setgen(fs, ip->i_din, gen);
1814
1815 memset(ip->i_lfs_fragsize, 0,
1816 ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
1817
1818 /* Set uid / gid. */
1819 if (cred == NOCRED || cred == FSCRED) {
1820 ip->i_gid = 0;
1821 ip->i_uid = 0;
1822 } else {
1823 ip->i_gid = VTOI(dvp)->i_gid;
1824 ip->i_uid = kauth_cred_geteuid(cred);
1825 }
1826 DIP_ASSIGN(ip, gid, ip->i_gid);
1827 DIP_ASSIGN(ip, uid, ip->i_uid);
1828
1829 #if defined(LFS_QUOTA) || defined(LFS_QUOTA2)
1830 error = lfs_chkiq(ip, 1, cred, 0);
1831 if (error) {
1832 lfs_vfree(dvp, ino, mode);
1833 lfs_deinit_vnode(ump, vp);
1834
1835 return error;
1836 }
1837 #endif
1838
1839 /* Set type and finalize. */
1840 ip->i_flags = 0;
1841 DIP_ASSIGN(ip, flags, 0);
1842 ip->i_mode = mode;
1843 DIP_ASSIGN(ip, mode, mode);
1844 if (vap->va_rdev != VNOVAL) {
1845 /*
1846 * Want to be able to use this to make badblock
1847 * inodes, so don't truncate the dev number.
1848 */
1849 // XXX clean this up
1850 if (ump->um_fstype == ULFS1)
1851 ip->i_din->u_32.di_rdev = ulfs_rw32(vap->va_rdev,
1852 ULFS_MPNEEDSWAP(fs));
1853 else
1854 ip->i_din->u_64.di_rdev = ulfs_rw64(vap->va_rdev,
1855 ULFS_MPNEEDSWAP(fs));
1856 }
1857 lfs_vinit(mp, &vp);
1858
1859 *new_key = &ip->i_number;
1860 return 0;
1861 }
1862
1863 /*
1864 * File handle to vnode
1865 */
1866 int
1867 lfs_fhtovp(struct mount *mp, struct fid *fhp, int lktype, struct vnode **vpp)
1868 {
1869 struct lfid lfh;
1870 struct lfs *fs;
1871
1872 if (fhp->fid_len != sizeof(struct lfid))
1873 return EINVAL;
1874
1875 memcpy(&lfh, fhp, sizeof(lfh));
1876 if (lfh.lfid_ino < LFS_IFILE_INUM)
1877 return ESTALE;
1878
1879 fs = VFSTOULFS(mp)->um_lfs;
1880 if (lfh.lfid_ident != lfs_sb_getident(fs))
1881 return ESTALE;
1882
1883 if (lfh.lfid_ino >
1884 ((lfs_dino_getsize(fs, VTOI(fs->lfs_ivnode)->i_din) >> lfs_sb_getbshift(fs)) -
1885 lfs_sb_getcleansz(fs) - lfs_sb_getsegtabsz(fs)) * lfs_sb_getifpb(fs))
1886 return ESTALE;
1887
1888 return (ulfs_fhtovp(mp, &lfh.lfid_ufid, lktype, vpp));
1889 }
1890
1891 /*
1892 * Vnode pointer to File handle
1893 */
1894 /* ARGSUSED */
1895 int
1896 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1897 {
1898 struct inode *ip;
1899 struct lfid lfh;
1900
1901 if (*fh_size < sizeof(struct lfid)) {
1902 *fh_size = sizeof(struct lfid);
1903 return E2BIG;
1904 }
1905 *fh_size = sizeof(struct lfid);
1906 ip = VTOI(vp);
1907 memset(&lfh, 0, sizeof(lfh));
1908 lfh.lfid_len = sizeof(struct lfid);
1909 lfh.lfid_ino = ip->i_number;
1910 lfh.lfid_gen = ip->i_gen;
1911 lfh.lfid_ident = lfs_sb_getident(ip->i_lfs);
1912 memcpy(fhp, &lfh, sizeof(lfh));
1913 return (0);
1914 }
1915
1916 /*
1917 * ulfs_bmaparray callback function for writing.
1918 *
1919 * Since blocks will be written to the new segment anyway,
1920 * we don't care about current daddr of them.
1921 */
1922 static bool
1923 lfs_issequential_hole(const struct lfs *fs,
1924 daddr_t daddr0, daddr_t daddr1)
1925 {
1926 (void)fs; /* not used */
1927
1928 KASSERT(daddr0 == UNWRITTEN ||
1929 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR(fs)));
1930 KASSERT(daddr1 == UNWRITTEN ||
1931 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR(fs)));
1932
1933 /* NOTE: all we want to know here is 'hole or not'. */
1934 /* NOTE: UNASSIGNED is converted to 0 by ulfs_bmaparray. */
1935
1936 /*
1937 * treat UNWRITTENs and all resident blocks as 'contiguous'
1938 */
1939 if (daddr0 != 0 && daddr1 != 0)
1940 return true;
1941
1942 /*
1943 * both are in hole?
1944 */
1945 if (daddr0 == 0 && daddr1 == 0)
1946 return true; /* all holes are 'contiguous' for us. */
1947
1948 return false;
1949 }
1950
1951 /*
1952 * lfs_gop_write functions exactly like genfs_gop_write, except that
1953 * (1) it requires the seglock to be held by its caller, and sp->fip
1954 * to be properly initialized (it will return without re-initializing
1955 * sp->fip, and without calling lfs_writeseg).
1956 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1957 * to determine how large a block it can write at once (though it does
1958 * still use VOP_BMAP to find holes in the file);
1959 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1960 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1961 * now have clusters of clusters, ick.)
1962 */
1963 static int
1964 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1965 int flags)
1966 {
1967 int i, error, run, haveeof = 0;
1968 int fs_bshift;
1969 vaddr_t kva;
1970 off_t eof, offset, startoffset = 0;
1971 size_t bytes, iobytes, skipbytes;
1972 bool async = (flags & PGO_SYNCIO) == 0;
1973 daddr_t lbn, blkno;
1974 struct vm_page *pg;
1975 struct buf *mbp, *bp;
1976 struct vnode *devvp = VTOI(vp)->i_devvp;
1977 struct inode *ip = VTOI(vp);
1978 struct lfs *fs = ip->i_lfs;
1979 struct segment *sp = fs->lfs_sp;
1980 SEGSUM *ssp;
1981 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1982 const char * failreason = NULL;
1983
1984 ASSERT_SEGLOCK(fs);
1985
1986 /* The Ifile lives in the buffer cache */
1987 KASSERT(vp != fs->lfs_ivnode);
1988
1989 /*
1990 * We don't want to fill the disk before the cleaner has a chance
1991 * to make room for us. If we're in danger of doing that, fail
1992 * with EAGAIN. The caller will have to notice this, unlock
1993 * so the cleaner can run, relock and try again.
1994 *
1995 * We must write everything, however, if our vnode is being
1996 * reclaimed.
1997 */
1998 mutex_enter(vp->v_interlock);
1999 if (LFS_STARVED_FOR_SEGS(fs) && vdead_check(vp, VDEAD_NOWAIT) == 0) {
2000 mutex_exit(vp->v_interlock);
2001 failreason = "Starved for segs and not flushing vp";
2002 goto tryagain;
2003 }
2004 mutex_exit(vp->v_interlock);
2005
2006 /*
2007 * Sometimes things slip past the filters in lfs_putpages,
2008 * and the pagedaemon tries to write pages---problem is
2009 * that the pagedaemon never acquires the segment lock.
2010 *
2011 * Alternatively, pages that were clean when we called
2012 * genfs_putpages may have become dirty in the meantime. In this
2013 * case the segment header is not properly set up for blocks
2014 * to be added to it.
2015 *
2016 * Unbusy and unclean the pages, and put them on the ACTIVE
2017 * queue under the hypothesis that they couldn't have got here
2018 * unless they were modified *quite* recently.
2019 *
2020 * XXXUBC that last statement is an oversimplification of course.
2021 */
2022 if (!LFS_SEGLOCK_HELD(fs)) {
2023 failreason = "Seglock not held";
2024 goto tryagain;
2025 }
2026 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
2027 failreason = "Inode with no_gop_write";
2028 goto tryagain;
2029 }
2030 if ((pgs[0]->offset & lfs_sb_getbmask(fs)) != 0) {
2031 failreason = "Bad page offset";
2032 goto tryagain;
2033 }
2034
2035 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
2036 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
2037
2038 GOP_SIZE(vp, vp->v_size, &eof, 0);
2039 haveeof = 1;
2040
2041 if (vp->v_type == VREG)
2042 fs_bshift = vp->v_mount->mnt_fs_bshift;
2043 else
2044 fs_bshift = DEV_BSHIFT;
2045 error = 0;
2046 pg = pgs[0];
2047 startoffset = pg->offset;
2048 KASSERT(eof >= 0);
2049
2050 if (startoffset >= eof) {
2051 failreason = "Offset beyond EOF";
2052 goto tryagain;
2053 } else
2054 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
2055 skipbytes = 0;
2056
2057 KASSERT(bytes != 0);
2058
2059 /* Swap PG_DELWRI for PG_PAGEOUT */
2060 for (i = 0; i < npages; i++) {
2061 if (pgs[i]->flags & PG_DELWRI) {
2062 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
2063 pgs[i]->flags &= ~PG_DELWRI;
2064 pgs[i]->flags |= PG_PAGEOUT;
2065 uvm_pageout_start(1);
2066 mutex_enter(vp->v_interlock);
2067 uvm_pagelock(pgs[i]);
2068 uvm_pageunwire(pgs[i]);
2069 uvm_pageunlock(pgs[i]);
2070 mutex_exit(vp->v_interlock);
2071 }
2072 }
2073
2074 /*
2075 * Check to make sure we're starting on a block boundary.
2076 * We'll check later to make sure we always write entire
2077 * blocks (or fragments).
2078 */
2079 if (startoffset & lfs_sb_getbmask(fs))
2080 printf("%" PRId64 " & %" PRIu64 " = %" PRId64 "\n",
2081 startoffset, lfs_sb_getbmask(fs),
2082 startoffset & lfs_sb_getbmask(fs));
2083 KASSERT((startoffset & lfs_sb_getbmask(fs)) == 0);
2084 if (bytes & lfs_sb_getffmask(fs)) {
2085 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
2086 panic("lfs_gop_write: non-integer blocks");
2087 }
2088
2089 /*
2090 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
2091 * If we would, write what we have and try again. If we don't
2092 * have anything to write, we'll have to sleep.
2093 */
2094 ssp = (SEGSUM *)sp->segsum;
2095 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
2096 (lfs_ss_getnfinfo(fs, ssp) < 1 ?
2097 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
2098 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
2099 #if 0
2100 " with nfinfo=%d at offset 0x%jx\n",
2101 (int)lfs_ss_getnfinfo(fs, ssp),
2102 (uintmax_t)lfs_sb_getoffset(fs)));
2103 #endif
2104 lfs_updatemeta(sp);
2105 lfs_release_finfo(fs);
2106 (void) lfs_writeseg(fs, sp);
2107
2108 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2109
2110 /*
2111 * Having given up all of the pager_map we were holding,
2112 * we can now wait for aiodoned to reclaim it for us
2113 * without fear of deadlock.
2114 */
2115 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
2116 UVMPAGER_MAPIN_WAITOK);
2117 }
2118
2119 mbp = getiobuf(NULL, true);
2120 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
2121 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
2122 mbp->b_bufsize = npages << PAGE_SHIFT;
2123 mbp->b_data = (void *)kva;
2124 mbp->b_resid = mbp->b_bcount = bytes;
2125 mbp->b_cflags = BC_BUSY|BC_AGE;
2126 mbp->b_iodone = uvm_aio_aiodone;
2127
2128 bp = NULL;
2129 for (offset = startoffset;
2130 bytes > 0;
2131 offset += iobytes, bytes -= iobytes) {
2132 lbn = offset >> fs_bshift;
2133 error = ulfs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
2134 lfs_issequential_hole);
2135 if (error) {
2136 UVMHIST_LOG(ubchist, "ulfs_bmaparray() -> %jd",
2137 error,0,0,0);
2138 skipbytes += bytes;
2139 bytes = 0;
2140 break;
2141 }
2142
2143 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
2144 bytes);
2145 if (blkno == (daddr_t)-1) {
2146 skipbytes += iobytes;
2147 continue;
2148 }
2149
2150 /*
2151 * Discover how much we can really pack into this buffer.
2152 */
2153 /* If no room in the current segment, finish it up */
2154 if (sp->sum_bytes_left < sizeof(int32_t) ||
2155 sp->seg_bytes_left < (1 << lfs_sb_getbshift(fs))) {
2156 int vers;
2157
2158 lfs_updatemeta(sp);
2159 vers = lfs_fi_getversion(fs, sp->fip);
2160 lfs_release_finfo(fs);
2161 (void) lfs_writeseg(fs, sp);
2162
2163 lfs_acquire_finfo(fs, ip->i_number, vers);
2164 }
2165 /* Check both for space in segment and space in segsum */
2166 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
2167 << fs_bshift);
2168 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
2169 << fs_bshift);
2170 KASSERT(iobytes > 0);
2171
2172 /* if it's really one i/o, don't make a second buf */
2173 if (offset == startoffset && iobytes == bytes) {
2174 bp = mbp;
2175 /*
2176 * All the LFS output is done by the segwriter. It
2177 * will increment numoutput by one for all the bufs it
2178 * receives. However this buffer needs one extra to
2179 * account for aiodone.
2180 */
2181 mutex_enter(vp->v_interlock);
2182 vp->v_numoutput++;
2183 mutex_exit(vp->v_interlock);
2184 } else {
2185 bp = getiobuf(NULL, true);
2186 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
2187 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
2188 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
2189 /*
2190 * LFS doesn't like async I/O here, dies with
2191 * an assert in lfs_bwrite(). Is that assert
2192 * valid? I retained non-async behaviour when
2193 * converted this to use nestiobuf --pooka
2194 */
2195 bp->b_flags &= ~B_ASYNC;
2196 }
2197
2198 /* XXX This is silly ... is this necessary? */
2199 mutex_enter(&bufcache_lock);
2200 mutex_enter(vp->v_interlock);
2201 bgetvp(vp, bp);
2202 mutex_exit(vp->v_interlock);
2203 mutex_exit(&bufcache_lock);
2204
2205 bp->b_lblkno = lfs_lblkno(fs, offset);
2206 bp->b_private = mbp;
2207 if (devvp->v_type == VBLK) {
2208 bp->b_dev = devvp->v_rdev;
2209 }
2210 VOP_BWRITE(bp->b_vp, bp);
2211 while (lfs_gatherblock(sp, bp, NULL))
2212 continue;
2213 }
2214
2215 nestiobuf_done(mbp, skipbytes, error);
2216 if (skipbytes) {
2217 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
2218 }
2219 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
2220
2221 if (!async) {
2222 /* Start a segment write. */
2223 UVMHIST_LOG(ubchist, "flushing", 0,0,0,0);
2224 mutex_enter(&lfs_lock);
2225 lfs_flush(fs, 0, 1);
2226 mutex_exit(&lfs_lock);
2227 }
2228
2229 if ((sp->seg_flags & SEGM_SINGLE) && lfs_sb_getcurseg(fs) != fs->lfs_startseg)
2230 return EAGAIN;
2231
2232 return (0);
2233
2234 tryagain:
2235 /*
2236 * We can't write the pages, for whatever reason.
2237 * Clean up after ourselves, and make the caller try again.
2238 */
2239 mutex_enter(vp->v_interlock);
2240
2241 /* Tell why we're here, if we know */
2242 if (failreason != NULL) {
2243 DLOG((DLOG_PAGE, "lfs_gop_write: %s\n", failreason));
2244 }
2245 if (haveeof && startoffset >= eof) {
2246 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
2247 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
2248 pgs[0]->offset, eof, npages));
2249 }
2250
2251 for (i = 0; i < npages; i++) {
2252 pg = pgs[i];
2253
2254 if (pg->flags & PG_PAGEOUT)
2255 uvm_pageout_done(1);
2256 uvm_pagelock(pg);
2257 if (pg->flags & PG_DELWRI) {
2258 uvm_pageunwire(pg);
2259 }
2260 uvm_pageactivate(pg);
2261 uvm_pageunlock(pg);
2262 pg->flags &= ~(PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
2263 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2264 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
2265 vp, pg->offset));
2266 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
2267 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
2268 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
2269 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
2270 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
2271 pg->wire_count));
2272 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
2273 pg->loan_count));
2274 }
2275 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
2276 uvm_page_unbusy(pgs, npages);
2277 mutex_exit(vp->v_interlock);
2278 return EAGAIN;
2279 }
2280
2281 /*
2282 * finish vnode/inode initialization.
2283 * used by lfs_vget.
2284 */
2285 void
2286 lfs_vinit(struct mount *mp, struct vnode **vpp)
2287 {
2288 struct vnode *vp = *vpp;
2289 struct inode *ip = VTOI(vp);
2290 struct ulfsmount *ump = VFSTOULFS(mp);
2291 struct lfs *fs = ump->um_lfs;
2292 int i;
2293
2294 ip->i_mode = lfs_dino_getmode(fs, ip->i_din);
2295 ip->i_nlink = lfs_dino_getnlink(fs, ip->i_din);
2296 ip->i_lfs_osize = ip->i_size = lfs_dino_getsize(fs, ip->i_din);
2297 ip->i_flags = lfs_dino_getflags(fs, ip->i_din);
2298 ip->i_gen = lfs_dino_getgen(fs, ip->i_din);
2299 ip->i_uid = lfs_dino_getuid(fs, ip->i_din);
2300 ip->i_gid = lfs_dino_getgid(fs, ip->i_din);
2301
2302 ip->i_lfs_effnblks = lfs_dino_getblocks(fs, ip->i_din);
2303 ip->i_lfs_odnlink = lfs_dino_getnlink(fs, ip->i_din);
2304
2305 /*
2306 * Initialize the vnode from the inode, check for aliases. In all
2307 * cases re-init ip, the underlying vnode/inode may have changed.
2308 */
2309 ulfs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
2310 ip = VTOI(vp);
2311
2312 memset(ip->i_lfs_fragsize, 0, ULFS_NDADDR * sizeof(*ip->i_lfs_fragsize));
2313 if (vp->v_type != VLNK || ip->i_size >= ip->i_lfs->um_maxsymlinklen) {
2314 #ifdef DEBUG
2315 for (i = (ip->i_size + lfs_sb_getbsize(fs) - 1) >> lfs_sb_getbshift(fs);
2316 i < ULFS_NDADDR; i++) {
2317 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
2318 i == 0)
2319 continue;
2320 if (lfs_dino_getdb(fs, ip->i_din, i) != 0) {
2321 lfs_dump_dinode(fs, ip->i_din);
2322 panic("inconsistent inode (direct)");
2323 }
2324 }
2325 for ( ; i < ULFS_NDADDR + ULFS_NIADDR; i++) {
2326 if (lfs_dino_getib(fs, ip->i_din, i - ULFS_NDADDR) != 0) {
2327 lfs_dump_dinode(fs, ip->i_din);
2328 panic("inconsistent inode (indirect)");
2329 }
2330 }
2331 #endif /* DEBUG */
2332 for (i = 0; i < ULFS_NDADDR; i++)
2333 if (lfs_dino_getdb(fs, ip->i_din, i) != 0)
2334 ip->i_lfs_fragsize[i] = lfs_blksize(fs, ip, i);
2335 }
2336
2337 KASSERTMSG((vp->v_type != VNON),
2338 "lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
2339 (unsigned long long)ip->i_number,
2340 (ip->i_mode & LFS_IFMT) >> 12);
2341
2342 /*
2343 * Finish inode initialization now that aliasing has been resolved.
2344 */
2345
2346 ip->i_devvp = fs->lfs_devvp;
2347 vref(ip->i_devvp);
2348 #if defined(LFS_QUOTA) || defined(LFS_QUOTA2)
2349 ulfsquota_init(ip);
2350 #endif
2351 genfs_node_init(vp, &lfs_genfsops);
2352 uvm_vnp_setsize(vp, ip->i_size);
2353
2354 /* Initialize hiblk from file size */
2355 ip->i_lfs_hiblk = lfs_lblkno(ip->i_lfs, ip->i_size + lfs_sb_getbsize(ip->i_lfs) - 1) - 1;
2356
2357 *vpp = vp;
2358 }
2359
2360 /*
2361 * Resize the filesystem to contain the specified number of segments.
2362 */
2363 int
2364 lfs_resize_fs(struct lfs *fs, int newnsegs)
2365 {
2366 SEGUSE *sup;
2367 CLEANERINFO *cip;
2368 struct buf *bp, *obp;
2369 daddr_t olast, nlast, ilast, noff, start, end;
2370 struct vnode *ivp;
2371 struct inode *ip;
2372 int error, badnews, inc, oldnsegs;
2373 int sbbytes, csbbytes, gain, cgain;
2374 int i;
2375
2376 /* Only support v2 and up */
2377 if (lfs_sb_getversion(fs) < 2)
2378 return EOPNOTSUPP;
2379
2380 /* If we're doing nothing, do it fast */
2381 oldnsegs = lfs_sb_getnseg(fs);
2382 if (newnsegs == oldnsegs)
2383 return 0;
2384
2385 /* We always have to have two superblocks */
2386 if (newnsegs <= lfs_dtosn(fs, lfs_sb_getsboff(fs, 1)))
2387 /* XXX this error code is rather nonsense */
2388 return EFBIG;
2389
2390 ivp = fs->lfs_ivnode;
2391 ip = VTOI(ivp);
2392 error = 0;
2393
2394 /* Take the segment lock so no one else calls lfs_newseg() */
2395 lfs_seglock(fs, SEGM_PROT);
2396
2397 /*
2398 * Make sure the segments we're going to be losing, if any,
2399 * are in fact empty. We hold the seglock, so their status
2400 * cannot change underneath us. Count the superblocks we lose,
2401 * while we're at it.
2402 */
2403 sbbytes = csbbytes = 0;
2404 cgain = 0;
2405 for (i = newnsegs; i < oldnsegs; i++) {
2406 LFS_SEGENTRY(sup, fs, i, bp);
2407 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
2408 if (sup->su_flags & SEGUSE_SUPERBLOCK)
2409 sbbytes += LFS_SBPAD;
2410 if (!(sup->su_flags & SEGUSE_DIRTY)) {
2411 ++cgain;
2412 if (sup->su_flags & SEGUSE_SUPERBLOCK)
2413 csbbytes += LFS_SBPAD;
2414 }
2415 brelse(bp, 0);
2416 if (badnews) {
2417 error = EBUSY;
2418 goto out;
2419 }
2420 }
2421
2422 /* Note old and new segment table endpoints, and old ifile size */
2423 olast = lfs_sb_getcleansz(fs) + lfs_sb_getsegtabsz(fs);
2424 nlast = howmany(newnsegs, lfs_sb_getsepb(fs)) + lfs_sb_getcleansz(fs);
2425 ilast = ivp->v_size >> lfs_sb_getbshift(fs);
2426 noff = nlast - olast;
2427
2428 /*
2429 * Make sure no one can use the Ifile while we change it around.
2430 * Even after taking the iflock we need to make sure no one still
2431 * is holding Ifile buffers, so we get each one, to drain them.
2432 * (XXX this could be done better.)
2433 */
2434 rw_enter(&fs->lfs_iflock, RW_WRITER);
2435 for (i = 0; i < ilast; i++) {
2436 /* XXX what to do if bread fails? */
2437 bread(ivp, i, lfs_sb_getbsize(fs), 0, &bp);
2438 brelse(bp, 0);
2439 }
2440
2441 /* Allocate new Ifile blocks */
2442 for (i = ilast; i < ilast + noff; i++) {
2443 if (lfs_balloc(ivp, i * lfs_sb_getbsize(fs), lfs_sb_getbsize(fs), NOCRED, 0,
2444 &bp) != 0)
2445 panic("balloc extending ifile");
2446 memset(bp->b_data, 0, lfs_sb_getbsize(fs));
2447 VOP_BWRITE(bp->b_vp, bp);
2448 }
2449
2450 /* Register new ifile size */
2451 ip->i_size += noff * lfs_sb_getbsize(fs);
2452 lfs_dino_setsize(fs, ip->i_din, ip->i_size);
2453 uvm_vnp_setsize(ivp, ip->i_size);
2454
2455 /* Copy the inode table to its new position */
2456 if (noff != 0) {
2457 if (noff < 0) {
2458 start = nlast;
2459 end = ilast + noff;
2460 inc = 1;
2461 } else {
2462 start = ilast + noff - 1;
2463 end = nlast - 1;
2464 inc = -1;
2465 }
2466 for (i = start; i != end; i += inc) {
2467 if (bread(ivp, i, lfs_sb_getbsize(fs),
2468 B_MODIFY, &bp) != 0)
2469 panic("resize: bread dst blk failed");
2470 if (bread(ivp, i - noff, lfs_sb_getbsize(fs),
2471 0, &obp))
2472 panic("resize: bread src blk failed");
2473 memcpy(bp->b_data, obp->b_data, lfs_sb_getbsize(fs));
2474 VOP_BWRITE(bp->b_vp, bp);
2475 brelse(obp, 0);
2476 }
2477 }
2478
2479 /* If we are expanding, write the new empty SEGUSE entries */
2480 if (newnsegs > oldnsegs) {
2481 for (i = oldnsegs; i < newnsegs; i++) {
2482 if ((error = bread(ivp, i / lfs_sb_getsepb(fs) +
2483 lfs_sb_getcleansz(fs), lfs_sb_getbsize(fs),
2484 B_MODIFY, &bp)) != 0)
2485 panic("lfs: ifile read: %d", error);
2486 while ((i + 1) % lfs_sb_getsepb(fs) && i < newnsegs) {
2487 sup = &((SEGUSE *)bp->b_data)[i % lfs_sb_getsepb(fs)];
2488 memset(sup, 0, sizeof(*sup));
2489 i++;
2490 }
2491 VOP_BWRITE(bp->b_vp, bp);
2492 }
2493 }
2494
2495 /* Zero out unused superblock offsets */
2496 for (i = 2; i < LFS_MAXNUMSB; i++)
2497 if (lfs_dtosn(fs, lfs_sb_getsboff(fs, i)) >= newnsegs)
2498 lfs_sb_setsboff(fs, i, 0x0);
2499
2500 /*
2501 * Correct superblock entries that depend on fs size.
2502 * The computations of these are as follows:
2503 *
2504 * size = lfs_segtod(fs, nseg)
2505 * dsize = lfs_segtod(fs, nseg - minfreeseg) - lfs_btofsb(#super * LFS_SBPAD)
2506 * bfree = dsize - lfs_btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2507 * avail = lfs_segtod(fs, nclean) - lfs_btofsb(#clean_super * LFS_SBPAD)
2508 * + (lfs_segtod(fs, 1) - (offset - curseg))
2509 * - lfs_segtod(fs, minfreeseg - (minfreeseg / 2))
2510 *
2511 * XXX - we should probably adjust minfreeseg as well.
2512 */
2513 gain = (newnsegs - oldnsegs);
2514 lfs_sb_setnseg(fs, newnsegs);
2515 lfs_sb_setsegtabsz(fs, nlast - lfs_sb_getcleansz(fs));
2516 lfs_sb_addsize(fs, gain * lfs_btofsb(fs, lfs_sb_getssize(fs)));
2517 lfs_sb_adddsize(fs, gain * lfs_btofsb(fs, lfs_sb_getssize(fs)) - lfs_btofsb(fs, sbbytes));
2518 lfs_sb_addbfree(fs, gain * lfs_btofsb(fs, lfs_sb_getssize(fs)) - lfs_btofsb(fs, sbbytes)
2519 - gain * lfs_btofsb(fs, lfs_sb_getbsize(fs) / 2));
2520 if (gain > 0) {
2521 lfs_sb_addnclean(fs, gain);
2522 lfs_sb_addavail(fs, gain * lfs_btofsb(fs, lfs_sb_getssize(fs)));
2523 } else {
2524 lfs_sb_subnclean(fs, cgain);
2525 lfs_sb_subavail(fs, cgain * lfs_btofsb(fs, lfs_sb_getssize(fs)) -
2526 lfs_btofsb(fs, csbbytes));
2527 }
2528
2529 /* Resize segment flag cache */
2530 fs->lfs_suflags[0] = realloc(fs->lfs_suflags[0],
2531 lfs_sb_getnseg(fs) * sizeof(u_int32_t), M_SEGMENT, M_WAITOK);
2532 fs->lfs_suflags[1] = realloc(fs->lfs_suflags[1],
2533 lfs_sb_getnseg(fs) * sizeof(u_int32_t), M_SEGMENT, M_WAITOK);
2534 for (i = oldnsegs; i < newnsegs; i++)
2535 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2536
2537 /* Truncate Ifile if necessary */
2538 if (noff < 0)
2539 lfs_truncate(ivp, ivp->v_size + (noff << lfs_sb_getbshift(fs)), 0,
2540 NOCRED);
2541
2542 /* Update cleaner info so the cleaner can die */
2543 /* XXX what to do if bread fails? */
2544 bread(ivp, 0, lfs_sb_getbsize(fs), B_MODIFY, &bp);
2545 cip = bp->b_data;
2546 lfs_ci_setclean(fs, cip, lfs_sb_getnclean(fs));
2547 lfs_ci_setdirty(fs, cip, lfs_sb_getnseg(fs) - lfs_sb_getnclean(fs));
2548 VOP_BWRITE(bp->b_vp, bp);
2549
2550 /* Let Ifile accesses proceed */
2551 rw_exit(&fs->lfs_iflock);
2552
2553 out:
2554 lfs_segunlock(fs);
2555 return error;
2556 }
2557
2558 /*
2559 * Extended attribute dispatch
2560 */
2561 int
2562 lfs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
2563 int attrnamespace, const char *attrname)
2564 {
2565 #ifdef LFS_EXTATTR
2566 struct ulfsmount *ump;
2567
2568 ump = VFSTOULFS(mp);
2569 if (ump->um_fstype == ULFS1) {
2570 return ulfs_extattrctl(mp, cmd, vp, attrnamespace, attrname);
2571 }
2572 #endif
2573 return vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname);
2574 }
2575