lfs_vnops.c revision 1.137.2.20 1 1.137.2.20 riz /* $NetBSD: lfs_vnops.c,v 1.137.2.20 2006/05/20 22:41:31 riz Exp $ */
2 1.2 cgd
3 1.22 perseant /*-
4 1.84 perseant * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 1.22 perseant * All rights reserved.
6 1.22 perseant *
7 1.22 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.22 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.22 perseant *
10 1.22 perseant * Redistribution and use in source and binary forms, with or without
11 1.22 perseant * modification, are permitted provided that the following conditions
12 1.22 perseant * are met:
13 1.22 perseant * 1. Redistributions of source code must retain the above copyright
14 1.22 perseant * notice, this list of conditions and the following disclaimer.
15 1.22 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.22 perseant * notice, this list of conditions and the following disclaimer in the
17 1.22 perseant * documentation and/or other materials provided with the distribution.
18 1.22 perseant * 3. All advertising materials mentioning features or use of this software
19 1.22 perseant * must display the following acknowledgement:
20 1.86 perseant * This product includes software developed by the NetBSD
21 1.86 perseant * Foundation, Inc. and its contributors.
22 1.22 perseant * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.22 perseant * contributors may be used to endorse or promote products derived
24 1.22 perseant * from this software without specific prior written permission.
25 1.22 perseant *
26 1.22 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.22 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.22 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.22 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.22 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.22 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.22 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.22 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.22 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.22 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.22 perseant * POSSIBILITY OF SUCH DAMAGE.
37 1.22 perseant */
38 1.1 mycroft /*
39 1.15 fvdl * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 1.1 mycroft * The Regents of the University of California. All rights reserved.
41 1.1 mycroft *
42 1.1 mycroft * Redistribution and use in source and binary forms, with or without
43 1.1 mycroft * modification, are permitted provided that the following conditions
44 1.1 mycroft * are met:
45 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
46 1.1 mycroft * notice, this list of conditions and the following disclaimer.
47 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
49 1.1 mycroft * documentation and/or other materials provided with the distribution.
50 1.114 agc * 3. Neither the name of the University nor the names of its contributors
51 1.1 mycroft * may be used to endorse or promote products derived from this software
52 1.1 mycroft * without specific prior written permission.
53 1.1 mycroft *
54 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 mycroft * SUCH DAMAGE.
65 1.1 mycroft *
66 1.15 fvdl * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 1.1 mycroft */
68 1.58 lukem
69 1.58 lukem #include <sys/cdefs.h>
70 1.137.2.20 riz __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.137.2.20 2006/05/20 22:41:31 riz Exp $");
71 1.17 sommerfe
72 1.1 mycroft #include <sys/param.h>
73 1.1 mycroft #include <sys/systm.h>
74 1.1 mycroft #include <sys/namei.h>
75 1.1 mycroft #include <sys/resourcevar.h>
76 1.1 mycroft #include <sys/kernel.h>
77 1.1 mycroft #include <sys/file.h>
78 1.1 mycroft #include <sys/stat.h>
79 1.1 mycroft #include <sys/buf.h>
80 1.1 mycroft #include <sys/proc.h>
81 1.1 mycroft #include <sys/mount.h>
82 1.1 mycroft #include <sys/vnode.h>
83 1.19 thorpej #include <sys/pool.h>
84 1.10 christos #include <sys/signalvar.h>
85 1.1 mycroft
86 1.12 mycroft #include <miscfs/fifofs/fifo.h>
87 1.12 mycroft #include <miscfs/genfs/genfs.h>
88 1.1 mycroft #include <miscfs/specfs/specdev.h>
89 1.1 mycroft
90 1.1 mycroft #include <ufs/ufs/inode.h>
91 1.1 mycroft #include <ufs/ufs/dir.h>
92 1.1 mycroft #include <ufs/ufs/ufsmount.h>
93 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
94 1.1 mycroft
95 1.84 perseant #include <uvm/uvm.h>
96 1.95 perseant #include <uvm/uvm_pmap.h>
97 1.95 perseant #include <uvm/uvm_stat.h>
98 1.95 perseant #include <uvm/uvm_pager.h>
99 1.84 perseant
100 1.1 mycroft #include <ufs/lfs/lfs.h>
101 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
102 1.1 mycroft
103 1.91 yamt extern pid_t lfs_writer_daemon;
104 1.84 perseant
105 1.1 mycroft /* Global vfs data structures for lfs. */
106 1.51 perseant int (**lfs_vnodeop_p)(void *);
107 1.50 jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 1.1 mycroft { &vop_default_desc, vn_default_error },
109 1.1 mycroft { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 1.22 perseant { &vop_create_desc, lfs_create }, /* create */
111 1.82 yamt { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 1.22 perseant { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 1.1 mycroft { &vop_open_desc, ufs_open }, /* open */
114 1.1 mycroft { &vop_close_desc, lfs_close }, /* close */
115 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
116 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 1.1 mycroft { &vop_read_desc, lfs_read }, /* read */
119 1.1 mycroft { &vop_write_desc, lfs_write }, /* write */
120 1.4 mycroft { &vop_lease_desc, ufs_lease_check }, /* lease */
121 1.90 perseant { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 1.90 perseant { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 1.13 mycroft { &vop_poll_desc, ufs_poll }, /* poll */
124 1.68 jdolecek { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 1.15 fvdl { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 1.84 perseant { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 1.1 mycroft { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 1.1 mycroft { &vop_seek_desc, ufs_seek }, /* seek */
129 1.22 perseant { &vop_remove_desc, lfs_remove }, /* remove */
130 1.22 perseant { &vop_link_desc, lfs_link }, /* link */
131 1.22 perseant { &vop_rename_desc, lfs_rename }, /* rename */
132 1.22 perseant { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 1.22 perseant { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 1.22 perseant { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 1.1 mycroft { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 1.1 mycroft { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 1.1 mycroft { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
141 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 1.1 mycroft { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 1.94 perseant { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
145 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 1.1 mycroft { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 1.1 mycroft { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 1.1 mycroft { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
149 1.1 mycroft { &vop_valloc_desc, lfs_valloc }, /* valloc */
150 1.32 fvdl { &vop_balloc_desc, lfs_balloc }, /* balloc */
151 1.1 mycroft { &vop_vfree_desc, lfs_vfree }, /* vfree */
152 1.1 mycroft { &vop_truncate_desc, lfs_truncate }, /* truncate */
153 1.1 mycroft { &vop_update_desc, lfs_update }, /* update */
154 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
155 1.60 chs { &vop_getpages_desc, lfs_getpages }, /* getpages */
156 1.60 chs { &vop_putpages_desc, lfs_putpages }, /* putpages */
157 1.53 chs { NULL, NULL }
158 1.1 mycroft };
159 1.50 jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
160 1.1 mycroft { &lfs_vnodeop_p, lfs_vnodeop_entries };
161 1.1 mycroft
162 1.51 perseant int (**lfs_specop_p)(void *);
163 1.50 jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
164 1.1 mycroft { &vop_default_desc, vn_default_error },
165 1.1 mycroft { &vop_lookup_desc, spec_lookup }, /* lookup */
166 1.1 mycroft { &vop_create_desc, spec_create }, /* create */
167 1.1 mycroft { &vop_mknod_desc, spec_mknod }, /* mknod */
168 1.1 mycroft { &vop_open_desc, spec_open }, /* open */
169 1.65 perseant { &vop_close_desc, lfsspec_close }, /* close */
170 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
171 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
172 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
173 1.1 mycroft { &vop_read_desc, ufsspec_read }, /* read */
174 1.1 mycroft { &vop_write_desc, ufsspec_write }, /* write */
175 1.4 mycroft { &vop_lease_desc, spec_lease_check }, /* lease */
176 1.1 mycroft { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
177 1.27 wrstuden { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
178 1.13 mycroft { &vop_poll_desc, spec_poll }, /* poll */
179 1.68 jdolecek { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
180 1.15 fvdl { &vop_revoke_desc, spec_revoke }, /* revoke */
181 1.1 mycroft { &vop_mmap_desc, spec_mmap }, /* mmap */
182 1.1 mycroft { &vop_fsync_desc, spec_fsync }, /* fsync */
183 1.1 mycroft { &vop_seek_desc, spec_seek }, /* seek */
184 1.1 mycroft { &vop_remove_desc, spec_remove }, /* remove */
185 1.1 mycroft { &vop_link_desc, spec_link }, /* link */
186 1.1 mycroft { &vop_rename_desc, spec_rename }, /* rename */
187 1.1 mycroft { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
188 1.1 mycroft { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
189 1.1 mycroft { &vop_symlink_desc, spec_symlink }, /* symlink */
190 1.1 mycroft { &vop_readdir_desc, spec_readdir }, /* readdir */
191 1.1 mycroft { &vop_readlink_desc, spec_readlink }, /* readlink */
192 1.1 mycroft { &vop_abortop_desc, spec_abortop }, /* abortop */
193 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
194 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
195 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
196 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
197 1.1 mycroft { &vop_bmap_desc, spec_bmap }, /* bmap */
198 1.1 mycroft { &vop_strategy_desc, spec_strategy }, /* strategy */
199 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
200 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
201 1.1 mycroft { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
202 1.1 mycroft { &vop_advlock_desc, spec_advlock }, /* advlock */
203 1.1 mycroft { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
204 1.1 mycroft { &vop_valloc_desc, spec_valloc }, /* valloc */
205 1.1 mycroft { &vop_vfree_desc, lfs_vfree }, /* vfree */
206 1.1 mycroft { &vop_truncate_desc, spec_truncate }, /* truncate */
207 1.1 mycroft { &vop_update_desc, lfs_update }, /* update */
208 1.28 perseant { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
209 1.53 chs { &vop_getpages_desc, spec_getpages }, /* getpages */
210 1.53 chs { &vop_putpages_desc, spec_putpages }, /* putpages */
211 1.53 chs { NULL, NULL }
212 1.1 mycroft };
213 1.50 jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
214 1.1 mycroft { &lfs_specop_p, lfs_specop_entries };
215 1.1 mycroft
216 1.51 perseant int (**lfs_fifoop_p)(void *);
217 1.50 jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
218 1.1 mycroft { &vop_default_desc, vn_default_error },
219 1.1 mycroft { &vop_lookup_desc, fifo_lookup }, /* lookup */
220 1.1 mycroft { &vop_create_desc, fifo_create }, /* create */
221 1.1 mycroft { &vop_mknod_desc, fifo_mknod }, /* mknod */
222 1.1 mycroft { &vop_open_desc, fifo_open }, /* open */
223 1.65 perseant { &vop_close_desc, lfsfifo_close }, /* close */
224 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
225 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
226 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
227 1.1 mycroft { &vop_read_desc, ufsfifo_read }, /* read */
228 1.1 mycroft { &vop_write_desc, ufsfifo_write }, /* write */
229 1.4 mycroft { &vop_lease_desc, fifo_lease_check }, /* lease */
230 1.1 mycroft { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
231 1.27 wrstuden { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
232 1.13 mycroft { &vop_poll_desc, fifo_poll }, /* poll */
233 1.68 jdolecek { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
234 1.15 fvdl { &vop_revoke_desc, fifo_revoke }, /* revoke */
235 1.1 mycroft { &vop_mmap_desc, fifo_mmap }, /* mmap */
236 1.1 mycroft { &vop_fsync_desc, fifo_fsync }, /* fsync */
237 1.1 mycroft { &vop_seek_desc, fifo_seek }, /* seek */
238 1.1 mycroft { &vop_remove_desc, fifo_remove }, /* remove */
239 1.1 mycroft { &vop_link_desc, fifo_link }, /* link */
240 1.1 mycroft { &vop_rename_desc, fifo_rename }, /* rename */
241 1.1 mycroft { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
242 1.1 mycroft { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
243 1.1 mycroft { &vop_symlink_desc, fifo_symlink }, /* symlink */
244 1.1 mycroft { &vop_readdir_desc, fifo_readdir }, /* readdir */
245 1.1 mycroft { &vop_readlink_desc, fifo_readlink }, /* readlink */
246 1.1 mycroft { &vop_abortop_desc, fifo_abortop }, /* abortop */
247 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
248 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
249 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
250 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
251 1.1 mycroft { &vop_bmap_desc, fifo_bmap }, /* bmap */
252 1.1 mycroft { &vop_strategy_desc, fifo_strategy }, /* strategy */
253 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
254 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
255 1.1 mycroft { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
256 1.1 mycroft { &vop_advlock_desc, fifo_advlock }, /* advlock */
257 1.1 mycroft { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
258 1.1 mycroft { &vop_valloc_desc, fifo_valloc }, /* valloc */
259 1.1 mycroft { &vop_vfree_desc, lfs_vfree }, /* vfree */
260 1.1 mycroft { &vop_truncate_desc, fifo_truncate }, /* truncate */
261 1.1 mycroft { &vop_update_desc, lfs_update }, /* update */
262 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
263 1.86 perseant { &vop_putpages_desc, fifo_putpages }, /* putpages */
264 1.53 chs { NULL, NULL }
265 1.1 mycroft };
266 1.50 jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
267 1.1 mycroft { &lfs_fifoop_p, lfs_fifoop_entries };
268 1.1 mycroft
269 1.134 perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
270 1.134 perseant
271 1.43 perseant /*
272 1.43 perseant * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
273 1.43 perseant */
274 1.43 perseant void
275 1.51 perseant lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
276 1.43 perseant {
277 1.43 perseant LFS_ITIMES(ip, acc, mod, cre);
278 1.43 perseant }
279 1.43 perseant
280 1.1 mycroft #define LFS_READWRITE
281 1.1 mycroft #include <ufs/ufs/ufs_readwrite.c>
282 1.1 mycroft #undef LFS_READWRITE
283 1.1 mycroft
284 1.1 mycroft /*
285 1.1 mycroft * Synch an open file.
286 1.1 mycroft */
287 1.1 mycroft /* ARGSUSED */
288 1.10 christos int
289 1.51 perseant lfs_fsync(void *v)
290 1.10 christos {
291 1.1 mycroft struct vop_fsync_args /* {
292 1.1 mycroft struct vnode *a_vp;
293 1.1 mycroft struct ucred *a_cred;
294 1.22 perseant int a_flags;
295 1.49 toshii off_t offlo;
296 1.49 toshii off_t offhi;
297 1.109 fvdl struct proc *a_p;
298 1.10 christos } */ *ap = v;
299 1.60 chs struct vnode *vp = ap->a_vp;
300 1.84 perseant int error, wait;
301 1.84 perseant
302 1.137.2.10 riz /* If we're mounted read-only, don't try to sync. */
303 1.137.2.10 riz if (VTOI(vp)->i_lfs->lfs_ronly)
304 1.137.2.10 riz return 0;
305 1.137.2.10 riz
306 1.86 perseant /*
307 1.84 perseant * Trickle sync checks for need to do a checkpoint after possible
308 1.84 perseant * activity from the pagedaemon.
309 1.86 perseant */
310 1.84 perseant if (ap->a_flags & FSYNC_LAZY) {
311 1.113 yamt simple_lock(&lfs_subsys_lock);
312 1.84 perseant wakeup(&lfs_writer_daemon);
313 1.113 yamt simple_unlock(&lfs_subsys_lock);
314 1.47 perseant return 0;
315 1.84 perseant }
316 1.47 perseant
317 1.84 perseant wait = (ap->a_flags & FSYNC_WAIT);
318 1.103 perseant simple_lock(&vp->v_interlock);
319 1.103 perseant error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
320 1.103 perseant round_page(ap->a_offhi),
321 1.103 perseant PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
322 1.103 perseant if (error)
323 1.103 perseant return error;
324 1.103 perseant error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
325 1.133 wrstuden if (error == 0 && ap->a_flags & FSYNC_CACHE) {
326 1.133 wrstuden int l = 0;
327 1.133 wrstuden error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
328 1.133 wrstuden ap->a_p->p_ucred, ap->a_p);
329 1.133 wrstuden }
330 1.103 perseant if (wait && !VPISEMPTY(vp))
331 1.103 perseant LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
332 1.84 perseant
333 1.63 perseant return error;
334 1.1 mycroft }
335 1.1 mycroft
336 1.1 mycroft /*
337 1.40 perseant * Take IN_ADIROP off, then call ufs_inactive.
338 1.40 perseant */
339 1.40 perseant int
340 1.51 perseant lfs_inactive(void *v)
341 1.40 perseant {
342 1.40 perseant struct vop_inactive_args /* {
343 1.40 perseant struct vnode *a_vp;
344 1.109 fvdl struct proc *a_p;
345 1.40 perseant } */ *ap = v;
346 1.72 yamt
347 1.102 fvdl KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
348 1.77 yamt
349 1.76 yamt lfs_unmark_vnode(ap->a_vp);
350 1.76 yamt
351 1.97 perseant /*
352 1.97 perseant * The Ifile is only ever inactivated on unmount.
353 1.97 perseant * Streamline this process by not giving it more dirty blocks.
354 1.97 perseant */
355 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
356 1.97 perseant LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
357 1.99 perseant VOP_UNLOCK(ap->a_vp, 0);
358 1.97 perseant return 0;
359 1.97 perseant }
360 1.97 perseant
361 1.75 yamt return ufs_inactive(v);
362 1.40 perseant }
363 1.40 perseant
364 1.40 perseant /*
365 1.1 mycroft * These macros are used to bracket UFS directory ops, so that we can
366 1.1 mycroft * identify all the pages touched during directory ops which need to
367 1.1 mycroft * be ordered and flushed atomically, so that they may be recovered.
368 1.137.2.1 tron *
369 1.137.2.1 tron * Because we have to mark nodes VDIROP in order to prevent
370 1.22 perseant * the cache from reclaiming them while a dirop is in progress, we must
371 1.22 perseant * also manage the number of nodes so marked (otherwise we can run out).
372 1.22 perseant * We do this by setting lfs_dirvcount to the number of marked vnodes; it
373 1.22 perseant * is decremented during segment write, when VDIROP is taken off.
374 1.22 perseant */
375 1.137.2.1 tron #define MARK_VNODE(vp) lfs_mark_vnode(vp)
376 1.137.2.1 tron #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
377 1.137.2.1 tron #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
378 1.137.2.1 tron #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
379 1.137.2.1 tron static int lfs_set_dirop_create(struct vnode *, struct vnode **);
380 1.71 yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
381 1.24 perseant
382 1.46 perseant static int
383 1.137.2.1 tron lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
384 1.40 perseant {
385 1.24 perseant struct lfs *fs;
386 1.24 perseant int error;
387 1.24 perseant
388 1.137.2.1 tron KASSERT(VOP_ISLOCKED(dvp));
389 1.137.2.1 tron KASSERT(vp == NULL || VOP_ISLOCKED(vp));
390 1.71 yamt
391 1.137.2.1 tron fs = VTOI(dvp)->i_lfs;
392 1.137.2.4 tron
393 1.137.2.4 tron ASSERT_NO_SEGLOCK(fs);
394 1.44 perseant /*
395 1.134 perseant * LFS_NRESERVE calculates direct and indirect blocks as well
396 1.134 perseant * as an inode block; an overestimate in most cases.
397 1.44 perseant */
398 1.137.2.1 tron if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
399 1.44 perseant return (error);
400 1.70 yamt
401 1.137.2.4 tron restart:
402 1.113 yamt simple_lock(&fs->lfs_interlock);
403 1.137.2.4 tron if (fs->lfs_dirops == 0) {
404 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
405 1.137.2.4 tron lfs_check(dvp, LFS_UNUSED_LBN, 0);
406 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
407 1.113 yamt }
408 1.137.2.4 tron while (fs->lfs_writer)
409 1.137.2.4 tron ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
410 1.137.2.4 tron &fs->lfs_interlock);
411 1.113 yamt simple_lock(&lfs_subsys_lock);
412 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
413 1.113 yamt wakeup(&lfs_writer_daemon);
414 1.113 yamt simple_unlock(&lfs_subsys_lock);
415 1.113 yamt simple_unlock(&fs->lfs_interlock);
416 1.121 fvdl preempt(1);
417 1.113 yamt goto restart;
418 1.113 yamt }
419 1.33 perseant
420 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP) {
421 1.113 yamt simple_unlock(&fs->lfs_interlock);
422 1.136 perseant DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
423 1.136 perseant "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
424 1.113 yamt if ((error = ltsleep(&lfs_dirvcount,
425 1.113 yamt PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
426 1.113 yamt &lfs_subsys_lock)) != 0) {
427 1.113 yamt goto unreserve;
428 1.113 yamt }
429 1.113 yamt goto restart;
430 1.135 perry }
431 1.113 yamt simple_unlock(&lfs_subsys_lock);
432 1.113 yamt
433 1.135 perry ++fs->lfs_dirops;
434 1.135 perry fs->lfs_doifile = 1;
435 1.113 yamt simple_unlock(&fs->lfs_interlock);
436 1.24 perseant
437 1.46 perseant /* Hold a reference so SET_ENDOP will be happy */
438 1.137.2.1 tron vref(dvp);
439 1.137.2.1 tron if (vp) {
440 1.137.2.1 tron vref(vp);
441 1.137.2.1 tron MARK_VNODE(vp);
442 1.137.2.1 tron }
443 1.46 perseant
444 1.137.2.1 tron MARK_VNODE(dvp);
445 1.24 perseant return 0;
446 1.70 yamt
447 1.70 yamt unreserve:
448 1.137.2.1 tron lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
449 1.70 yamt return error;
450 1.1 mycroft }
451 1.1 mycroft
452 1.137.2.1 tron /*
453 1.137.2.1 tron * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
454 1.137.2.1 tron * in getnewvnode(), if we have a stacked filesystem mounted on top
455 1.137.2.1 tron * of us.
456 1.137.2.1 tron *
457 1.137.2.1 tron * NB: this means we have to clear the new vnodes on error. Fortunately
458 1.137.2.1 tron * SET_ENDOP is there to do that for us.
459 1.137.2.1 tron */
460 1.137.2.1 tron static int
461 1.137.2.1 tron lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
462 1.137.2.1 tron {
463 1.137.2.1 tron int error;
464 1.137.2.1 tron struct lfs *fs;
465 1.137.2.1 tron
466 1.137.2.1 tron fs = VFSTOUFS(dvp->v_mount)->um_lfs;
467 1.137.2.4 tron ASSERT_NO_SEGLOCK(fs);
468 1.137.2.1 tron if (fs->lfs_ronly)
469 1.137.2.1 tron return EROFS;
470 1.137.2.1 tron if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
471 1.137.2.1 tron DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
472 1.137.2.1 tron dvp, error));
473 1.137.2.1 tron return error;
474 1.137.2.1 tron }
475 1.137.2.1 tron if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
476 1.137.2.1 tron if (vpp) {
477 1.137.2.1 tron ungetnewvnode(*vpp);
478 1.137.2.1 tron *vpp = NULL;
479 1.137.2.1 tron }
480 1.137.2.1 tron return error;
481 1.137.2.1 tron }
482 1.137.2.1 tron return 0;
483 1.1 mycroft }
484 1.1 mycroft
485 1.137.2.1 tron #define SET_ENDOP_BASE(fs, dvp, str) \
486 1.137.2.1 tron do { \
487 1.137.2.1 tron simple_lock(&(fs)->lfs_interlock); \
488 1.137.2.1 tron --(fs)->lfs_dirops; \
489 1.137.2.1 tron if (!(fs)->lfs_dirops) { \
490 1.137.2.1 tron if ((fs)->lfs_nadirop) { \
491 1.137.2.1 tron panic("SET_ENDOP: %s: no dirops but " \
492 1.137.2.1 tron " nadirop=%d", (str), \
493 1.137.2.1 tron (fs)->lfs_nadirop); \
494 1.137.2.1 tron } \
495 1.137.2.1 tron wakeup(&(fs)->lfs_writer); \
496 1.137.2.1 tron simple_unlock(&(fs)->lfs_interlock); \
497 1.137.2.1 tron lfs_check((dvp), LFS_UNUSED_LBN, 0); \
498 1.137.2.1 tron } else \
499 1.137.2.1 tron simple_unlock(&(fs)->lfs_interlock); \
500 1.137.2.1 tron } while(0)
501 1.137.2.1 tron #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
502 1.137.2.1 tron do { \
503 1.137.2.1 tron UNMARK_VNODE(dvp); \
504 1.137.2.1 tron if (nvpp && *nvpp) \
505 1.137.2.1 tron UNMARK_VNODE(*nvpp); \
506 1.137.2.1 tron /* Check for error return to stem vnode leakage */ \
507 1.137.2.1 tron if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
508 1.137.2.1 tron ungetnewvnode(*(nvpp)); \
509 1.137.2.1 tron SET_ENDOP_BASE((fs), (dvp), (str)); \
510 1.137.2.1 tron lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
511 1.137.2.1 tron vrele(dvp); \
512 1.137.2.1 tron } while(0)
513 1.137.2.1 tron #define SET_ENDOP_CREATE_AP(ap, str) \
514 1.137.2.1 tron SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
515 1.137.2.1 tron (ap)->a_vpp, (str))
516 1.137.2.1 tron #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
517 1.137.2.1 tron do { \
518 1.137.2.1 tron UNMARK_VNODE(dvp); \
519 1.137.2.1 tron if (ovp) \
520 1.137.2.1 tron UNMARK_VNODE(ovp); \
521 1.137.2.1 tron SET_ENDOP_BASE((fs), (dvp), (str)); \
522 1.137.2.1 tron lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
523 1.137.2.1 tron vrele(dvp); \
524 1.137.2.1 tron if (ovp) \
525 1.137.2.1 tron vrele(ovp); \
526 1.137.2.1 tron } while(0)
527 1.117 yamt
528 1.117 yamt void
529 1.117 yamt lfs_mark_vnode(struct vnode *vp)
530 1.117 yamt {
531 1.117 yamt struct inode *ip = VTOI(vp);
532 1.117 yamt struct lfs *fs = ip->i_lfs;
533 1.37 perseant
534 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
535 1.117 yamt if (!(ip->i_flag & IN_ADIROP)) {
536 1.117 yamt if (!(vp->v_flag & VDIROP)) {
537 1.117 yamt (void)lfs_vref(vp);
538 1.137.2.4 tron simple_lock(&lfs_subsys_lock);
539 1.117 yamt ++lfs_dirvcount;
540 1.137.2.4 tron simple_unlock(&lfs_subsys_lock);
541 1.117 yamt TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
542 1.117 yamt vp->v_flag |= VDIROP;
543 1.117 yamt }
544 1.117 yamt ++fs->lfs_nadirop;
545 1.117 yamt ip->i_flag |= IN_ADIROP;
546 1.117 yamt } else
547 1.117 yamt KASSERT(vp->v_flag & VDIROP);
548 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
549 1.117 yamt }
550 1.40 perseant
551 1.117 yamt void
552 1.117 yamt lfs_unmark_vnode(struct vnode *vp)
553 1.40 perseant {
554 1.117 yamt struct inode *ip = VTOI(vp);
555 1.40 perseant
556 1.137.2.4 tron if (ip && (ip->i_flag & IN_ADIROP)) {
557 1.117 yamt KASSERT(vp->v_flag & VDIROP);
558 1.137.2.4 tron simple_lock(&ip->i_lfs->lfs_interlock);
559 1.40 perseant --ip->i_lfs->lfs_nadirop;
560 1.137.2.4 tron simple_unlock(&ip->i_lfs->lfs_interlock);
561 1.117 yamt ip->i_flag &= ~IN_ADIROP;
562 1.117 yamt }
563 1.40 perseant }
564 1.15 fvdl
565 1.1 mycroft int
566 1.51 perseant lfs_symlink(void *v)
567 1.10 christos {
568 1.1 mycroft struct vop_symlink_args /* {
569 1.1 mycroft struct vnode *a_dvp;
570 1.1 mycroft struct vnode **a_vpp;
571 1.1 mycroft struct componentname *a_cnp;
572 1.1 mycroft struct vattr *a_vap;
573 1.1 mycroft char *a_target;
574 1.10 christos } */ *ap = v;
575 1.37 perseant int error;
576 1.1 mycroft
577 1.137.2.1 tron if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
578 1.34 perseant vput(ap->a_dvp);
579 1.37 perseant return error;
580 1.34 perseant }
581 1.37 perseant error = ufs_symlink(ap);
582 1.137.2.1 tron SET_ENDOP_CREATE_AP(ap, "symlink");
583 1.37 perseant return (error);
584 1.1 mycroft }
585 1.1 mycroft
586 1.1 mycroft int
587 1.51 perseant lfs_mknod(void *v)
588 1.10 christos {
589 1.22 perseant struct vop_mknod_args /* {
590 1.1 mycroft struct vnode *a_dvp;
591 1.1 mycroft struct vnode **a_vpp;
592 1.1 mycroft struct componentname *a_cnp;
593 1.1 mycroft struct vattr *a_vap;
594 1.22 perseant } */ *ap = v;
595 1.86 perseant struct vattr *vap = ap->a_vap;
596 1.86 perseant struct vnode **vpp = ap->a_vpp;
597 1.86 perseant struct inode *ip;
598 1.86 perseant int error;
599 1.135 perry struct mount *mp;
600 1.52 assar ino_t ino;
601 1.1 mycroft
602 1.137.2.1 tron if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
603 1.34 perseant vput(ap->a_dvp);
604 1.28 perseant return error;
605 1.34 perseant }
606 1.28 perseant error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
607 1.109 fvdl ap->a_dvp, vpp, ap->a_cnp);
608 1.28 perseant
609 1.28 perseant /* Either way we're done with the dirop at this point */
610 1.137.2.1 tron SET_ENDOP_CREATE_AP(ap, "mknod");
611 1.28 perseant
612 1.86 perseant if (error)
613 1.28 perseant return (error);
614 1.28 perseant
615 1.86 perseant ip = VTOI(*vpp);
616 1.52 assar mp = (*vpp)->v_mount;
617 1.52 assar ino = ip->i_number;
618 1.86 perseant ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
619 1.86 perseant if (vap->va_rdev != VNOVAL) {
620 1.86 perseant /*
621 1.86 perseant * Want to be able to use this to make badblock
622 1.86 perseant * inodes, so don't truncate the dev number.
623 1.86 perseant */
624 1.28 perseant #if 0
625 1.102 fvdl ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
626 1.86 perseant UFS_MPNEEDSWAP((*vpp)->v_mount));
627 1.28 perseant #else
628 1.102 fvdl ip->i_ffs1_rdev = vap->va_rdev;
629 1.28 perseant #endif
630 1.86 perseant }
631 1.134 perseant
632 1.28 perseant /*
633 1.28 perseant * Call fsync to write the vnode so that we don't have to deal with
634 1.28 perseant * flushing it when it's marked VDIROP|VXLOCK.
635 1.28 perseant *
636 1.28 perseant * XXX KS - If we can't flush we also can't call vgone(), so must
637 1.28 perseant * return. But, that leaves this vnode in limbo, also not good.
638 1.28 perseant * Can this ever happen (barring hardware failure)?
639 1.28 perseant */
640 1.135 perry if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
641 1.109 fvdl curproc)) != 0) {
642 1.137.2.7 riz panic("lfs_mknod: couldn't fsync (ino %llu)",
643 1.137.2.7 riz (unsigned long long)ino);
644 1.136 perseant /* return (error); */
645 1.40 perseant }
646 1.86 perseant /*
647 1.86 perseant * Remove vnode so that it will be reloaded by VFS_VGET and
648 1.86 perseant * checked to see if it is an alias of an existing entry in
649 1.86 perseant * the inode cache.
650 1.86 perseant */
651 1.28 perseant /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
652 1.134 perseant
653 1.40 perseant VOP_UNLOCK(*vpp, 0);
654 1.28 perseant lfs_vunref(*vpp);
655 1.86 perseant (*vpp)->v_type = VNON;
656 1.86 perseant vgone(*vpp);
657 1.108 thorpej error = VFS_VGET(mp, ino, vpp);
658 1.134 perseant
659 1.52 assar if (error != 0) {
660 1.52 assar *vpp = NULL;
661 1.52 assar return (error);
662 1.52 assar }
663 1.86 perseant return (0);
664 1.1 mycroft }
665 1.1 mycroft
666 1.1 mycroft int
667 1.51 perseant lfs_create(void *v)
668 1.10 christos {
669 1.22 perseant struct vop_create_args /* {
670 1.1 mycroft struct vnode *a_dvp;
671 1.1 mycroft struct vnode **a_vpp;
672 1.1 mycroft struct componentname *a_cnp;
673 1.1 mycroft struct vattr *a_vap;
674 1.10 christos } */ *ap = v;
675 1.37 perseant int error;
676 1.1 mycroft
677 1.137.2.1 tron if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
678 1.34 perseant vput(ap->a_dvp);
679 1.37 perseant return error;
680 1.34 perseant }
681 1.37 perseant error = ufs_create(ap);
682 1.137.2.1 tron SET_ENDOP_CREATE_AP(ap, "create");
683 1.37 perseant return (error);
684 1.22 perseant }
685 1.22 perseant
686 1.22 perseant int
687 1.51 perseant lfs_mkdir(void *v)
688 1.10 christos {
689 1.22 perseant struct vop_mkdir_args /* {
690 1.1 mycroft struct vnode *a_dvp;
691 1.1 mycroft struct vnode **a_vpp;
692 1.1 mycroft struct componentname *a_cnp;
693 1.1 mycroft struct vattr *a_vap;
694 1.10 christos } */ *ap = v;
695 1.37 perseant int error;
696 1.1 mycroft
697 1.137.2.1 tron if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
698 1.34 perseant vput(ap->a_dvp);
699 1.37 perseant return error;
700 1.34 perseant }
701 1.37 perseant error = ufs_mkdir(ap);
702 1.137.2.1 tron SET_ENDOP_CREATE_AP(ap, "mkdir");
703 1.37 perseant return (error);
704 1.1 mycroft }
705 1.1 mycroft
706 1.1 mycroft int
707 1.51 perseant lfs_remove(void *v)
708 1.10 christos {
709 1.22 perseant struct vop_remove_args /* {
710 1.1 mycroft struct vnode *a_dvp;
711 1.1 mycroft struct vnode *a_vp;
712 1.1 mycroft struct componentname *a_cnp;
713 1.10 christos } */ *ap = v;
714 1.34 perseant struct vnode *dvp, *vp;
715 1.37 perseant int error;
716 1.34 perseant
717 1.34 perseant dvp = ap->a_dvp;
718 1.34 perseant vp = ap->a_vp;
719 1.137.2.1 tron if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
720 1.34 perseant if (dvp == vp)
721 1.34 perseant vrele(vp);
722 1.34 perseant else
723 1.34 perseant vput(vp);
724 1.34 perseant vput(dvp);
725 1.37 perseant return error;
726 1.34 perseant }
727 1.37 perseant error = ufs_remove(ap);
728 1.137.2.19 riz SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
729 1.37 perseant return (error);
730 1.1 mycroft }
731 1.1 mycroft
732 1.1 mycroft int
733 1.51 perseant lfs_rmdir(void *v)
734 1.10 christos {
735 1.22 perseant struct vop_rmdir_args /* {
736 1.1 mycroft struct vnodeop_desc *a_desc;
737 1.1 mycroft struct vnode *a_dvp;
738 1.1 mycroft struct vnode *a_vp;
739 1.1 mycroft struct componentname *a_cnp;
740 1.10 christos } */ *ap = v;
741 1.84 perseant struct vnode *vp;
742 1.37 perseant int error;
743 1.1 mycroft
744 1.84 perseant vp = ap->a_vp;
745 1.137.2.1 tron if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
746 1.34 perseant vrele(ap->a_dvp);
747 1.69 yamt if (ap->a_vp != ap->a_dvp)
748 1.34 perseant VOP_UNLOCK(ap->a_dvp, 0);
749 1.84 perseant vput(vp);
750 1.37 perseant return error;
751 1.34 perseant }
752 1.37 perseant error = ufs_rmdir(ap);
753 1.137.2.19 riz SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
754 1.37 perseant return (error);
755 1.1 mycroft }
756 1.1 mycroft
757 1.1 mycroft int
758 1.51 perseant lfs_link(void *v)
759 1.10 christos {
760 1.22 perseant struct vop_link_args /* {
761 1.9 mycroft struct vnode *a_dvp;
762 1.1 mycroft struct vnode *a_vp;
763 1.1 mycroft struct componentname *a_cnp;
764 1.10 christos } */ *ap = v;
765 1.37 perseant int error;
766 1.137.2.1 tron struct vnode **vpp = NULL;
767 1.1 mycroft
768 1.137.2.1 tron if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
769 1.34 perseant vput(ap->a_dvp);
770 1.37 perseant return error;
771 1.34 perseant }
772 1.37 perseant error = ufs_link(ap);
773 1.137.2.1 tron SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
774 1.37 perseant return (error);
775 1.1 mycroft }
776 1.22 perseant
777 1.1 mycroft int
778 1.51 perseant lfs_rename(void *v)
779 1.10 christos {
780 1.22 perseant struct vop_rename_args /* {
781 1.1 mycroft struct vnode *a_fdvp;
782 1.1 mycroft struct vnode *a_fvp;
783 1.1 mycroft struct componentname *a_fcnp;
784 1.1 mycroft struct vnode *a_tdvp;
785 1.1 mycroft struct vnode *a_tvp;
786 1.1 mycroft struct componentname *a_tcnp;
787 1.10 christos } */ *ap = v;
788 1.30 perseant struct vnode *tvp, *fvp, *tdvp, *fdvp;
789 1.83 perseant struct componentname *tcnp, *fcnp;
790 1.30 perseant int error;
791 1.29 perseant struct lfs *fs;
792 1.29 perseant
793 1.29 perseant fs = VTOI(ap->a_fdvp)->i_lfs;
794 1.30 perseant tvp = ap->a_tvp;
795 1.30 perseant tdvp = ap->a_tdvp;
796 1.83 perseant tcnp = ap->a_tcnp;
797 1.30 perseant fvp = ap->a_fvp;
798 1.30 perseant fdvp = ap->a_fdvp;
799 1.83 perseant fcnp = ap->a_fcnp;
800 1.30 perseant
801 1.30 perseant /*
802 1.30 perseant * Check for cross-device rename.
803 1.30 perseant * If it is, we don't want to set dirops, just error out.
804 1.30 perseant * (In particular note that MARK_VNODE(tdvp) will DTWT on
805 1.30 perseant * a cross-device rename.)
806 1.30 perseant *
807 1.30 perseant * Copied from ufs_rename.
808 1.30 perseant */
809 1.30 perseant if ((fvp->v_mount != tdvp->v_mount) ||
810 1.30 perseant (tvp && (fvp->v_mount != tvp->v_mount))) {
811 1.30 perseant error = EXDEV;
812 1.34 perseant goto errout;
813 1.30 perseant }
814 1.83 perseant
815 1.83 perseant /*
816 1.83 perseant * Check to make sure we're not renaming a vnode onto itself
817 1.83 perseant * (deleting a hard link by renaming one name onto another);
818 1.83 perseant * if we are we can't recursively call VOP_REMOVE since that
819 1.83 perseant * would leave us with an unaccounted-for number of live dirops.
820 1.83 perseant *
821 1.83 perseant * Inline the relevant section of ufs_rename here, *before*
822 1.137.2.1 tron * calling SET_DIROP_REMOVE.
823 1.83 perseant */
824 1.102 fvdl if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
825 1.102 fvdl (VTOI(tdvp)->i_flags & APPEND))) {
826 1.83 perseant error = EPERM;
827 1.83 perseant goto errout;
828 1.83 perseant }
829 1.86 perseant if (fvp == tvp) {
830 1.86 perseant if (fvp->v_type == VDIR) {
831 1.86 perseant error = EINVAL;
832 1.86 perseant goto errout;
833 1.86 perseant }
834 1.86 perseant
835 1.86 perseant /* Release destination completely. */
836 1.86 perseant VOP_ABORTOP(tdvp, tcnp);
837 1.86 perseant vput(tdvp);
838 1.86 perseant vput(tvp);
839 1.86 perseant
840 1.86 perseant /* Delete source. */
841 1.86 perseant vrele(fvp);
842 1.86 perseant fcnp->cn_flags &= ~(MODMASK | SAVESTART);
843 1.86 perseant fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
844 1.86 perseant fcnp->cn_nameiop = DELETE;
845 1.86 perseant if ((error = relookup(fdvp, &fvp, fcnp))){
846 1.86 perseant /* relookup blew away fdvp */
847 1.86 perseant return (error);
848 1.86 perseant }
849 1.86 perseant return (VOP_REMOVE(fdvp, fvp, fcnp));
850 1.86 perseant }
851 1.83 perseant
852 1.137.2.1 tron if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
853 1.34 perseant goto errout;
854 1.30 perseant MARK_VNODE(fdvp);
855 1.71 yamt MARK_VNODE(fvp);
856 1.135 perry
857 1.30 perseant error = ufs_rename(ap);
858 1.37 perseant UNMARK_VNODE(fdvp);
859 1.71 yamt UNMARK_VNODE(fvp);
860 1.137.2.1 tron SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
861 1.34 perseant return (error);
862 1.34 perseant
863 1.34 perseant errout:
864 1.34 perseant VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
865 1.34 perseant if (tdvp == tvp)
866 1.34 perseant vrele(tdvp);
867 1.34 perseant else
868 1.34 perseant vput(tdvp);
869 1.34 perseant if (tvp)
870 1.34 perseant vput(tvp);
871 1.34 perseant VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
872 1.34 perseant vrele(fdvp);
873 1.34 perseant vrele(fvp);
874 1.30 perseant return (error);
875 1.1 mycroft }
876 1.22 perseant
877 1.1 mycroft /* XXX hack to avoid calling ITIMES in getattr */
878 1.1 mycroft int
879 1.51 perseant lfs_getattr(void *v)
880 1.10 christos {
881 1.1 mycroft struct vop_getattr_args /* {
882 1.1 mycroft struct vnode *a_vp;
883 1.1 mycroft struct vattr *a_vap;
884 1.1 mycroft struct ucred *a_cred;
885 1.109 fvdl struct proc *a_p;
886 1.10 christos } */ *ap = v;
887 1.35 augustss struct vnode *vp = ap->a_vp;
888 1.35 augustss struct inode *ip = VTOI(vp);
889 1.35 augustss struct vattr *vap = ap->a_vap;
890 1.51 perseant struct lfs *fs = ip->i_lfs;
891 1.1 mycroft /*
892 1.1 mycroft * Copy from inode table
893 1.1 mycroft */
894 1.1 mycroft vap->va_fsid = ip->i_dev;
895 1.1 mycroft vap->va_fileid = ip->i_number;
896 1.102 fvdl vap->va_mode = ip->i_mode & ~IFMT;
897 1.102 fvdl vap->va_nlink = ip->i_nlink;
898 1.102 fvdl vap->va_uid = ip->i_uid;
899 1.102 fvdl vap->va_gid = ip->i_gid;
900 1.102 fvdl vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
901 1.55 chs vap->va_size = vp->v_size;
902 1.102 fvdl vap->va_atime.tv_sec = ip->i_ffs1_atime;
903 1.102 fvdl vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
904 1.102 fvdl vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
905 1.102 fvdl vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
906 1.102 fvdl vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
907 1.102 fvdl vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
908 1.102 fvdl vap->va_flags = ip->i_flags;
909 1.102 fvdl vap->va_gen = ip->i_gen;
910 1.1 mycroft /* this doesn't belong here */
911 1.1 mycroft if (vp->v_type == VBLK)
912 1.1 mycroft vap->va_blocksize = BLKDEV_IOSIZE;
913 1.1 mycroft else if (vp->v_type == VCHR)
914 1.1 mycroft vap->va_blocksize = MAXBSIZE;
915 1.1 mycroft else
916 1.1 mycroft vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
917 1.84 perseant vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
918 1.1 mycroft vap->va_type = vp->v_type;
919 1.1 mycroft vap->va_filerev = ip->i_modrev;
920 1.1 mycroft return (0);
921 1.61 perseant }
922 1.61 perseant
923 1.61 perseant /*
924 1.61 perseant * Check to make sure the inode blocks won't choke the buffer
925 1.61 perseant * cache, then call ufs_setattr as usual.
926 1.61 perseant */
927 1.61 perseant int
928 1.61 perseant lfs_setattr(void *v)
929 1.61 perseant {
930 1.137.2.4 tron struct vop_setattr_args /* {
931 1.61 perseant struct vnode *a_vp;
932 1.61 perseant struct vattr *a_vap;
933 1.61 perseant struct ucred *a_cred;
934 1.109 fvdl struct proc *a_p;
935 1.61 perseant } */ *ap = v;
936 1.61 perseant struct vnode *vp = ap->a_vp;
937 1.61 perseant
938 1.61 perseant lfs_check(vp, LFS_UNUSED_LBN, 0);
939 1.61 perseant return ufs_setattr(v);
940 1.1 mycroft }
941 1.22 perseant
942 1.1 mycroft /*
943 1.1 mycroft * Close called
944 1.1 mycroft *
945 1.1 mycroft * XXX -- we were using ufs_close, but since it updates the
946 1.1 mycroft * times on the inode, we might need to bump the uinodes
947 1.1 mycroft * count.
948 1.1 mycroft */
949 1.1 mycroft /* ARGSUSED */
950 1.1 mycroft int
951 1.51 perseant lfs_close(void *v)
952 1.10 christos {
953 1.1 mycroft struct vop_close_args /* {
954 1.1 mycroft struct vnode *a_vp;
955 1.1 mycroft int a_fflag;
956 1.1 mycroft struct ucred *a_cred;
957 1.109 fvdl struct proc *a_p;
958 1.10 christos } */ *ap = v;
959 1.35 augustss struct vnode *vp = ap->a_vp;
960 1.35 augustss struct inode *ip = VTOI(vp);
961 1.12 mycroft struct timespec ts;
962 1.1 mycroft
963 1.97 perseant if (vp == ip->i_lfs->lfs_ivnode &&
964 1.119 dbj vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
965 1.97 perseant return 0;
966 1.97 perseant
967 1.97 perseant if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
968 1.12 mycroft TIMEVAL_TO_TIMESPEC(&time, &ts);
969 1.22 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
970 1.1 mycroft }
971 1.1 mycroft return (0);
972 1.65 perseant }
973 1.65 perseant
974 1.65 perseant /*
975 1.65 perseant * Close wrapper for special devices.
976 1.65 perseant *
977 1.65 perseant * Update the times on the inode then do device close.
978 1.65 perseant */
979 1.65 perseant int
980 1.65 perseant lfsspec_close(void *v)
981 1.65 perseant {
982 1.65 perseant struct vop_close_args /* {
983 1.65 perseant struct vnode *a_vp;
984 1.65 perseant int a_fflag;
985 1.65 perseant struct ucred *a_cred;
986 1.109 fvdl struct proc *a_p;
987 1.65 perseant } */ *ap = v;
988 1.65 perseant struct vnode *vp;
989 1.65 perseant struct inode *ip;
990 1.65 perseant struct timespec ts;
991 1.65 perseant
992 1.65 perseant vp = ap->a_vp;
993 1.65 perseant ip = VTOI(vp);
994 1.65 perseant if (vp->v_usecount > 1) {
995 1.65 perseant TIMEVAL_TO_TIMESPEC(&time, &ts);
996 1.65 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
997 1.65 perseant }
998 1.65 perseant return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
999 1.65 perseant }
1000 1.65 perseant
1001 1.65 perseant /*
1002 1.65 perseant * Close wrapper for fifo's.
1003 1.65 perseant *
1004 1.65 perseant * Update the times on the inode then do device close.
1005 1.65 perseant */
1006 1.65 perseant int
1007 1.65 perseant lfsfifo_close(void *v)
1008 1.65 perseant {
1009 1.65 perseant struct vop_close_args /* {
1010 1.65 perseant struct vnode *a_vp;
1011 1.65 perseant int a_fflag;
1012 1.65 perseant struct ucred *a_cred;
1013 1.109 fvdl struct proc *a_p;
1014 1.65 perseant } */ *ap = v;
1015 1.65 perseant struct vnode *vp;
1016 1.65 perseant struct inode *ip;
1017 1.65 perseant struct timespec ts;
1018 1.65 perseant
1019 1.65 perseant vp = ap->a_vp;
1020 1.65 perseant ip = VTOI(vp);
1021 1.65 perseant if (ap->a_vp->v_usecount > 1) {
1022 1.65 perseant TIMEVAL_TO_TIMESPEC(&time, &ts);
1023 1.65 perseant LFS_ITIMES(ip, &ts, &ts, &ts);
1024 1.65 perseant }
1025 1.65 perseant return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1026 1.1 mycroft }
1027 1.1 mycroft
1028 1.1 mycroft /*
1029 1.15 fvdl * Reclaim an inode so that it can be used for other purposes.
1030 1.1 mycroft */
1031 1.1 mycroft
1032 1.1 mycroft int
1033 1.51 perseant lfs_reclaim(void *v)
1034 1.10 christos {
1035 1.1 mycroft struct vop_reclaim_args /* {
1036 1.1 mycroft struct vnode *a_vp;
1037 1.109 fvdl struct proc *a_p;
1038 1.10 christos } */ *ap = v;
1039 1.15 fvdl struct vnode *vp = ap->a_vp;
1040 1.84 perseant struct inode *ip = VTOI(vp);
1041 1.1 mycroft int error;
1042 1.77 yamt
1043 1.102 fvdl KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1044 1.1 mycroft
1045 1.84 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
1046 1.109 fvdl if ((error = ufs_reclaim(vp, ap->a_p)))
1047 1.1 mycroft return (error);
1048 1.137.2.4 tron pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1049 1.134 perseant lfs_deregister_all(vp);
1050 1.84 perseant pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1051 1.84 perseant ip->inode_ext.lfs = NULL;
1052 1.19 thorpej pool_put(&lfs_inode_pool, vp->v_data);
1053 1.1 mycroft vp->v_data = NULL;
1054 1.94 perseant return (0);
1055 1.94 perseant }
1056 1.94 perseant
1057 1.94 perseant /*
1058 1.101 yamt * Read a block from a storage device.
1059 1.94 perseant * In order to avoid reading blocks that are in the process of being
1060 1.94 perseant * written by the cleaner---and hence are not mutexed by the normal
1061 1.94 perseant * buffer cache / page cache mechanisms---check for collisions before
1062 1.94 perseant * reading.
1063 1.94 perseant *
1064 1.94 perseant * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1065 1.94 perseant * the active cleaner test.
1066 1.94 perseant *
1067 1.94 perseant * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1068 1.94 perseant */
1069 1.94 perseant int
1070 1.94 perseant lfs_strategy(void *v)
1071 1.94 perseant {
1072 1.94 perseant struct vop_strategy_args /* {
1073 1.128 hannken struct vnode *a_vp;
1074 1.94 perseant struct buf *a_bp;
1075 1.94 perseant } */ *ap = v;
1076 1.94 perseant struct buf *bp;
1077 1.94 perseant struct lfs *fs;
1078 1.94 perseant struct vnode *vp;
1079 1.94 perseant struct inode *ip;
1080 1.94 perseant daddr_t tbn;
1081 1.94 perseant int i, sn, error, slept;
1082 1.94 perseant
1083 1.94 perseant bp = ap->a_bp;
1084 1.128 hannken vp = ap->a_vp;
1085 1.94 perseant ip = VTOI(vp);
1086 1.94 perseant fs = ip->i_lfs;
1087 1.94 perseant
1088 1.101 yamt /* lfs uses its strategy routine only for read */
1089 1.101 yamt KASSERT(bp->b_flags & B_READ);
1090 1.101 yamt
1091 1.94 perseant if (vp->v_type == VBLK || vp->v_type == VCHR)
1092 1.94 perseant panic("lfs_strategy: spec");
1093 1.94 perseant KASSERT(bp->b_bcount != 0);
1094 1.94 perseant if (bp->b_blkno == bp->b_lblkno) {
1095 1.94 perseant error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1096 1.94 perseant NULL);
1097 1.94 perseant if (error) {
1098 1.94 perseant bp->b_error = error;
1099 1.94 perseant bp->b_flags |= B_ERROR;
1100 1.94 perseant biodone(bp);
1101 1.94 perseant return (error);
1102 1.94 perseant }
1103 1.94 perseant if ((long)bp->b_blkno == -1) /* no valid data */
1104 1.94 perseant clrbuf(bp);
1105 1.94 perseant }
1106 1.94 perseant if ((long)bp->b_blkno < 0) { /* block is not on disk */
1107 1.94 perseant biodone(bp);
1108 1.94 perseant return (0);
1109 1.94 perseant }
1110 1.94 perseant
1111 1.94 perseant slept = 1;
1112 1.96 perseant simple_lock(&fs->lfs_interlock);
1113 1.101 yamt while (slept && fs->lfs_seglock) {
1114 1.96 perseant simple_unlock(&fs->lfs_interlock);
1115 1.94 perseant /*
1116 1.94 perseant * Look through list of intervals.
1117 1.94 perseant * There will only be intervals to look through
1118 1.94 perseant * if the cleaner holds the seglock.
1119 1.94 perseant * Since the cleaner is synchronous, we can trust
1120 1.94 perseant * the list of intervals to be current.
1121 1.94 perseant */
1122 1.94 perseant tbn = dbtofsb(fs, bp->b_blkno);
1123 1.94 perseant sn = dtosn(fs, tbn);
1124 1.94 perseant slept = 0;
1125 1.94 perseant for (i = 0; i < fs->lfs_cleanind; i++) {
1126 1.94 perseant if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1127 1.94 perseant tbn >= fs->lfs_cleanint[i]) {
1128 1.136 perseant DLOG((DLOG_CLEAN,
1129 1.136 perseant "lfs_strategy: ino %d lbn %" PRId64
1130 1.94 perseant " ind %d sn %d fsb %" PRIx32
1131 1.94 perseant " given sn %d fsb %" PRIx64 "\n",
1132 1.94 perseant ip->i_number, bp->b_lblkno, i,
1133 1.94 perseant dtosn(fs, fs->lfs_cleanint[i]),
1134 1.136 perseant fs->lfs_cleanint[i], sn, tbn));
1135 1.136 perseant DLOG((DLOG_CLEAN,
1136 1.136 perseant "lfs_strategy: sleeping on ino %d lbn %"
1137 1.136 perseant PRId64 "\n", ip->i_number, bp->b_lblkno));
1138 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1139 1.137.2.19 riz if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1140 1.137.2.19 riz /* Cleaner can't wait for itself */
1141 1.137.2.19 riz ltsleep(&fs->lfs_iocount,
1142 1.137.2.19 riz (PRIBIO + 1) | PNORELOCK,
1143 1.137.2.19 riz "clean2", 0,
1144 1.137.2.19 riz &fs->lfs_interlock);
1145 1.137.2.19 riz slept = 1;
1146 1.137.2.19 riz break;
1147 1.137.2.19 riz } else if (fs->lfs_seglock) {
1148 1.137.2.4 tron ltsleep(&fs->lfs_seglock,
1149 1.137.2.4 tron (PRIBIO + 1) | PNORELOCK,
1150 1.137.2.19 riz "clean1", 0,
1151 1.137.2.4 tron &fs->lfs_interlock);
1152 1.137.2.16 riz slept = 1;
1153 1.137.2.16 riz break;
1154 1.137.2.16 riz }
1155 1.137.2.16 riz simple_unlock(&fs->lfs_interlock);
1156 1.94 perseant }
1157 1.94 perseant }
1158 1.96 perseant simple_lock(&fs->lfs_interlock);
1159 1.94 perseant }
1160 1.96 perseant simple_unlock(&fs->lfs_interlock);
1161 1.94 perseant
1162 1.94 perseant vp = ip->i_devvp;
1163 1.127 hannken VOP_STRATEGY(vp, bp);
1164 1.1 mycroft return (0);
1165 1.89 perseant }
1166 1.89 perseant
1167 1.137.2.20 riz void
1168 1.92 perseant lfs_flush_dirops(struct lfs *fs)
1169 1.92 perseant {
1170 1.92 perseant struct inode *ip, *nip;
1171 1.92 perseant struct vnode *vp;
1172 1.92 perseant extern int lfs_dostats;
1173 1.92 perseant struct segment *sp;
1174 1.92 perseant int needunlock;
1175 1.92 perseant
1176 1.137.2.12 riz ASSERT_MAYBE_SEGLOCK(fs);
1177 1.137.2.20 riz KASSERT(fs->lfs_nadirop == 0);
1178 1.137.2.4 tron
1179 1.92 perseant if (fs->lfs_ronly)
1180 1.92 perseant return;
1181 1.92 perseant
1182 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1183 1.137.2.4 tron if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1184 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
1185 1.92 perseant return;
1186 1.137.2.4 tron } else
1187 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
1188 1.92 perseant
1189 1.92 perseant if (lfs_dostats)
1190 1.92 perseant ++lfs_stats.flush_invoked;
1191 1.92 perseant
1192 1.92 perseant /*
1193 1.92 perseant * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1194 1.92 perseant * Technically this is a checkpoint (the on-disk state is valid)
1195 1.92 perseant * even though we are leaving out all the file data.
1196 1.92 perseant */
1197 1.92 perseant lfs_imtime(fs);
1198 1.92 perseant lfs_seglock(fs, SEGM_CKP);
1199 1.92 perseant sp = fs->lfs_sp;
1200 1.92 perseant
1201 1.92 perseant /*
1202 1.92 perseant * lfs_writevnodes, optimized to get dirops out of the way.
1203 1.92 perseant * Only write dirops, and don't flush files' pages, only
1204 1.92 perseant * blocks from the directories.
1205 1.92 perseant *
1206 1.92 perseant * We don't need to vref these files because they are
1207 1.92 perseant * dirops and so hold an extra reference until the
1208 1.92 perseant * segunlock clears them of that status.
1209 1.92 perseant *
1210 1.92 perseant * We don't need to check for IN_ADIROP because we know that
1211 1.92 perseant * no dirops are active.
1212 1.92 perseant *
1213 1.92 perseant */
1214 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1215 1.92 perseant for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1216 1.92 perseant nip = TAILQ_NEXT(ip, i_lfs_dchain);
1217 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
1218 1.92 perseant vp = ITOV(ip);
1219 1.92 perseant
1220 1.137.2.20 riz KASSERT((ip->i_flag & IN_ADIROP) == 0);
1221 1.137.2.20 riz
1222 1.92 perseant /*
1223 1.92 perseant * All writes to directories come from dirops; all
1224 1.92 perseant * writes to files' direct blocks go through the page
1225 1.92 perseant * cache, which we're not touching. Reads to files
1226 1.92 perseant * and/or directories will not be affected by writing
1227 1.92 perseant * directory blocks inodes and file inodes. So we don't
1228 1.92 perseant * really need to lock. If we don't lock, though,
1229 1.92 perseant * make sure that we don't clear IN_MODIFIED
1230 1.92 perseant * unnecessarily.
1231 1.92 perseant */
1232 1.137.2.16 riz if (vp->v_flag & VXLOCK) {
1233 1.137.2.16 riz simple_lock(&fs->lfs_interlock);
1234 1.92 perseant continue;
1235 1.137.2.16 riz }
1236 1.137.2.2 tron if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1237 1.92 perseant needunlock = 1;
1238 1.92 perseant } else {
1239 1.136 perseant DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1240 1.136 perseant VTOI(vp)->i_number));
1241 1.92 perseant needunlock = 0;
1242 1.92 perseant }
1243 1.92 perseant if (vp->v_type != VREG &&
1244 1.92 perseant ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1245 1.92 perseant lfs_writefile(fs, sp, vp);
1246 1.92 perseant if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1247 1.92 perseant !(ip->i_flag & IN_ALLMOD)) {
1248 1.92 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1249 1.92 perseant }
1250 1.92 perseant }
1251 1.92 perseant (void) lfs_writeinode(fs, sp, ip);
1252 1.92 perseant if (needunlock)
1253 1.92 perseant VOP_UNLOCK(vp, 0);
1254 1.92 perseant else
1255 1.92 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1256 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1257 1.92 perseant }
1258 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
1259 1.92 perseant /* We've written all the dirops there are */
1260 1.92 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1261 1.137.2.19 riz lfs_finalize_fs_seguse(fs);
1262 1.92 perseant (void) lfs_writeseg(fs, sp);
1263 1.92 perseant lfs_segunlock(fs);
1264 1.92 perseant }
1265 1.92 perseant
1266 1.89 perseant /*
1267 1.137.2.13 riz * Flush all vnodes for which the pagedaemon has requested pageouts.
1268 1.137.2.13 riz * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1269 1.137.2.13 riz * has just run, this would be an error). If we have to skip a vnode
1270 1.137.2.13 riz * for any reason, just skip it; if we have to wait for the cleaner,
1271 1.137.2.13 riz * abort. The writer daemon will call us again later.
1272 1.137.2.13 riz */
1273 1.137.2.13 riz void
1274 1.137.2.13 riz lfs_flush_pchain(struct lfs *fs)
1275 1.137.2.13 riz {
1276 1.137.2.13 riz struct inode *ip, *nip;
1277 1.137.2.13 riz struct vnode *vp;
1278 1.137.2.13 riz extern int lfs_dostats;
1279 1.137.2.13 riz struct segment *sp;
1280 1.137.2.13 riz int error;
1281 1.137.2.13 riz
1282 1.137.2.13 riz ASSERT_NO_SEGLOCK(fs);
1283 1.137.2.13 riz
1284 1.137.2.13 riz if (fs->lfs_ronly)
1285 1.137.2.13 riz return;
1286 1.137.2.13 riz
1287 1.137.2.13 riz simple_lock(&fs->lfs_interlock);
1288 1.137.2.13 riz if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1289 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
1290 1.137.2.13 riz return;
1291 1.137.2.13 riz } else
1292 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
1293 1.137.2.13 riz
1294 1.137.2.13 riz /* Get dirops out of the way */
1295 1.137.2.13 riz lfs_flush_dirops(fs);
1296 1.137.2.13 riz
1297 1.137.2.13 riz if (lfs_dostats)
1298 1.137.2.13 riz ++lfs_stats.flush_invoked;
1299 1.137.2.13 riz
1300 1.137.2.13 riz /*
1301 1.137.2.13 riz * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1302 1.137.2.13 riz */
1303 1.137.2.13 riz lfs_imtime(fs);
1304 1.137.2.13 riz lfs_seglock(fs, 0);
1305 1.137.2.13 riz sp = fs->lfs_sp;
1306 1.137.2.13 riz
1307 1.137.2.13 riz /*
1308 1.137.2.13 riz * lfs_writevnodes, optimized to clear pageout requests.
1309 1.137.2.13 riz * Only write non-dirop files that are in the pageout queue.
1310 1.137.2.13 riz * We're very conservative about what we write; we want to be
1311 1.137.2.13 riz * fast and async.
1312 1.137.2.13 riz */
1313 1.137.2.14 riz simple_lock(&fs->lfs_interlock);
1314 1.137.2.18 riz top:
1315 1.137.2.13 riz for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1316 1.137.2.13 riz nip = TAILQ_NEXT(ip, i_lfs_pchain);
1317 1.137.2.13 riz vp = ITOV(ip);
1318 1.137.2.13 riz
1319 1.137.2.13 riz if (!(ip->i_flags & IN_PAGING))
1320 1.137.2.13 riz goto top;
1321 1.137.2.13 riz
1322 1.137.2.13 riz if (vp->v_flag & (VXLOCK|VDIROP))
1323 1.137.2.13 riz continue;
1324 1.137.2.13 riz if (vp->v_type != VREG)
1325 1.137.2.13 riz continue;
1326 1.137.2.13 riz if (lfs_vref(vp))
1327 1.137.2.13 riz continue;
1328 1.137.2.18 riz simple_unlock(&fs->lfs_interlock);
1329 1.137.2.18 riz
1330 1.137.2.14 riz if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1331 1.137.2.14 riz lfs_vunref(vp);
1332 1.137.2.18 riz simple_lock(&fs->lfs_interlock);
1333 1.137.2.13 riz continue;
1334 1.137.2.14 riz }
1335 1.137.2.13 riz
1336 1.137.2.13 riz error = lfs_writefile(fs, sp, vp);
1337 1.137.2.13 riz if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1338 1.137.2.13 riz !(ip->i_flag & IN_ALLMOD)) {
1339 1.137.2.13 riz LFS_SET_UINO(ip, IN_MODIFIED);
1340 1.137.2.13 riz }
1341 1.137.2.13 riz (void) lfs_writeinode(fs, sp, ip);
1342 1.137.2.13 riz
1343 1.137.2.13 riz VOP_UNLOCK(vp, 0);
1344 1.137.2.13 riz lfs_vunref(vp);
1345 1.137.2.13 riz
1346 1.137.2.13 riz if (error == EAGAIN) {
1347 1.137.2.13 riz lfs_writeseg(fs, sp);
1348 1.137.2.19 riz simple_lock(&fs->lfs_interlock);
1349 1.137.2.13 riz break;
1350 1.137.2.13 riz }
1351 1.137.2.19 riz simple_lock(&fs->lfs_interlock);
1352 1.137.2.13 riz }
1353 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
1354 1.137.2.13 riz (void) lfs_writeseg(fs, sp);
1355 1.137.2.13 riz lfs_segunlock(fs);
1356 1.137.2.13 riz }
1357 1.137.2.13 riz
1358 1.137.2.13 riz /*
1359 1.90 perseant * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1360 1.89 perseant */
1361 1.89 perseant int
1362 1.90 perseant lfs_fcntl(void *v)
1363 1.89 perseant {
1364 1.137 simonb struct vop_fcntl_args /* {
1365 1.137 simonb struct vnode *a_vp;
1366 1.137 simonb u_long a_command;
1367 1.137 simonb caddr_t a_data;
1368 1.137 simonb int a_fflag;
1369 1.137 simonb struct ucred *a_cred;
1370 1.137 simonb struct proc *a_p;
1371 1.137 simonb } */ *ap = v;
1372 1.89 perseant struct timeval *tvp;
1373 1.89 perseant BLOCK_INFO *blkiov;
1374 1.92 perseant CLEANERINFO *cip;
1375 1.137.2.4 tron SEGUSE *sup;
1376 1.92 perseant int blkcnt, error, oclean;
1377 1.90 perseant struct lfs_fcntl_markv blkvp;
1378 1.89 perseant fsid_t *fsidp;
1379 1.92 perseant struct lfs *fs;
1380 1.92 perseant struct buf *bp;
1381 1.134 perseant fhandle_t *fhp;
1382 1.92 perseant daddr_t off;
1383 1.89 perseant
1384 1.90 perseant /* Only respect LFS fcntls on fs root or Ifile */
1385 1.89 perseant if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1386 1.89 perseant VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1387 1.90 perseant return ufs_fcntl(v);
1388 1.89 perseant }
1389 1.89 perseant
1390 1.100 perseant /* Avoid locking a draining lock */
1391 1.119 dbj if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1392 1.100 perseant return ESHUTDOWN;
1393 1.100 perseant }
1394 1.100 perseant
1395 1.100 perseant fs = VTOI(ap->a_vp)->i_lfs;
1396 1.131 christos fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1397 1.89 perseant
1398 1.98 perseant switch (ap->a_command) {
1399 1.90 perseant case LFCNSEGWAITALL:
1400 1.134 perseant case LFCNSEGWAITALL_COMPAT:
1401 1.89 perseant fsidp = NULL;
1402 1.89 perseant /* FALLSTHROUGH */
1403 1.90 perseant case LFCNSEGWAIT:
1404 1.134 perseant case LFCNSEGWAIT_COMPAT:
1405 1.89 perseant tvp = (struct timeval *)ap->a_data;
1406 1.100 perseant simple_lock(&fs->lfs_interlock);
1407 1.100 perseant ++fs->lfs_sleepers;
1408 1.100 perseant simple_unlock(&fs->lfs_interlock);
1409 1.90 perseant VOP_UNLOCK(ap->a_vp, 0);
1410 1.100 perseant
1411 1.90 perseant error = lfs_segwait(fsidp, tvp);
1412 1.100 perseant
1413 1.90 perseant VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1414 1.100 perseant simple_lock(&fs->lfs_interlock);
1415 1.100 perseant if (--fs->lfs_sleepers == 0)
1416 1.100 perseant wakeup(&fs->lfs_sleepers);
1417 1.100 perseant simple_unlock(&fs->lfs_interlock);
1418 1.90 perseant return error;
1419 1.89 perseant
1420 1.90 perseant case LFCNBMAPV:
1421 1.90 perseant case LFCNMARKV:
1422 1.109 fvdl if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1423 1.89 perseant return (error);
1424 1.90 perseant blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1425 1.89 perseant
1426 1.89 perseant blkcnt = blkvp.blkcnt;
1427 1.89 perseant if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1428 1.89 perseant return (EINVAL);
1429 1.137.2.4 tron blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1430 1.89 perseant if ((error = copyin(blkvp.blkiov, blkiov,
1431 1.89 perseant blkcnt * sizeof(BLOCK_INFO))) != 0) {
1432 1.137.2.4 tron lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1433 1.89 perseant return error;
1434 1.89 perseant }
1435 1.89 perseant
1436 1.100 perseant simple_lock(&fs->lfs_interlock);
1437 1.100 perseant ++fs->lfs_sleepers;
1438 1.100 perseant simple_unlock(&fs->lfs_interlock);
1439 1.90 perseant VOP_UNLOCK(ap->a_vp, 0);
1440 1.90 perseant if (ap->a_command == LFCNBMAPV)
1441 1.109 fvdl error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1442 1.90 perseant else /* LFCNMARKV */
1443 1.109 fvdl error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1444 1.89 perseant if (error == 0)
1445 1.89 perseant error = copyout(blkiov, blkvp.blkiov,
1446 1.89 perseant blkcnt * sizeof(BLOCK_INFO));
1447 1.90 perseant VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1448 1.100 perseant simple_lock(&fs->lfs_interlock);
1449 1.100 perseant if (--fs->lfs_sleepers == 0)
1450 1.100 perseant wakeup(&fs->lfs_sleepers);
1451 1.100 perseant simple_unlock(&fs->lfs_interlock);
1452 1.137.2.4 tron lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1453 1.89 perseant return error;
1454 1.92 perseant
1455 1.92 perseant case LFCNRECLAIM:
1456 1.92 perseant /*
1457 1.92 perseant * Flush dirops and write Ifile, allowing empty segments
1458 1.92 perseant * to be immediately reclaimed.
1459 1.92 perseant */
1460 1.137.2.2 tron VOP_UNLOCK(ap->a_vp, 0);
1461 1.111 yamt lfs_writer_enter(fs, "pndirop");
1462 1.92 perseant off = fs->lfs_offset;
1463 1.92 perseant lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1464 1.92 perseant lfs_flush_dirops(fs);
1465 1.92 perseant LFS_CLEANERINFO(cip, fs, bp);
1466 1.92 perseant oclean = cip->clean;
1467 1.92 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1468 1.92 perseant lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1469 1.137.2.8 riz fs->lfs_sp->seg_flags |= SEGM_PROT;
1470 1.92 perseant lfs_segunlock(fs);
1471 1.111 yamt lfs_writer_leave(fs);
1472 1.92 perseant
1473 1.136 perseant #ifdef DEBUG
1474 1.92 perseant LFS_CLEANERINFO(cip, fs, bp);
1475 1.136 perseant DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1476 1.136 perseant " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1477 1.136 perseant fs->lfs_offset - off, cip->clean - oclean,
1478 1.136 perseant fs->lfs_activesb));
1479 1.92 perseant LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1480 1.92 perseant #endif
1481 1.92 perseant
1482 1.137.2.2 tron VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1483 1.92 perseant return 0;
1484 1.89 perseant
1485 1.134 perseant case LFCNIFILEFH:
1486 1.134 perseant /* Return the filehandle of the Ifile */
1487 1.134 perseant if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1488 1.134 perseant return (error);
1489 1.134 perseant fhp = (struct fhandle *)ap->a_data;
1490 1.134 perseant fhp->fh_fsid = *fsidp;
1491 1.134 perseant return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1492 1.134 perseant
1493 1.137.2.4 tron case LFCNREWIND:
1494 1.137.2.4 tron /* Move lfs_offset to the lowest-numbered segment */
1495 1.137.2.4 tron return lfs_rewind(fs, *(int *)ap->a_data);
1496 1.137.2.4 tron
1497 1.137.2.4 tron case LFCNINVAL:
1498 1.137.2.4 tron /* Mark a segment SEGUSE_INVAL */
1499 1.137.2.4 tron LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1500 1.137.2.4 tron if (sup->su_nbytes > 0) {
1501 1.137.2.4 tron brelse(bp);
1502 1.137.2.4 tron lfs_unset_inval_all(fs);
1503 1.137.2.4 tron return EBUSY;
1504 1.137.2.4 tron }
1505 1.137.2.4 tron sup->su_flags |= SEGUSE_INVAL;
1506 1.137.2.4 tron VOP_BWRITE(bp);
1507 1.137.2.4 tron return 0;
1508 1.137.2.4 tron
1509 1.137.2.4 tron case LFCNRESIZE:
1510 1.137.2.4 tron /* Resize the filesystem */
1511 1.137.2.4 tron return lfs_resize_fs(fs, *(int *)ap->a_data);
1512 1.137.2.4 tron
1513 1.137.2.17 riz case LFCNWRAPSTOP:
1514 1.137.2.17 riz /*
1515 1.137.2.17 riz * Hold lfs_newseg at segment 0; sleep until the filesystem
1516 1.137.2.17 riz * wraps around. For debugging purposes, so an external
1517 1.137.2.17 riz * agent can log every segment in the filesystem as it
1518 1.137.2.17 riz * was written, and we can regression-test checkpoint
1519 1.137.2.17 riz * validity in the general case.
1520 1.137.2.17 riz */
1521 1.137.2.17 riz VOP_UNLOCK(ap->a_vp, 0);
1522 1.137.2.17 riz simple_lock(&fs->lfs_interlock);
1523 1.137.2.17 riz fs->lfs_nowrap = 1;
1524 1.137.2.17 riz error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
1525 1.137.2.17 riz "segwrap", 0, &fs->lfs_interlock);
1526 1.137.2.17 riz if (error) {
1527 1.137.2.17 riz fs->lfs_nowrap = 0;
1528 1.137.2.17 riz wakeup(&fs->lfs_nowrap);
1529 1.137.2.17 riz }
1530 1.137.2.17 riz VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1531 1.137.2.17 riz return 0;
1532 1.137.2.17 riz
1533 1.137.2.17 riz case LFCNWRAPGO:
1534 1.137.2.17 riz /*
1535 1.137.2.17 riz * Having done its work, the agent wakes up the writer.
1536 1.137.2.17 riz * It sleeps until a new segment is selected.
1537 1.137.2.17 riz */
1538 1.137.2.17 riz VOP_UNLOCK(ap->a_vp, 0);
1539 1.137.2.17 riz simple_lock(&fs->lfs_interlock);
1540 1.137.2.17 riz fs->lfs_nowrap = 0;
1541 1.137.2.17 riz wakeup(&fs->lfs_nowrap);
1542 1.137.2.17 riz ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
1543 1.137.2.17 riz "segment", 0, &fs->lfs_interlock);
1544 1.137.2.17 riz VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1545 1.137.2.17 riz return 0;
1546 1.137.2.17 riz
1547 1.89 perseant default:
1548 1.90 perseant return ufs_fcntl(v);
1549 1.89 perseant }
1550 1.89 perseant return 0;
1551 1.60 chs }
1552 1.60 chs
1553 1.60 chs int
1554 1.60 chs lfs_getpages(void *v)
1555 1.60 chs {
1556 1.60 chs struct vop_getpages_args /* {
1557 1.60 chs struct vnode *a_vp;
1558 1.60 chs voff_t a_offset;
1559 1.60 chs struct vm_page **a_m;
1560 1.60 chs int *a_count;
1561 1.60 chs int a_centeridx;
1562 1.60 chs vm_prot_t a_access_type;
1563 1.60 chs int a_advice;
1564 1.60 chs int a_flags;
1565 1.60 chs } */ *ap = v;
1566 1.60 chs
1567 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1568 1.97 perseant (ap->a_access_type & VM_PROT_WRITE) != 0) {
1569 1.97 perseant return EPERM;
1570 1.97 perseant }
1571 1.60 chs if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1572 1.60 chs LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1573 1.60 chs }
1574 1.115 yamt
1575 1.115 yamt /*
1576 1.115 yamt * we're relying on the fact that genfs_getpages() always read in
1577 1.115 yamt * entire filesystem blocks.
1578 1.115 yamt */
1579 1.95 perseant return genfs_getpages(v);
1580 1.1 mycroft }
1581 1.84 perseant
1582 1.84 perseant /*
1583 1.84 perseant * Make sure that for all pages in every block in the given range,
1584 1.84 perseant * either all are dirty or all are clean. If any of the pages
1585 1.84 perseant * we've seen so far are dirty, put the vnode on the paging chain,
1586 1.84 perseant * and mark it IN_PAGING.
1587 1.105 perseant *
1588 1.105 perseant * If checkfirst != 0, don't check all the pages but return at the
1589 1.105 perseant * first dirty page.
1590 1.84 perseant */
1591 1.84 perseant static int
1592 1.84 perseant check_dirty(struct lfs *fs, struct vnode *vp,
1593 1.84 perseant off_t startoffset, off_t endoffset, off_t blkeof,
1594 1.103 perseant int flags, int checkfirst)
1595 1.84 perseant {
1596 1.86 perseant int by_list;
1597 1.122 christos struct vm_page *curpg = NULL; /* XXX: gcc */
1598 1.122 christos struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1599 1.122 christos off_t soff = 0; /* XXX: gcc */
1600 1.84 perseant voff_t off;
1601 1.115 yamt int i;
1602 1.115 yamt int nonexistent;
1603 1.115 yamt int any_dirty; /* number of dirty pages */
1604 1.115 yamt int dirty; /* number of dirty pages in a block */
1605 1.115 yamt int tdirty;
1606 1.84 perseant int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1607 1.137.2.9 riz int pagedaemon = (curproc == uvm.pagedaemon_proc);
1608 1.84 perseant
1609 1.137.2.4 tron ASSERT_MAYBE_SEGLOCK(fs);
1610 1.84 perseant top:
1611 1.84 perseant by_list = (vp->v_uobj.uo_npages <=
1612 1.84 perseant ((endoffset - startoffset) >> PAGE_SHIFT) *
1613 1.84 perseant UVM_PAGE_HASH_PENALTY);
1614 1.84 perseant any_dirty = 0;
1615 1.84 perseant
1616 1.84 perseant if (by_list) {
1617 1.84 perseant curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1618 1.84 perseant } else {
1619 1.84 perseant soff = startoffset;
1620 1.84 perseant }
1621 1.84 perseant while (by_list || soff < MIN(blkeof, endoffset)) {
1622 1.84 perseant if (by_list) {
1623 1.115 yamt /*
1624 1.137.2.1 tron * Find the first page in a block. Skip
1625 1.137.2.1 tron * blocks outside our area of interest or beyond
1626 1.137.2.1 tron * the end of file.
1627 1.115 yamt */
1628 1.84 perseant if (pages_per_block > 1) {
1629 1.137.2.1 tron while (curpg &&
1630 1.137.2.1 tron ((curpg->offset & fs->lfs_bmask) ||
1631 1.137.2.4 tron curpg->offset >= vp->v_size ||
1632 1.137.2.4 tron curpg->offset >= endoffset))
1633 1.84 perseant curpg = TAILQ_NEXT(curpg, listq);
1634 1.84 perseant }
1635 1.84 perseant if (curpg == NULL)
1636 1.84 perseant break;
1637 1.84 perseant soff = curpg->offset;
1638 1.84 perseant }
1639 1.84 perseant
1640 1.84 perseant /*
1641 1.84 perseant * Mark all pages in extended range busy; find out if any
1642 1.84 perseant * of them are dirty.
1643 1.84 perseant */
1644 1.84 perseant nonexistent = dirty = 0;
1645 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1646 1.84 perseant if (by_list && pages_per_block <= 1) {
1647 1.84 perseant pgs[i] = pg = curpg;
1648 1.84 perseant } else {
1649 1.84 perseant off = soff + (i << PAGE_SHIFT);
1650 1.84 perseant pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1651 1.84 perseant if (pg == NULL) {
1652 1.84 perseant ++nonexistent;
1653 1.84 perseant continue;
1654 1.84 perseant }
1655 1.84 perseant }
1656 1.84 perseant KASSERT(pg != NULL);
1657 1.137.2.8 riz
1658 1.137.2.8 riz /*
1659 1.137.2.8 riz * If we're holding the segment lock, we can deadlocked
1660 1.137.2.8 riz * against a process that has our page and is waiting
1661 1.137.2.8 riz * for the cleaner, while the cleaner waits for the
1662 1.137.2.8 riz * segment lock. Just bail in that case.
1663 1.137.2.8 riz */
1664 1.137.2.9 riz if ((pg->flags & PG_BUSY) &&
1665 1.137.2.9 riz (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1666 1.137.2.9 riz if (by_list && i > 0)
1667 1.137.2.9 riz uvm_page_unbusy(pgs, i);
1668 1.137.2.9 riz DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1669 1.137.2.9 riz return -1;
1670 1.137.2.8 riz }
1671 1.137.2.8 riz
1672 1.84 perseant while (pg->flags & PG_BUSY) {
1673 1.84 perseant pg->flags |= PG_WANTED;
1674 1.84 perseant UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1675 1.84 perseant "lfsput", 0);
1676 1.84 perseant simple_lock(&vp->v_interlock);
1677 1.96 perseant if (by_list) {
1678 1.96 perseant if (i > 0)
1679 1.96 perseant uvm_page_unbusy(pgs, i);
1680 1.84 perseant goto top;
1681 1.96 perseant }
1682 1.84 perseant }
1683 1.84 perseant pg->flags |= PG_BUSY;
1684 1.84 perseant UVM_PAGE_OWN(pg, "lfs_putpages");
1685 1.84 perseant
1686 1.84 perseant pmap_page_protect(pg, VM_PROT_NONE);
1687 1.84 perseant tdirty = (pmap_clear_modify(pg) ||
1688 1.84 perseant (pg->flags & PG_CLEAN) == 0);
1689 1.84 perseant dirty += tdirty;
1690 1.84 perseant }
1691 1.84 perseant if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1692 1.84 perseant if (by_list) {
1693 1.84 perseant curpg = TAILQ_NEXT(curpg, listq);
1694 1.84 perseant } else {
1695 1.84 perseant soff += fs->lfs_bsize;
1696 1.84 perseant }
1697 1.84 perseant continue;
1698 1.84 perseant }
1699 1.84 perseant
1700 1.84 perseant any_dirty += dirty;
1701 1.84 perseant KASSERT(nonexistent == 0);
1702 1.84 perseant
1703 1.84 perseant /*
1704 1.84 perseant * If any are dirty make all dirty; unbusy them,
1705 1.88 perseant * but if we were asked to clean, wire them so that
1706 1.88 perseant * the pagedaemon doesn't bother us about them while
1707 1.88 perseant * they're on their way to disk.
1708 1.84 perseant */
1709 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1710 1.84 perseant pg = pgs[i];
1711 1.84 perseant KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1712 1.84 perseant if (dirty) {
1713 1.84 perseant pg->flags &= ~PG_CLEAN;
1714 1.84 perseant if (flags & PGO_FREE) {
1715 1.85 yamt /*
1716 1.96 perseant * Wire the page so that
1717 1.96 perseant * pdaemon doesn't see it again.
1718 1.85 yamt */
1719 1.84 perseant uvm_lock_pageq();
1720 1.85 yamt uvm_pagewire(pg);
1721 1.85 yamt uvm_unlock_pageq();
1722 1.88 perseant
1723 1.84 perseant /* Suspended write flag */
1724 1.84 perseant pg->flags |= PG_DELWRI;
1725 1.84 perseant }
1726 1.84 perseant }
1727 1.84 perseant if (pg->flags & PG_WANTED)
1728 1.84 perseant wakeup(pg);
1729 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY);
1730 1.85 yamt UVM_PAGE_OWN(pg, NULL);
1731 1.84 perseant }
1732 1.84 perseant
1733 1.103 perseant if (checkfirst && any_dirty)
1734 1.130 yamt break;
1735 1.103 perseant
1736 1.84 perseant if (by_list) {
1737 1.84 perseant curpg = TAILQ_NEXT(curpg, listq);
1738 1.84 perseant } else {
1739 1.84 perseant soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1740 1.84 perseant }
1741 1.84 perseant }
1742 1.84 perseant
1743 1.84 perseant return any_dirty;
1744 1.84 perseant }
1745 1.84 perseant
1746 1.84 perseant /*
1747 1.84 perseant * lfs_putpages functions like genfs_putpages except that
1748 1.135 perry *
1749 1.84 perseant * (1) It needs to bounds-check the incoming requests to ensure that
1750 1.84 perseant * they are block-aligned; if they are not, expand the range and
1751 1.84 perseant * do the right thing in case, e.g., the requested range is clean
1752 1.84 perseant * but the expanded range is dirty.
1753 1.84 perseant * (2) It needs to explicitly send blocks to be written when it is done.
1754 1.84 perseant * VOP_PUTPAGES is not ever called with the seglock held, so
1755 1.84 perseant * we simply take the seglock and let lfs_segunlock wait for us.
1756 1.84 perseant * XXX Actually we can be called with the seglock held, if we have
1757 1.84 perseant * XXX to flush a vnode while lfs_markv is in operation. As of this
1758 1.84 perseant * XXX writing we panic in this case.
1759 1.84 perseant *
1760 1.84 perseant * Assumptions:
1761 1.84 perseant *
1762 1.84 perseant * (1) The caller does not hold any pages in this vnode busy. If it does,
1763 1.84 perseant * there is a danger that when we expand the page range and busy the
1764 1.84 perseant * pages we will deadlock.
1765 1.84 perseant * (2) We are called with vp->v_interlock held; we must return with it
1766 1.84 perseant * released.
1767 1.84 perseant * (3) We don't absolutely have to free pages right away, provided that
1768 1.84 perseant * the request does not have PGO_SYNCIO. When the pagedaemon gives
1769 1.84 perseant * us a request with PGO_FREE, we take the pages out of the paging
1770 1.84 perseant * queue and wake up the writer, which will handle freeing them for us.
1771 1.84 perseant *
1772 1.84 perseant * We ensure that for any filesystem block, all pages for that
1773 1.84 perseant * block are either resident or not, even if those pages are higher
1774 1.84 perseant * than EOF; that means that we will be getting requests to free
1775 1.84 perseant * "unused" pages above EOF all the time, and should ignore them.
1776 1.115 yamt *
1777 1.115 yamt * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1778 1.84 perseant */
1779 1.84 perseant
1780 1.84 perseant int
1781 1.84 perseant lfs_putpages(void *v)
1782 1.84 perseant {
1783 1.84 perseant int error;
1784 1.84 perseant struct vop_putpages_args /* {
1785 1.84 perseant struct vnode *a_vp;
1786 1.84 perseant voff_t a_offlo;
1787 1.84 perseant voff_t a_offhi;
1788 1.84 perseant int a_flags;
1789 1.84 perseant } */ *ap = v;
1790 1.84 perseant struct vnode *vp;
1791 1.84 perseant struct inode *ip;
1792 1.84 perseant struct lfs *fs;
1793 1.84 perseant struct segment *sp;
1794 1.84 perseant off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1795 1.95 perseant off_t off, max_endoffset;
1796 1.126 yamt int s;
1797 1.126 yamt boolean_t seglocked, sync, pagedaemon;
1798 1.95 perseant struct vm_page *pg;
1799 1.84 perseant UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1800 1.84 perseant
1801 1.84 perseant vp = ap->a_vp;
1802 1.84 perseant ip = VTOI(vp);
1803 1.84 perseant fs = ip->i_lfs;
1804 1.126 yamt sync = (ap->a_flags & PGO_SYNCIO) != 0;
1805 1.84 perseant pagedaemon = (curproc == uvm.pagedaemon_proc);
1806 1.84 perseant
1807 1.84 perseant /* Putpages does nothing for metadata. */
1808 1.84 perseant if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1809 1.84 perseant simple_unlock(&vp->v_interlock);
1810 1.84 perseant return 0;
1811 1.84 perseant }
1812 1.84 perseant
1813 1.84 perseant /*
1814 1.84 perseant * If there are no pages, don't do anything.
1815 1.84 perseant */
1816 1.84 perseant if (vp->v_uobj.uo_npages == 0) {
1817 1.84 perseant s = splbio();
1818 1.84 perseant if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1819 1.84 perseant (vp->v_flag & VONWORKLST)) {
1820 1.84 perseant vp->v_flag &= ~VONWORKLST;
1821 1.84 perseant LIST_REMOVE(vp, v_synclist);
1822 1.84 perseant }
1823 1.84 perseant splx(s);
1824 1.84 perseant simple_unlock(&vp->v_interlock);
1825 1.137.2.13 riz
1826 1.137.2.13 riz /* Remove us from paging queue, if we were on it */
1827 1.137.2.13 riz simple_lock(&fs->lfs_interlock);
1828 1.137.2.13 riz if (ip->i_flags & IN_PAGING) {
1829 1.137.2.13 riz ip->i_flags &= ~IN_PAGING;
1830 1.137.2.13 riz TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1831 1.137.2.13 riz }
1832 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
1833 1.84 perseant return 0;
1834 1.84 perseant }
1835 1.84 perseant
1836 1.102 fvdl blkeof = blkroundup(fs, ip->i_size);
1837 1.84 perseant
1838 1.84 perseant /*
1839 1.84 perseant * Ignore requests to free pages past EOF but in the same block
1840 1.137.2.8 riz * as EOF, unless the request is synchronous. (If the request is
1841 1.137.2.8 riz * sync, it comes from lfs_truncate.)
1842 1.84 perseant * XXXUBC Make these pages look "active" so the pagedaemon won't
1843 1.84 perseant * XXXUBC bother us with them again.
1844 1.84 perseant */
1845 1.102 fvdl if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1846 1.84 perseant origoffset = ap->a_offlo;
1847 1.95 perseant for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1848 1.95 perseant pg = uvm_pagelookup(&vp->v_uobj, off);
1849 1.95 perseant KASSERT(pg != NULL);
1850 1.95 perseant while (pg->flags & PG_BUSY) {
1851 1.95 perseant pg->flags |= PG_WANTED;
1852 1.95 perseant UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1853 1.95 perseant "lfsput2", 0);
1854 1.95 perseant simple_lock(&vp->v_interlock);
1855 1.95 perseant }
1856 1.95 perseant uvm_lock_pageq();
1857 1.95 perseant uvm_pageactivate(pg);
1858 1.95 perseant uvm_unlock_pageq();
1859 1.95 perseant }
1860 1.84 perseant ap->a_offlo = blkeof;
1861 1.84 perseant if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1862 1.84 perseant simple_unlock(&vp->v_interlock);
1863 1.84 perseant return 0;
1864 1.84 perseant }
1865 1.84 perseant }
1866 1.84 perseant
1867 1.84 perseant /*
1868 1.84 perseant * Extend page range to start and end at block boundaries.
1869 1.84 perseant * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1870 1.84 perseant */
1871 1.86 perseant origoffset = ap->a_offlo;
1872 1.84 perseant origendoffset = ap->a_offhi;
1873 1.86 perseant startoffset = origoffset & ~(fs->lfs_bmask);
1874 1.84 perseant max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1875 1.84 perseant << fs->lfs_bshift;
1876 1.84 perseant
1877 1.84 perseant if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1878 1.86 perseant endoffset = max_endoffset;
1879 1.84 perseant origendoffset = endoffset;
1880 1.86 perseant } else {
1881 1.84 perseant origendoffset = round_page(ap->a_offhi);
1882 1.84 perseant endoffset = round_page(blkroundup(fs, origendoffset));
1883 1.84 perseant }
1884 1.84 perseant
1885 1.84 perseant KASSERT(startoffset > 0 || endoffset >= startoffset);
1886 1.84 perseant if (startoffset == endoffset) {
1887 1.84 perseant /* Nothing to do, why were we called? */
1888 1.84 perseant simple_unlock(&vp->v_interlock);
1889 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1890 1.136 perseant PRId64 "\n", startoffset));
1891 1.84 perseant return 0;
1892 1.84 perseant }
1893 1.84 perseant
1894 1.84 perseant ap->a_offlo = startoffset;
1895 1.84 perseant ap->a_offhi = endoffset;
1896 1.84 perseant
1897 1.84 perseant if (!(ap->a_flags & PGO_CLEANIT))
1898 1.84 perseant return genfs_putpages(v);
1899 1.84 perseant
1900 1.84 perseant /*
1901 1.103 perseant * If there are more than one page per block, we don't want
1902 1.103 perseant * to get caught locking them backwards; so set PGO_BUSYFAIL
1903 1.103 perseant * to avoid deadlocks.
1904 1.84 perseant */
1905 1.103 perseant ap->a_flags |= PGO_BUSYFAIL;
1906 1.103 perseant
1907 1.103 perseant do {
1908 1.103 perseant int r;
1909 1.103 perseant
1910 1.104 yamt /* If no pages are dirty, we can just use genfs_putpages. */
1911 1.137.2.8 riz r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1912 1.137.2.8 riz ap->a_flags, 1);
1913 1.137.2.8 riz if (r < 0) {
1914 1.137.2.8 riz simple_unlock(&vp->v_interlock);
1915 1.137.2.8 riz return EDEADLK;
1916 1.137.2.8 riz }
1917 1.137.2.8 riz if (r > 0)
1918 1.103 perseant break;
1919 1.103 perseant
1920 1.134 perseant /*
1921 1.134 perseant * Sometimes pages are dirtied between the time that
1922 1.134 perseant * we check and the time we try to clean them.
1923 1.134 perseant * Instruct lfs_gop_write to return EDEADLK in this case
1924 1.134 perseant * so we can write them properly.
1925 1.134 perseant */
1926 1.134 perseant ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1927 1.134 perseant r = genfs_putpages(v);
1928 1.134 perseant ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1929 1.134 perseant if (r != EDEADLK)
1930 1.103 perseant return r;
1931 1.103 perseant
1932 1.103 perseant /* Start over. */
1933 1.121 fvdl preempt(1);
1934 1.103 perseant simple_lock(&vp->v_interlock);
1935 1.103 perseant } while(1);
1936 1.135 perry
1937 1.84 perseant /*
1938 1.84 perseant * Dirty and asked to clean.
1939 1.84 perseant *
1940 1.84 perseant * Pagedaemon can't actually write LFS pages; wake up
1941 1.84 perseant * the writer to take care of that. The writer will
1942 1.84 perseant * notice the pager inode queue and act on that.
1943 1.84 perseant */
1944 1.84 perseant if (pagedaemon) {
1945 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1946 1.137.2.13 riz if (!(ip->i_flags & IN_PAGING)) {
1947 1.137.2.13 riz ip->i_flags |= IN_PAGING;
1948 1.137.2.13 riz TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1949 1.137.2.13 riz }
1950 1.137.2.13 riz simple_lock(&lfs_subsys_lock);
1951 1.84 perseant wakeup(&lfs_writer_daemon);
1952 1.137.2.13 riz simple_unlock(&lfs_subsys_lock);
1953 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
1954 1.87 yamt simple_unlock(&vp->v_interlock);
1955 1.137.2.13 riz preempt(1);
1956 1.84 perseant return EWOULDBLOCK;
1957 1.84 perseant }
1958 1.84 perseant
1959 1.84 perseant /*
1960 1.84 perseant * If this is a file created in a recent dirop, we can't flush its
1961 1.84 perseant * inode until the dirop is complete. Drain dirops, then flush the
1962 1.84 perseant * filesystem (taking care of any other pending dirops while we're
1963 1.84 perseant * at it).
1964 1.84 perseant */
1965 1.84 perseant if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1966 1.84 perseant (vp->v_flag & VDIROP)) {
1967 1.84 perseant int locked;
1968 1.84 perseant
1969 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1970 1.84 perseant locked = VOP_ISLOCKED(vp) && /* XXX */
1971 1.84 perseant vp->v_lock.lk_lockholder == curproc->p_pid;
1972 1.137.2.3 tron simple_unlock(&vp->v_interlock);
1973 1.137.2.3 tron lfs_writer_enter(fs, "ppdirop");
1974 1.84 perseant if (locked)
1975 1.84 perseant VOP_UNLOCK(vp, 0);
1976 1.135 perry
1977 1.137.2.4 tron simple_lock(&fs->lfs_interlock);
1978 1.84 perseant lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1979 1.137.2.4 tron simple_unlock(&fs->lfs_interlock);
1980 1.135 perry
1981 1.84 perseant simple_lock(&vp->v_interlock);
1982 1.137.2.5 riz if (locked) {
1983 1.137.2.4 tron VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1984 1.137.2.5 riz simple_lock(&vp->v_interlock);
1985 1.137.2.5 riz }
1986 1.111 yamt lfs_writer_leave(fs);
1987 1.84 perseant
1988 1.84 perseant /* XXX the flush should have taken care of this one too! */
1989 1.84 perseant }
1990 1.84 perseant
1991 1.84 perseant /*
1992 1.86 perseant * This is it. We are going to write some pages. From here on
1993 1.84 perseant * down it's all just mechanics.
1994 1.84 perseant *
1995 1.103 perseant * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1996 1.84 perseant */
1997 1.84 perseant ap->a_flags &= ~PGO_SYNCIO;
1998 1.84 perseant
1999 1.84 perseant /*
2000 1.84 perseant * If we've already got the seglock, flush the node and return.
2001 1.84 perseant * The FIP has already been set up for us by lfs_writefile,
2002 1.84 perseant * and FIP cleanup and lfs_updatemeta will also be done there,
2003 1.84 perseant * unless genfs_putpages returns EDEADLK; then we must flush
2004 1.84 perseant * what we have, and correct FIP and segment header accounting.
2005 1.84 perseant */
2006 1.84 perseant
2007 1.126 yamt seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2008 1.126 yamt if (!seglocked) {
2009 1.126 yamt simple_unlock(&vp->v_interlock);
2010 1.103 perseant /*
2011 1.126 yamt * Take the seglock, because we are going to be writing pages.
2012 1.103 perseant */
2013 1.126 yamt error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2014 1.126 yamt if (error != 0)
2015 1.126 yamt return error;
2016 1.126 yamt simple_lock(&vp->v_interlock);
2017 1.84 perseant }
2018 1.84 perseant
2019 1.84 perseant /*
2020 1.84 perseant * VOP_PUTPAGES should not be called while holding the seglock.
2021 1.93 perseant * XXXUBC fix lfs_markv, or do this properly.
2022 1.84 perseant */
2023 1.137.2.4 tron #ifdef notyet
2024 1.137.2.4 tron KASSERT(fs->lfs_seglock == 1);
2025 1.137.2.4 tron #endif /* notyet */
2026 1.84 perseant
2027 1.84 perseant /*
2028 1.84 perseant * We assume we're being called with sp->fip pointing at blank space.
2029 1.84 perseant * Account for a new FIP in the segment header, and set sp->vp.
2030 1.84 perseant * (This should duplicate the setup at the top of lfs_writefile().)
2031 1.84 perseant */
2032 1.84 perseant sp = fs->lfs_sp;
2033 1.126 yamt if (!seglocked) {
2034 1.126 yamt if (sp->seg_bytes_left < fs->lfs_bsize ||
2035 1.126 yamt sp->sum_bytes_left < sizeof(struct finfo))
2036 1.135 perry (void) lfs_writeseg(fs, fs->lfs_sp);
2037 1.135 perry
2038 1.126 yamt sp->sum_bytes_left -= FINFOSIZE;
2039 1.126 yamt ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2040 1.126 yamt }
2041 1.120 yamt KASSERT(sp->vp == NULL);
2042 1.84 perseant sp->vp = vp;
2043 1.135 perry
2044 1.126 yamt if (!seglocked) {
2045 1.126 yamt if (vp->v_flag & VDIROP)
2046 1.126 yamt ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2047 1.126 yamt }
2048 1.135 perry
2049 1.86 perseant sp->fip->fi_nblocks = 0;
2050 1.86 perseant sp->fip->fi_ino = ip->i_number;
2051 1.102 fvdl sp->fip->fi_version = ip->i_gen;
2052 1.84 perseant
2053 1.84 perseant /*
2054 1.84 perseant * Loop through genfs_putpages until all pages are gathered.
2055 1.88 perseant * genfs_putpages() drops the interlock, so reacquire it if necessary.
2056 1.103 perseant * Whenever we lose the interlock we have to rerun check_dirty, as
2057 1.103 perseant * well.
2058 1.84 perseant */
2059 1.126 yamt again:
2060 1.137.2.8 riz if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2061 1.137.2.8 riz ap->a_flags, 0) < 0) {
2062 1.137.2.8 riz simple_unlock(&vp->v_interlock);
2063 1.137.2.8 riz sp->vp = NULL;
2064 1.137.2.11 riz if (!seglocked)
2065 1.137.2.11 riz lfs_segunlock(fs);
2066 1.137.2.8 riz return EDEADLK;
2067 1.137.2.8 riz }
2068 1.103 perseant
2069 1.137.2.8 riz error = genfs_putpages(v);
2070 1.137.2.8 riz if (error == EDEADLK || error == EAGAIN) {
2071 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2072 1.136 perseant " EDEADLK [2] ino %d off %x (seg %d)\n",
2073 1.136 perseant ip->i_number, fs->lfs_offset,
2074 1.136 perseant dtosn(fs, fs->lfs_offset)));
2075 1.88 perseant /* If nothing to write, short-circuit */
2076 1.129 yamt if (sp->cbpp - sp->bpp > 1) {
2077 1.129 yamt /* Write gathered pages */
2078 1.129 yamt lfs_updatemeta(sp);
2079 1.129 yamt (void) lfs_writeseg(fs, sp);
2080 1.135 perry
2081 1.129 yamt /*
2082 1.129 yamt * Reinitialize brand new FIP and add us to it.
2083 1.129 yamt * (This should duplicate the fixup in
2084 1.129 yamt * lfs_gatherpages().)
2085 1.129 yamt */
2086 1.129 yamt KASSERT(sp->vp == vp);
2087 1.129 yamt sp->fip->fi_version = ip->i_gen;
2088 1.129 yamt sp->fip->fi_ino = ip->i_number;
2089 1.129 yamt /* Add us to the new segment summary. */
2090 1.129 yamt ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2091 1.129 yamt sp->sum_bytes_left -= FINFOSIZE;
2092 1.88 perseant }
2093 1.84 perseant
2094 1.84 perseant /* Give the write a chance to complete */
2095 1.121 fvdl preempt(1);
2096 1.103 perseant
2097 1.103 perseant /* We've lost the interlock. Start over. */
2098 1.137.2.16 riz if (error == EDEADLK) {
2099 1.137.2.16 riz simple_lock(&vp->v_interlock);
2100 1.137.2.8 riz goto again;
2101 1.137.2.16 riz }
2102 1.84 perseant }
2103 1.103 perseant
2104 1.120 yamt KASSERT(sp->vp == vp);
2105 1.126 yamt if (!seglocked) {
2106 1.126 yamt sp->vp = NULL; /* XXX lfs_gather below will set this */
2107 1.126 yamt
2108 1.126 yamt /* Write indirect blocks as well */
2109 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2110 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2111 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2112 1.120 yamt
2113 1.126 yamt KASSERT(sp->vp == NULL);
2114 1.126 yamt sp->vp = vp;
2115 1.126 yamt }
2116 1.84 perseant
2117 1.84 perseant /*
2118 1.84 perseant * Blocks are now gathered into a segment waiting to be written.
2119 1.84 perseant * All that's left to do is update metadata, and write them.
2120 1.84 perseant */
2121 1.120 yamt lfs_updatemeta(sp);
2122 1.120 yamt KASSERT(sp->vp == vp);
2123 1.120 yamt sp->vp = NULL;
2124 1.126 yamt
2125 1.126 yamt if (seglocked) {
2126 1.126 yamt /* we're called by lfs_writefile. */
2127 1.126 yamt return error;
2128 1.126 yamt }
2129 1.120 yamt
2130 1.84 perseant /*
2131 1.88 perseant * Clean up FIP, since we're done writing this file.
2132 1.88 perseant * This should duplicate cleanup at the end of lfs_writefile().
2133 1.84 perseant */
2134 1.86 perseant if (sp->fip->fi_nblocks != 0) {
2135 1.124 yamt sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2136 1.124 yamt sizeof(int32_t) * sp->fip->fi_nblocks);
2137 1.86 perseant sp->start_lbp = &sp->fip->fi_blocks[0];
2138 1.86 perseant } else {
2139 1.124 yamt sp->sum_bytes_left += FINFOSIZE;
2140 1.86 perseant --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2141 1.86 perseant }
2142 1.88 perseant lfs_writeseg(fs, fs->lfs_sp);
2143 1.88 perseant
2144 1.84 perseant /*
2145 1.137.2.13 riz * Remove us from paging queue, since we've now written all our
2146 1.137.2.13 riz * pages.
2147 1.137.2.13 riz */
2148 1.137.2.13 riz simple_lock(&fs->lfs_interlock);
2149 1.137.2.13 riz if (ip->i_flags & IN_PAGING) {
2150 1.137.2.13 riz ip->i_flags &= ~IN_PAGING;
2151 1.137.2.13 riz TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2152 1.137.2.13 riz }
2153 1.137.2.13 riz simple_unlock(&fs->lfs_interlock);
2154 1.137.2.13 riz
2155 1.137.2.13 riz /*
2156 1.84 perseant * XXX - with the malloc/copy writeseg, the pages are freed by now
2157 1.84 perseant * even if we don't wait (e.g. if we hold a nested lock). This
2158 1.84 perseant * will not be true if we stop using malloc/copy.
2159 1.84 perseant */
2160 1.84 perseant KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2161 1.84 perseant lfs_segunlock(fs);
2162 1.84 perseant
2163 1.84 perseant /*
2164 1.84 perseant * Wait for v_numoutput to drop to zero. The seglock should
2165 1.84 perseant * take care of this, but there is a slight possibility that
2166 1.84 perseant * aiodoned might not have got around to our buffers yet.
2167 1.84 perseant */
2168 1.84 perseant if (sync) {
2169 1.84 perseant s = splbio();
2170 1.84 perseant simple_lock(&global_v_numoutput_slock);
2171 1.98 perseant while (vp->v_numoutput > 0) {
2172 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2173 1.136 perseant " num %d\n", ip->i_number, vp->v_numoutput));
2174 1.84 perseant vp->v_flag |= VBWAIT;
2175 1.87 yamt ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2176 1.87 yamt &global_v_numoutput_slock);
2177 1.84 perseant }
2178 1.84 perseant simple_unlock(&global_v_numoutput_slock);
2179 1.84 perseant splx(s);
2180 1.84 perseant }
2181 1.84 perseant return error;
2182 1.84 perseant }
2183 1.84 perseant
2184 1.84 perseant /*
2185 1.84 perseant * Return the last logical file offset that should be written for this file
2186 1.86 perseant * if we're doing a write that ends at "size". If writing, we need to know
2187 1.84 perseant * about sizes on disk, i.e. fragments if there are any; if reading, we need
2188 1.84 perseant * to know about entire blocks.
2189 1.84 perseant */
2190 1.84 perseant void
2191 1.84 perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2192 1.84 perseant {
2193 1.84 perseant struct inode *ip = VTOI(vp);
2194 1.135 perry struct lfs *fs = ip->i_lfs;
2195 1.84 perseant daddr_t olbn, nlbn;
2196 1.84 perseant
2197 1.84 perseant KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
2198 1.135 perry KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
2199 1.84 perseant != (GOP_SIZE_READ | GOP_SIZE_WRITE));
2200 1.84 perseant
2201 1.102 fvdl olbn = lblkno(fs, ip->i_size);
2202 1.84 perseant nlbn = lblkno(fs, size);
2203 1.118 yamt if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2204 1.86 perseant *eobp = fragroundup(fs, size);
2205 1.86 perseant } else {
2206 1.86 perseant *eobp = blkroundup(fs, size);
2207 1.86 perseant }
2208 1.84 perseant }
2209 1.84 perseant
2210 1.84 perseant #ifdef DEBUG
2211 1.84 perseant void lfs_dump_vop(void *);
2212 1.84 perseant
2213 1.84 perseant void
2214 1.84 perseant lfs_dump_vop(void *v)
2215 1.84 perseant {
2216 1.86 perseant struct vop_putpages_args /* {
2217 1.86 perseant struct vnode *a_vp;
2218 1.86 perseant voff_t a_offlo;
2219 1.86 perseant voff_t a_offhi;
2220 1.86 perseant int a_flags;
2221 1.86 perseant } */ *ap = v;
2222 1.84 perseant
2223 1.106 ragge #ifdef DDB
2224 1.84 perseant vfs_vnode_print(ap->a_vp, 0, printf);
2225 1.106 ragge #endif
2226 1.102 fvdl lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2227 1.84 perseant }
2228 1.84 perseant #endif
2229 1.84 perseant
2230 1.84 perseant int
2231 1.84 perseant lfs_mmap(void *v)
2232 1.84 perseant {
2233 1.84 perseant struct vop_mmap_args /* {
2234 1.86 perseant const struct vnodeop_desc *a_desc;
2235 1.86 perseant struct vnode *a_vp;
2236 1.86 perseant int a_fflags;
2237 1.86 perseant struct ucred *a_cred;
2238 1.109 fvdl struct proc *a_p;
2239 1.84 perseant } */ *ap = v;
2240 1.84 perseant
2241 1.84 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2242 1.84 perseant return EOPNOTSUPP;
2243 1.84 perseant return ufs_mmap(v);
2244 1.84 perseant }
2245