Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.231
      1  1.231   hannken /*	$NetBSD: lfs_vnops.c,v 1.231 2010/08/04 10:43:53 hannken Exp $	*/
      2    1.2       cgd 
      3   1.22  perseant /*-
      4   1.84  perseant  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5   1.22  perseant  * All rights reserved.
      6   1.22  perseant  *
      7   1.22  perseant  * This code is derived from software contributed to The NetBSD Foundation
      8   1.22  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9   1.22  perseant  *
     10   1.22  perseant  * Redistribution and use in source and binary forms, with or without
     11   1.22  perseant  * modification, are permitted provided that the following conditions
     12   1.22  perseant  * are met:
     13   1.22  perseant  * 1. Redistributions of source code must retain the above copyright
     14   1.22  perseant  *    notice, this list of conditions and the following disclaimer.
     15   1.22  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.22  perseant  *    notice, this list of conditions and the following disclaimer in the
     17   1.22  perseant  *    documentation and/or other materials provided with the distribution.
     18   1.22  perseant  *
     19   1.22  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.22  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.22  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.22  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.22  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.22  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.22  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.22  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.22  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.22  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.22  perseant  * POSSIBILITY OF SUCH DAMAGE.
     30   1.22  perseant  */
     31    1.1   mycroft /*
     32   1.15      fvdl  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     34    1.1   mycroft  *
     35    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     36    1.1   mycroft  * modification, are permitted provided that the following conditions
     37    1.1   mycroft  * are met:
     38    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     39    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     40    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     42    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     43  1.114       agc  * 3. Neither the name of the University nor the names of its contributors
     44    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     45    1.1   mycroft  *    without specific prior written permission.
     46    1.1   mycroft  *
     47    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57    1.1   mycroft  * SUCH DAMAGE.
     58    1.1   mycroft  *
     59   1.15      fvdl  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60    1.1   mycroft  */
     61   1.58     lukem 
     62   1.58     lukem #include <sys/cdefs.h>
     63  1.231   hannken __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.231 2010/08/04 10:43:53 hannken Exp $");
     64  1.182    martin 
     65  1.183    martin #ifdef _KERNEL_OPT
     66  1.182    martin #include "opt_compat_netbsd.h"
     67  1.183    martin #endif
     68   1.17  sommerfe 
     69    1.1   mycroft #include <sys/param.h>
     70    1.1   mycroft #include <sys/systm.h>
     71    1.1   mycroft #include <sys/namei.h>
     72    1.1   mycroft #include <sys/resourcevar.h>
     73    1.1   mycroft #include <sys/kernel.h>
     74    1.1   mycroft #include <sys/file.h>
     75    1.1   mycroft #include <sys/stat.h>
     76    1.1   mycroft #include <sys/buf.h>
     77    1.1   mycroft #include <sys/proc.h>
     78    1.1   mycroft #include <sys/mount.h>
     79    1.1   mycroft #include <sys/vnode.h>
     80   1.19   thorpej #include <sys/pool.h>
     81   1.10  christos #include <sys/signalvar.h>
     82  1.176      elad #include <sys/kauth.h>
     83  1.179  perseant #include <sys/syslog.h>
     84  1.197   hannken #include <sys/fstrans.h>
     85    1.1   mycroft 
     86   1.12   mycroft #include <miscfs/fifofs/fifo.h>
     87   1.12   mycroft #include <miscfs/genfs/genfs.h>
     88    1.1   mycroft #include <miscfs/specfs/specdev.h>
     89    1.1   mycroft 
     90    1.1   mycroft #include <ufs/ufs/inode.h>
     91    1.1   mycroft #include <ufs/ufs/dir.h>
     92    1.1   mycroft #include <ufs/ufs/ufsmount.h>
     93    1.1   mycroft #include <ufs/ufs/ufs_extern.h>
     94    1.1   mycroft 
     95   1.84  perseant #include <uvm/uvm.h>
     96   1.95  perseant #include <uvm/uvm_pmap.h>
     97   1.95  perseant #include <uvm/uvm_stat.h>
     98   1.95  perseant #include <uvm/uvm_pager.h>
     99   1.84  perseant 
    100    1.1   mycroft #include <ufs/lfs/lfs.h>
    101    1.1   mycroft #include <ufs/lfs/lfs_extern.h>
    102    1.1   mycroft 
    103   1.91      yamt extern pid_t lfs_writer_daemon;
    104  1.203  perseant int lfs_ignore_lazy_sync = 1;
    105  1.203  perseant 
    106    1.1   mycroft /* Global vfs data structures for lfs. */
    107   1.51  perseant int (**lfs_vnodeop_p)(void *);
    108   1.50  jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    109    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    110    1.1   mycroft 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    111   1.22  perseant 	{ &vop_create_desc, lfs_create },		/* create */
    112   1.82      yamt 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    113   1.22  perseant 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    114    1.1   mycroft 	{ &vop_open_desc, ufs_open },			/* open */
    115    1.1   mycroft 	{ &vop_close_desc, lfs_close },			/* close */
    116    1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    117    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    118   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    119    1.1   mycroft 	{ &vop_read_desc, lfs_read },			/* read */
    120    1.1   mycroft 	{ &vop_write_desc, lfs_write },			/* write */
    121   1.90  perseant 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    122   1.90  perseant 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    123   1.13   mycroft 	{ &vop_poll_desc, ufs_poll },			/* poll */
    124   1.68  jdolecek 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    125   1.15      fvdl 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    126   1.84  perseant 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    127    1.1   mycroft 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    128    1.1   mycroft 	{ &vop_seek_desc, ufs_seek },			/* seek */
    129   1.22  perseant 	{ &vop_remove_desc, lfs_remove },		/* remove */
    130   1.22  perseant 	{ &vop_link_desc, lfs_link },			/* link */
    131   1.22  perseant 	{ &vop_rename_desc, lfs_rename },		/* rename */
    132   1.22  perseant 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    133   1.22  perseant 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    134   1.22  perseant 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    135    1.1   mycroft 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    136    1.1   mycroft 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    137    1.1   mycroft 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    138   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    139    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    140    1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    141    1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    142    1.1   mycroft 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    143   1.94  perseant 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    144    1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    145    1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    146    1.1   mycroft 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    147    1.1   mycroft 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    148    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    149   1.60       chs 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    150   1.60       chs 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    151   1.53       chs 	{ NULL, NULL }
    152    1.1   mycroft };
    153   1.50  jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    154    1.1   mycroft 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    155    1.1   mycroft 
    156   1.51  perseant int (**lfs_specop_p)(void *);
    157   1.50  jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    158    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    159    1.1   mycroft 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    160    1.1   mycroft 	{ &vop_create_desc, spec_create },		/* create */
    161    1.1   mycroft 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    162    1.1   mycroft 	{ &vop_open_desc, spec_open },			/* open */
    163   1.65  perseant 	{ &vop_close_desc, lfsspec_close },		/* close */
    164    1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    165    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    166   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    167    1.1   mycroft 	{ &vop_read_desc, ufsspec_read },		/* read */
    168    1.1   mycroft 	{ &vop_write_desc, ufsspec_write },		/* write */
    169    1.1   mycroft 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    170   1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    171   1.13   mycroft 	{ &vop_poll_desc, spec_poll },			/* poll */
    172   1.68  jdolecek 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    173   1.15      fvdl 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    174    1.1   mycroft 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    175    1.1   mycroft 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    176    1.1   mycroft 	{ &vop_seek_desc, spec_seek },			/* seek */
    177    1.1   mycroft 	{ &vop_remove_desc, spec_remove },		/* remove */
    178    1.1   mycroft 	{ &vop_link_desc, spec_link },			/* link */
    179    1.1   mycroft 	{ &vop_rename_desc, spec_rename },		/* rename */
    180    1.1   mycroft 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    181    1.1   mycroft 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    182    1.1   mycroft 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    183    1.1   mycroft 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    184    1.1   mycroft 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    185    1.1   mycroft 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    186   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    187    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    188    1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    189    1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    190    1.1   mycroft 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    191    1.1   mycroft 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    192    1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    193    1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    194    1.1   mycroft 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    195    1.1   mycroft 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    196   1.28  perseant 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    197   1.53       chs 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    198   1.53       chs 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    199   1.53       chs 	{ NULL, NULL }
    200    1.1   mycroft };
    201   1.50  jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
    202    1.1   mycroft 	{ &lfs_specop_p, lfs_specop_entries };
    203    1.1   mycroft 
    204   1.51  perseant int (**lfs_fifoop_p)(void *);
    205   1.50  jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    206    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    207  1.227     pooka 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    208  1.227     pooka 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    209  1.227     pooka 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    210  1.227     pooka 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    211   1.65  perseant 	{ &vop_close_desc, lfsfifo_close },		/* close */
    212    1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    213    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    214   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    215    1.1   mycroft 	{ &vop_read_desc, ufsfifo_read },		/* read */
    216    1.1   mycroft 	{ &vop_write_desc, ufsfifo_write },		/* write */
    217  1.227     pooka 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    218   1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    219  1.227     pooka 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    220  1.227     pooka 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    221  1.227     pooka 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    222  1.227     pooka 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    223  1.227     pooka 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    224  1.227     pooka 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    225  1.227     pooka 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    226  1.227     pooka 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    227  1.227     pooka 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    228  1.227     pooka 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    229  1.227     pooka 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    230  1.227     pooka 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    231  1.227     pooka 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    232  1.227     pooka 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    233  1.227     pooka 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    234   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    235    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    236    1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    237    1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    238  1.227     pooka 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    239  1.227     pooka 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    240    1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    241    1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    242  1.227     pooka 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    243  1.227     pooka 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    244    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    245  1.227     pooka 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    246   1.53       chs 	{ NULL, NULL }
    247    1.1   mycroft };
    248   1.50  jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
    249    1.1   mycroft 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    250    1.1   mycroft 
    251  1.203  perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    252  1.134  perseant 
    253    1.1   mycroft #define	LFS_READWRITE
    254    1.1   mycroft #include <ufs/ufs/ufs_readwrite.c>
    255    1.1   mycroft #undef	LFS_READWRITE
    256    1.1   mycroft 
    257    1.1   mycroft /*
    258    1.1   mycroft  * Synch an open file.
    259    1.1   mycroft  */
    260    1.1   mycroft /* ARGSUSED */
    261   1.10  christos int
    262   1.51  perseant lfs_fsync(void *v)
    263   1.10  christos {
    264    1.1   mycroft 	struct vop_fsync_args /* {
    265    1.1   mycroft 		struct vnode *a_vp;
    266  1.176      elad 		kauth_cred_t a_cred;
    267   1.22  perseant 		int a_flags;
    268   1.49    toshii 		off_t offlo;
    269   1.49    toshii 		off_t offhi;
    270   1.10  christos 	} */ *ap = v;
    271   1.60       chs 	struct vnode *vp = ap->a_vp;
    272   1.84  perseant 	int error, wait;
    273  1.203  perseant 	struct inode *ip = VTOI(vp);
    274  1.203  perseant 	struct lfs *fs = ip->i_lfs;
    275   1.84  perseant 
    276  1.161  perseant 	/* If we're mounted read-only, don't try to sync. */
    277  1.203  perseant 	if (fs->lfs_ronly)
    278  1.161  perseant 		return 0;
    279  1.161  perseant 
    280  1.231   hannken 	/* If a removed vnode is being cleaned, no need to sync here. */
    281  1.231   hannken 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    282  1.231   hannken 		return 0;
    283  1.231   hannken 
    284   1.86  perseant 	/*
    285  1.203  perseant 	 * Trickle sync simply adds this vnode to the pager list, as if
    286  1.203  perseant 	 * the pagedaemon had requested a pageout.
    287   1.86  perseant 	 */
    288   1.84  perseant 	if (ap->a_flags & FSYNC_LAZY) {
    289  1.203  perseant 		if (lfs_ignore_lazy_sync == 0) {
    290  1.214        ad 			mutex_enter(&lfs_lock);
    291  1.203  perseant 			if (!(ip->i_flags & IN_PAGING)) {
    292  1.203  perseant 				ip->i_flags |= IN_PAGING;
    293  1.203  perseant 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    294  1.203  perseant 						  i_lfs_pchain);
    295  1.203  perseant 			}
    296  1.203  perseant 			wakeup(&lfs_writer_daemon);
    297  1.214        ad 			mutex_exit(&lfs_lock);
    298  1.203  perseant 		}
    299   1.47  perseant 		return 0;
    300   1.84  perseant 	}
    301   1.47  perseant 
    302  1.175  perseant 	/*
    303  1.188  perseant 	 * If a vnode is bring cleaned, flush it out before we try to
    304  1.188  perseant 	 * reuse it.  This prevents the cleaner from writing files twice
    305  1.188  perseant 	 * in the same partial segment, causing an accounting underflow.
    306  1.188  perseant 	 */
    307  1.203  perseant 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    308  1.188  perseant 		lfs_vflush(vp);
    309  1.175  perseant 	}
    310  1.175  perseant 
    311   1.84  perseant 	wait = (ap->a_flags & FSYNC_WAIT);
    312  1.203  perseant 	do {
    313  1.214        ad 		mutex_enter(&vp->v_interlock);
    314  1.203  perseant 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    315  1.203  perseant 				     round_page(ap->a_offhi),
    316  1.203  perseant 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    317  1.205  perseant 		if (error == EAGAIN) {
    318  1.214        ad 			mutex_enter(&lfs_lock);
    319  1.214        ad 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    320  1.214        ad 				hz / 100 + 1, &lfs_lock);
    321  1.214        ad 			mutex_exit(&lfs_lock);
    322  1.205  perseant 		}
    323  1.203  perseant 	} while (error == EAGAIN);
    324  1.103  perseant 	if (error)
    325  1.103  perseant 		return error;
    326  1.203  perseant 
    327  1.203  perseant 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    328  1.203  perseant 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    329  1.203  perseant 
    330  1.133  wrstuden 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    331  1.133  wrstuden 		int l = 0;
    332  1.203  perseant 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    333  1.213     pooka 				  curlwp->l_cred);
    334  1.133  wrstuden 	}
    335  1.103  perseant 	if (wait && !VPISEMPTY(vp))
    336  1.203  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
    337   1.84  perseant 
    338   1.63  perseant 	return error;
    339    1.1   mycroft }
    340    1.1   mycroft 
    341    1.1   mycroft /*
    342   1.40  perseant  * Take IN_ADIROP off, then call ufs_inactive.
    343   1.40  perseant  */
    344   1.40  perseant int
    345   1.51  perseant lfs_inactive(void *v)
    346   1.40  perseant {
    347   1.40  perseant 	struct vop_inactive_args /* {
    348   1.40  perseant 		struct vnode *a_vp;
    349   1.40  perseant 	} */ *ap = v;
    350   1.72      yamt 
    351   1.76      yamt 	lfs_unmark_vnode(ap->a_vp);
    352   1.76      yamt 
    353   1.97  perseant 	/*
    354   1.97  perseant 	 * The Ifile is only ever inactivated on unmount.
    355   1.97  perseant 	 * Streamline this process by not giving it more dirty blocks.
    356   1.97  perseant 	 */
    357   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    358  1.214        ad 		mutex_enter(&lfs_lock);
    359   1.97  perseant 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    360  1.214        ad 		mutex_exit(&lfs_lock);
    361  1.229   hannken 		VOP_UNLOCK(ap->a_vp);
    362   1.97  perseant 		return 0;
    363   1.97  perseant 	}
    364   1.97  perseant 
    365   1.75      yamt 	return ufs_inactive(v);
    366   1.40  perseant }
    367   1.40  perseant 
    368   1.40  perseant /*
    369    1.1   mycroft  * These macros are used to bracket UFS directory ops, so that we can
    370    1.1   mycroft  * identify all the pages touched during directory ops which need to
    371    1.1   mycroft  * be ordered and flushed atomically, so that they may be recovered.
    372  1.138  perseant  *
    373  1.212        ad  * Because we have to mark nodes VU_DIROP in order to prevent
    374   1.22  perseant  * the cache from reclaiming them while a dirop is in progress, we must
    375   1.22  perseant  * also manage the number of nodes so marked (otherwise we can run out).
    376   1.22  perseant  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    377  1.212        ad  * is decremented during segment write, when VU_DIROP is taken off.
    378   1.22  perseant  */
    379  1.138  perseant #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    380  1.138  perseant #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    381  1.138  perseant #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    382  1.138  perseant #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    383  1.138  perseant static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    384   1.71      yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
    385   1.24  perseant 
    386   1.46  perseant static int
    387  1.138  perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    388   1.40  perseant {
    389   1.24  perseant 	struct lfs *fs;
    390   1.24  perseant 	int error;
    391   1.24  perseant 
    392  1.138  perseant 	KASSERT(VOP_ISLOCKED(dvp));
    393  1.138  perseant 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    394   1.71      yamt 
    395  1.138  perseant 	fs = VTOI(dvp)->i_lfs;
    396  1.141  perseant 
    397  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    398   1.44  perseant 	/*
    399  1.134  perseant 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    400  1.134  perseant 	 * as an inode block; an overestimate in most cases.
    401   1.44  perseant 	 */
    402  1.138  perseant 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    403   1.44  perseant 		return (error);
    404   1.70      yamt 
    405  1.214        ad     restart:
    406  1.214        ad 	mutex_enter(&lfs_lock);
    407  1.141  perseant 	if (fs->lfs_dirops == 0) {
    408  1.214        ad 		mutex_exit(&lfs_lock);
    409  1.138  perseant 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    410  1.214        ad 		mutex_enter(&lfs_lock);
    411  1.113      yamt 	}
    412  1.190  perseant 	while (fs->lfs_writer) {
    413  1.214        ad 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    414  1.214        ad 		    "lfs_sdirop", 0, &lfs_lock);
    415  1.190  perseant 		if (error == EINTR) {
    416  1.214        ad 			mutex_exit(&lfs_lock);
    417  1.190  perseant 			goto unreserve;
    418  1.190  perseant 		}
    419  1.190  perseant 	}
    420  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    421  1.113      yamt 		wakeup(&lfs_writer_daemon);
    422  1.214        ad 		mutex_exit(&lfs_lock);
    423  1.198        ad 		preempt();
    424  1.113      yamt 		goto restart;
    425  1.113      yamt 	}
    426   1.33  perseant 
    427  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    428  1.214        ad 		mutex_exit(&lfs_lock);
    429  1.136  perseant 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    430  1.136  perseant 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    431  1.214        ad 		if ((error = mtsleep(&lfs_dirvcount,
    432  1.214        ad 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    433  1.214        ad 		    &lfs_lock)) != 0) {
    434  1.113      yamt 			goto unreserve;
    435  1.113      yamt 		}
    436  1.113      yamt 		goto restart;
    437  1.135     perry 	}
    438  1.113      yamt 
    439  1.135     perry 	++fs->lfs_dirops;
    440  1.135     perry 	fs->lfs_doifile = 1;
    441  1.214        ad 	mutex_exit(&lfs_lock);
    442   1.24  perseant 
    443   1.46  perseant 	/* Hold a reference so SET_ENDOP will be happy */
    444  1.138  perseant 	vref(dvp);
    445  1.138  perseant 	if (vp) {
    446  1.138  perseant 		vref(vp);
    447  1.138  perseant 		MARK_VNODE(vp);
    448  1.138  perseant 	}
    449   1.46  perseant 
    450  1.138  perseant 	MARK_VNODE(dvp);
    451   1.24  perseant 	return 0;
    452   1.70      yamt 
    453  1.203  perseant   unreserve:
    454  1.138  perseant 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    455   1.70      yamt 	return error;
    456    1.1   mycroft }
    457    1.1   mycroft 
    458  1.138  perseant /*
    459  1.138  perseant  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    460  1.138  perseant  * in getnewvnode(), if we have a stacked filesystem mounted on top
    461  1.138  perseant  * of us.
    462  1.138  perseant  *
    463  1.138  perseant  * NB: this means we have to clear the new vnodes on error.  Fortunately
    464  1.138  perseant  * SET_ENDOP is there to do that for us.
    465  1.138  perseant  */
    466  1.138  perseant static int
    467  1.138  perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    468  1.138  perseant {
    469  1.138  perseant 	int error;
    470  1.138  perseant 	struct lfs *fs;
    471  1.138  perseant 
    472  1.138  perseant 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    473  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    474  1.138  perseant 	if (fs->lfs_ronly)
    475  1.138  perseant 		return EROFS;
    476  1.138  perseant 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    477  1.138  perseant 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    478  1.138  perseant 		      dvp, error));
    479  1.138  perseant 		return error;
    480  1.138  perseant 	}
    481  1.138  perseant 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    482  1.138  perseant 		if (vpp) {
    483  1.138  perseant 			ungetnewvnode(*vpp);
    484  1.138  perseant 			*vpp = NULL;
    485  1.138  perseant 		}
    486  1.138  perseant 		return error;
    487  1.138  perseant 	}
    488  1.138  perseant 	return 0;
    489    1.1   mycroft }
    490    1.1   mycroft 
    491  1.138  perseant #define	SET_ENDOP_BASE(fs, dvp, str)					\
    492  1.138  perseant 	do {								\
    493  1.214        ad 		mutex_enter(&lfs_lock);				\
    494  1.138  perseant 		--(fs)->lfs_dirops;					\
    495  1.138  perseant 		if (!(fs)->lfs_dirops) {				\
    496  1.138  perseant 			if ((fs)->lfs_nadirop) {			\
    497  1.138  perseant 				panic("SET_ENDOP: %s: no dirops but "	\
    498  1.138  perseant 					" nadirop=%d", (str),		\
    499  1.138  perseant 					(fs)->lfs_nadirop);		\
    500  1.138  perseant 			}						\
    501  1.138  perseant 			wakeup(&(fs)->lfs_writer);			\
    502  1.214        ad 			mutex_exit(&lfs_lock);				\
    503  1.138  perseant 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    504  1.138  perseant 		} else							\
    505  1.214        ad 			mutex_exit(&lfs_lock);				\
    506  1.138  perseant 	} while(0)
    507  1.138  perseant #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    508  1.138  perseant 	do {								\
    509  1.138  perseant 		UNMARK_VNODE(dvp);					\
    510  1.138  perseant 		if (nvpp && *nvpp)					\
    511  1.138  perseant 			UNMARK_VNODE(*nvpp);				\
    512  1.138  perseant 		/* Check for error return to stem vnode leakage */	\
    513  1.212        ad 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    514  1.138  perseant 			ungetnewvnode(*(nvpp));				\
    515  1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    516  1.138  perseant 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    517  1.138  perseant 		vrele(dvp);						\
    518  1.138  perseant 	} while(0)
    519  1.138  perseant #define SET_ENDOP_CREATE_AP(ap, str)					\
    520  1.138  perseant 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    521  1.138  perseant 			 (ap)->a_vpp, (str))
    522  1.138  perseant #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    523  1.138  perseant 	do {								\
    524  1.138  perseant 		UNMARK_VNODE(dvp);					\
    525  1.138  perseant 		if (ovp)						\
    526  1.138  perseant 			UNMARK_VNODE(ovp);				\
    527  1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    528  1.138  perseant 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    529  1.138  perseant 		vrele(dvp);						\
    530  1.138  perseant 		if (ovp)						\
    531  1.138  perseant 			vrele(ovp);					\
    532  1.138  perseant 	} while(0)
    533  1.117      yamt 
    534  1.117      yamt void
    535  1.117      yamt lfs_mark_vnode(struct vnode *vp)
    536  1.117      yamt {
    537  1.117      yamt 	struct inode *ip = VTOI(vp);
    538  1.117      yamt 	struct lfs *fs = ip->i_lfs;
    539   1.37  perseant 
    540  1.214        ad 	mutex_enter(&lfs_lock);
    541  1.117      yamt 	if (!(ip->i_flag & IN_ADIROP)) {
    542  1.212        ad 		if (!(vp->v_uflag & VU_DIROP)) {
    543  1.214        ad 			mutex_enter(&vp->v_interlock);
    544  1.117      yamt 			(void)lfs_vref(vp);
    545  1.117      yamt 			++lfs_dirvcount;
    546  1.173  perseant 			++fs->lfs_dirvcount;
    547  1.117      yamt 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    548  1.212        ad 			vp->v_uflag |= VU_DIROP;
    549  1.117      yamt 		}
    550  1.117      yamt 		++fs->lfs_nadirop;
    551  1.117      yamt 		ip->i_flag |= IN_ADIROP;
    552  1.117      yamt 	} else
    553  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    554  1.214        ad 	mutex_exit(&lfs_lock);
    555  1.117      yamt }
    556   1.40  perseant 
    557  1.117      yamt void
    558  1.117      yamt lfs_unmark_vnode(struct vnode *vp)
    559   1.40  perseant {
    560  1.117      yamt 	struct inode *ip = VTOI(vp);
    561   1.40  perseant 
    562  1.146  perseant 	if (ip && (ip->i_flag & IN_ADIROP)) {
    563  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    564  1.214        ad 		mutex_enter(&lfs_lock);
    565   1.40  perseant 		--ip->i_lfs->lfs_nadirop;
    566  1.214        ad 		mutex_exit(&lfs_lock);
    567  1.117      yamt 		ip->i_flag &= ~IN_ADIROP;
    568  1.117      yamt 	}
    569   1.40  perseant }
    570   1.15      fvdl 
    571    1.1   mycroft int
    572   1.51  perseant lfs_symlink(void *v)
    573   1.10  christos {
    574    1.1   mycroft 	struct vop_symlink_args /* {
    575    1.1   mycroft 		struct vnode *a_dvp;
    576    1.1   mycroft 		struct vnode **a_vpp;
    577    1.1   mycroft 		struct componentname *a_cnp;
    578    1.1   mycroft 		struct vattr *a_vap;
    579    1.1   mycroft 		char *a_target;
    580   1.10  christos 	} */ *ap = v;
    581   1.37  perseant 	int error;
    582    1.1   mycroft 
    583  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    584   1.34  perseant 		vput(ap->a_dvp);
    585   1.37  perseant 		return error;
    586   1.34  perseant 	}
    587   1.37  perseant 	error = ufs_symlink(ap);
    588  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "symlink");
    589   1.37  perseant 	return (error);
    590    1.1   mycroft }
    591    1.1   mycroft 
    592    1.1   mycroft int
    593   1.51  perseant lfs_mknod(void *v)
    594   1.10  christos {
    595   1.22  perseant 	struct vop_mknod_args	/* {
    596    1.1   mycroft 		struct vnode *a_dvp;
    597    1.1   mycroft 		struct vnode **a_vpp;
    598    1.1   mycroft 		struct componentname *a_cnp;
    599    1.1   mycroft 		struct vattr *a_vap;
    600  1.203  perseant 	} */ *ap = v;
    601   1.86  perseant 	struct vattr *vap = ap->a_vap;
    602   1.86  perseant 	struct vnode **vpp = ap->a_vpp;
    603   1.86  perseant 	struct inode *ip;
    604   1.86  perseant 	int error;
    605  1.135     perry 	struct mount	*mp;
    606   1.52     assar 	ino_t		ino;
    607    1.1   mycroft 
    608  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    609   1.34  perseant 		vput(ap->a_dvp);
    610   1.28  perseant 		return error;
    611   1.34  perseant 	}
    612   1.28  perseant 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    613  1.203  perseant 			      ap->a_dvp, vpp, ap->a_cnp);
    614   1.28  perseant 
    615   1.28  perseant 	/* Either way we're done with the dirop at this point */
    616  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mknod");
    617   1.28  perseant 
    618   1.86  perseant 	if (error)
    619   1.28  perseant 		return (error);
    620   1.28  perseant 
    621   1.86  perseant 	ip = VTOI(*vpp);
    622   1.52     assar 	mp  = (*vpp)->v_mount;
    623   1.52     assar 	ino = ip->i_number;
    624   1.86  perseant 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    625   1.86  perseant 	if (vap->va_rdev != VNOVAL) {
    626   1.86  perseant 		/*
    627   1.86  perseant 		 * Want to be able to use this to make badblock
    628   1.86  perseant 		 * inodes, so don't truncate the dev number.
    629   1.86  perseant 		 */
    630   1.28  perseant #if 0
    631  1.102      fvdl 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    632  1.203  perseant 					   UFS_MPNEEDSWAP((*vpp)->v_mount));
    633   1.28  perseant #else
    634  1.102      fvdl 		ip->i_ffs1_rdev = vap->va_rdev;
    635   1.28  perseant #endif
    636   1.86  perseant 	}
    637  1.134  perseant 
    638   1.28  perseant 	/*
    639   1.28  perseant 	 * Call fsync to write the vnode so that we don't have to deal with
    640  1.212        ad 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    641   1.28  perseant 	 *
    642   1.28  perseant 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    643   1.28  perseant 	 * return.  But, that leaves this vnode in limbo, also not good.
    644   1.28  perseant 	 * Can this ever happen (barring hardware failure)?
    645   1.28  perseant 	 */
    646  1.213     pooka 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    647  1.153  christos 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    648  1.203  perseant 		      (unsigned long long)ino);
    649  1.136  perseant 		/* return (error); */
    650   1.40  perseant 	}
    651   1.86  perseant 	/*
    652   1.86  perseant 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    653   1.86  perseant 	 * checked to see if it is an alias of an existing entry in
    654   1.86  perseant 	 * the inode cache.
    655   1.86  perseant 	 */
    656   1.28  perseant 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    657  1.134  perseant 
    658  1.229   hannken 	VOP_UNLOCK(*vpp);
    659   1.86  perseant 	(*vpp)->v_type = VNON;
    660   1.86  perseant 	vgone(*vpp);
    661  1.108   thorpej 	error = VFS_VGET(mp, ino, vpp);
    662  1.134  perseant 
    663   1.52     assar 	if (error != 0) {
    664   1.52     assar 		*vpp = NULL;
    665   1.52     assar 		return (error);
    666   1.52     assar 	}
    667   1.86  perseant 	return (0);
    668    1.1   mycroft }
    669    1.1   mycroft 
    670    1.1   mycroft int
    671   1.51  perseant lfs_create(void *v)
    672   1.10  christos {
    673   1.22  perseant 	struct vop_create_args	/* {
    674    1.1   mycroft 		struct vnode *a_dvp;
    675    1.1   mycroft 		struct vnode **a_vpp;
    676    1.1   mycroft 		struct componentname *a_cnp;
    677    1.1   mycroft 		struct vattr *a_vap;
    678   1.10  christos 	} */ *ap = v;
    679   1.37  perseant 	int error;
    680    1.1   mycroft 
    681  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    682   1.34  perseant 		vput(ap->a_dvp);
    683   1.37  perseant 		return error;
    684   1.34  perseant 	}
    685   1.37  perseant 	error = ufs_create(ap);
    686  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "create");
    687   1.37  perseant 	return (error);
    688   1.22  perseant }
    689   1.22  perseant 
    690   1.22  perseant int
    691   1.51  perseant lfs_mkdir(void *v)
    692   1.10  christos {
    693   1.22  perseant 	struct vop_mkdir_args	/* {
    694    1.1   mycroft 		struct vnode *a_dvp;
    695    1.1   mycroft 		struct vnode **a_vpp;
    696    1.1   mycroft 		struct componentname *a_cnp;
    697    1.1   mycroft 		struct vattr *a_vap;
    698   1.10  christos 	} */ *ap = v;
    699   1.37  perseant 	int error;
    700    1.1   mycroft 
    701  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    702   1.34  perseant 		vput(ap->a_dvp);
    703   1.37  perseant 		return error;
    704   1.34  perseant 	}
    705   1.37  perseant 	error = ufs_mkdir(ap);
    706  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    707   1.37  perseant 	return (error);
    708    1.1   mycroft }
    709    1.1   mycroft 
    710    1.1   mycroft int
    711   1.51  perseant lfs_remove(void *v)
    712   1.10  christos {
    713   1.22  perseant 	struct vop_remove_args	/* {
    714    1.1   mycroft 		struct vnode *a_dvp;
    715    1.1   mycroft 		struct vnode *a_vp;
    716    1.1   mycroft 		struct componentname *a_cnp;
    717   1.10  christos 	} */ *ap = v;
    718   1.34  perseant 	struct vnode *dvp, *vp;
    719  1.188  perseant 	struct inode *ip;
    720   1.37  perseant 	int error;
    721   1.34  perseant 
    722   1.34  perseant 	dvp = ap->a_dvp;
    723   1.34  perseant 	vp = ap->a_vp;
    724  1.188  perseant 	ip = VTOI(vp);
    725  1.138  perseant 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    726   1.34  perseant 		if (dvp == vp)
    727   1.34  perseant 			vrele(vp);
    728   1.34  perseant 		else
    729   1.34  perseant 			vput(vp);
    730   1.34  perseant 		vput(dvp);
    731   1.37  perseant 		return error;
    732   1.34  perseant 	}
    733   1.37  perseant 	error = ufs_remove(ap);
    734  1.188  perseant 	if (ip->i_nlink == 0)
    735  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    736  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    737   1.37  perseant 	return (error);
    738    1.1   mycroft }
    739    1.1   mycroft 
    740    1.1   mycroft int
    741   1.51  perseant lfs_rmdir(void *v)
    742   1.10  christos {
    743   1.22  perseant 	struct vop_rmdir_args	/* {
    744    1.1   mycroft 		struct vnodeop_desc *a_desc;
    745    1.1   mycroft 		struct vnode *a_dvp;
    746    1.1   mycroft 		struct vnode *a_vp;
    747    1.1   mycroft 		struct componentname *a_cnp;
    748   1.10  christos 	} */ *ap = v;
    749   1.84  perseant 	struct vnode *vp;
    750  1.188  perseant 	struct inode *ip;
    751   1.37  perseant 	int error;
    752    1.1   mycroft 
    753   1.84  perseant 	vp = ap->a_vp;
    754  1.188  perseant 	ip = VTOI(vp);
    755  1.138  perseant 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    756  1.194       chs 		if (ap->a_dvp == vp)
    757  1.194       chs 			vrele(ap->a_dvp);
    758  1.194       chs 		else
    759  1.194       chs 			vput(ap->a_dvp);
    760   1.84  perseant 		vput(vp);
    761   1.37  perseant 		return error;
    762   1.34  perseant 	}
    763   1.37  perseant 	error = ufs_rmdir(ap);
    764  1.188  perseant 	if (ip->i_nlink == 0)
    765  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    766  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    767   1.37  perseant 	return (error);
    768    1.1   mycroft }
    769    1.1   mycroft 
    770    1.1   mycroft int
    771   1.51  perseant lfs_link(void *v)
    772   1.10  christos {
    773   1.22  perseant 	struct vop_link_args	/* {
    774    1.9   mycroft 		struct vnode *a_dvp;
    775    1.1   mycroft 		struct vnode *a_vp;
    776    1.1   mycroft 		struct componentname *a_cnp;
    777   1.10  christos 	} */ *ap = v;
    778   1.37  perseant 	int error;
    779  1.138  perseant 	struct vnode **vpp = NULL;
    780    1.1   mycroft 
    781  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    782   1.34  perseant 		vput(ap->a_dvp);
    783   1.37  perseant 		return error;
    784   1.34  perseant 	}
    785   1.37  perseant 	error = ufs_link(ap);
    786  1.138  perseant 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    787   1.37  perseant 	return (error);
    788    1.1   mycroft }
    789   1.22  perseant 
    790    1.1   mycroft int
    791   1.51  perseant lfs_rename(void *v)
    792   1.10  christos {
    793   1.22  perseant 	struct vop_rename_args	/* {
    794    1.1   mycroft 		struct vnode *a_fdvp;
    795    1.1   mycroft 		struct vnode *a_fvp;
    796    1.1   mycroft 		struct componentname *a_fcnp;
    797    1.1   mycroft 		struct vnode *a_tdvp;
    798    1.1   mycroft 		struct vnode *a_tvp;
    799    1.1   mycroft 		struct componentname *a_tcnp;
    800   1.10  christos 	} */ *ap = v;
    801   1.30  perseant 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    802   1.83  perseant 	struct componentname *tcnp, *fcnp;
    803   1.30  perseant 	int error;
    804   1.29  perseant 	struct lfs *fs;
    805   1.29  perseant 
    806   1.29  perseant 	fs = VTOI(ap->a_fdvp)->i_lfs;
    807   1.30  perseant 	tvp = ap->a_tvp;
    808   1.30  perseant 	tdvp = ap->a_tdvp;
    809   1.83  perseant 	tcnp = ap->a_tcnp;
    810   1.30  perseant 	fvp = ap->a_fvp;
    811   1.30  perseant 	fdvp = ap->a_fdvp;
    812   1.83  perseant 	fcnp = ap->a_fcnp;
    813   1.30  perseant 
    814   1.30  perseant 	/*
    815   1.30  perseant 	 * Check for cross-device rename.
    816   1.30  perseant 	 * If it is, we don't want to set dirops, just error out.
    817   1.30  perseant 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    818   1.30  perseant 	 * a cross-device rename.)
    819   1.30  perseant 	 *
    820   1.30  perseant 	 * Copied from ufs_rename.
    821   1.30  perseant 	 */
    822   1.30  perseant 	if ((fvp->v_mount != tdvp->v_mount) ||
    823   1.30  perseant 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    824   1.30  perseant 		error = EXDEV;
    825   1.34  perseant 		goto errout;
    826   1.30  perseant 	}
    827   1.83  perseant 
    828   1.83  perseant 	/*
    829   1.83  perseant 	 * Check to make sure we're not renaming a vnode onto itself
    830   1.83  perseant 	 * (deleting a hard link by renaming one name onto another);
    831   1.83  perseant 	 * if we are we can't recursively call VOP_REMOVE since that
    832   1.83  perseant 	 * would leave us with an unaccounted-for number of live dirops.
    833   1.83  perseant 	 *
    834   1.83  perseant 	 * Inline the relevant section of ufs_rename here, *before*
    835  1.138  perseant 	 * calling SET_DIROP_REMOVE.
    836   1.83  perseant 	 */
    837  1.102      fvdl 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    838  1.203  perseant 		    (VTOI(tdvp)->i_flags & APPEND))) {
    839   1.83  perseant 		error = EPERM;
    840   1.83  perseant 		goto errout;
    841   1.83  perseant 	}
    842   1.86  perseant 	if (fvp == tvp) {
    843   1.86  perseant 		if (fvp->v_type == VDIR) {
    844   1.86  perseant 			error = EINVAL;
    845   1.86  perseant 			goto errout;
    846   1.86  perseant 		}
    847   1.86  perseant 
    848   1.86  perseant 		/* Release destination completely. */
    849   1.86  perseant 		VOP_ABORTOP(tdvp, tcnp);
    850   1.86  perseant 		vput(tdvp);
    851   1.86  perseant 		vput(tvp);
    852   1.86  perseant 
    853   1.86  perseant 		/* Delete source. */
    854   1.86  perseant 		vrele(fvp);
    855   1.86  perseant 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    856   1.86  perseant 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    857   1.86  perseant 		fcnp->cn_nameiop = DELETE;
    858  1.194       chs 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
    859  1.194       chs 		if ((error = relookup(fdvp, &fvp, fcnp))) {
    860  1.194       chs 			vput(fdvp);
    861   1.86  perseant 			return (error);
    862   1.86  perseant 		}
    863   1.86  perseant 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    864   1.86  perseant 	}
    865   1.83  perseant 
    866  1.138  perseant 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    867   1.34  perseant 		goto errout;
    868   1.30  perseant 	MARK_VNODE(fdvp);
    869   1.71      yamt 	MARK_VNODE(fvp);
    870  1.135     perry 
    871   1.30  perseant 	error = ufs_rename(ap);
    872   1.37  perseant 	UNMARK_VNODE(fdvp);
    873   1.71      yamt 	UNMARK_VNODE(fvp);
    874  1.138  perseant 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    875   1.34  perseant 	return (error);
    876   1.34  perseant 
    877  1.203  perseant   errout:
    878   1.34  perseant 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    879   1.34  perseant 	if (tdvp == tvp)
    880   1.34  perseant 		vrele(tdvp);
    881   1.34  perseant 	else
    882   1.34  perseant 		vput(tdvp);
    883   1.34  perseant 	if (tvp)
    884   1.34  perseant 		vput(tvp);
    885   1.34  perseant 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    886   1.34  perseant 	vrele(fdvp);
    887   1.34  perseant 	vrele(fvp);
    888   1.30  perseant 	return (error);
    889    1.1   mycroft }
    890   1.22  perseant 
    891    1.1   mycroft /* XXX hack to avoid calling ITIMES in getattr */
    892    1.1   mycroft int
    893   1.51  perseant lfs_getattr(void *v)
    894   1.10  christos {
    895    1.1   mycroft 	struct vop_getattr_args /* {
    896    1.1   mycroft 		struct vnode *a_vp;
    897    1.1   mycroft 		struct vattr *a_vap;
    898  1.176      elad 		kauth_cred_t a_cred;
    899   1.10  christos 	} */ *ap = v;
    900   1.35  augustss 	struct vnode *vp = ap->a_vp;
    901   1.35  augustss 	struct inode *ip = VTOI(vp);
    902   1.35  augustss 	struct vattr *vap = ap->a_vap;
    903   1.51  perseant 	struct lfs *fs = ip->i_lfs;
    904    1.1   mycroft 	/*
    905    1.1   mycroft 	 * Copy from inode table
    906    1.1   mycroft 	 */
    907    1.1   mycroft 	vap->va_fsid = ip->i_dev;
    908    1.1   mycroft 	vap->va_fileid = ip->i_number;
    909  1.102      fvdl 	vap->va_mode = ip->i_mode & ~IFMT;
    910  1.102      fvdl 	vap->va_nlink = ip->i_nlink;
    911  1.102      fvdl 	vap->va_uid = ip->i_uid;
    912  1.102      fvdl 	vap->va_gid = ip->i_gid;
    913  1.102      fvdl 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    914   1.55       chs 	vap->va_size = vp->v_size;
    915  1.102      fvdl 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    916  1.102      fvdl 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    917  1.102      fvdl 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    918  1.102      fvdl 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    919  1.102      fvdl 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    920  1.102      fvdl 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    921  1.102      fvdl 	vap->va_flags = ip->i_flags;
    922  1.102      fvdl 	vap->va_gen = ip->i_gen;
    923    1.1   mycroft 	/* this doesn't belong here */
    924    1.1   mycroft 	if (vp->v_type == VBLK)
    925    1.1   mycroft 		vap->va_blocksize = BLKDEV_IOSIZE;
    926    1.1   mycroft 	else if (vp->v_type == VCHR)
    927    1.1   mycroft 		vap->va_blocksize = MAXBSIZE;
    928    1.1   mycroft 	else
    929    1.1   mycroft 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    930   1.84  perseant 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    931    1.1   mycroft 	vap->va_type = vp->v_type;
    932    1.1   mycroft 	vap->va_filerev = ip->i_modrev;
    933    1.1   mycroft 	return (0);
    934   1.61  perseant }
    935   1.61  perseant 
    936   1.61  perseant /*
    937   1.61  perseant  * Check to make sure the inode blocks won't choke the buffer
    938   1.61  perseant  * cache, then call ufs_setattr as usual.
    939   1.61  perseant  */
    940   1.61  perseant int
    941   1.61  perseant lfs_setattr(void *v)
    942   1.61  perseant {
    943  1.149     skrll 	struct vop_setattr_args /* {
    944   1.61  perseant 		struct vnode *a_vp;
    945   1.61  perseant 		struct vattr *a_vap;
    946  1.176      elad 		kauth_cred_t a_cred;
    947   1.61  perseant 	} */ *ap = v;
    948   1.61  perseant 	struct vnode *vp = ap->a_vp;
    949   1.61  perseant 
    950   1.61  perseant 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    951   1.61  perseant 	return ufs_setattr(v);
    952    1.1   mycroft }
    953   1.22  perseant 
    954    1.1   mycroft /*
    955  1.179  perseant  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    956  1.188  perseant  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
    957  1.179  perseant  */
    958  1.179  perseant static int
    959  1.193  christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    960  1.179  perseant {
    961  1.214        ad 	if (fs->lfs_stoplwp != curlwp)
    962  1.179  perseant 		return EBUSY;
    963  1.179  perseant 
    964  1.214        ad 	fs->lfs_stoplwp = NULL;
    965  1.214        ad 	cv_signal(&fs->lfs_stopcv);
    966  1.179  perseant 
    967  1.179  perseant 	KASSERT(fs->lfs_nowrap > 0);
    968  1.179  perseant 	if (fs->lfs_nowrap <= 0) {
    969  1.179  perseant 		return 0;
    970  1.179  perseant 	}
    971  1.179  perseant 
    972  1.179  perseant 	if (--fs->lfs_nowrap == 0) {
    973  1.179  perseant 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    974  1.188  perseant 		wakeup(&fs->lfs_wrappass);
    975  1.180  perseant 		lfs_wakeup_cleaner(fs);
    976  1.179  perseant 	}
    977  1.179  perseant 	if (waitfor) {
    978  1.214        ad 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
    979  1.214        ad 		    0, &lfs_lock);
    980  1.179  perseant 	}
    981  1.179  perseant 
    982  1.179  perseant 	return 0;
    983  1.179  perseant }
    984  1.179  perseant 
    985  1.179  perseant /*
    986    1.1   mycroft  * Close called
    987    1.1   mycroft  */
    988    1.1   mycroft /* ARGSUSED */
    989    1.1   mycroft int
    990   1.51  perseant lfs_close(void *v)
    991   1.10  christos {
    992    1.1   mycroft 	struct vop_close_args /* {
    993    1.1   mycroft 		struct vnode *a_vp;
    994    1.1   mycroft 		int  a_fflag;
    995  1.176      elad 		kauth_cred_t a_cred;
    996   1.10  christos 	} */ *ap = v;
    997   1.35  augustss 	struct vnode *vp = ap->a_vp;
    998   1.35  augustss 	struct inode *ip = VTOI(vp);
    999  1.180  perseant 	struct lfs *fs = ip->i_lfs;
   1000    1.1   mycroft 
   1001  1.190  perseant 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1002  1.214        ad 	    fs->lfs_stoplwp == curlwp) {
   1003  1.214        ad 		mutex_enter(&lfs_lock);
   1004  1.188  perseant 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1005  1.180  perseant 		lfs_wrapgo(fs, ip, 0);
   1006  1.214        ad 		mutex_exit(&lfs_lock);
   1007  1.179  perseant 	}
   1008  1.179  perseant 
   1009   1.97  perseant 	if (vp == ip->i_lfs->lfs_ivnode &&
   1010  1.119       dbj 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1011   1.97  perseant 		return 0;
   1012   1.97  perseant 
   1013   1.97  perseant 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1014  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1015    1.1   mycroft 	}
   1016    1.1   mycroft 	return (0);
   1017   1.65  perseant }
   1018   1.65  perseant 
   1019   1.65  perseant /*
   1020   1.65  perseant  * Close wrapper for special devices.
   1021   1.65  perseant  *
   1022   1.65  perseant  * Update the times on the inode then do device close.
   1023   1.65  perseant  */
   1024   1.65  perseant int
   1025   1.65  perseant lfsspec_close(void *v)
   1026   1.65  perseant {
   1027   1.65  perseant 	struct vop_close_args /* {
   1028   1.65  perseant 		struct vnode	*a_vp;
   1029   1.65  perseant 		int		a_fflag;
   1030  1.176      elad 		kauth_cred_t	a_cred;
   1031   1.65  perseant 	} */ *ap = v;
   1032   1.65  perseant 	struct vnode	*vp;
   1033   1.65  perseant 	struct inode	*ip;
   1034   1.65  perseant 
   1035   1.65  perseant 	vp = ap->a_vp;
   1036   1.65  perseant 	ip = VTOI(vp);
   1037   1.65  perseant 	if (vp->v_usecount > 1) {
   1038  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1039   1.65  perseant 	}
   1040   1.65  perseant 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1041   1.65  perseant }
   1042   1.65  perseant 
   1043   1.65  perseant /*
   1044   1.65  perseant  * Close wrapper for fifo's.
   1045   1.65  perseant  *
   1046   1.65  perseant  * Update the times on the inode then do device close.
   1047   1.65  perseant  */
   1048   1.65  perseant int
   1049   1.65  perseant lfsfifo_close(void *v)
   1050   1.65  perseant {
   1051   1.65  perseant 	struct vop_close_args /* {
   1052   1.65  perseant 		struct vnode	*a_vp;
   1053   1.65  perseant 		int		a_fflag;
   1054  1.176      elad 		kauth_cred_	a_cred;
   1055   1.65  perseant 	} */ *ap = v;
   1056   1.65  perseant 	struct vnode	*vp;
   1057   1.65  perseant 	struct inode	*ip;
   1058   1.65  perseant 
   1059   1.65  perseant 	vp = ap->a_vp;
   1060   1.65  perseant 	ip = VTOI(vp);
   1061   1.65  perseant 	if (ap->a_vp->v_usecount > 1) {
   1062  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1063   1.65  perseant 	}
   1064   1.65  perseant 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1065    1.1   mycroft }
   1066    1.1   mycroft 
   1067    1.1   mycroft /*
   1068   1.15      fvdl  * Reclaim an inode so that it can be used for other purposes.
   1069    1.1   mycroft  */
   1070    1.1   mycroft 
   1071    1.1   mycroft int
   1072   1.51  perseant lfs_reclaim(void *v)
   1073   1.10  christos {
   1074    1.1   mycroft 	struct vop_reclaim_args /* {
   1075    1.1   mycroft 		struct vnode *a_vp;
   1076   1.10  christos 	} */ *ap = v;
   1077   1.15      fvdl 	struct vnode *vp = ap->a_vp;
   1078   1.84  perseant 	struct inode *ip = VTOI(vp);
   1079  1.203  perseant 	struct lfs *fs = ip->i_lfs;
   1080    1.1   mycroft 	int error;
   1081   1.77      yamt 
   1082  1.231   hannken 	/*
   1083  1.231   hannken 	 * The inode must be freed and updated before being removed
   1084  1.231   hannken 	 * from its hash chain.  Other threads trying to gain a hold
   1085  1.231   hannken 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1086  1.231   hannken 	 */
   1087  1.231   hannken 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1088  1.231   hannken 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1089  1.231   hannken 
   1090  1.214        ad 	mutex_enter(&lfs_lock);
   1091   1.84  perseant 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1092  1.214        ad 	mutex_exit(&lfs_lock);
   1093  1.213     pooka 	if ((error = ufs_reclaim(vp)))
   1094    1.1   mycroft 		return (error);
   1095  1.203  perseant 
   1096  1.203  perseant 	/*
   1097  1.203  perseant 	 * Take us off the paging and/or dirop queues if we were on them.
   1098  1.203  perseant 	 * We shouldn't be on them.
   1099  1.203  perseant 	 */
   1100  1.214        ad 	mutex_enter(&lfs_lock);
   1101  1.203  perseant 	if (ip->i_flags & IN_PAGING) {
   1102  1.203  perseant 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1103  1.203  perseant 		    fs->lfs_fsmnt);
   1104  1.203  perseant 		ip->i_flags &= ~IN_PAGING;
   1105  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1106  1.203  perseant 	}
   1107  1.212        ad 	if (vp->v_uflag & VU_DIROP) {
   1108  1.212        ad 		panic("reclaimed vnode is VU_DIROP");
   1109  1.212        ad 		vp->v_uflag &= ~VU_DIROP;
   1110  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1111  1.203  perseant 	}
   1112  1.214        ad 	mutex_exit(&lfs_lock);
   1113  1.203  perseant 
   1114  1.142  perseant 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1115  1.145  perseant 	lfs_deregister_all(vp);
   1116   1.84  perseant 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1117   1.84  perseant 	ip->inode_ext.lfs = NULL;
   1118  1.199        ad 	genfs_node_destroy(vp);
   1119   1.19   thorpej 	pool_put(&lfs_inode_pool, vp->v_data);
   1120    1.1   mycroft 	vp->v_data = NULL;
   1121   1.94  perseant 	return (0);
   1122   1.94  perseant }
   1123   1.94  perseant 
   1124   1.94  perseant /*
   1125  1.101      yamt  * Read a block from a storage device.
   1126   1.94  perseant  * In order to avoid reading blocks that are in the process of being
   1127   1.94  perseant  * written by the cleaner---and hence are not mutexed by the normal
   1128   1.94  perseant  * buffer cache / page cache mechanisms---check for collisions before
   1129   1.94  perseant  * reading.
   1130   1.94  perseant  *
   1131   1.94  perseant  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1132   1.94  perseant  * the active cleaner test.
   1133   1.94  perseant  *
   1134   1.94  perseant  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1135   1.94  perseant  */
   1136   1.94  perseant int
   1137   1.94  perseant lfs_strategy(void *v)
   1138   1.94  perseant {
   1139   1.94  perseant 	struct vop_strategy_args /* {
   1140  1.128   hannken 		struct vnode *a_vp;
   1141   1.94  perseant 		struct buf *a_bp;
   1142   1.94  perseant 	} */ *ap = v;
   1143   1.94  perseant 	struct buf	*bp;
   1144   1.94  perseant 	struct lfs	*fs;
   1145   1.94  perseant 	struct vnode	*vp;
   1146   1.94  perseant 	struct inode	*ip;
   1147   1.94  perseant 	daddr_t		tbn;
   1148   1.94  perseant 	int		i, sn, error, slept;
   1149   1.94  perseant 
   1150   1.94  perseant 	bp = ap->a_bp;
   1151  1.128   hannken 	vp = ap->a_vp;
   1152   1.94  perseant 	ip = VTOI(vp);
   1153   1.94  perseant 	fs = ip->i_lfs;
   1154   1.94  perseant 
   1155  1.101      yamt 	/* lfs uses its strategy routine only for read */
   1156  1.101      yamt 	KASSERT(bp->b_flags & B_READ);
   1157  1.101      yamt 
   1158   1.94  perseant 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1159   1.94  perseant 		panic("lfs_strategy: spec");
   1160   1.94  perseant 	KASSERT(bp->b_bcount != 0);
   1161   1.94  perseant 	if (bp->b_blkno == bp->b_lblkno) {
   1162   1.94  perseant 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1163   1.94  perseant 				 NULL);
   1164   1.94  perseant 		if (error) {
   1165   1.94  perseant 			bp->b_error = error;
   1166  1.214        ad 			bp->b_resid = bp->b_bcount;
   1167   1.94  perseant 			biodone(bp);
   1168   1.94  perseant 			return (error);
   1169   1.94  perseant 		}
   1170   1.94  perseant 		if ((long)bp->b_blkno == -1) /* no valid data */
   1171   1.94  perseant 			clrbuf(bp);
   1172   1.94  perseant 	}
   1173   1.94  perseant 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1174  1.214        ad 		bp->b_resid = bp->b_bcount;
   1175   1.94  perseant 		biodone(bp);
   1176   1.94  perseant 		return (0);
   1177   1.94  perseant 	}
   1178   1.94  perseant 
   1179   1.94  perseant 	slept = 1;
   1180  1.214        ad 	mutex_enter(&lfs_lock);
   1181  1.101      yamt 	while (slept && fs->lfs_seglock) {
   1182  1.214        ad 		mutex_exit(&lfs_lock);
   1183   1.94  perseant 		/*
   1184   1.94  perseant 		 * Look through list of intervals.
   1185   1.94  perseant 		 * There will only be intervals to look through
   1186   1.94  perseant 		 * if the cleaner holds the seglock.
   1187   1.94  perseant 		 * Since the cleaner is synchronous, we can trust
   1188   1.94  perseant 		 * the list of intervals to be current.
   1189   1.94  perseant 		 */
   1190   1.94  perseant 		tbn = dbtofsb(fs, bp->b_blkno);
   1191   1.94  perseant 		sn = dtosn(fs, tbn);
   1192   1.94  perseant 		slept = 0;
   1193   1.94  perseant 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1194   1.94  perseant 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1195   1.94  perseant 			    tbn >= fs->lfs_cleanint[i]) {
   1196  1.136  perseant 				DLOG((DLOG_CLEAN,
   1197  1.136  perseant 				      "lfs_strategy: ino %d lbn %" PRId64
   1198  1.203  perseant 				      " ind %d sn %d fsb %" PRIx32
   1199  1.203  perseant 				      " given sn %d fsb %" PRIx64 "\n",
   1200  1.203  perseant 				      ip->i_number, bp->b_lblkno, i,
   1201  1.203  perseant 				      dtosn(fs, fs->lfs_cleanint[i]),
   1202  1.203  perseant 				      fs->lfs_cleanint[i], sn, tbn));
   1203  1.136  perseant 				DLOG((DLOG_CLEAN,
   1204  1.136  perseant 				      "lfs_strategy: sleeping on ino %d lbn %"
   1205  1.136  perseant 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1206  1.214        ad 				mutex_enter(&lfs_lock);
   1207  1.170  perseant 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1208  1.170  perseant 					/* Cleaner can't wait for itself */
   1209  1.214        ad 					mtsleep(&fs->lfs_iocount,
   1210  1.170  perseant 						(PRIBIO + 1) | PNORELOCK,
   1211  1.170  perseant 						"clean2", 0,
   1212  1.214        ad 						&lfs_lock);
   1213  1.170  perseant 					slept = 1;
   1214  1.170  perseant 					break;
   1215  1.170  perseant 				} else if (fs->lfs_seglock) {
   1216  1.214        ad 					mtsleep(&fs->lfs_seglock,
   1217  1.141  perseant 						(PRIBIO + 1) | PNORELOCK,
   1218  1.170  perseant 						"clean1", 0,
   1219  1.214        ad 						&lfs_lock);
   1220  1.167  perseant 					slept = 1;
   1221  1.167  perseant 					break;
   1222  1.167  perseant 				}
   1223  1.214        ad 				mutex_exit(&lfs_lock);
   1224   1.94  perseant 			}
   1225   1.94  perseant 		}
   1226  1.214        ad 		mutex_enter(&lfs_lock);
   1227   1.94  perseant 	}
   1228  1.214        ad 	mutex_exit(&lfs_lock);
   1229   1.94  perseant 
   1230   1.94  perseant 	vp = ip->i_devvp;
   1231  1.127   hannken 	VOP_STRATEGY(vp, bp);
   1232    1.1   mycroft 	return (0);
   1233   1.89  perseant }
   1234   1.89  perseant 
   1235  1.171  perseant void
   1236   1.92  perseant lfs_flush_dirops(struct lfs *fs)
   1237   1.92  perseant {
   1238   1.92  perseant 	struct inode *ip, *nip;
   1239   1.92  perseant 	struct vnode *vp;
   1240   1.92  perseant 	extern int lfs_dostats;
   1241   1.92  perseant 	struct segment *sp;
   1242   1.92  perseant 
   1243  1.163  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1244  1.171  perseant 	KASSERT(fs->lfs_nadirop == 0);
   1245  1.141  perseant 
   1246   1.92  perseant 	if (fs->lfs_ronly)
   1247   1.92  perseant 		return;
   1248   1.92  perseant 
   1249  1.214        ad 	mutex_enter(&lfs_lock);
   1250  1.141  perseant 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1251  1.214        ad 		mutex_exit(&lfs_lock);
   1252   1.92  perseant 		return;
   1253  1.141  perseant 	} else
   1254  1.214        ad 		mutex_exit(&lfs_lock);
   1255   1.92  perseant 
   1256   1.92  perseant 	if (lfs_dostats)
   1257   1.92  perseant 		++lfs_stats.flush_invoked;
   1258   1.92  perseant 
   1259   1.92  perseant 	/*
   1260   1.92  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1261   1.92  perseant 	 * Technically this is a checkpoint (the on-disk state is valid)
   1262   1.92  perseant 	 * even though we are leaving out all the file data.
   1263   1.92  perseant 	 */
   1264   1.92  perseant 	lfs_imtime(fs);
   1265   1.92  perseant 	lfs_seglock(fs, SEGM_CKP);
   1266   1.92  perseant 	sp = fs->lfs_sp;
   1267   1.92  perseant 
   1268   1.92  perseant 	/*
   1269   1.92  perseant 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1270   1.92  perseant 	 * Only write dirops, and don't flush files' pages, only
   1271   1.92  perseant 	 * blocks from the directories.
   1272   1.92  perseant 	 *
   1273   1.92  perseant 	 * We don't need to vref these files because they are
   1274   1.92  perseant 	 * dirops and so hold an extra reference until the
   1275   1.92  perseant 	 * segunlock clears them of that status.
   1276   1.92  perseant 	 *
   1277   1.92  perseant 	 * We don't need to check for IN_ADIROP because we know that
   1278   1.92  perseant 	 * no dirops are active.
   1279   1.92  perseant 	 *
   1280   1.92  perseant 	 */
   1281  1.214        ad 	mutex_enter(&lfs_lock);
   1282   1.92  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1283   1.92  perseant 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1284  1.214        ad 		mutex_exit(&lfs_lock);
   1285   1.92  perseant 		vp = ITOV(ip);
   1286   1.92  perseant 
   1287  1.171  perseant 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1288  1.171  perseant 
   1289   1.92  perseant 		/*
   1290   1.92  perseant 		 * All writes to directories come from dirops; all
   1291   1.92  perseant 		 * writes to files' direct blocks go through the page
   1292   1.92  perseant 		 * cache, which we're not touching.  Reads to files
   1293   1.92  perseant 		 * and/or directories will not be affected by writing
   1294   1.92  perseant 		 * directory blocks inodes and file inodes.  So we don't
   1295  1.203  perseant 		 * really need to lock.	 If we don't lock, though,
   1296   1.92  perseant 		 * make sure that we don't clear IN_MODIFIED
   1297   1.92  perseant 		 * unnecessarily.
   1298   1.92  perseant 		 */
   1299  1.214        ad 		if (vp->v_iflag & VI_XLOCK) {
   1300  1.214        ad 			mutex_enter(&lfs_lock);
   1301   1.92  perseant 			continue;
   1302  1.167  perseant 		}
   1303  1.228   hannken 		/* XXX see below
   1304  1.228   hannken 		 * waslocked = VOP_ISLOCKED(vp);
   1305  1.228   hannken 		 */
   1306   1.92  perseant 		if (vp->v_type != VREG &&
   1307   1.92  perseant 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1308   1.92  perseant 			lfs_writefile(fs, sp, vp);
   1309   1.92  perseant 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1310   1.92  perseant 			    !(ip->i_flag & IN_ALLMOD)) {
   1311  1.214        ad 			    	mutex_enter(&lfs_lock);
   1312   1.92  perseant 				LFS_SET_UINO(ip, IN_MODIFIED);
   1313  1.214        ad 			    	mutex_exit(&lfs_lock);
   1314   1.92  perseant 			}
   1315   1.92  perseant 		}
   1316  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1317   1.92  perseant 		(void) lfs_writeinode(fs, sp, ip);
   1318  1.214        ad 		mutex_enter(&lfs_lock);
   1319  1.228   hannken 		/*
   1320  1.228   hannken 		 * XXX
   1321  1.228   hannken 		 * LK_EXCLOTHER is dead -- what is intended here?
   1322  1.228   hannken 		 * if (waslocked == LK_EXCLOTHER)
   1323  1.228   hannken 		 *	LFS_SET_UINO(ip, IN_MODIFIED);
   1324  1.228   hannken 		 */
   1325   1.92  perseant 	}
   1326  1.214        ad 	mutex_exit(&lfs_lock);
   1327   1.92  perseant 	/* We've written all the dirops there are */
   1328   1.92  perseant 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1329  1.170  perseant 	lfs_finalize_fs_seguse(fs);
   1330   1.92  perseant 	(void) lfs_writeseg(fs, sp);
   1331   1.92  perseant 	lfs_segunlock(fs);
   1332   1.92  perseant }
   1333   1.92  perseant 
   1334   1.89  perseant /*
   1335  1.164  perseant  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1336  1.212        ad  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   1337  1.164  perseant  * has just run, this would be an error).  If we have to skip a vnode
   1338  1.164  perseant  * for any reason, just skip it; if we have to wait for the cleaner,
   1339  1.164  perseant  * abort.  The writer daemon will call us again later.
   1340  1.164  perseant  */
   1341  1.164  perseant void
   1342  1.164  perseant lfs_flush_pchain(struct lfs *fs)
   1343  1.164  perseant {
   1344  1.164  perseant 	struct inode *ip, *nip;
   1345  1.164  perseant 	struct vnode *vp;
   1346  1.164  perseant 	extern int lfs_dostats;
   1347  1.164  perseant 	struct segment *sp;
   1348  1.164  perseant 	int error;
   1349  1.164  perseant 
   1350  1.164  perseant 	ASSERT_NO_SEGLOCK(fs);
   1351  1.164  perseant 
   1352  1.164  perseant 	if (fs->lfs_ronly)
   1353  1.164  perseant 		return;
   1354  1.164  perseant 
   1355  1.214        ad 	mutex_enter(&lfs_lock);
   1356  1.164  perseant 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1357  1.214        ad 		mutex_exit(&lfs_lock);
   1358  1.164  perseant 		return;
   1359  1.164  perseant 	} else
   1360  1.214        ad 		mutex_exit(&lfs_lock);
   1361  1.164  perseant 
   1362  1.164  perseant 	/* Get dirops out of the way */
   1363  1.164  perseant 	lfs_flush_dirops(fs);
   1364  1.164  perseant 
   1365  1.164  perseant 	if (lfs_dostats)
   1366  1.164  perseant 		++lfs_stats.flush_invoked;
   1367  1.164  perseant 
   1368  1.164  perseant 	/*
   1369  1.164  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1370  1.164  perseant 	 */
   1371  1.164  perseant 	lfs_imtime(fs);
   1372  1.164  perseant 	lfs_seglock(fs, 0);
   1373  1.164  perseant 	sp = fs->lfs_sp;
   1374  1.164  perseant 
   1375  1.164  perseant 	/*
   1376  1.164  perseant 	 * lfs_writevnodes, optimized to clear pageout requests.
   1377  1.164  perseant 	 * Only write non-dirop files that are in the pageout queue.
   1378  1.164  perseant 	 * We're very conservative about what we write; we want to be
   1379  1.164  perseant 	 * fast and async.
   1380  1.164  perseant 	 */
   1381  1.214        ad 	mutex_enter(&lfs_lock);
   1382  1.214        ad     top:
   1383  1.164  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1384  1.164  perseant 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1385  1.164  perseant 		vp = ITOV(ip);
   1386  1.164  perseant 
   1387  1.164  perseant 		if (!(ip->i_flags & IN_PAGING))
   1388  1.164  perseant 			goto top;
   1389  1.164  perseant 
   1390  1.214        ad 		mutex_enter(&vp->v_interlock);
   1391  1.214        ad 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   1392  1.214        ad 			mutex_exit(&vp->v_interlock);
   1393  1.164  perseant 			continue;
   1394  1.214        ad 		}
   1395  1.214        ad 		if (vp->v_type != VREG) {
   1396  1.214        ad 			mutex_exit(&vp->v_interlock);
   1397  1.164  perseant 			continue;
   1398  1.214        ad 		}
   1399  1.164  perseant 		if (lfs_vref(vp))
   1400  1.164  perseant 			continue;
   1401  1.214        ad 		mutex_exit(&lfs_lock);
   1402  1.169  perseant 
   1403  1.228   hannken 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   1404  1.165  perseant 			lfs_vunref(vp);
   1405  1.214        ad 			mutex_enter(&lfs_lock);
   1406  1.164  perseant 			continue;
   1407  1.165  perseant 		}
   1408  1.164  perseant 
   1409  1.164  perseant 		error = lfs_writefile(fs, sp, vp);
   1410  1.164  perseant 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1411  1.164  perseant 		    !(ip->i_flag & IN_ALLMOD)) {
   1412  1.214        ad 		    	mutex_enter(&lfs_lock);
   1413  1.164  perseant 			LFS_SET_UINO(ip, IN_MODIFIED);
   1414  1.214        ad 		    	mutex_exit(&lfs_lock);
   1415  1.164  perseant 		}
   1416  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1417  1.164  perseant 		(void) lfs_writeinode(fs, sp, ip);
   1418  1.164  perseant 
   1419  1.229   hannken 		VOP_UNLOCK(vp);
   1420  1.164  perseant 		lfs_vunref(vp);
   1421  1.164  perseant 
   1422  1.164  perseant 		if (error == EAGAIN) {
   1423  1.164  perseant 			lfs_writeseg(fs, sp);
   1424  1.214        ad 			mutex_enter(&lfs_lock);
   1425  1.164  perseant 			break;
   1426  1.164  perseant 		}
   1427  1.214        ad 		mutex_enter(&lfs_lock);
   1428  1.164  perseant 	}
   1429  1.214        ad 	mutex_exit(&lfs_lock);
   1430  1.164  perseant 	(void) lfs_writeseg(fs, sp);
   1431  1.164  perseant 	lfs_segunlock(fs);
   1432  1.164  perseant }
   1433  1.164  perseant 
   1434  1.164  perseant /*
   1435   1.90  perseant  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1436   1.89  perseant  */
   1437   1.89  perseant int
   1438   1.90  perseant lfs_fcntl(void *v)
   1439   1.89  perseant {
   1440  1.137    simonb 	struct vop_fcntl_args /* {
   1441  1.137    simonb 		struct vnode *a_vp;
   1442  1.218  gmcgarry 		u_int a_command;
   1443  1.201  christos 		void * a_data;
   1444  1.137    simonb 		int  a_fflag;
   1445  1.176      elad 		kauth_cred_t a_cred;
   1446  1.137    simonb 	} */ *ap = v;
   1447  1.222  christos 	struct timeval tv;
   1448   1.89  perseant 	struct timeval *tvp;
   1449   1.89  perseant 	BLOCK_INFO *blkiov;
   1450   1.92  perseant 	CLEANERINFO *cip;
   1451  1.148  perseant 	SEGUSE *sup;
   1452   1.92  perseant 	int blkcnt, error, oclean;
   1453  1.181    martin 	size_t fh_size;
   1454   1.90  perseant 	struct lfs_fcntl_markv blkvp;
   1455  1.185        ad 	struct lwp *l;
   1456   1.89  perseant 	fsid_t *fsidp;
   1457   1.92  perseant 	struct lfs *fs;
   1458   1.92  perseant 	struct buf *bp;
   1459  1.134  perseant 	fhandle_t *fhp;
   1460   1.92  perseant 	daddr_t off;
   1461   1.89  perseant 
   1462   1.90  perseant 	/* Only respect LFS fcntls on fs root or Ifile */
   1463   1.89  perseant 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1464   1.89  perseant 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1465   1.90  perseant 		return ufs_fcntl(v);
   1466   1.89  perseant 	}
   1467   1.89  perseant 
   1468  1.100  perseant 	/* Avoid locking a draining lock */
   1469  1.119       dbj 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1470  1.100  perseant 		return ESHUTDOWN;
   1471  1.100  perseant 	}
   1472  1.100  perseant 
   1473  1.184  perseant 	/* LFS control and monitoring fcntls are available only to root */
   1474  1.213     pooka 	l = curlwp;
   1475  1.184  perseant 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1476  1.185        ad 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   1477  1.203  perseant 					     NULL)) != 0)
   1478  1.184  perseant 		return (error);
   1479  1.184  perseant 
   1480  1.100  perseant 	fs = VTOI(ap->a_vp)->i_lfs;
   1481  1.131  christos 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1482   1.89  perseant 
   1483  1.188  perseant 	error = 0;
   1484  1.218  gmcgarry 	switch ((int)ap->a_command) {
   1485  1.222  christos 	    case LFCNSEGWAITALL_COMPAT_50:
   1486  1.222  christos 	    case LFCNSEGWAITALL_COMPAT:
   1487  1.222  christos 		fsidp = NULL;
   1488  1.222  christos 		/* FALLSTHROUGH */
   1489  1.222  christos 	    case LFCNSEGWAIT_COMPAT_50:
   1490  1.222  christos 	    case LFCNSEGWAIT_COMPAT:
   1491  1.222  christos 		{
   1492  1.222  christos 			struct timeval50 *tvp50
   1493  1.222  christos 				= (struct timeval50 *)ap->a_data;
   1494  1.222  christos 			timeval50_to_timeval(tvp50, &tv);
   1495  1.222  christos 			tvp = &tv;
   1496  1.222  christos 		}
   1497  1.222  christos 		goto segwait_common;
   1498   1.90  perseant 	    case LFCNSEGWAITALL:
   1499  1.214        ad 		fsidp = NULL;
   1500  1.214        ad 		/* FALLSTHROUGH */
   1501   1.90  perseant 	    case LFCNSEGWAIT:
   1502  1.214        ad 		tvp = (struct timeval *)ap->a_data;
   1503  1.222  christos segwait_common:
   1504  1.214        ad 		mutex_enter(&lfs_lock);
   1505  1.214        ad 		++fs->lfs_sleepers;
   1506  1.214        ad 		mutex_exit(&lfs_lock);
   1507  1.214        ad 
   1508  1.214        ad 		error = lfs_segwait(fsidp, tvp);
   1509  1.214        ad 
   1510  1.214        ad 		mutex_enter(&lfs_lock);
   1511  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1512  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1513  1.214        ad 		mutex_exit(&lfs_lock);
   1514  1.214        ad 		return error;
   1515   1.89  perseant 
   1516   1.90  perseant 	    case LFCNBMAPV:
   1517   1.90  perseant 	    case LFCNMARKV:
   1518  1.214        ad 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1519   1.89  perseant 
   1520  1.214        ad 		blkcnt = blkvp.blkcnt;
   1521  1.214        ad 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1522  1.214        ad 			return (EINVAL);
   1523  1.214        ad 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1524  1.214        ad 		if ((error = copyin(blkvp.blkiov, blkiov,
   1525  1.214        ad 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1526  1.214        ad 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1527  1.214        ad 			return error;
   1528  1.214        ad 		}
   1529  1.214        ad 
   1530  1.214        ad 		mutex_enter(&lfs_lock);
   1531  1.214        ad 		++fs->lfs_sleepers;
   1532  1.214        ad 		mutex_exit(&lfs_lock);
   1533  1.214        ad 		if (ap->a_command == LFCNBMAPV)
   1534  1.214        ad 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1535  1.214        ad 		else /* LFCNMARKV */
   1536  1.214        ad 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1537  1.214        ad 		if (error == 0)
   1538  1.214        ad 			error = copyout(blkiov, blkvp.blkiov,
   1539  1.214        ad 					blkcnt * sizeof(BLOCK_INFO));
   1540  1.214        ad 		mutex_enter(&lfs_lock);
   1541  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1542  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1543  1.214        ad 		mutex_exit(&lfs_lock);
   1544  1.214        ad 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1545  1.214        ad 		return error;
   1546   1.92  perseant 
   1547   1.92  perseant 	    case LFCNRECLAIM:
   1548  1.214        ad 		/*
   1549  1.214        ad 		 * Flush dirops and write Ifile, allowing empty segments
   1550  1.214        ad 		 * to be immediately reclaimed.
   1551  1.214        ad 		 */
   1552  1.214        ad 		lfs_writer_enter(fs, "pndirop");
   1553  1.214        ad 		off = fs->lfs_offset;
   1554  1.214        ad 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1555  1.214        ad 		lfs_flush_dirops(fs);
   1556  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1557  1.214        ad 		oclean = cip->clean;
   1558  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1559  1.214        ad 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1560  1.214        ad 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1561  1.214        ad 		lfs_segunlock(fs);
   1562  1.214        ad 		lfs_writer_leave(fs);
   1563   1.92  perseant 
   1564  1.136  perseant #ifdef DEBUG
   1565  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1566  1.214        ad 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1567  1.214        ad 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1568  1.214        ad 		      fs->lfs_offset - off, cip->clean - oclean,
   1569  1.214        ad 		      fs->lfs_activesb));
   1570  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1571   1.92  perseant #endif
   1572   1.92  perseant 
   1573  1.214        ad 		return 0;
   1574   1.89  perseant 
   1575  1.182    martin 	    case LFCNIFILEFH_COMPAT:
   1576  1.214        ad 		/* Return the filehandle of the Ifile */
   1577  1.221      elad 		if ((error = kauth_authorize_system(l->l_cred,
   1578  1.221      elad 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   1579  1.214        ad 			return (error);
   1580  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1581  1.214        ad 		fhp->fh_fsid = *fsidp;
   1582  1.214        ad 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1583  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1584  1.182    martin 
   1585  1.187    martin 	    case LFCNIFILEFH_COMPAT2:
   1586  1.134  perseant 	    case LFCNIFILEFH:
   1587  1.214        ad 		/* Return the filehandle of the Ifile */
   1588  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1589  1.214        ad 		fhp->fh_fsid = *fsidp;
   1590  1.214        ad 		fh_size = sizeof(struct lfs_fhandle) -
   1591  1.214        ad 		    offsetof(fhandle_t, fh_fid);
   1592  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1593  1.134  perseant 
   1594  1.148  perseant 	    case LFCNREWIND:
   1595  1.214        ad 		/* Move lfs_offset to the lowest-numbered segment */
   1596  1.214        ad 		return lfs_rewind(fs, *(int *)ap->a_data);
   1597  1.148  perseant 
   1598  1.148  perseant 	    case LFCNINVAL:
   1599  1.214        ad 		/* Mark a segment SEGUSE_INVAL */
   1600  1.214        ad 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1601  1.214        ad 		if (sup->su_nbytes > 0) {
   1602  1.214        ad 			brelse(bp, 0);
   1603  1.214        ad 			lfs_unset_inval_all(fs);
   1604  1.214        ad 			return EBUSY;
   1605  1.214        ad 		}
   1606  1.214        ad 		sup->su_flags |= SEGUSE_INVAL;
   1607  1.214        ad 		VOP_BWRITE(bp);
   1608  1.214        ad 		return 0;
   1609  1.148  perseant 
   1610  1.148  perseant 	    case LFCNRESIZE:
   1611  1.214        ad 		/* Resize the filesystem */
   1612  1.214        ad 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1613  1.148  perseant 
   1614  1.168  perseant 	    case LFCNWRAPSTOP:
   1615  1.179  perseant 	    case LFCNWRAPSTOP_COMPAT:
   1616  1.214        ad 		/*
   1617  1.214        ad 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1618  1.214        ad 		 * the filesystem wraps around.  To support external agents
   1619  1.214        ad 		 * (dump, fsck-based regression test) that need to look at
   1620  1.214        ad 		 * a snapshot of the filesystem, without necessarily
   1621  1.214        ad 		 * requiring that all fs activity stops.
   1622  1.214        ad 		 */
   1623  1.214        ad 		if (fs->lfs_stoplwp == curlwp)
   1624  1.214        ad 			return EALREADY;
   1625  1.214        ad 
   1626  1.214        ad 		mutex_enter(&lfs_lock);
   1627  1.214        ad 		while (fs->lfs_stoplwp != NULL)
   1628  1.214        ad 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   1629  1.214        ad 		fs->lfs_stoplwp = curlwp;
   1630  1.214        ad 		if (fs->lfs_nowrap == 0)
   1631  1.214        ad 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1632  1.214        ad 		++fs->lfs_nowrap;
   1633  1.222  christos 		if (*(int *)ap->a_data == 1
   1634  1.224     pooka 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1635  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1636  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1637  1.214        ad 				"segwrap", 0, &lfs_lock);
   1638  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1639  1.214        ad 			if (error) {
   1640  1.214        ad 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1641  1.214        ad 			}
   1642  1.214        ad 		}
   1643  1.214        ad 		mutex_exit(&lfs_lock);
   1644  1.214        ad 		return 0;
   1645  1.168  perseant 
   1646  1.168  perseant 	    case LFCNWRAPGO:
   1647  1.179  perseant 	    case LFCNWRAPGO_COMPAT:
   1648  1.214        ad 		/*
   1649  1.214        ad 		 * Having done its work, the agent wakes up the writer.
   1650  1.214        ad 		 * If the argument is 1, it sleeps until a new segment
   1651  1.214        ad 		 * is selected.
   1652  1.214        ad 		 */
   1653  1.214        ad 		mutex_enter(&lfs_lock);
   1654  1.214        ad 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1655  1.222  christos 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1656  1.222  christos 				    *((int *)ap->a_data));
   1657  1.214        ad 		mutex_exit(&lfs_lock);
   1658  1.214        ad 		return error;
   1659  1.168  perseant 
   1660  1.188  perseant 	    case LFCNWRAPPASS:
   1661  1.214        ad 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1662  1.214        ad 			return EALREADY;
   1663  1.214        ad 		mutex_enter(&lfs_lock);
   1664  1.214        ad 		if (fs->lfs_stoplwp != curlwp) {
   1665  1.214        ad 			mutex_exit(&lfs_lock);
   1666  1.214        ad 			return EALREADY;
   1667  1.214        ad 		}
   1668  1.214        ad 		if (fs->lfs_nowrap == 0) {
   1669  1.214        ad 			mutex_exit(&lfs_lock);
   1670  1.214        ad 			return EBUSY;
   1671  1.214        ad 		}
   1672  1.214        ad 		fs->lfs_wrappass = 1;
   1673  1.214        ad 		wakeup(&fs->lfs_wrappass);
   1674  1.214        ad 		/* Wait for the log to wrap, if asked */
   1675  1.214        ad 		if (*(int *)ap->a_data) {
   1676  1.214        ad 			mutex_enter(&ap->a_vp->v_interlock);
   1677  1.214        ad 			lfs_vref(ap->a_vp);
   1678  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1679  1.214        ad 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1680  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1681  1.214        ad 				"segwrap", 0, &lfs_lock);
   1682  1.214        ad 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1683  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1684  1.214        ad 			lfs_vunref(ap->a_vp);
   1685  1.214        ad 		}
   1686  1.214        ad 		mutex_exit(&lfs_lock);
   1687  1.214        ad 		return error;
   1688  1.188  perseant 
   1689  1.188  perseant 	    case LFCNWRAPSTATUS:
   1690  1.214        ad 		mutex_enter(&lfs_lock);
   1691  1.214        ad 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1692  1.214        ad 		mutex_exit(&lfs_lock);
   1693  1.214        ad 		return 0;
   1694  1.188  perseant 
   1695   1.89  perseant 	    default:
   1696  1.214        ad 		return ufs_fcntl(v);
   1697   1.89  perseant 	}
   1698   1.89  perseant 	return 0;
   1699   1.60       chs }
   1700   1.60       chs 
   1701   1.60       chs int
   1702   1.60       chs lfs_getpages(void *v)
   1703   1.60       chs {
   1704   1.60       chs 	struct vop_getpages_args /* {
   1705   1.60       chs 		struct vnode *a_vp;
   1706   1.60       chs 		voff_t a_offset;
   1707   1.60       chs 		struct vm_page **a_m;
   1708   1.60       chs 		int *a_count;
   1709   1.60       chs 		int a_centeridx;
   1710   1.60       chs 		vm_prot_t a_access_type;
   1711   1.60       chs 		int a_advice;
   1712   1.60       chs 		int a_flags;
   1713   1.60       chs 	} */ *ap = v;
   1714   1.60       chs 
   1715   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1716   1.97  perseant 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1717   1.97  perseant 		return EPERM;
   1718   1.97  perseant 	}
   1719   1.60       chs 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1720  1.214        ad 		mutex_enter(&lfs_lock);
   1721   1.60       chs 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1722  1.214        ad 		mutex_exit(&lfs_lock);
   1723   1.60       chs 	}
   1724  1.115      yamt 
   1725  1.115      yamt 	/*
   1726  1.115      yamt 	 * we're relying on the fact that genfs_getpages() always read in
   1727  1.115      yamt 	 * entire filesystem blocks.
   1728  1.115      yamt 	 */
   1729   1.95  perseant 	return genfs_getpages(v);
   1730    1.1   mycroft }
   1731   1.84  perseant 
   1732  1.204  perseant /*
   1733  1.204  perseant  * Wait for a page to become unbusy, possibly printing diagnostic messages
   1734  1.204  perseant  * as well.
   1735  1.204  perseant  *
   1736  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1737  1.204  perseant  */
   1738  1.203  perseant static void
   1739  1.203  perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   1740  1.203  perseant {
   1741  1.203  perseant 	if ((pg->flags & PG_BUSY) == 0)
   1742  1.203  perseant 		return;		/* Nothing to wait for! */
   1743  1.203  perseant 
   1744  1.204  perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   1745  1.203  perseant 	static struct vm_page *lastpg;
   1746  1.203  perseant 
   1747  1.203  perseant 	if (label != NULL && pg != lastpg) {
   1748  1.203  perseant 		if (pg->owner_tag) {
   1749  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   1750  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label,
   1751  1.203  perseant 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   1752  1.203  perseant 		} else {
   1753  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   1754  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label, pg);
   1755  1.203  perseant 		}
   1756  1.203  perseant 	}
   1757  1.203  perseant 	lastpg = pg;
   1758  1.203  perseant #endif
   1759  1.203  perseant 
   1760  1.203  perseant 	pg->flags |= PG_WANTED;
   1761  1.203  perseant 	UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
   1762  1.214        ad 	mutex_enter(&vp->v_interlock);
   1763  1.203  perseant }
   1764  1.203  perseant 
   1765  1.203  perseant /*
   1766  1.203  perseant  * This routine is called by lfs_putpages() when it can't complete the
   1767  1.203  perseant  * write because a page is busy.  This means that either (1) someone,
   1768  1.203  perseant  * possibly the pagedaemon, is looking at this page, and will give it up
   1769  1.203  perseant  * presently; or (2) we ourselves are holding the page busy in the
   1770  1.203  perseant  * process of being written (either gathered or actually on its way to
   1771  1.203  perseant  * disk).  We don't need to give up the segment lock, but we might need
   1772  1.203  perseant  * to call lfs_writeseg() to expedite the page's journey to disk.
   1773  1.204  perseant  *
   1774  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1775  1.203  perseant  */
   1776  1.203  perseant /* #define BUSYWAIT */
   1777  1.203  perseant static void
   1778  1.203  perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   1779  1.203  perseant 	       int seglocked, const char *label)
   1780  1.203  perseant {
   1781  1.203  perseant #ifndef BUSYWAIT
   1782  1.203  perseant 	struct inode *ip = VTOI(vp);
   1783  1.203  perseant 	struct segment *sp = fs->lfs_sp;
   1784  1.203  perseant 	int count = 0;
   1785  1.203  perseant 
   1786  1.203  perseant 	if (pg == NULL)
   1787  1.203  perseant 		return;
   1788  1.203  perseant 
   1789  1.226       eeh 	while (pg->flags & PG_BUSY &&
   1790  1.226       eeh 	    pg->uobject == &vp->v_uobj) {
   1791  1.214        ad 		mutex_exit(&vp->v_interlock);
   1792  1.203  perseant 		if (sp->cbpp - sp->bpp > 1) {
   1793  1.203  perseant 			/* Write gathered pages */
   1794  1.203  perseant 			lfs_updatemeta(sp);
   1795  1.203  perseant 			lfs_release_finfo(fs);
   1796  1.203  perseant 			(void) lfs_writeseg(fs, sp);
   1797  1.203  perseant 
   1798  1.203  perseant 			/*
   1799  1.203  perseant 			 * Reinitialize FIP
   1800  1.203  perseant 			 */
   1801  1.203  perseant 			KASSERT(sp->vp == vp);
   1802  1.203  perseant 			lfs_acquire_finfo(fs, ip->i_number,
   1803  1.203  perseant 					  ip->i_gen);
   1804  1.203  perseant 		}
   1805  1.204  perseant 		++count;
   1806  1.214        ad 		mutex_enter(&vp->v_interlock);
   1807  1.203  perseant 		wait_for_page(vp, pg, label);
   1808  1.203  perseant 	}
   1809  1.203  perseant 	if (label != NULL && count > 1)
   1810  1.203  perseant 		printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
   1811  1.203  perseant 		       label, (count > 0 ? "looping, " : ""), count);
   1812  1.203  perseant #else
   1813  1.203  perseant 	preempt(1);
   1814  1.203  perseant #endif
   1815  1.203  perseant }
   1816  1.203  perseant 
   1817   1.84  perseant /*
   1818   1.84  perseant  * Make sure that for all pages in every block in the given range,
   1819   1.84  perseant  * either all are dirty or all are clean.  If any of the pages
   1820   1.84  perseant  * we've seen so far are dirty, put the vnode on the paging chain,
   1821   1.84  perseant  * and mark it IN_PAGING.
   1822  1.105  perseant  *
   1823  1.105  perseant  * If checkfirst != 0, don't check all the pages but return at the
   1824  1.105  perseant  * first dirty page.
   1825   1.84  perseant  */
   1826   1.84  perseant static int
   1827   1.84  perseant check_dirty(struct lfs *fs, struct vnode *vp,
   1828   1.84  perseant 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1829  1.203  perseant 	    int flags, int checkfirst, struct vm_page **pgp)
   1830   1.84  perseant {
   1831   1.86  perseant 	int by_list;
   1832  1.122  christos 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1833  1.122  christos 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1834  1.122  christos 	off_t soff = 0; /* XXX: gcc */
   1835   1.84  perseant 	voff_t off;
   1836  1.115      yamt 	int i;
   1837  1.115      yamt 	int nonexistent;
   1838  1.115      yamt 	int any_dirty;	/* number of dirty pages */
   1839  1.115      yamt 	int dirty;	/* number of dirty pages in a block */
   1840  1.115      yamt 	int tdirty;
   1841   1.84  perseant 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1842  1.207        ad 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1843   1.84  perseant 
   1844  1.141  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1845   1.84  perseant   top:
   1846   1.84  perseant 	by_list = (vp->v_uobj.uo_npages <=
   1847   1.84  perseant 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1848  1.219      yamt 		   UVM_PAGE_TREE_PENALTY);
   1849   1.84  perseant 	any_dirty = 0;
   1850   1.84  perseant 
   1851   1.84  perseant 	if (by_list) {
   1852   1.84  perseant 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1853   1.84  perseant 	} else {
   1854   1.84  perseant 		soff = startoffset;
   1855   1.84  perseant 	}
   1856   1.84  perseant 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1857   1.84  perseant 		if (by_list) {
   1858  1.115      yamt 			/*
   1859  1.138  perseant 			 * Find the first page in a block.  Skip
   1860  1.138  perseant 			 * blocks outside our area of interest or beyond
   1861  1.138  perseant 			 * the end of file.
   1862  1.115      yamt 			 */
   1863  1.230   hannken 			KASSERT((curpg->flags & PG_MARKER) == 0);
   1864   1.84  perseant 			if (pages_per_block > 1) {
   1865  1.138  perseant 				while (curpg &&
   1866  1.230   hannken 				    ((curpg->offset & fs->lfs_bmask) ||
   1867  1.230   hannken 				    curpg->offset >= vp->v_size ||
   1868  1.230   hannken 				    curpg->offset >= endoffset)) {
   1869  1.217        ad 					curpg = TAILQ_NEXT(curpg, listq.queue);
   1870  1.230   hannken 					KASSERT(curpg == NULL ||
   1871  1.230   hannken 					    (curpg->flags & PG_MARKER) == 0);
   1872  1.230   hannken 				}
   1873   1.84  perseant 			}
   1874   1.84  perseant 			if (curpg == NULL)
   1875   1.84  perseant 				break;
   1876   1.84  perseant 			soff = curpg->offset;
   1877   1.84  perseant 		}
   1878   1.84  perseant 
   1879   1.84  perseant 		/*
   1880   1.84  perseant 		 * Mark all pages in extended range busy; find out if any
   1881   1.84  perseant 		 * of them are dirty.
   1882   1.84  perseant 		 */
   1883   1.84  perseant 		nonexistent = dirty = 0;
   1884   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1885   1.84  perseant 			if (by_list && pages_per_block <= 1) {
   1886   1.84  perseant 				pgs[i] = pg = curpg;
   1887   1.84  perseant 			} else {
   1888   1.84  perseant 				off = soff + (i << PAGE_SHIFT);
   1889   1.84  perseant 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1890   1.84  perseant 				if (pg == NULL) {
   1891   1.84  perseant 					++nonexistent;
   1892   1.84  perseant 					continue;
   1893   1.84  perseant 				}
   1894   1.84  perseant 			}
   1895   1.84  perseant 			KASSERT(pg != NULL);
   1896  1.158  perseant 
   1897  1.158  perseant 			/*
   1898  1.177  perseant 			 * If we're holding the segment lock, we can deadlock
   1899  1.158  perseant 			 * against a process that has our page and is waiting
   1900  1.158  perseant 			 * for the cleaner, while the cleaner waits for the
   1901  1.158  perseant 			 * segment lock.  Just bail in that case.
   1902  1.158  perseant 			 */
   1903  1.159  perseant 			if ((pg->flags & PG_BUSY) &&
   1904  1.159  perseant 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1905  1.203  perseant 				if (i > 0)
   1906  1.159  perseant 					uvm_page_unbusy(pgs, i);
   1907  1.159  perseant 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1908  1.203  perseant 				if (pgp)
   1909  1.203  perseant 					*pgp = pg;
   1910  1.159  perseant 				return -1;
   1911  1.158  perseant 			}
   1912  1.158  perseant 
   1913   1.84  perseant 			while (pg->flags & PG_BUSY) {
   1914  1.203  perseant 				wait_for_page(vp, pg, NULL);
   1915  1.203  perseant 				if (i > 0)
   1916  1.203  perseant 					uvm_page_unbusy(pgs, i);
   1917  1.203  perseant 				goto top;
   1918   1.84  perseant 			}
   1919   1.84  perseant 			pg->flags |= PG_BUSY;
   1920   1.84  perseant 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1921   1.84  perseant 
   1922   1.84  perseant 			pmap_page_protect(pg, VM_PROT_NONE);
   1923   1.84  perseant 			tdirty = (pmap_clear_modify(pg) ||
   1924   1.84  perseant 				  (pg->flags & PG_CLEAN) == 0);
   1925   1.84  perseant 			dirty += tdirty;
   1926   1.84  perseant 		}
   1927   1.84  perseant 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1928   1.84  perseant 			if (by_list) {
   1929  1.217        ad 				curpg = TAILQ_NEXT(curpg, listq.queue);
   1930   1.84  perseant 			} else {
   1931   1.84  perseant 				soff += fs->lfs_bsize;
   1932   1.84  perseant 			}
   1933   1.84  perseant 			continue;
   1934   1.84  perseant 		}
   1935   1.84  perseant 
   1936   1.84  perseant 		any_dirty += dirty;
   1937   1.84  perseant 		KASSERT(nonexistent == 0);
   1938   1.84  perseant 
   1939   1.84  perseant 		/*
   1940   1.84  perseant 		 * If any are dirty make all dirty; unbusy them,
   1941   1.88  perseant 		 * but if we were asked to clean, wire them so that
   1942   1.88  perseant 		 * the pagedaemon doesn't bother us about them while
   1943   1.88  perseant 		 * they're on their way to disk.
   1944   1.84  perseant 		 */
   1945   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1946   1.84  perseant 			pg = pgs[i];
   1947   1.84  perseant 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1948   1.84  perseant 			if (dirty) {
   1949   1.84  perseant 				pg->flags &= ~PG_CLEAN;
   1950   1.84  perseant 				if (flags & PGO_FREE) {
   1951   1.85      yamt 					/*
   1952   1.96  perseant 					 * Wire the page so that
   1953   1.96  perseant 					 * pdaemon doesn't see it again.
   1954   1.85      yamt 					 */
   1955  1.214        ad 					mutex_enter(&uvm_pageqlock);
   1956   1.85      yamt 					uvm_pagewire(pg);
   1957  1.214        ad 					mutex_exit(&uvm_pageqlock);
   1958   1.88  perseant 
   1959   1.84  perseant 					/* Suspended write flag */
   1960   1.84  perseant 					pg->flags |= PG_DELWRI;
   1961   1.84  perseant 				}
   1962   1.84  perseant 			}
   1963   1.84  perseant 			if (pg->flags & PG_WANTED)
   1964   1.84  perseant 				wakeup(pg);
   1965   1.84  perseant 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1966   1.85      yamt 			UVM_PAGE_OWN(pg, NULL);
   1967   1.84  perseant 		}
   1968   1.84  perseant 
   1969  1.103  perseant 		if (checkfirst && any_dirty)
   1970  1.130      yamt 			break;
   1971  1.103  perseant 
   1972   1.84  perseant 		if (by_list) {
   1973  1.217        ad 			curpg = TAILQ_NEXT(curpg, listq.queue);
   1974   1.84  perseant 		} else {
   1975   1.84  perseant 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1976   1.84  perseant 		}
   1977   1.84  perseant 	}
   1978   1.84  perseant 
   1979   1.84  perseant 	return any_dirty;
   1980   1.84  perseant }
   1981   1.84  perseant 
   1982   1.84  perseant /*
   1983   1.84  perseant  * lfs_putpages functions like genfs_putpages except that
   1984  1.135     perry  *
   1985   1.84  perseant  * (1) It needs to bounds-check the incoming requests to ensure that
   1986   1.84  perseant  *     they are block-aligned; if they are not, expand the range and
   1987   1.84  perseant  *     do the right thing in case, e.g., the requested range is clean
   1988   1.84  perseant  *     but the expanded range is dirty.
   1989  1.178  perseant  *
   1990   1.84  perseant  * (2) It needs to explicitly send blocks to be written when it is done.
   1991  1.202  perseant  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   1992  1.202  perseant  *     the seglock and let lfs_segunlock wait for us.
   1993  1.202  perseant  *     XXX There might be a bad situation if we have to flush a vnode while
   1994  1.202  perseant  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   1995  1.202  perseant  *     XXX case.
   1996   1.84  perseant  *
   1997   1.84  perseant  * Assumptions:
   1998   1.84  perseant  *
   1999   1.84  perseant  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2000   1.84  perseant  *     there is a danger that when we expand the page range and busy the
   2001   1.84  perseant  *     pages we will deadlock.
   2002  1.178  perseant  *
   2003   1.84  perseant  * (2) We are called with vp->v_interlock held; we must return with it
   2004   1.84  perseant  *     released.
   2005  1.178  perseant  *
   2006   1.84  perseant  * (3) We don't absolutely have to free pages right away, provided that
   2007   1.84  perseant  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2008   1.84  perseant  *     us a request with PGO_FREE, we take the pages out of the paging
   2009   1.84  perseant  *     queue and wake up the writer, which will handle freeing them for us.
   2010   1.84  perseant  *
   2011   1.84  perseant  *     We ensure that for any filesystem block, all pages for that
   2012   1.84  perseant  *     block are either resident or not, even if those pages are higher
   2013   1.84  perseant  *     than EOF; that means that we will be getting requests to free
   2014   1.84  perseant  *     "unused" pages above EOF all the time, and should ignore them.
   2015  1.115      yamt  *
   2016  1.178  perseant  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2017  1.178  perseant  *     into has been set up for us by lfs_writefile.  If not, we will
   2018  1.178  perseant  *     have to handle allocating and/or freeing an finfo entry.
   2019  1.178  perseant  *
   2020  1.115      yamt  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2021   1.84  perseant  */
   2022   1.84  perseant 
   2023  1.203  perseant /* How many times to loop before we should start to worry */
   2024  1.203  perseant #define TOOMANY 4
   2025  1.203  perseant 
   2026   1.84  perseant int
   2027   1.84  perseant lfs_putpages(void *v)
   2028   1.84  perseant {
   2029   1.84  perseant 	int error;
   2030   1.84  perseant 	struct vop_putpages_args /* {
   2031   1.84  perseant 		struct vnode *a_vp;
   2032   1.84  perseant 		voff_t a_offlo;
   2033   1.84  perseant 		voff_t a_offhi;
   2034   1.84  perseant 		int a_flags;
   2035   1.84  perseant 	} */ *ap = v;
   2036   1.84  perseant 	struct vnode *vp;
   2037   1.84  perseant 	struct inode *ip;
   2038   1.84  perseant 	struct lfs *fs;
   2039   1.84  perseant 	struct segment *sp;
   2040   1.84  perseant 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2041   1.95  perseant 	off_t off, max_endoffset;
   2042  1.200   thorpej 	bool seglocked, sync, pagedaemon;
   2043  1.203  perseant 	struct vm_page *pg, *busypg;
   2044   1.84  perseant 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2045  1.203  perseant #ifdef DEBUG
   2046  1.203  perseant 	int debug_n_again, debug_n_dirtyclean;
   2047  1.203  perseant #endif
   2048   1.84  perseant 
   2049   1.84  perseant 	vp = ap->a_vp;
   2050   1.84  perseant 	ip = VTOI(vp);
   2051   1.84  perseant 	fs = ip->i_lfs;
   2052  1.126      yamt 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2053  1.207        ad 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2054   1.84  perseant 
   2055   1.84  perseant 	/* Putpages does nothing for metadata. */
   2056   1.84  perseant 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2057  1.214        ad 		mutex_exit(&vp->v_interlock);
   2058   1.84  perseant 		return 0;
   2059   1.84  perseant 	}
   2060   1.84  perseant 
   2061   1.84  perseant 	/*
   2062   1.84  perseant 	 * If there are no pages, don't do anything.
   2063   1.84  perseant 	 */
   2064   1.84  perseant 	if (vp->v_uobj.uo_npages == 0) {
   2065  1.195  perseant 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2066  1.212        ad 		    (vp->v_iflag & VI_ONWORKLST) &&
   2067  1.195  perseant 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2068  1.212        ad 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2069  1.192   reinoud 			vn_syncer_remove_from_worklist(vp);
   2070  1.195  perseant 		}
   2071  1.214        ad 		mutex_exit(&vp->v_interlock);
   2072  1.164  perseant 
   2073  1.164  perseant 		/* Remove us from paging queue, if we were on it */
   2074  1.214        ad 		mutex_enter(&lfs_lock);
   2075  1.164  perseant 		if (ip->i_flags & IN_PAGING) {
   2076  1.164  perseant 			ip->i_flags &= ~IN_PAGING;
   2077  1.164  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2078  1.164  perseant 		}
   2079  1.214        ad 		mutex_exit(&lfs_lock);
   2080   1.84  perseant 		return 0;
   2081   1.84  perseant 	}
   2082   1.84  perseant 
   2083  1.102      fvdl 	blkeof = blkroundup(fs, ip->i_size);
   2084   1.84  perseant 
   2085   1.84  perseant 	/*
   2086   1.84  perseant 	 * Ignore requests to free pages past EOF but in the same block
   2087  1.158  perseant 	 * as EOF, unless the request is synchronous.  (If the request is
   2088  1.158  perseant 	 * sync, it comes from lfs_truncate.)
   2089   1.84  perseant 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   2090   1.84  perseant 	 * XXXUBC bother us with them again.
   2091   1.84  perseant 	 */
   2092  1.102      fvdl 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2093   1.84  perseant 		origoffset = ap->a_offlo;
   2094   1.95  perseant 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2095   1.95  perseant 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2096   1.95  perseant 			KASSERT(pg != NULL);
   2097   1.95  perseant 			while (pg->flags & PG_BUSY) {
   2098   1.95  perseant 				pg->flags |= PG_WANTED;
   2099   1.95  perseant 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   2100   1.95  perseant 						    "lfsput2", 0);
   2101  1.214        ad 				mutex_enter(&vp->v_interlock);
   2102   1.95  perseant 			}
   2103  1.214        ad 			mutex_enter(&uvm_pageqlock);
   2104   1.95  perseant 			uvm_pageactivate(pg);
   2105  1.214        ad 			mutex_exit(&uvm_pageqlock);
   2106   1.95  perseant 		}
   2107   1.84  perseant 		ap->a_offlo = blkeof;
   2108   1.84  perseant 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2109  1.214        ad 			mutex_exit(&vp->v_interlock);
   2110   1.84  perseant 			return 0;
   2111   1.84  perseant 		}
   2112   1.84  perseant 	}
   2113   1.84  perseant 
   2114   1.84  perseant 	/*
   2115   1.84  perseant 	 * Extend page range to start and end at block boundaries.
   2116   1.84  perseant 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2117   1.84  perseant 	 */
   2118   1.86  perseant 	origoffset = ap->a_offlo;
   2119   1.84  perseant 	origendoffset = ap->a_offhi;
   2120   1.86  perseant 	startoffset = origoffset & ~(fs->lfs_bmask);
   2121   1.84  perseant 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2122   1.84  perseant 					       << fs->lfs_bshift;
   2123   1.84  perseant 
   2124   1.84  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2125   1.86  perseant 		endoffset = max_endoffset;
   2126   1.84  perseant 		origendoffset = endoffset;
   2127   1.86  perseant 	} else {
   2128   1.84  perseant 		origendoffset = round_page(ap->a_offhi);
   2129   1.84  perseant 		endoffset = round_page(blkroundup(fs, origendoffset));
   2130   1.84  perseant 	}
   2131   1.84  perseant 
   2132   1.84  perseant 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2133   1.84  perseant 	if (startoffset == endoffset) {
   2134   1.84  perseant 		/* Nothing to do, why were we called? */
   2135  1.214        ad 		mutex_exit(&vp->v_interlock);
   2136  1.136  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2137  1.136  perseant 		      PRId64 "\n", startoffset));
   2138   1.84  perseant 		return 0;
   2139   1.84  perseant 	}
   2140   1.84  perseant 
   2141   1.84  perseant 	ap->a_offlo = startoffset;
   2142   1.84  perseant 	ap->a_offhi = endoffset;
   2143   1.84  perseant 
   2144  1.203  perseant 	/*
   2145  1.203  perseant 	 * If not cleaning, just send the pages through genfs_putpages
   2146  1.203  perseant 	 * to be returned to the pool.
   2147  1.203  perseant 	 */
   2148   1.84  perseant 	if (!(ap->a_flags & PGO_CLEANIT))
   2149   1.84  perseant 		return genfs_putpages(v);
   2150   1.84  perseant 
   2151  1.203  perseant 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   2152  1.203  perseant 	ap->a_flags |= PGO_BUSYFAIL;
   2153  1.203  perseant 
   2154   1.84  perseant 	/*
   2155  1.203  perseant 	 * Likewise, if we are asked to clean but the pages are not
   2156  1.203  perseant 	 * dirty, we can just free them using genfs_putpages.
   2157   1.84  perseant 	 */
   2158  1.203  perseant #ifdef DEBUG
   2159  1.203  perseant 	debug_n_dirtyclean = 0;
   2160  1.203  perseant #endif
   2161  1.103  perseant 	do {
   2162  1.103  perseant 		int r;
   2163  1.103  perseant 
   2164  1.203  perseant 		/* Count the number of dirty pages */
   2165  1.158  perseant 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2166  1.203  perseant 				ap->a_flags, 1, NULL);
   2167  1.158  perseant 		if (r < 0) {
   2168  1.203  perseant 			/* Pages are busy with another process */
   2169  1.214        ad 			mutex_exit(&vp->v_interlock);
   2170  1.158  perseant 			return EDEADLK;
   2171  1.158  perseant 		}
   2172  1.203  perseant 		if (r > 0) /* Some pages are dirty */
   2173  1.103  perseant 			break;
   2174  1.103  perseant 
   2175  1.134  perseant 		/*
   2176  1.134  perseant 		 * Sometimes pages are dirtied between the time that
   2177  1.134  perseant 		 * we check and the time we try to clean them.
   2178  1.134  perseant 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2179  1.134  perseant 		 * so we can write them properly.
   2180  1.134  perseant 		 */
   2181  1.134  perseant 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2182  1.206  perseant 		r = genfs_do_putpages(vp, startoffset, endoffset,
   2183  1.226       eeh 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   2184  1.134  perseant 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2185  1.134  perseant 		if (r != EDEADLK)
   2186  1.103  perseant 			return r;
   2187  1.103  perseant 
   2188  1.203  perseant 		/* One of the pages was busy.  Start over. */
   2189  1.214        ad 		mutex_enter(&vp->v_interlock);
   2190  1.203  perseant 		wait_for_page(vp, busypg, "dirtyclean");
   2191  1.203  perseant #ifdef DEBUG
   2192  1.203  perseant 		++debug_n_dirtyclean;
   2193  1.203  perseant #endif
   2194  1.103  perseant 	} while(1);
   2195  1.135     perry 
   2196  1.203  perseant #ifdef DEBUG
   2197  1.203  perseant 	if (debug_n_dirtyclean > TOOMANY)
   2198  1.203  perseant 		printf("lfs_putpages: dirtyclean: looping, n = %d\n",
   2199  1.203  perseant 		       debug_n_dirtyclean);
   2200  1.203  perseant #endif
   2201  1.203  perseant 
   2202   1.84  perseant 	/*
   2203   1.84  perseant 	 * Dirty and asked to clean.
   2204   1.84  perseant 	 *
   2205   1.84  perseant 	 * Pagedaemon can't actually write LFS pages; wake up
   2206   1.84  perseant 	 * the writer to take care of that.  The writer will
   2207   1.84  perseant 	 * notice the pager inode queue and act on that.
   2208   1.84  perseant 	 */
   2209   1.84  perseant 	if (pagedaemon) {
   2210  1.214        ad 		mutex_enter(&lfs_lock);
   2211  1.164  perseant 		if (!(ip->i_flags & IN_PAGING)) {
   2212  1.164  perseant 			ip->i_flags |= IN_PAGING;
   2213  1.164  perseant 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2214  1.164  perseant 		}
   2215  1.164  perseant 		wakeup(&lfs_writer_daemon);
   2216  1.214        ad 		mutex_exit(&lfs_lock);
   2217  1.214        ad 		mutex_exit(&vp->v_interlock);
   2218  1.198        ad 		preempt();
   2219   1.84  perseant 		return EWOULDBLOCK;
   2220   1.84  perseant 	}
   2221   1.84  perseant 
   2222   1.84  perseant 	/*
   2223   1.84  perseant 	 * If this is a file created in a recent dirop, we can't flush its
   2224   1.84  perseant 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2225   1.84  perseant 	 * filesystem (taking care of any other pending dirops while we're
   2226   1.84  perseant 	 * at it).
   2227   1.84  perseant 	 */
   2228   1.84  perseant 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2229  1.212        ad 	    (vp->v_uflag & VU_DIROP)) {
   2230   1.84  perseant 		int locked;
   2231   1.84  perseant 
   2232  1.212        ad 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   2233  1.228   hannken 		/* XXX VOP_ISLOCKED() may not be used for lock decisions. */
   2234  1.189  perseant 		locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   2235  1.214        ad 		mutex_exit(&vp->v_interlock);
   2236  1.140  perseant 		lfs_writer_enter(fs, "ppdirop");
   2237   1.84  perseant 		if (locked)
   2238  1.229   hannken 			VOP_UNLOCK(vp); /* XXX why? */
   2239  1.135     perry 
   2240  1.214        ad 		mutex_enter(&lfs_lock);
   2241   1.84  perseant 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2242  1.214        ad 		mutex_exit(&lfs_lock);
   2243  1.135     perry 
   2244  1.228   hannken 		if (locked)
   2245  1.228   hannken 			VOP_LOCK(vp, LK_EXCLUSIVE);
   2246  1.214        ad 		mutex_enter(&vp->v_interlock);
   2247  1.111      yamt 		lfs_writer_leave(fs);
   2248   1.84  perseant 
   2249   1.84  perseant 		/* XXX the flush should have taken care of this one too! */
   2250   1.84  perseant 	}
   2251   1.84  perseant 
   2252   1.84  perseant 	/*
   2253   1.86  perseant 	 * This is it.	We are going to write some pages.  From here on
   2254   1.84  perseant 	 * down it's all just mechanics.
   2255   1.84  perseant 	 *
   2256  1.103  perseant 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2257   1.84  perseant 	 */
   2258   1.84  perseant 	ap->a_flags &= ~PGO_SYNCIO;
   2259   1.84  perseant 
   2260   1.84  perseant 	/*
   2261   1.84  perseant 	 * If we've already got the seglock, flush the node and return.
   2262   1.84  perseant 	 * The FIP has already been set up for us by lfs_writefile,
   2263   1.84  perseant 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2264   1.84  perseant 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2265   1.84  perseant 	 * what we have, and correct FIP and segment header accounting.
   2266   1.84  perseant 	 */
   2267  1.203  perseant   get_seglock:
   2268  1.203  perseant 	/*
   2269  1.203  perseant 	 * If we are not called with the segment locked, lock it.
   2270  1.203  perseant 	 * Account for a new FIP in the segment header, and set sp->vp.
   2271  1.203  perseant 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2272  1.203  perseant 	 */
   2273  1.126      yamt 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2274  1.126      yamt 	if (!seglocked) {
   2275  1.214        ad 		mutex_exit(&vp->v_interlock);
   2276  1.126      yamt 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2277  1.126      yamt 		if (error != 0)
   2278  1.126      yamt 			return error;
   2279  1.214        ad 		mutex_enter(&vp->v_interlock);
   2280  1.203  perseant 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2281   1.84  perseant 	}
   2282   1.84  perseant 	sp = fs->lfs_sp;
   2283  1.120      yamt 	KASSERT(sp->vp == NULL);
   2284   1.84  perseant 	sp->vp = vp;
   2285  1.135     perry 
   2286  1.203  perseant 	/*
   2287  1.203  perseant 	 * Ensure that the partial segment is marked SS_DIROP if this
   2288  1.203  perseant 	 * vnode is a DIROP.
   2289  1.203  perseant 	 */
   2290  1.212        ad 	if (!seglocked && vp->v_uflag & VU_DIROP)
   2291  1.203  perseant 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2292  1.135     perry 
   2293   1.84  perseant 	/*
   2294  1.203  perseant 	 * Loop over genfs_putpages until all pages are gathered.
   2295   1.88  perseant 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2296  1.103  perseant 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2297  1.203  perseant 	 * well, since more pages might have been dirtied in our absence.
   2298   1.84  perseant 	 */
   2299  1.203  perseant #ifdef DEBUG
   2300  1.203  perseant 	debug_n_again = 0;
   2301  1.203  perseant #endif
   2302  1.203  perseant 	do {
   2303  1.203  perseant 		busypg = NULL;
   2304  1.203  perseant 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2305  1.203  perseant 				ap->a_flags, 0, &busypg) < 0) {
   2306  1.214        ad 			mutex_exit(&vp->v_interlock);
   2307  1.103  perseant 
   2308  1.214        ad 			mutex_enter(&vp->v_interlock);
   2309  1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   2310  1.203  perseant 			if (!seglocked) {
   2311  1.225       eeh 				mutex_exit(&vp->v_interlock);
   2312  1.203  perseant 				lfs_release_finfo(fs);
   2313  1.203  perseant 				lfs_segunlock(fs);
   2314  1.225       eeh 				mutex_enter(&vp->v_interlock);
   2315  1.203  perseant 			}
   2316  1.208  perseant 			sp->vp = NULL;
   2317  1.203  perseant 			goto get_seglock;
   2318   1.88  perseant 		}
   2319  1.203  perseant 
   2320  1.203  perseant 		busypg = NULL;
   2321  1.206  perseant 		error = genfs_do_putpages(vp, startoffset, endoffset,
   2322  1.203  perseant 					   ap->a_flags, &busypg);
   2323  1.203  perseant 
   2324  1.203  perseant 		if (error == EDEADLK || error == EAGAIN) {
   2325  1.203  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2326  1.203  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   2327  1.203  perseant 			      ip->i_number, fs->lfs_offset,
   2328  1.203  perseant 			      dtosn(fs, fs->lfs_offset)));
   2329   1.84  perseant 
   2330  1.214        ad 			mutex_enter(&vp->v_interlock);
   2331  1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, "again");
   2332  1.167  perseant 		}
   2333  1.203  perseant #ifdef DEBUG
   2334  1.203  perseant 		++debug_n_again;
   2335  1.203  perseant #endif
   2336  1.203  perseant 	} while (error == EDEADLK);
   2337  1.203  perseant #ifdef DEBUG
   2338  1.203  perseant 	if (debug_n_again > TOOMANY)
   2339  1.203  perseant 		printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
   2340  1.203  perseant #endif
   2341  1.103  perseant 
   2342  1.203  perseant 	KASSERT(sp != NULL && sp->vp == vp);
   2343  1.126      yamt 	if (!seglocked) {
   2344  1.178  perseant 		sp->vp = NULL;
   2345  1.126      yamt 
   2346  1.126      yamt 		/* Write indirect blocks as well */
   2347  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2348  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2349  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2350  1.120      yamt 
   2351  1.126      yamt 		KASSERT(sp->vp == NULL);
   2352  1.126      yamt 		sp->vp = vp;
   2353  1.126      yamt 	}
   2354   1.84  perseant 
   2355   1.84  perseant 	/*
   2356   1.84  perseant 	 * Blocks are now gathered into a segment waiting to be written.
   2357   1.84  perseant 	 * All that's left to do is update metadata, and write them.
   2358   1.84  perseant 	 */
   2359  1.120      yamt 	lfs_updatemeta(sp);
   2360  1.120      yamt 	KASSERT(sp->vp == vp);
   2361  1.120      yamt 	sp->vp = NULL;
   2362  1.126      yamt 
   2363  1.203  perseant 	/*
   2364  1.203  perseant 	 * If we were called from lfs_writefile, we don't need to clean up
   2365  1.203  perseant 	 * the FIP or unlock the segment lock.	We're done.
   2366  1.203  perseant 	 */
   2367  1.203  perseant 	if (seglocked)
   2368  1.126      yamt 		return error;
   2369  1.120      yamt 
   2370  1.178  perseant 	/* Clean up FIP and send it to disk. */
   2371  1.178  perseant 	lfs_release_finfo(fs);
   2372   1.88  perseant 	lfs_writeseg(fs, fs->lfs_sp);
   2373   1.88  perseant 
   2374   1.84  perseant 	/*
   2375  1.203  perseant 	 * Remove us from paging queue if we wrote all our pages.
   2376  1.164  perseant 	 */
   2377  1.203  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2378  1.214        ad 		mutex_enter(&lfs_lock);
   2379  1.203  perseant 		if (ip->i_flags & IN_PAGING) {
   2380  1.203  perseant 			ip->i_flags &= ~IN_PAGING;
   2381  1.203  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2382  1.203  perseant 		}
   2383  1.214        ad 		mutex_exit(&lfs_lock);
   2384  1.164  perseant 	}
   2385  1.164  perseant 
   2386  1.164  perseant 	/*
   2387   1.84  perseant 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2388   1.84  perseant 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2389   1.84  perseant 	 * will not be true if we stop using malloc/copy.
   2390   1.84  perseant 	 */
   2391   1.84  perseant 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2392   1.84  perseant 	lfs_segunlock(fs);
   2393   1.84  perseant 
   2394   1.84  perseant 	/*
   2395   1.84  perseant 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2396   1.84  perseant 	 * take care of this, but there is a slight possibility that
   2397   1.84  perseant 	 * aiodoned might not have got around to our buffers yet.
   2398   1.84  perseant 	 */
   2399   1.84  perseant 	if (sync) {
   2400  1.214        ad 		mutex_enter(&vp->v_interlock);
   2401   1.98  perseant 		while (vp->v_numoutput > 0) {
   2402  1.136  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2403  1.136  perseant 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2404  1.214        ad 			cv_wait(&vp->v_cv, &vp->v_interlock);
   2405   1.84  perseant 		}
   2406  1.214        ad 		mutex_exit(&vp->v_interlock);
   2407   1.84  perseant 	}
   2408   1.84  perseant 	return error;
   2409   1.84  perseant }
   2410   1.84  perseant 
   2411   1.84  perseant /*
   2412   1.84  perseant  * Return the last logical file offset that should be written for this file
   2413   1.86  perseant  * if we're doing a write that ends at "size".	If writing, we need to know
   2414   1.84  perseant  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2415   1.84  perseant  * to know about entire blocks.
   2416   1.84  perseant  */
   2417   1.84  perseant void
   2418   1.84  perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2419   1.84  perseant {
   2420   1.84  perseant 	struct inode *ip = VTOI(vp);
   2421  1.135     perry 	struct lfs *fs = ip->i_lfs;
   2422   1.84  perseant 	daddr_t olbn, nlbn;
   2423   1.84  perseant 
   2424  1.102      fvdl 	olbn = lblkno(fs, ip->i_size);
   2425   1.84  perseant 	nlbn = lblkno(fs, size);
   2426  1.118      yamt 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2427   1.86  perseant 		*eobp = fragroundup(fs, size);
   2428   1.86  perseant 	} else {
   2429   1.86  perseant 		*eobp = blkroundup(fs, size);
   2430   1.86  perseant 	}
   2431   1.84  perseant }
   2432   1.84  perseant 
   2433   1.84  perseant #ifdef DEBUG
   2434   1.84  perseant void lfs_dump_vop(void *);
   2435   1.84  perseant 
   2436   1.84  perseant void
   2437   1.84  perseant lfs_dump_vop(void *v)
   2438   1.84  perseant {
   2439   1.86  perseant 	struct vop_putpages_args /* {
   2440   1.86  perseant 		struct vnode *a_vp;
   2441   1.86  perseant 		voff_t a_offlo;
   2442   1.86  perseant 		voff_t a_offhi;
   2443   1.86  perseant 		int a_flags;
   2444   1.86  perseant 	} */ *ap = v;
   2445   1.84  perseant 
   2446  1.106     ragge #ifdef DDB
   2447   1.84  perseant 	vfs_vnode_print(ap->a_vp, 0, printf);
   2448  1.106     ragge #endif
   2449  1.102      fvdl 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2450   1.84  perseant }
   2451   1.84  perseant #endif
   2452   1.84  perseant 
   2453   1.84  perseant int
   2454   1.84  perseant lfs_mmap(void *v)
   2455   1.84  perseant {
   2456   1.84  perseant 	struct vop_mmap_args /* {
   2457   1.86  perseant 		const struct vnodeop_desc *a_desc;
   2458   1.86  perseant 		struct vnode *a_vp;
   2459  1.209     pooka 		vm_prot_t a_prot;
   2460  1.176      elad 		kauth_cred_t a_cred;
   2461   1.84  perseant 	} */ *ap = v;
   2462   1.84  perseant 
   2463   1.84  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2464   1.84  perseant 		return EOPNOTSUPP;
   2465   1.84  perseant 	return ufs_mmap(v);
   2466   1.84  perseant }
   2467