lfs_vnops.c revision 1.231 1 1.231 hannken /* $NetBSD: lfs_vnops.c,v 1.231 2010/08/04 10:43:53 hannken Exp $ */
2 1.2 cgd
3 1.22 perseant /*-
4 1.84 perseant * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 1.22 perseant * All rights reserved.
6 1.22 perseant *
7 1.22 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.22 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.22 perseant *
10 1.22 perseant * Redistribution and use in source and binary forms, with or without
11 1.22 perseant * modification, are permitted provided that the following conditions
12 1.22 perseant * are met:
13 1.22 perseant * 1. Redistributions of source code must retain the above copyright
14 1.22 perseant * notice, this list of conditions and the following disclaimer.
15 1.22 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.22 perseant * notice, this list of conditions and the following disclaimer in the
17 1.22 perseant * documentation and/or other materials provided with the distribution.
18 1.22 perseant *
19 1.22 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.22 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.22 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.22 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.22 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.22 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.22 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.22 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.22 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.22 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.22 perseant * POSSIBILITY OF SUCH DAMAGE.
30 1.22 perseant */
31 1.1 mycroft /*
32 1.15 fvdl * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 1.1 mycroft * The Regents of the University of California. All rights reserved.
34 1.1 mycroft *
35 1.1 mycroft * Redistribution and use in source and binary forms, with or without
36 1.1 mycroft * modification, are permitted provided that the following conditions
37 1.1 mycroft * are met:
38 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
39 1.1 mycroft * notice, this list of conditions and the following disclaimer.
40 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
41 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
42 1.1 mycroft * documentation and/or other materials provided with the distribution.
43 1.114 agc * 3. Neither the name of the University nor the names of its contributors
44 1.1 mycroft * may be used to endorse or promote products derived from this software
45 1.1 mycroft * without specific prior written permission.
46 1.1 mycroft *
47 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 1.1 mycroft * SUCH DAMAGE.
58 1.1 mycroft *
59 1.15 fvdl * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 1.1 mycroft */
61 1.58 lukem
62 1.58 lukem #include <sys/cdefs.h>
63 1.231 hannken __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.231 2010/08/04 10:43:53 hannken Exp $");
64 1.182 martin
65 1.183 martin #ifdef _KERNEL_OPT
66 1.182 martin #include "opt_compat_netbsd.h"
67 1.183 martin #endif
68 1.17 sommerfe
69 1.1 mycroft #include <sys/param.h>
70 1.1 mycroft #include <sys/systm.h>
71 1.1 mycroft #include <sys/namei.h>
72 1.1 mycroft #include <sys/resourcevar.h>
73 1.1 mycroft #include <sys/kernel.h>
74 1.1 mycroft #include <sys/file.h>
75 1.1 mycroft #include <sys/stat.h>
76 1.1 mycroft #include <sys/buf.h>
77 1.1 mycroft #include <sys/proc.h>
78 1.1 mycroft #include <sys/mount.h>
79 1.1 mycroft #include <sys/vnode.h>
80 1.19 thorpej #include <sys/pool.h>
81 1.10 christos #include <sys/signalvar.h>
82 1.176 elad #include <sys/kauth.h>
83 1.179 perseant #include <sys/syslog.h>
84 1.197 hannken #include <sys/fstrans.h>
85 1.1 mycroft
86 1.12 mycroft #include <miscfs/fifofs/fifo.h>
87 1.12 mycroft #include <miscfs/genfs/genfs.h>
88 1.1 mycroft #include <miscfs/specfs/specdev.h>
89 1.1 mycroft
90 1.1 mycroft #include <ufs/ufs/inode.h>
91 1.1 mycroft #include <ufs/ufs/dir.h>
92 1.1 mycroft #include <ufs/ufs/ufsmount.h>
93 1.1 mycroft #include <ufs/ufs/ufs_extern.h>
94 1.1 mycroft
95 1.84 perseant #include <uvm/uvm.h>
96 1.95 perseant #include <uvm/uvm_pmap.h>
97 1.95 perseant #include <uvm/uvm_stat.h>
98 1.95 perseant #include <uvm/uvm_pager.h>
99 1.84 perseant
100 1.1 mycroft #include <ufs/lfs/lfs.h>
101 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
102 1.1 mycroft
103 1.91 yamt extern pid_t lfs_writer_daemon;
104 1.203 perseant int lfs_ignore_lazy_sync = 1;
105 1.203 perseant
106 1.1 mycroft /* Global vfs data structures for lfs. */
107 1.51 perseant int (**lfs_vnodeop_p)(void *);
108 1.50 jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 1.1 mycroft { &vop_default_desc, vn_default_error },
110 1.1 mycroft { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 1.22 perseant { &vop_create_desc, lfs_create }, /* create */
112 1.82 yamt { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 1.22 perseant { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 1.1 mycroft { &vop_open_desc, ufs_open }, /* open */
115 1.1 mycroft { &vop_close_desc, lfs_close }, /* close */
116 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
117 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 1.1 mycroft { &vop_read_desc, lfs_read }, /* read */
120 1.1 mycroft { &vop_write_desc, lfs_write }, /* write */
121 1.90 perseant { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 1.90 perseant { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 1.13 mycroft { &vop_poll_desc, ufs_poll }, /* poll */
124 1.68 jdolecek { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 1.15 fvdl { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 1.84 perseant { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 1.1 mycroft { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 1.1 mycroft { &vop_seek_desc, ufs_seek }, /* seek */
129 1.22 perseant { &vop_remove_desc, lfs_remove }, /* remove */
130 1.22 perseant { &vop_link_desc, lfs_link }, /* link */
131 1.22 perseant { &vop_rename_desc, lfs_rename }, /* rename */
132 1.22 perseant { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 1.22 perseant { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 1.22 perseant { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 1.1 mycroft { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 1.1 mycroft { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 1.1 mycroft { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
141 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 1.1 mycroft { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 1.94 perseant { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
145 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 1.1 mycroft { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 1.1 mycroft { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 1.60 chs { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 1.60 chs { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 1.53 chs { NULL, NULL }
152 1.1 mycroft };
153 1.50 jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 1.1 mycroft { &lfs_vnodeop_p, lfs_vnodeop_entries };
155 1.1 mycroft
156 1.51 perseant int (**lfs_specop_p)(void *);
157 1.50 jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 1.1 mycroft { &vop_default_desc, vn_default_error },
159 1.1 mycroft { &vop_lookup_desc, spec_lookup }, /* lookup */
160 1.1 mycroft { &vop_create_desc, spec_create }, /* create */
161 1.1 mycroft { &vop_mknod_desc, spec_mknod }, /* mknod */
162 1.1 mycroft { &vop_open_desc, spec_open }, /* open */
163 1.65 perseant { &vop_close_desc, lfsspec_close }, /* close */
164 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
165 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 1.1 mycroft { &vop_read_desc, ufsspec_read }, /* read */
168 1.1 mycroft { &vop_write_desc, ufsspec_write }, /* write */
169 1.1 mycroft { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
170 1.27 wrstuden { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
171 1.13 mycroft { &vop_poll_desc, spec_poll }, /* poll */
172 1.68 jdolecek { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
173 1.15 fvdl { &vop_revoke_desc, spec_revoke }, /* revoke */
174 1.1 mycroft { &vop_mmap_desc, spec_mmap }, /* mmap */
175 1.1 mycroft { &vop_fsync_desc, spec_fsync }, /* fsync */
176 1.1 mycroft { &vop_seek_desc, spec_seek }, /* seek */
177 1.1 mycroft { &vop_remove_desc, spec_remove }, /* remove */
178 1.1 mycroft { &vop_link_desc, spec_link }, /* link */
179 1.1 mycroft { &vop_rename_desc, spec_rename }, /* rename */
180 1.1 mycroft { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
181 1.1 mycroft { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
182 1.1 mycroft { &vop_symlink_desc, spec_symlink }, /* symlink */
183 1.1 mycroft { &vop_readdir_desc, spec_readdir }, /* readdir */
184 1.1 mycroft { &vop_readlink_desc, spec_readlink }, /* readlink */
185 1.1 mycroft { &vop_abortop_desc, spec_abortop }, /* abortop */
186 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
187 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
188 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
189 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
190 1.1 mycroft { &vop_bmap_desc, spec_bmap }, /* bmap */
191 1.1 mycroft { &vop_strategy_desc, spec_strategy }, /* strategy */
192 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
193 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
194 1.1 mycroft { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
195 1.1 mycroft { &vop_advlock_desc, spec_advlock }, /* advlock */
196 1.28 perseant { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
197 1.53 chs { &vop_getpages_desc, spec_getpages }, /* getpages */
198 1.53 chs { &vop_putpages_desc, spec_putpages }, /* putpages */
199 1.53 chs { NULL, NULL }
200 1.1 mycroft };
201 1.50 jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
202 1.1 mycroft { &lfs_specop_p, lfs_specop_entries };
203 1.1 mycroft
204 1.51 perseant int (**lfs_fifoop_p)(void *);
205 1.50 jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
206 1.1 mycroft { &vop_default_desc, vn_default_error },
207 1.227 pooka { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
208 1.227 pooka { &vop_create_desc, vn_fifo_bypass }, /* create */
209 1.227 pooka { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
210 1.227 pooka { &vop_open_desc, vn_fifo_bypass }, /* open */
211 1.65 perseant { &vop_close_desc, lfsfifo_close }, /* close */
212 1.1 mycroft { &vop_access_desc, ufs_access }, /* access */
213 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
214 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
215 1.1 mycroft { &vop_read_desc, ufsfifo_read }, /* read */
216 1.1 mycroft { &vop_write_desc, ufsfifo_write }, /* write */
217 1.227 pooka { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
218 1.27 wrstuden { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
219 1.227 pooka { &vop_poll_desc, vn_fifo_bypass }, /* poll */
220 1.227 pooka { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
221 1.227 pooka { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
222 1.227 pooka { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
223 1.227 pooka { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
224 1.227 pooka { &vop_seek_desc, vn_fifo_bypass }, /* seek */
225 1.227 pooka { &vop_remove_desc, vn_fifo_bypass }, /* remove */
226 1.227 pooka { &vop_link_desc, vn_fifo_bypass }, /* link */
227 1.227 pooka { &vop_rename_desc, vn_fifo_bypass }, /* rename */
228 1.227 pooka { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
229 1.227 pooka { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
230 1.227 pooka { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
231 1.227 pooka { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
232 1.227 pooka { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
233 1.227 pooka { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
234 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
235 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
236 1.1 mycroft { &vop_lock_desc, ufs_lock }, /* lock */
237 1.1 mycroft { &vop_unlock_desc, ufs_unlock }, /* unlock */
238 1.227 pooka { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
239 1.227 pooka { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
240 1.1 mycroft { &vop_print_desc, ufs_print }, /* print */
241 1.1 mycroft { &vop_islocked_desc, ufs_islocked }, /* islocked */
242 1.227 pooka { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
243 1.227 pooka { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
244 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
245 1.227 pooka { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
246 1.53 chs { NULL, NULL }
247 1.1 mycroft };
248 1.50 jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
249 1.1 mycroft { &lfs_fifoop_p, lfs_fifoop_entries };
250 1.1 mycroft
251 1.203 perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
252 1.134 perseant
253 1.1 mycroft #define LFS_READWRITE
254 1.1 mycroft #include <ufs/ufs/ufs_readwrite.c>
255 1.1 mycroft #undef LFS_READWRITE
256 1.1 mycroft
257 1.1 mycroft /*
258 1.1 mycroft * Synch an open file.
259 1.1 mycroft */
260 1.1 mycroft /* ARGSUSED */
261 1.10 christos int
262 1.51 perseant lfs_fsync(void *v)
263 1.10 christos {
264 1.1 mycroft struct vop_fsync_args /* {
265 1.1 mycroft struct vnode *a_vp;
266 1.176 elad kauth_cred_t a_cred;
267 1.22 perseant int a_flags;
268 1.49 toshii off_t offlo;
269 1.49 toshii off_t offhi;
270 1.10 christos } */ *ap = v;
271 1.60 chs struct vnode *vp = ap->a_vp;
272 1.84 perseant int error, wait;
273 1.203 perseant struct inode *ip = VTOI(vp);
274 1.203 perseant struct lfs *fs = ip->i_lfs;
275 1.84 perseant
276 1.161 perseant /* If we're mounted read-only, don't try to sync. */
277 1.203 perseant if (fs->lfs_ronly)
278 1.161 perseant return 0;
279 1.161 perseant
280 1.231 hannken /* If a removed vnode is being cleaned, no need to sync here. */
281 1.231 hannken if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
282 1.231 hannken return 0;
283 1.231 hannken
284 1.86 perseant /*
285 1.203 perseant * Trickle sync simply adds this vnode to the pager list, as if
286 1.203 perseant * the pagedaemon had requested a pageout.
287 1.86 perseant */
288 1.84 perseant if (ap->a_flags & FSYNC_LAZY) {
289 1.203 perseant if (lfs_ignore_lazy_sync == 0) {
290 1.214 ad mutex_enter(&lfs_lock);
291 1.203 perseant if (!(ip->i_flags & IN_PAGING)) {
292 1.203 perseant ip->i_flags |= IN_PAGING;
293 1.203 perseant TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
294 1.203 perseant i_lfs_pchain);
295 1.203 perseant }
296 1.203 perseant wakeup(&lfs_writer_daemon);
297 1.214 ad mutex_exit(&lfs_lock);
298 1.203 perseant }
299 1.47 perseant return 0;
300 1.84 perseant }
301 1.47 perseant
302 1.175 perseant /*
303 1.188 perseant * If a vnode is bring cleaned, flush it out before we try to
304 1.188 perseant * reuse it. This prevents the cleaner from writing files twice
305 1.188 perseant * in the same partial segment, causing an accounting underflow.
306 1.188 perseant */
307 1.203 perseant if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
308 1.188 perseant lfs_vflush(vp);
309 1.175 perseant }
310 1.175 perseant
311 1.84 perseant wait = (ap->a_flags & FSYNC_WAIT);
312 1.203 perseant do {
313 1.214 ad mutex_enter(&vp->v_interlock);
314 1.203 perseant error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 1.203 perseant round_page(ap->a_offhi),
316 1.203 perseant PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 1.205 perseant if (error == EAGAIN) {
318 1.214 ad mutex_enter(&lfs_lock);
319 1.214 ad mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
320 1.214 ad hz / 100 + 1, &lfs_lock);
321 1.214 ad mutex_exit(&lfs_lock);
322 1.205 perseant }
323 1.203 perseant } while (error == EAGAIN);
324 1.103 perseant if (error)
325 1.103 perseant return error;
326 1.203 perseant
327 1.203 perseant if ((ap->a_flags & FSYNC_DATAONLY) == 0)
328 1.203 perseant error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
329 1.203 perseant
330 1.133 wrstuden if (error == 0 && ap->a_flags & FSYNC_CACHE) {
331 1.133 wrstuden int l = 0;
332 1.203 perseant error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
333 1.213 pooka curlwp->l_cred);
334 1.133 wrstuden }
335 1.103 perseant if (wait && !VPISEMPTY(vp))
336 1.203 perseant LFS_SET_UINO(ip, IN_MODIFIED);
337 1.84 perseant
338 1.63 perseant return error;
339 1.1 mycroft }
340 1.1 mycroft
341 1.1 mycroft /*
342 1.40 perseant * Take IN_ADIROP off, then call ufs_inactive.
343 1.40 perseant */
344 1.40 perseant int
345 1.51 perseant lfs_inactive(void *v)
346 1.40 perseant {
347 1.40 perseant struct vop_inactive_args /* {
348 1.40 perseant struct vnode *a_vp;
349 1.40 perseant } */ *ap = v;
350 1.72 yamt
351 1.76 yamt lfs_unmark_vnode(ap->a_vp);
352 1.76 yamt
353 1.97 perseant /*
354 1.97 perseant * The Ifile is only ever inactivated on unmount.
355 1.97 perseant * Streamline this process by not giving it more dirty blocks.
356 1.97 perseant */
357 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
358 1.214 ad mutex_enter(&lfs_lock);
359 1.97 perseant LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
360 1.214 ad mutex_exit(&lfs_lock);
361 1.229 hannken VOP_UNLOCK(ap->a_vp);
362 1.97 perseant return 0;
363 1.97 perseant }
364 1.97 perseant
365 1.75 yamt return ufs_inactive(v);
366 1.40 perseant }
367 1.40 perseant
368 1.40 perseant /*
369 1.1 mycroft * These macros are used to bracket UFS directory ops, so that we can
370 1.1 mycroft * identify all the pages touched during directory ops which need to
371 1.1 mycroft * be ordered and flushed atomically, so that they may be recovered.
372 1.138 perseant *
373 1.212 ad * Because we have to mark nodes VU_DIROP in order to prevent
374 1.22 perseant * the cache from reclaiming them while a dirop is in progress, we must
375 1.22 perseant * also manage the number of nodes so marked (otherwise we can run out).
376 1.22 perseant * We do this by setting lfs_dirvcount to the number of marked vnodes; it
377 1.212 ad * is decremented during segment write, when VU_DIROP is taken off.
378 1.22 perseant */
379 1.138 perseant #define MARK_VNODE(vp) lfs_mark_vnode(vp)
380 1.138 perseant #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
381 1.138 perseant #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
382 1.138 perseant #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
383 1.138 perseant static int lfs_set_dirop_create(struct vnode *, struct vnode **);
384 1.71 yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
385 1.24 perseant
386 1.46 perseant static int
387 1.138 perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
388 1.40 perseant {
389 1.24 perseant struct lfs *fs;
390 1.24 perseant int error;
391 1.24 perseant
392 1.138 perseant KASSERT(VOP_ISLOCKED(dvp));
393 1.138 perseant KASSERT(vp == NULL || VOP_ISLOCKED(vp));
394 1.71 yamt
395 1.138 perseant fs = VTOI(dvp)->i_lfs;
396 1.141 perseant
397 1.141 perseant ASSERT_NO_SEGLOCK(fs);
398 1.44 perseant /*
399 1.134 perseant * LFS_NRESERVE calculates direct and indirect blocks as well
400 1.134 perseant * as an inode block; an overestimate in most cases.
401 1.44 perseant */
402 1.138 perseant if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
403 1.44 perseant return (error);
404 1.70 yamt
405 1.214 ad restart:
406 1.214 ad mutex_enter(&lfs_lock);
407 1.141 perseant if (fs->lfs_dirops == 0) {
408 1.214 ad mutex_exit(&lfs_lock);
409 1.138 perseant lfs_check(dvp, LFS_UNUSED_LBN, 0);
410 1.214 ad mutex_enter(&lfs_lock);
411 1.113 yamt }
412 1.190 perseant while (fs->lfs_writer) {
413 1.214 ad error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
414 1.214 ad "lfs_sdirop", 0, &lfs_lock);
415 1.190 perseant if (error == EINTR) {
416 1.214 ad mutex_exit(&lfs_lock);
417 1.190 perseant goto unreserve;
418 1.190 perseant }
419 1.190 perseant }
420 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
421 1.113 yamt wakeup(&lfs_writer_daemon);
422 1.214 ad mutex_exit(&lfs_lock);
423 1.198 ad preempt();
424 1.113 yamt goto restart;
425 1.113 yamt }
426 1.33 perseant
427 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP) {
428 1.214 ad mutex_exit(&lfs_lock);
429 1.136 perseant DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
430 1.136 perseant "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
431 1.214 ad if ((error = mtsleep(&lfs_dirvcount,
432 1.214 ad PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
433 1.214 ad &lfs_lock)) != 0) {
434 1.113 yamt goto unreserve;
435 1.113 yamt }
436 1.113 yamt goto restart;
437 1.135 perry }
438 1.113 yamt
439 1.135 perry ++fs->lfs_dirops;
440 1.135 perry fs->lfs_doifile = 1;
441 1.214 ad mutex_exit(&lfs_lock);
442 1.24 perseant
443 1.46 perseant /* Hold a reference so SET_ENDOP will be happy */
444 1.138 perseant vref(dvp);
445 1.138 perseant if (vp) {
446 1.138 perseant vref(vp);
447 1.138 perseant MARK_VNODE(vp);
448 1.138 perseant }
449 1.46 perseant
450 1.138 perseant MARK_VNODE(dvp);
451 1.24 perseant return 0;
452 1.70 yamt
453 1.203 perseant unreserve:
454 1.138 perseant lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
455 1.70 yamt return error;
456 1.1 mycroft }
457 1.1 mycroft
458 1.138 perseant /*
459 1.138 perseant * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
460 1.138 perseant * in getnewvnode(), if we have a stacked filesystem mounted on top
461 1.138 perseant * of us.
462 1.138 perseant *
463 1.138 perseant * NB: this means we have to clear the new vnodes on error. Fortunately
464 1.138 perseant * SET_ENDOP is there to do that for us.
465 1.138 perseant */
466 1.138 perseant static int
467 1.138 perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
468 1.138 perseant {
469 1.138 perseant int error;
470 1.138 perseant struct lfs *fs;
471 1.138 perseant
472 1.138 perseant fs = VFSTOUFS(dvp->v_mount)->um_lfs;
473 1.141 perseant ASSERT_NO_SEGLOCK(fs);
474 1.138 perseant if (fs->lfs_ronly)
475 1.138 perseant return EROFS;
476 1.138 perseant if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
477 1.138 perseant DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
478 1.138 perseant dvp, error));
479 1.138 perseant return error;
480 1.138 perseant }
481 1.138 perseant if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
482 1.138 perseant if (vpp) {
483 1.138 perseant ungetnewvnode(*vpp);
484 1.138 perseant *vpp = NULL;
485 1.138 perseant }
486 1.138 perseant return error;
487 1.138 perseant }
488 1.138 perseant return 0;
489 1.1 mycroft }
490 1.1 mycroft
491 1.138 perseant #define SET_ENDOP_BASE(fs, dvp, str) \
492 1.138 perseant do { \
493 1.214 ad mutex_enter(&lfs_lock); \
494 1.138 perseant --(fs)->lfs_dirops; \
495 1.138 perseant if (!(fs)->lfs_dirops) { \
496 1.138 perseant if ((fs)->lfs_nadirop) { \
497 1.138 perseant panic("SET_ENDOP: %s: no dirops but " \
498 1.138 perseant " nadirop=%d", (str), \
499 1.138 perseant (fs)->lfs_nadirop); \
500 1.138 perseant } \
501 1.138 perseant wakeup(&(fs)->lfs_writer); \
502 1.214 ad mutex_exit(&lfs_lock); \
503 1.138 perseant lfs_check((dvp), LFS_UNUSED_LBN, 0); \
504 1.138 perseant } else \
505 1.214 ad mutex_exit(&lfs_lock); \
506 1.138 perseant } while(0)
507 1.138 perseant #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
508 1.138 perseant do { \
509 1.138 perseant UNMARK_VNODE(dvp); \
510 1.138 perseant if (nvpp && *nvpp) \
511 1.138 perseant UNMARK_VNODE(*nvpp); \
512 1.138 perseant /* Check for error return to stem vnode leakage */ \
513 1.212 ad if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
514 1.138 perseant ungetnewvnode(*(nvpp)); \
515 1.138 perseant SET_ENDOP_BASE((fs), (dvp), (str)); \
516 1.138 perseant lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
517 1.138 perseant vrele(dvp); \
518 1.138 perseant } while(0)
519 1.138 perseant #define SET_ENDOP_CREATE_AP(ap, str) \
520 1.138 perseant SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
521 1.138 perseant (ap)->a_vpp, (str))
522 1.138 perseant #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
523 1.138 perseant do { \
524 1.138 perseant UNMARK_VNODE(dvp); \
525 1.138 perseant if (ovp) \
526 1.138 perseant UNMARK_VNODE(ovp); \
527 1.138 perseant SET_ENDOP_BASE((fs), (dvp), (str)); \
528 1.138 perseant lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
529 1.138 perseant vrele(dvp); \
530 1.138 perseant if (ovp) \
531 1.138 perseant vrele(ovp); \
532 1.138 perseant } while(0)
533 1.117 yamt
534 1.117 yamt void
535 1.117 yamt lfs_mark_vnode(struct vnode *vp)
536 1.117 yamt {
537 1.117 yamt struct inode *ip = VTOI(vp);
538 1.117 yamt struct lfs *fs = ip->i_lfs;
539 1.37 perseant
540 1.214 ad mutex_enter(&lfs_lock);
541 1.117 yamt if (!(ip->i_flag & IN_ADIROP)) {
542 1.212 ad if (!(vp->v_uflag & VU_DIROP)) {
543 1.214 ad mutex_enter(&vp->v_interlock);
544 1.117 yamt (void)lfs_vref(vp);
545 1.117 yamt ++lfs_dirvcount;
546 1.173 perseant ++fs->lfs_dirvcount;
547 1.117 yamt TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
548 1.212 ad vp->v_uflag |= VU_DIROP;
549 1.117 yamt }
550 1.117 yamt ++fs->lfs_nadirop;
551 1.117 yamt ip->i_flag |= IN_ADIROP;
552 1.117 yamt } else
553 1.212 ad KASSERT(vp->v_uflag & VU_DIROP);
554 1.214 ad mutex_exit(&lfs_lock);
555 1.117 yamt }
556 1.40 perseant
557 1.117 yamt void
558 1.117 yamt lfs_unmark_vnode(struct vnode *vp)
559 1.40 perseant {
560 1.117 yamt struct inode *ip = VTOI(vp);
561 1.40 perseant
562 1.146 perseant if (ip && (ip->i_flag & IN_ADIROP)) {
563 1.212 ad KASSERT(vp->v_uflag & VU_DIROP);
564 1.214 ad mutex_enter(&lfs_lock);
565 1.40 perseant --ip->i_lfs->lfs_nadirop;
566 1.214 ad mutex_exit(&lfs_lock);
567 1.117 yamt ip->i_flag &= ~IN_ADIROP;
568 1.117 yamt }
569 1.40 perseant }
570 1.15 fvdl
571 1.1 mycroft int
572 1.51 perseant lfs_symlink(void *v)
573 1.10 christos {
574 1.1 mycroft struct vop_symlink_args /* {
575 1.1 mycroft struct vnode *a_dvp;
576 1.1 mycroft struct vnode **a_vpp;
577 1.1 mycroft struct componentname *a_cnp;
578 1.1 mycroft struct vattr *a_vap;
579 1.1 mycroft char *a_target;
580 1.10 christos } */ *ap = v;
581 1.37 perseant int error;
582 1.1 mycroft
583 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
584 1.34 perseant vput(ap->a_dvp);
585 1.37 perseant return error;
586 1.34 perseant }
587 1.37 perseant error = ufs_symlink(ap);
588 1.138 perseant SET_ENDOP_CREATE_AP(ap, "symlink");
589 1.37 perseant return (error);
590 1.1 mycroft }
591 1.1 mycroft
592 1.1 mycroft int
593 1.51 perseant lfs_mknod(void *v)
594 1.10 christos {
595 1.22 perseant struct vop_mknod_args /* {
596 1.1 mycroft struct vnode *a_dvp;
597 1.1 mycroft struct vnode **a_vpp;
598 1.1 mycroft struct componentname *a_cnp;
599 1.1 mycroft struct vattr *a_vap;
600 1.203 perseant } */ *ap = v;
601 1.86 perseant struct vattr *vap = ap->a_vap;
602 1.86 perseant struct vnode **vpp = ap->a_vpp;
603 1.86 perseant struct inode *ip;
604 1.86 perseant int error;
605 1.135 perry struct mount *mp;
606 1.52 assar ino_t ino;
607 1.1 mycroft
608 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
609 1.34 perseant vput(ap->a_dvp);
610 1.28 perseant return error;
611 1.34 perseant }
612 1.28 perseant error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
613 1.203 perseant ap->a_dvp, vpp, ap->a_cnp);
614 1.28 perseant
615 1.28 perseant /* Either way we're done with the dirop at this point */
616 1.138 perseant SET_ENDOP_CREATE_AP(ap, "mknod");
617 1.28 perseant
618 1.86 perseant if (error)
619 1.28 perseant return (error);
620 1.28 perseant
621 1.86 perseant ip = VTOI(*vpp);
622 1.52 assar mp = (*vpp)->v_mount;
623 1.52 assar ino = ip->i_number;
624 1.86 perseant ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
625 1.86 perseant if (vap->va_rdev != VNOVAL) {
626 1.86 perseant /*
627 1.86 perseant * Want to be able to use this to make badblock
628 1.86 perseant * inodes, so don't truncate the dev number.
629 1.86 perseant */
630 1.28 perseant #if 0
631 1.102 fvdl ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
632 1.203 perseant UFS_MPNEEDSWAP((*vpp)->v_mount));
633 1.28 perseant #else
634 1.102 fvdl ip->i_ffs1_rdev = vap->va_rdev;
635 1.28 perseant #endif
636 1.86 perseant }
637 1.134 perseant
638 1.28 perseant /*
639 1.28 perseant * Call fsync to write the vnode so that we don't have to deal with
640 1.212 ad * flushing it when it's marked VU_DIROP|VI_XLOCK.
641 1.28 perseant *
642 1.28 perseant * XXX KS - If we can't flush we also can't call vgone(), so must
643 1.28 perseant * return. But, that leaves this vnode in limbo, also not good.
644 1.28 perseant * Can this ever happen (barring hardware failure)?
645 1.28 perseant */
646 1.213 pooka if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
647 1.153 christos panic("lfs_mknod: couldn't fsync (ino %llu)",
648 1.203 perseant (unsigned long long)ino);
649 1.136 perseant /* return (error); */
650 1.40 perseant }
651 1.86 perseant /*
652 1.86 perseant * Remove vnode so that it will be reloaded by VFS_VGET and
653 1.86 perseant * checked to see if it is an alias of an existing entry in
654 1.86 perseant * the inode cache.
655 1.86 perseant */
656 1.28 perseant /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
657 1.134 perseant
658 1.229 hannken VOP_UNLOCK(*vpp);
659 1.86 perseant (*vpp)->v_type = VNON;
660 1.86 perseant vgone(*vpp);
661 1.108 thorpej error = VFS_VGET(mp, ino, vpp);
662 1.134 perseant
663 1.52 assar if (error != 0) {
664 1.52 assar *vpp = NULL;
665 1.52 assar return (error);
666 1.52 assar }
667 1.86 perseant return (0);
668 1.1 mycroft }
669 1.1 mycroft
670 1.1 mycroft int
671 1.51 perseant lfs_create(void *v)
672 1.10 christos {
673 1.22 perseant struct vop_create_args /* {
674 1.1 mycroft struct vnode *a_dvp;
675 1.1 mycroft struct vnode **a_vpp;
676 1.1 mycroft struct componentname *a_cnp;
677 1.1 mycroft struct vattr *a_vap;
678 1.10 christos } */ *ap = v;
679 1.37 perseant int error;
680 1.1 mycroft
681 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
682 1.34 perseant vput(ap->a_dvp);
683 1.37 perseant return error;
684 1.34 perseant }
685 1.37 perseant error = ufs_create(ap);
686 1.138 perseant SET_ENDOP_CREATE_AP(ap, "create");
687 1.37 perseant return (error);
688 1.22 perseant }
689 1.22 perseant
690 1.22 perseant int
691 1.51 perseant lfs_mkdir(void *v)
692 1.10 christos {
693 1.22 perseant struct vop_mkdir_args /* {
694 1.1 mycroft struct vnode *a_dvp;
695 1.1 mycroft struct vnode **a_vpp;
696 1.1 mycroft struct componentname *a_cnp;
697 1.1 mycroft struct vattr *a_vap;
698 1.10 christos } */ *ap = v;
699 1.37 perseant int error;
700 1.1 mycroft
701 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
702 1.34 perseant vput(ap->a_dvp);
703 1.37 perseant return error;
704 1.34 perseant }
705 1.37 perseant error = ufs_mkdir(ap);
706 1.138 perseant SET_ENDOP_CREATE_AP(ap, "mkdir");
707 1.37 perseant return (error);
708 1.1 mycroft }
709 1.1 mycroft
710 1.1 mycroft int
711 1.51 perseant lfs_remove(void *v)
712 1.10 christos {
713 1.22 perseant struct vop_remove_args /* {
714 1.1 mycroft struct vnode *a_dvp;
715 1.1 mycroft struct vnode *a_vp;
716 1.1 mycroft struct componentname *a_cnp;
717 1.10 christos } */ *ap = v;
718 1.34 perseant struct vnode *dvp, *vp;
719 1.188 perseant struct inode *ip;
720 1.37 perseant int error;
721 1.34 perseant
722 1.34 perseant dvp = ap->a_dvp;
723 1.34 perseant vp = ap->a_vp;
724 1.188 perseant ip = VTOI(vp);
725 1.138 perseant if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
726 1.34 perseant if (dvp == vp)
727 1.34 perseant vrele(vp);
728 1.34 perseant else
729 1.34 perseant vput(vp);
730 1.34 perseant vput(dvp);
731 1.37 perseant return error;
732 1.34 perseant }
733 1.37 perseant error = ufs_remove(ap);
734 1.188 perseant if (ip->i_nlink == 0)
735 1.188 perseant lfs_orphan(ip->i_lfs, ip->i_number);
736 1.188 perseant SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
737 1.37 perseant return (error);
738 1.1 mycroft }
739 1.1 mycroft
740 1.1 mycroft int
741 1.51 perseant lfs_rmdir(void *v)
742 1.10 christos {
743 1.22 perseant struct vop_rmdir_args /* {
744 1.1 mycroft struct vnodeop_desc *a_desc;
745 1.1 mycroft struct vnode *a_dvp;
746 1.1 mycroft struct vnode *a_vp;
747 1.1 mycroft struct componentname *a_cnp;
748 1.10 christos } */ *ap = v;
749 1.84 perseant struct vnode *vp;
750 1.188 perseant struct inode *ip;
751 1.37 perseant int error;
752 1.1 mycroft
753 1.84 perseant vp = ap->a_vp;
754 1.188 perseant ip = VTOI(vp);
755 1.138 perseant if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
756 1.194 chs if (ap->a_dvp == vp)
757 1.194 chs vrele(ap->a_dvp);
758 1.194 chs else
759 1.194 chs vput(ap->a_dvp);
760 1.84 perseant vput(vp);
761 1.37 perseant return error;
762 1.34 perseant }
763 1.37 perseant error = ufs_rmdir(ap);
764 1.188 perseant if (ip->i_nlink == 0)
765 1.188 perseant lfs_orphan(ip->i_lfs, ip->i_number);
766 1.188 perseant SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
767 1.37 perseant return (error);
768 1.1 mycroft }
769 1.1 mycroft
770 1.1 mycroft int
771 1.51 perseant lfs_link(void *v)
772 1.10 christos {
773 1.22 perseant struct vop_link_args /* {
774 1.9 mycroft struct vnode *a_dvp;
775 1.1 mycroft struct vnode *a_vp;
776 1.1 mycroft struct componentname *a_cnp;
777 1.10 christos } */ *ap = v;
778 1.37 perseant int error;
779 1.138 perseant struct vnode **vpp = NULL;
780 1.1 mycroft
781 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
782 1.34 perseant vput(ap->a_dvp);
783 1.37 perseant return error;
784 1.34 perseant }
785 1.37 perseant error = ufs_link(ap);
786 1.138 perseant SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
787 1.37 perseant return (error);
788 1.1 mycroft }
789 1.22 perseant
790 1.1 mycroft int
791 1.51 perseant lfs_rename(void *v)
792 1.10 christos {
793 1.22 perseant struct vop_rename_args /* {
794 1.1 mycroft struct vnode *a_fdvp;
795 1.1 mycroft struct vnode *a_fvp;
796 1.1 mycroft struct componentname *a_fcnp;
797 1.1 mycroft struct vnode *a_tdvp;
798 1.1 mycroft struct vnode *a_tvp;
799 1.1 mycroft struct componentname *a_tcnp;
800 1.10 christos } */ *ap = v;
801 1.30 perseant struct vnode *tvp, *fvp, *tdvp, *fdvp;
802 1.83 perseant struct componentname *tcnp, *fcnp;
803 1.30 perseant int error;
804 1.29 perseant struct lfs *fs;
805 1.29 perseant
806 1.29 perseant fs = VTOI(ap->a_fdvp)->i_lfs;
807 1.30 perseant tvp = ap->a_tvp;
808 1.30 perseant tdvp = ap->a_tdvp;
809 1.83 perseant tcnp = ap->a_tcnp;
810 1.30 perseant fvp = ap->a_fvp;
811 1.30 perseant fdvp = ap->a_fdvp;
812 1.83 perseant fcnp = ap->a_fcnp;
813 1.30 perseant
814 1.30 perseant /*
815 1.30 perseant * Check for cross-device rename.
816 1.30 perseant * If it is, we don't want to set dirops, just error out.
817 1.30 perseant * (In particular note that MARK_VNODE(tdvp) will DTWT on
818 1.30 perseant * a cross-device rename.)
819 1.30 perseant *
820 1.30 perseant * Copied from ufs_rename.
821 1.30 perseant */
822 1.30 perseant if ((fvp->v_mount != tdvp->v_mount) ||
823 1.30 perseant (tvp && (fvp->v_mount != tvp->v_mount))) {
824 1.30 perseant error = EXDEV;
825 1.34 perseant goto errout;
826 1.30 perseant }
827 1.83 perseant
828 1.83 perseant /*
829 1.83 perseant * Check to make sure we're not renaming a vnode onto itself
830 1.83 perseant * (deleting a hard link by renaming one name onto another);
831 1.83 perseant * if we are we can't recursively call VOP_REMOVE since that
832 1.83 perseant * would leave us with an unaccounted-for number of live dirops.
833 1.83 perseant *
834 1.83 perseant * Inline the relevant section of ufs_rename here, *before*
835 1.138 perseant * calling SET_DIROP_REMOVE.
836 1.83 perseant */
837 1.102 fvdl if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
838 1.203 perseant (VTOI(tdvp)->i_flags & APPEND))) {
839 1.83 perseant error = EPERM;
840 1.83 perseant goto errout;
841 1.83 perseant }
842 1.86 perseant if (fvp == tvp) {
843 1.86 perseant if (fvp->v_type == VDIR) {
844 1.86 perseant error = EINVAL;
845 1.86 perseant goto errout;
846 1.86 perseant }
847 1.86 perseant
848 1.86 perseant /* Release destination completely. */
849 1.86 perseant VOP_ABORTOP(tdvp, tcnp);
850 1.86 perseant vput(tdvp);
851 1.86 perseant vput(tvp);
852 1.86 perseant
853 1.86 perseant /* Delete source. */
854 1.86 perseant vrele(fvp);
855 1.86 perseant fcnp->cn_flags &= ~(MODMASK | SAVESTART);
856 1.86 perseant fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
857 1.86 perseant fcnp->cn_nameiop = DELETE;
858 1.194 chs vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
859 1.194 chs if ((error = relookup(fdvp, &fvp, fcnp))) {
860 1.194 chs vput(fdvp);
861 1.86 perseant return (error);
862 1.86 perseant }
863 1.86 perseant return (VOP_REMOVE(fdvp, fvp, fcnp));
864 1.86 perseant }
865 1.83 perseant
866 1.138 perseant if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
867 1.34 perseant goto errout;
868 1.30 perseant MARK_VNODE(fdvp);
869 1.71 yamt MARK_VNODE(fvp);
870 1.135 perry
871 1.30 perseant error = ufs_rename(ap);
872 1.37 perseant UNMARK_VNODE(fdvp);
873 1.71 yamt UNMARK_VNODE(fvp);
874 1.138 perseant SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
875 1.34 perseant return (error);
876 1.34 perseant
877 1.203 perseant errout:
878 1.34 perseant VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
879 1.34 perseant if (tdvp == tvp)
880 1.34 perseant vrele(tdvp);
881 1.34 perseant else
882 1.34 perseant vput(tdvp);
883 1.34 perseant if (tvp)
884 1.34 perseant vput(tvp);
885 1.34 perseant VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
886 1.34 perseant vrele(fdvp);
887 1.34 perseant vrele(fvp);
888 1.30 perseant return (error);
889 1.1 mycroft }
890 1.22 perseant
891 1.1 mycroft /* XXX hack to avoid calling ITIMES in getattr */
892 1.1 mycroft int
893 1.51 perseant lfs_getattr(void *v)
894 1.10 christos {
895 1.1 mycroft struct vop_getattr_args /* {
896 1.1 mycroft struct vnode *a_vp;
897 1.1 mycroft struct vattr *a_vap;
898 1.176 elad kauth_cred_t a_cred;
899 1.10 christos } */ *ap = v;
900 1.35 augustss struct vnode *vp = ap->a_vp;
901 1.35 augustss struct inode *ip = VTOI(vp);
902 1.35 augustss struct vattr *vap = ap->a_vap;
903 1.51 perseant struct lfs *fs = ip->i_lfs;
904 1.1 mycroft /*
905 1.1 mycroft * Copy from inode table
906 1.1 mycroft */
907 1.1 mycroft vap->va_fsid = ip->i_dev;
908 1.1 mycroft vap->va_fileid = ip->i_number;
909 1.102 fvdl vap->va_mode = ip->i_mode & ~IFMT;
910 1.102 fvdl vap->va_nlink = ip->i_nlink;
911 1.102 fvdl vap->va_uid = ip->i_uid;
912 1.102 fvdl vap->va_gid = ip->i_gid;
913 1.102 fvdl vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
914 1.55 chs vap->va_size = vp->v_size;
915 1.102 fvdl vap->va_atime.tv_sec = ip->i_ffs1_atime;
916 1.102 fvdl vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
917 1.102 fvdl vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
918 1.102 fvdl vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
919 1.102 fvdl vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
920 1.102 fvdl vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
921 1.102 fvdl vap->va_flags = ip->i_flags;
922 1.102 fvdl vap->va_gen = ip->i_gen;
923 1.1 mycroft /* this doesn't belong here */
924 1.1 mycroft if (vp->v_type == VBLK)
925 1.1 mycroft vap->va_blocksize = BLKDEV_IOSIZE;
926 1.1 mycroft else if (vp->v_type == VCHR)
927 1.1 mycroft vap->va_blocksize = MAXBSIZE;
928 1.1 mycroft else
929 1.1 mycroft vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
930 1.84 perseant vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
931 1.1 mycroft vap->va_type = vp->v_type;
932 1.1 mycroft vap->va_filerev = ip->i_modrev;
933 1.1 mycroft return (0);
934 1.61 perseant }
935 1.61 perseant
936 1.61 perseant /*
937 1.61 perseant * Check to make sure the inode blocks won't choke the buffer
938 1.61 perseant * cache, then call ufs_setattr as usual.
939 1.61 perseant */
940 1.61 perseant int
941 1.61 perseant lfs_setattr(void *v)
942 1.61 perseant {
943 1.149 skrll struct vop_setattr_args /* {
944 1.61 perseant struct vnode *a_vp;
945 1.61 perseant struct vattr *a_vap;
946 1.176 elad kauth_cred_t a_cred;
947 1.61 perseant } */ *ap = v;
948 1.61 perseant struct vnode *vp = ap->a_vp;
949 1.61 perseant
950 1.61 perseant lfs_check(vp, LFS_UNUSED_LBN, 0);
951 1.61 perseant return ufs_setattr(v);
952 1.1 mycroft }
953 1.22 perseant
954 1.1 mycroft /*
955 1.179 perseant * Release the block we hold on lfs_newseg wrapping. Called on file close,
956 1.188 perseant * or explicitly from LFCNWRAPGO. Called with the interlock held.
957 1.179 perseant */
958 1.179 perseant static int
959 1.193 christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
960 1.179 perseant {
961 1.214 ad if (fs->lfs_stoplwp != curlwp)
962 1.179 perseant return EBUSY;
963 1.179 perseant
964 1.214 ad fs->lfs_stoplwp = NULL;
965 1.214 ad cv_signal(&fs->lfs_stopcv);
966 1.179 perseant
967 1.179 perseant KASSERT(fs->lfs_nowrap > 0);
968 1.179 perseant if (fs->lfs_nowrap <= 0) {
969 1.179 perseant return 0;
970 1.179 perseant }
971 1.179 perseant
972 1.179 perseant if (--fs->lfs_nowrap == 0) {
973 1.179 perseant log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
974 1.188 perseant wakeup(&fs->lfs_wrappass);
975 1.180 perseant lfs_wakeup_cleaner(fs);
976 1.179 perseant }
977 1.179 perseant if (waitfor) {
978 1.214 ad mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
979 1.214 ad 0, &lfs_lock);
980 1.179 perseant }
981 1.179 perseant
982 1.179 perseant return 0;
983 1.179 perseant }
984 1.179 perseant
985 1.179 perseant /*
986 1.1 mycroft * Close called
987 1.1 mycroft */
988 1.1 mycroft /* ARGSUSED */
989 1.1 mycroft int
990 1.51 perseant lfs_close(void *v)
991 1.10 christos {
992 1.1 mycroft struct vop_close_args /* {
993 1.1 mycroft struct vnode *a_vp;
994 1.1 mycroft int a_fflag;
995 1.176 elad kauth_cred_t a_cred;
996 1.10 christos } */ *ap = v;
997 1.35 augustss struct vnode *vp = ap->a_vp;
998 1.35 augustss struct inode *ip = VTOI(vp);
999 1.180 perseant struct lfs *fs = ip->i_lfs;
1000 1.1 mycroft
1001 1.190 perseant if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1002 1.214 ad fs->lfs_stoplwp == curlwp) {
1003 1.214 ad mutex_enter(&lfs_lock);
1004 1.188 perseant log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1005 1.180 perseant lfs_wrapgo(fs, ip, 0);
1006 1.214 ad mutex_exit(&lfs_lock);
1007 1.179 perseant }
1008 1.179 perseant
1009 1.97 perseant if (vp == ip->i_lfs->lfs_ivnode &&
1010 1.119 dbj vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1011 1.97 perseant return 0;
1012 1.97 perseant
1013 1.97 perseant if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1014 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
1015 1.1 mycroft }
1016 1.1 mycroft return (0);
1017 1.65 perseant }
1018 1.65 perseant
1019 1.65 perseant /*
1020 1.65 perseant * Close wrapper for special devices.
1021 1.65 perseant *
1022 1.65 perseant * Update the times on the inode then do device close.
1023 1.65 perseant */
1024 1.65 perseant int
1025 1.65 perseant lfsspec_close(void *v)
1026 1.65 perseant {
1027 1.65 perseant struct vop_close_args /* {
1028 1.65 perseant struct vnode *a_vp;
1029 1.65 perseant int a_fflag;
1030 1.176 elad kauth_cred_t a_cred;
1031 1.65 perseant } */ *ap = v;
1032 1.65 perseant struct vnode *vp;
1033 1.65 perseant struct inode *ip;
1034 1.65 perseant
1035 1.65 perseant vp = ap->a_vp;
1036 1.65 perseant ip = VTOI(vp);
1037 1.65 perseant if (vp->v_usecount > 1) {
1038 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
1039 1.65 perseant }
1040 1.65 perseant return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1041 1.65 perseant }
1042 1.65 perseant
1043 1.65 perseant /*
1044 1.65 perseant * Close wrapper for fifo's.
1045 1.65 perseant *
1046 1.65 perseant * Update the times on the inode then do device close.
1047 1.65 perseant */
1048 1.65 perseant int
1049 1.65 perseant lfsfifo_close(void *v)
1050 1.65 perseant {
1051 1.65 perseant struct vop_close_args /* {
1052 1.65 perseant struct vnode *a_vp;
1053 1.65 perseant int a_fflag;
1054 1.176 elad kauth_cred_ a_cred;
1055 1.65 perseant } */ *ap = v;
1056 1.65 perseant struct vnode *vp;
1057 1.65 perseant struct inode *ip;
1058 1.65 perseant
1059 1.65 perseant vp = ap->a_vp;
1060 1.65 perseant ip = VTOI(vp);
1061 1.65 perseant if (ap->a_vp->v_usecount > 1) {
1062 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
1063 1.65 perseant }
1064 1.65 perseant return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1065 1.1 mycroft }
1066 1.1 mycroft
1067 1.1 mycroft /*
1068 1.15 fvdl * Reclaim an inode so that it can be used for other purposes.
1069 1.1 mycroft */
1070 1.1 mycroft
1071 1.1 mycroft int
1072 1.51 perseant lfs_reclaim(void *v)
1073 1.10 christos {
1074 1.1 mycroft struct vop_reclaim_args /* {
1075 1.1 mycroft struct vnode *a_vp;
1076 1.10 christos } */ *ap = v;
1077 1.15 fvdl struct vnode *vp = ap->a_vp;
1078 1.84 perseant struct inode *ip = VTOI(vp);
1079 1.203 perseant struct lfs *fs = ip->i_lfs;
1080 1.1 mycroft int error;
1081 1.77 yamt
1082 1.231 hannken /*
1083 1.231 hannken * The inode must be freed and updated before being removed
1084 1.231 hannken * from its hash chain. Other threads trying to gain a hold
1085 1.231 hannken * on the inode will be stalled because it is locked (VI_XLOCK).
1086 1.231 hannken */
1087 1.231 hannken if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1088 1.231 hannken lfs_vfree(vp, ip->i_number, ip->i_omode);
1089 1.231 hannken
1090 1.214 ad mutex_enter(&lfs_lock);
1091 1.84 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
1092 1.214 ad mutex_exit(&lfs_lock);
1093 1.213 pooka if ((error = ufs_reclaim(vp)))
1094 1.1 mycroft return (error);
1095 1.203 perseant
1096 1.203 perseant /*
1097 1.203 perseant * Take us off the paging and/or dirop queues if we were on them.
1098 1.203 perseant * We shouldn't be on them.
1099 1.203 perseant */
1100 1.214 ad mutex_enter(&lfs_lock);
1101 1.203 perseant if (ip->i_flags & IN_PAGING) {
1102 1.203 perseant log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1103 1.203 perseant fs->lfs_fsmnt);
1104 1.203 perseant ip->i_flags &= ~IN_PAGING;
1105 1.203 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1106 1.203 perseant }
1107 1.212 ad if (vp->v_uflag & VU_DIROP) {
1108 1.212 ad panic("reclaimed vnode is VU_DIROP");
1109 1.212 ad vp->v_uflag &= ~VU_DIROP;
1110 1.203 perseant TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1111 1.203 perseant }
1112 1.214 ad mutex_exit(&lfs_lock);
1113 1.203 perseant
1114 1.142 perseant pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1115 1.145 perseant lfs_deregister_all(vp);
1116 1.84 perseant pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1117 1.84 perseant ip->inode_ext.lfs = NULL;
1118 1.199 ad genfs_node_destroy(vp);
1119 1.19 thorpej pool_put(&lfs_inode_pool, vp->v_data);
1120 1.1 mycroft vp->v_data = NULL;
1121 1.94 perseant return (0);
1122 1.94 perseant }
1123 1.94 perseant
1124 1.94 perseant /*
1125 1.101 yamt * Read a block from a storage device.
1126 1.94 perseant * In order to avoid reading blocks that are in the process of being
1127 1.94 perseant * written by the cleaner---and hence are not mutexed by the normal
1128 1.94 perseant * buffer cache / page cache mechanisms---check for collisions before
1129 1.94 perseant * reading.
1130 1.94 perseant *
1131 1.94 perseant * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1132 1.94 perseant * the active cleaner test.
1133 1.94 perseant *
1134 1.94 perseant * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1135 1.94 perseant */
1136 1.94 perseant int
1137 1.94 perseant lfs_strategy(void *v)
1138 1.94 perseant {
1139 1.94 perseant struct vop_strategy_args /* {
1140 1.128 hannken struct vnode *a_vp;
1141 1.94 perseant struct buf *a_bp;
1142 1.94 perseant } */ *ap = v;
1143 1.94 perseant struct buf *bp;
1144 1.94 perseant struct lfs *fs;
1145 1.94 perseant struct vnode *vp;
1146 1.94 perseant struct inode *ip;
1147 1.94 perseant daddr_t tbn;
1148 1.94 perseant int i, sn, error, slept;
1149 1.94 perseant
1150 1.94 perseant bp = ap->a_bp;
1151 1.128 hannken vp = ap->a_vp;
1152 1.94 perseant ip = VTOI(vp);
1153 1.94 perseant fs = ip->i_lfs;
1154 1.94 perseant
1155 1.101 yamt /* lfs uses its strategy routine only for read */
1156 1.101 yamt KASSERT(bp->b_flags & B_READ);
1157 1.101 yamt
1158 1.94 perseant if (vp->v_type == VBLK || vp->v_type == VCHR)
1159 1.94 perseant panic("lfs_strategy: spec");
1160 1.94 perseant KASSERT(bp->b_bcount != 0);
1161 1.94 perseant if (bp->b_blkno == bp->b_lblkno) {
1162 1.94 perseant error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1163 1.94 perseant NULL);
1164 1.94 perseant if (error) {
1165 1.94 perseant bp->b_error = error;
1166 1.214 ad bp->b_resid = bp->b_bcount;
1167 1.94 perseant biodone(bp);
1168 1.94 perseant return (error);
1169 1.94 perseant }
1170 1.94 perseant if ((long)bp->b_blkno == -1) /* no valid data */
1171 1.94 perseant clrbuf(bp);
1172 1.94 perseant }
1173 1.94 perseant if ((long)bp->b_blkno < 0) { /* block is not on disk */
1174 1.214 ad bp->b_resid = bp->b_bcount;
1175 1.94 perseant biodone(bp);
1176 1.94 perseant return (0);
1177 1.94 perseant }
1178 1.94 perseant
1179 1.94 perseant slept = 1;
1180 1.214 ad mutex_enter(&lfs_lock);
1181 1.101 yamt while (slept && fs->lfs_seglock) {
1182 1.214 ad mutex_exit(&lfs_lock);
1183 1.94 perseant /*
1184 1.94 perseant * Look through list of intervals.
1185 1.94 perseant * There will only be intervals to look through
1186 1.94 perseant * if the cleaner holds the seglock.
1187 1.94 perseant * Since the cleaner is synchronous, we can trust
1188 1.94 perseant * the list of intervals to be current.
1189 1.94 perseant */
1190 1.94 perseant tbn = dbtofsb(fs, bp->b_blkno);
1191 1.94 perseant sn = dtosn(fs, tbn);
1192 1.94 perseant slept = 0;
1193 1.94 perseant for (i = 0; i < fs->lfs_cleanind; i++) {
1194 1.94 perseant if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1195 1.94 perseant tbn >= fs->lfs_cleanint[i]) {
1196 1.136 perseant DLOG((DLOG_CLEAN,
1197 1.136 perseant "lfs_strategy: ino %d lbn %" PRId64
1198 1.203 perseant " ind %d sn %d fsb %" PRIx32
1199 1.203 perseant " given sn %d fsb %" PRIx64 "\n",
1200 1.203 perseant ip->i_number, bp->b_lblkno, i,
1201 1.203 perseant dtosn(fs, fs->lfs_cleanint[i]),
1202 1.203 perseant fs->lfs_cleanint[i], sn, tbn));
1203 1.136 perseant DLOG((DLOG_CLEAN,
1204 1.136 perseant "lfs_strategy: sleeping on ino %d lbn %"
1205 1.136 perseant PRId64 "\n", ip->i_number, bp->b_lblkno));
1206 1.214 ad mutex_enter(&lfs_lock);
1207 1.170 perseant if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1208 1.170 perseant /* Cleaner can't wait for itself */
1209 1.214 ad mtsleep(&fs->lfs_iocount,
1210 1.170 perseant (PRIBIO + 1) | PNORELOCK,
1211 1.170 perseant "clean2", 0,
1212 1.214 ad &lfs_lock);
1213 1.170 perseant slept = 1;
1214 1.170 perseant break;
1215 1.170 perseant } else if (fs->lfs_seglock) {
1216 1.214 ad mtsleep(&fs->lfs_seglock,
1217 1.141 perseant (PRIBIO + 1) | PNORELOCK,
1218 1.170 perseant "clean1", 0,
1219 1.214 ad &lfs_lock);
1220 1.167 perseant slept = 1;
1221 1.167 perseant break;
1222 1.167 perseant }
1223 1.214 ad mutex_exit(&lfs_lock);
1224 1.94 perseant }
1225 1.94 perseant }
1226 1.214 ad mutex_enter(&lfs_lock);
1227 1.94 perseant }
1228 1.214 ad mutex_exit(&lfs_lock);
1229 1.94 perseant
1230 1.94 perseant vp = ip->i_devvp;
1231 1.127 hannken VOP_STRATEGY(vp, bp);
1232 1.1 mycroft return (0);
1233 1.89 perseant }
1234 1.89 perseant
1235 1.171 perseant void
1236 1.92 perseant lfs_flush_dirops(struct lfs *fs)
1237 1.92 perseant {
1238 1.92 perseant struct inode *ip, *nip;
1239 1.92 perseant struct vnode *vp;
1240 1.92 perseant extern int lfs_dostats;
1241 1.92 perseant struct segment *sp;
1242 1.92 perseant
1243 1.163 perseant ASSERT_MAYBE_SEGLOCK(fs);
1244 1.171 perseant KASSERT(fs->lfs_nadirop == 0);
1245 1.141 perseant
1246 1.92 perseant if (fs->lfs_ronly)
1247 1.92 perseant return;
1248 1.92 perseant
1249 1.214 ad mutex_enter(&lfs_lock);
1250 1.141 perseant if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1251 1.214 ad mutex_exit(&lfs_lock);
1252 1.92 perseant return;
1253 1.141 perseant } else
1254 1.214 ad mutex_exit(&lfs_lock);
1255 1.92 perseant
1256 1.92 perseant if (lfs_dostats)
1257 1.92 perseant ++lfs_stats.flush_invoked;
1258 1.92 perseant
1259 1.92 perseant /*
1260 1.92 perseant * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1261 1.92 perseant * Technically this is a checkpoint (the on-disk state is valid)
1262 1.92 perseant * even though we are leaving out all the file data.
1263 1.92 perseant */
1264 1.92 perseant lfs_imtime(fs);
1265 1.92 perseant lfs_seglock(fs, SEGM_CKP);
1266 1.92 perseant sp = fs->lfs_sp;
1267 1.92 perseant
1268 1.92 perseant /*
1269 1.92 perseant * lfs_writevnodes, optimized to get dirops out of the way.
1270 1.92 perseant * Only write dirops, and don't flush files' pages, only
1271 1.92 perseant * blocks from the directories.
1272 1.92 perseant *
1273 1.92 perseant * We don't need to vref these files because they are
1274 1.92 perseant * dirops and so hold an extra reference until the
1275 1.92 perseant * segunlock clears them of that status.
1276 1.92 perseant *
1277 1.92 perseant * We don't need to check for IN_ADIROP because we know that
1278 1.92 perseant * no dirops are active.
1279 1.92 perseant *
1280 1.92 perseant */
1281 1.214 ad mutex_enter(&lfs_lock);
1282 1.92 perseant for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1283 1.92 perseant nip = TAILQ_NEXT(ip, i_lfs_dchain);
1284 1.214 ad mutex_exit(&lfs_lock);
1285 1.92 perseant vp = ITOV(ip);
1286 1.92 perseant
1287 1.171 perseant KASSERT((ip->i_flag & IN_ADIROP) == 0);
1288 1.171 perseant
1289 1.92 perseant /*
1290 1.92 perseant * All writes to directories come from dirops; all
1291 1.92 perseant * writes to files' direct blocks go through the page
1292 1.92 perseant * cache, which we're not touching. Reads to files
1293 1.92 perseant * and/or directories will not be affected by writing
1294 1.92 perseant * directory blocks inodes and file inodes. So we don't
1295 1.203 perseant * really need to lock. If we don't lock, though,
1296 1.92 perseant * make sure that we don't clear IN_MODIFIED
1297 1.92 perseant * unnecessarily.
1298 1.92 perseant */
1299 1.214 ad if (vp->v_iflag & VI_XLOCK) {
1300 1.214 ad mutex_enter(&lfs_lock);
1301 1.92 perseant continue;
1302 1.167 perseant }
1303 1.228 hannken /* XXX see below
1304 1.228 hannken * waslocked = VOP_ISLOCKED(vp);
1305 1.228 hannken */
1306 1.92 perseant if (vp->v_type != VREG &&
1307 1.92 perseant ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1308 1.92 perseant lfs_writefile(fs, sp, vp);
1309 1.92 perseant if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1310 1.92 perseant !(ip->i_flag & IN_ALLMOD)) {
1311 1.214 ad mutex_enter(&lfs_lock);
1312 1.92 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1313 1.214 ad mutex_exit(&lfs_lock);
1314 1.92 perseant }
1315 1.92 perseant }
1316 1.188 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
1317 1.92 perseant (void) lfs_writeinode(fs, sp, ip);
1318 1.214 ad mutex_enter(&lfs_lock);
1319 1.228 hannken /*
1320 1.228 hannken * XXX
1321 1.228 hannken * LK_EXCLOTHER is dead -- what is intended here?
1322 1.228 hannken * if (waslocked == LK_EXCLOTHER)
1323 1.228 hannken * LFS_SET_UINO(ip, IN_MODIFIED);
1324 1.228 hannken */
1325 1.92 perseant }
1326 1.214 ad mutex_exit(&lfs_lock);
1327 1.92 perseant /* We've written all the dirops there are */
1328 1.92 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1329 1.170 perseant lfs_finalize_fs_seguse(fs);
1330 1.92 perseant (void) lfs_writeseg(fs, sp);
1331 1.92 perseant lfs_segunlock(fs);
1332 1.92 perseant }
1333 1.92 perseant
1334 1.89 perseant /*
1335 1.164 perseant * Flush all vnodes for which the pagedaemon has requested pageouts.
1336 1.212 ad * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1337 1.164 perseant * has just run, this would be an error). If we have to skip a vnode
1338 1.164 perseant * for any reason, just skip it; if we have to wait for the cleaner,
1339 1.164 perseant * abort. The writer daemon will call us again later.
1340 1.164 perseant */
1341 1.164 perseant void
1342 1.164 perseant lfs_flush_pchain(struct lfs *fs)
1343 1.164 perseant {
1344 1.164 perseant struct inode *ip, *nip;
1345 1.164 perseant struct vnode *vp;
1346 1.164 perseant extern int lfs_dostats;
1347 1.164 perseant struct segment *sp;
1348 1.164 perseant int error;
1349 1.164 perseant
1350 1.164 perseant ASSERT_NO_SEGLOCK(fs);
1351 1.164 perseant
1352 1.164 perseant if (fs->lfs_ronly)
1353 1.164 perseant return;
1354 1.164 perseant
1355 1.214 ad mutex_enter(&lfs_lock);
1356 1.164 perseant if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1357 1.214 ad mutex_exit(&lfs_lock);
1358 1.164 perseant return;
1359 1.164 perseant } else
1360 1.214 ad mutex_exit(&lfs_lock);
1361 1.164 perseant
1362 1.164 perseant /* Get dirops out of the way */
1363 1.164 perseant lfs_flush_dirops(fs);
1364 1.164 perseant
1365 1.164 perseant if (lfs_dostats)
1366 1.164 perseant ++lfs_stats.flush_invoked;
1367 1.164 perseant
1368 1.164 perseant /*
1369 1.164 perseant * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1370 1.164 perseant */
1371 1.164 perseant lfs_imtime(fs);
1372 1.164 perseant lfs_seglock(fs, 0);
1373 1.164 perseant sp = fs->lfs_sp;
1374 1.164 perseant
1375 1.164 perseant /*
1376 1.164 perseant * lfs_writevnodes, optimized to clear pageout requests.
1377 1.164 perseant * Only write non-dirop files that are in the pageout queue.
1378 1.164 perseant * We're very conservative about what we write; we want to be
1379 1.164 perseant * fast and async.
1380 1.164 perseant */
1381 1.214 ad mutex_enter(&lfs_lock);
1382 1.214 ad top:
1383 1.164 perseant for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1384 1.164 perseant nip = TAILQ_NEXT(ip, i_lfs_pchain);
1385 1.164 perseant vp = ITOV(ip);
1386 1.164 perseant
1387 1.164 perseant if (!(ip->i_flags & IN_PAGING))
1388 1.164 perseant goto top;
1389 1.164 perseant
1390 1.214 ad mutex_enter(&vp->v_interlock);
1391 1.214 ad if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1392 1.214 ad mutex_exit(&vp->v_interlock);
1393 1.164 perseant continue;
1394 1.214 ad }
1395 1.214 ad if (vp->v_type != VREG) {
1396 1.214 ad mutex_exit(&vp->v_interlock);
1397 1.164 perseant continue;
1398 1.214 ad }
1399 1.164 perseant if (lfs_vref(vp))
1400 1.164 perseant continue;
1401 1.214 ad mutex_exit(&lfs_lock);
1402 1.169 perseant
1403 1.228 hannken if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1404 1.165 perseant lfs_vunref(vp);
1405 1.214 ad mutex_enter(&lfs_lock);
1406 1.164 perseant continue;
1407 1.165 perseant }
1408 1.164 perseant
1409 1.164 perseant error = lfs_writefile(fs, sp, vp);
1410 1.164 perseant if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1411 1.164 perseant !(ip->i_flag & IN_ALLMOD)) {
1412 1.214 ad mutex_enter(&lfs_lock);
1413 1.164 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1414 1.214 ad mutex_exit(&lfs_lock);
1415 1.164 perseant }
1416 1.188 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
1417 1.164 perseant (void) lfs_writeinode(fs, sp, ip);
1418 1.164 perseant
1419 1.229 hannken VOP_UNLOCK(vp);
1420 1.164 perseant lfs_vunref(vp);
1421 1.164 perseant
1422 1.164 perseant if (error == EAGAIN) {
1423 1.164 perseant lfs_writeseg(fs, sp);
1424 1.214 ad mutex_enter(&lfs_lock);
1425 1.164 perseant break;
1426 1.164 perseant }
1427 1.214 ad mutex_enter(&lfs_lock);
1428 1.164 perseant }
1429 1.214 ad mutex_exit(&lfs_lock);
1430 1.164 perseant (void) lfs_writeseg(fs, sp);
1431 1.164 perseant lfs_segunlock(fs);
1432 1.164 perseant }
1433 1.164 perseant
1434 1.164 perseant /*
1435 1.90 perseant * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1436 1.89 perseant */
1437 1.89 perseant int
1438 1.90 perseant lfs_fcntl(void *v)
1439 1.89 perseant {
1440 1.137 simonb struct vop_fcntl_args /* {
1441 1.137 simonb struct vnode *a_vp;
1442 1.218 gmcgarry u_int a_command;
1443 1.201 christos void * a_data;
1444 1.137 simonb int a_fflag;
1445 1.176 elad kauth_cred_t a_cred;
1446 1.137 simonb } */ *ap = v;
1447 1.222 christos struct timeval tv;
1448 1.89 perseant struct timeval *tvp;
1449 1.89 perseant BLOCK_INFO *blkiov;
1450 1.92 perseant CLEANERINFO *cip;
1451 1.148 perseant SEGUSE *sup;
1452 1.92 perseant int blkcnt, error, oclean;
1453 1.181 martin size_t fh_size;
1454 1.90 perseant struct lfs_fcntl_markv blkvp;
1455 1.185 ad struct lwp *l;
1456 1.89 perseant fsid_t *fsidp;
1457 1.92 perseant struct lfs *fs;
1458 1.92 perseant struct buf *bp;
1459 1.134 perseant fhandle_t *fhp;
1460 1.92 perseant daddr_t off;
1461 1.89 perseant
1462 1.90 perseant /* Only respect LFS fcntls on fs root or Ifile */
1463 1.89 perseant if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1464 1.89 perseant VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1465 1.90 perseant return ufs_fcntl(v);
1466 1.89 perseant }
1467 1.89 perseant
1468 1.100 perseant /* Avoid locking a draining lock */
1469 1.119 dbj if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1470 1.100 perseant return ESHUTDOWN;
1471 1.100 perseant }
1472 1.100 perseant
1473 1.184 perseant /* LFS control and monitoring fcntls are available only to root */
1474 1.213 pooka l = curlwp;
1475 1.184 perseant if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1476 1.185 ad (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1477 1.203 perseant NULL)) != 0)
1478 1.184 perseant return (error);
1479 1.184 perseant
1480 1.100 perseant fs = VTOI(ap->a_vp)->i_lfs;
1481 1.131 christos fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1482 1.89 perseant
1483 1.188 perseant error = 0;
1484 1.218 gmcgarry switch ((int)ap->a_command) {
1485 1.222 christos case LFCNSEGWAITALL_COMPAT_50:
1486 1.222 christos case LFCNSEGWAITALL_COMPAT:
1487 1.222 christos fsidp = NULL;
1488 1.222 christos /* FALLSTHROUGH */
1489 1.222 christos case LFCNSEGWAIT_COMPAT_50:
1490 1.222 christos case LFCNSEGWAIT_COMPAT:
1491 1.222 christos {
1492 1.222 christos struct timeval50 *tvp50
1493 1.222 christos = (struct timeval50 *)ap->a_data;
1494 1.222 christos timeval50_to_timeval(tvp50, &tv);
1495 1.222 christos tvp = &tv;
1496 1.222 christos }
1497 1.222 christos goto segwait_common;
1498 1.90 perseant case LFCNSEGWAITALL:
1499 1.214 ad fsidp = NULL;
1500 1.214 ad /* FALLSTHROUGH */
1501 1.90 perseant case LFCNSEGWAIT:
1502 1.214 ad tvp = (struct timeval *)ap->a_data;
1503 1.222 christos segwait_common:
1504 1.214 ad mutex_enter(&lfs_lock);
1505 1.214 ad ++fs->lfs_sleepers;
1506 1.214 ad mutex_exit(&lfs_lock);
1507 1.214 ad
1508 1.214 ad error = lfs_segwait(fsidp, tvp);
1509 1.214 ad
1510 1.214 ad mutex_enter(&lfs_lock);
1511 1.214 ad if (--fs->lfs_sleepers == 0)
1512 1.214 ad wakeup(&fs->lfs_sleepers);
1513 1.214 ad mutex_exit(&lfs_lock);
1514 1.214 ad return error;
1515 1.89 perseant
1516 1.90 perseant case LFCNBMAPV:
1517 1.90 perseant case LFCNMARKV:
1518 1.214 ad blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1519 1.89 perseant
1520 1.214 ad blkcnt = blkvp.blkcnt;
1521 1.214 ad if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1522 1.214 ad return (EINVAL);
1523 1.214 ad blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1524 1.214 ad if ((error = copyin(blkvp.blkiov, blkiov,
1525 1.214 ad blkcnt * sizeof(BLOCK_INFO))) != 0) {
1526 1.214 ad lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1527 1.214 ad return error;
1528 1.214 ad }
1529 1.214 ad
1530 1.214 ad mutex_enter(&lfs_lock);
1531 1.214 ad ++fs->lfs_sleepers;
1532 1.214 ad mutex_exit(&lfs_lock);
1533 1.214 ad if (ap->a_command == LFCNBMAPV)
1534 1.214 ad error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1535 1.214 ad else /* LFCNMARKV */
1536 1.214 ad error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1537 1.214 ad if (error == 0)
1538 1.214 ad error = copyout(blkiov, blkvp.blkiov,
1539 1.214 ad blkcnt * sizeof(BLOCK_INFO));
1540 1.214 ad mutex_enter(&lfs_lock);
1541 1.214 ad if (--fs->lfs_sleepers == 0)
1542 1.214 ad wakeup(&fs->lfs_sleepers);
1543 1.214 ad mutex_exit(&lfs_lock);
1544 1.214 ad lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1545 1.214 ad return error;
1546 1.92 perseant
1547 1.92 perseant case LFCNRECLAIM:
1548 1.214 ad /*
1549 1.214 ad * Flush dirops and write Ifile, allowing empty segments
1550 1.214 ad * to be immediately reclaimed.
1551 1.214 ad */
1552 1.214 ad lfs_writer_enter(fs, "pndirop");
1553 1.214 ad off = fs->lfs_offset;
1554 1.214 ad lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1555 1.214 ad lfs_flush_dirops(fs);
1556 1.214 ad LFS_CLEANERINFO(cip, fs, bp);
1557 1.214 ad oclean = cip->clean;
1558 1.214 ad LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1559 1.214 ad lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1560 1.214 ad fs->lfs_sp->seg_flags |= SEGM_PROT;
1561 1.214 ad lfs_segunlock(fs);
1562 1.214 ad lfs_writer_leave(fs);
1563 1.92 perseant
1564 1.136 perseant #ifdef DEBUG
1565 1.214 ad LFS_CLEANERINFO(cip, fs, bp);
1566 1.214 ad DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1567 1.214 ad " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1568 1.214 ad fs->lfs_offset - off, cip->clean - oclean,
1569 1.214 ad fs->lfs_activesb));
1570 1.214 ad LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1571 1.92 perseant #endif
1572 1.92 perseant
1573 1.214 ad return 0;
1574 1.89 perseant
1575 1.182 martin case LFCNIFILEFH_COMPAT:
1576 1.214 ad /* Return the filehandle of the Ifile */
1577 1.221 elad if ((error = kauth_authorize_system(l->l_cred,
1578 1.221 elad KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1579 1.214 ad return (error);
1580 1.214 ad fhp = (struct fhandle *)ap->a_data;
1581 1.214 ad fhp->fh_fsid = *fsidp;
1582 1.214 ad fh_size = 16; /* former VFS_MAXFIDSIZ */
1583 1.214 ad return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1584 1.182 martin
1585 1.187 martin case LFCNIFILEFH_COMPAT2:
1586 1.134 perseant case LFCNIFILEFH:
1587 1.214 ad /* Return the filehandle of the Ifile */
1588 1.214 ad fhp = (struct fhandle *)ap->a_data;
1589 1.214 ad fhp->fh_fsid = *fsidp;
1590 1.214 ad fh_size = sizeof(struct lfs_fhandle) -
1591 1.214 ad offsetof(fhandle_t, fh_fid);
1592 1.214 ad return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1593 1.134 perseant
1594 1.148 perseant case LFCNREWIND:
1595 1.214 ad /* Move lfs_offset to the lowest-numbered segment */
1596 1.214 ad return lfs_rewind(fs, *(int *)ap->a_data);
1597 1.148 perseant
1598 1.148 perseant case LFCNINVAL:
1599 1.214 ad /* Mark a segment SEGUSE_INVAL */
1600 1.214 ad LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1601 1.214 ad if (sup->su_nbytes > 0) {
1602 1.214 ad brelse(bp, 0);
1603 1.214 ad lfs_unset_inval_all(fs);
1604 1.214 ad return EBUSY;
1605 1.214 ad }
1606 1.214 ad sup->su_flags |= SEGUSE_INVAL;
1607 1.214 ad VOP_BWRITE(bp);
1608 1.214 ad return 0;
1609 1.148 perseant
1610 1.148 perseant case LFCNRESIZE:
1611 1.214 ad /* Resize the filesystem */
1612 1.214 ad return lfs_resize_fs(fs, *(int *)ap->a_data);
1613 1.148 perseant
1614 1.168 perseant case LFCNWRAPSTOP:
1615 1.179 perseant case LFCNWRAPSTOP_COMPAT:
1616 1.214 ad /*
1617 1.214 ad * Hold lfs_newseg at segment 0; if requested, sleep until
1618 1.214 ad * the filesystem wraps around. To support external agents
1619 1.214 ad * (dump, fsck-based regression test) that need to look at
1620 1.214 ad * a snapshot of the filesystem, without necessarily
1621 1.214 ad * requiring that all fs activity stops.
1622 1.214 ad */
1623 1.214 ad if (fs->lfs_stoplwp == curlwp)
1624 1.214 ad return EALREADY;
1625 1.214 ad
1626 1.214 ad mutex_enter(&lfs_lock);
1627 1.214 ad while (fs->lfs_stoplwp != NULL)
1628 1.214 ad cv_wait(&fs->lfs_stopcv, &lfs_lock);
1629 1.214 ad fs->lfs_stoplwp = curlwp;
1630 1.214 ad if (fs->lfs_nowrap == 0)
1631 1.214 ad log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1632 1.214 ad ++fs->lfs_nowrap;
1633 1.222 christos if (*(int *)ap->a_data == 1
1634 1.224 pooka || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1635 1.214 ad log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1636 1.214 ad error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1637 1.214 ad "segwrap", 0, &lfs_lock);
1638 1.214 ad log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1639 1.214 ad if (error) {
1640 1.214 ad lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1641 1.214 ad }
1642 1.214 ad }
1643 1.214 ad mutex_exit(&lfs_lock);
1644 1.214 ad return 0;
1645 1.168 perseant
1646 1.168 perseant case LFCNWRAPGO:
1647 1.179 perseant case LFCNWRAPGO_COMPAT:
1648 1.214 ad /*
1649 1.214 ad * Having done its work, the agent wakes up the writer.
1650 1.214 ad * If the argument is 1, it sleeps until a new segment
1651 1.214 ad * is selected.
1652 1.214 ad */
1653 1.214 ad mutex_enter(&lfs_lock);
1654 1.214 ad error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1655 1.222 christos ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1656 1.222 christos *((int *)ap->a_data));
1657 1.214 ad mutex_exit(&lfs_lock);
1658 1.214 ad return error;
1659 1.168 perseant
1660 1.188 perseant case LFCNWRAPPASS:
1661 1.214 ad if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1662 1.214 ad return EALREADY;
1663 1.214 ad mutex_enter(&lfs_lock);
1664 1.214 ad if (fs->lfs_stoplwp != curlwp) {
1665 1.214 ad mutex_exit(&lfs_lock);
1666 1.214 ad return EALREADY;
1667 1.214 ad }
1668 1.214 ad if (fs->lfs_nowrap == 0) {
1669 1.214 ad mutex_exit(&lfs_lock);
1670 1.214 ad return EBUSY;
1671 1.214 ad }
1672 1.214 ad fs->lfs_wrappass = 1;
1673 1.214 ad wakeup(&fs->lfs_wrappass);
1674 1.214 ad /* Wait for the log to wrap, if asked */
1675 1.214 ad if (*(int *)ap->a_data) {
1676 1.214 ad mutex_enter(&ap->a_vp->v_interlock);
1677 1.214 ad lfs_vref(ap->a_vp);
1678 1.214 ad VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1679 1.214 ad log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1680 1.214 ad error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1681 1.214 ad "segwrap", 0, &lfs_lock);
1682 1.214 ad log(LOG_NOTICE, "LFCNPASS done waiting\n");
1683 1.214 ad VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1684 1.214 ad lfs_vunref(ap->a_vp);
1685 1.214 ad }
1686 1.214 ad mutex_exit(&lfs_lock);
1687 1.214 ad return error;
1688 1.188 perseant
1689 1.188 perseant case LFCNWRAPSTATUS:
1690 1.214 ad mutex_enter(&lfs_lock);
1691 1.214 ad *(int *)ap->a_data = fs->lfs_wrapstatus;
1692 1.214 ad mutex_exit(&lfs_lock);
1693 1.214 ad return 0;
1694 1.188 perseant
1695 1.89 perseant default:
1696 1.214 ad return ufs_fcntl(v);
1697 1.89 perseant }
1698 1.89 perseant return 0;
1699 1.60 chs }
1700 1.60 chs
1701 1.60 chs int
1702 1.60 chs lfs_getpages(void *v)
1703 1.60 chs {
1704 1.60 chs struct vop_getpages_args /* {
1705 1.60 chs struct vnode *a_vp;
1706 1.60 chs voff_t a_offset;
1707 1.60 chs struct vm_page **a_m;
1708 1.60 chs int *a_count;
1709 1.60 chs int a_centeridx;
1710 1.60 chs vm_prot_t a_access_type;
1711 1.60 chs int a_advice;
1712 1.60 chs int a_flags;
1713 1.60 chs } */ *ap = v;
1714 1.60 chs
1715 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1716 1.97 perseant (ap->a_access_type & VM_PROT_WRITE) != 0) {
1717 1.97 perseant return EPERM;
1718 1.97 perseant }
1719 1.60 chs if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1720 1.214 ad mutex_enter(&lfs_lock);
1721 1.60 chs LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1722 1.214 ad mutex_exit(&lfs_lock);
1723 1.60 chs }
1724 1.115 yamt
1725 1.115 yamt /*
1726 1.115 yamt * we're relying on the fact that genfs_getpages() always read in
1727 1.115 yamt * entire filesystem blocks.
1728 1.115 yamt */
1729 1.95 perseant return genfs_getpages(v);
1730 1.1 mycroft }
1731 1.84 perseant
1732 1.204 perseant /*
1733 1.204 perseant * Wait for a page to become unbusy, possibly printing diagnostic messages
1734 1.204 perseant * as well.
1735 1.204 perseant *
1736 1.204 perseant * Called with vp->v_interlock held; return with it held.
1737 1.204 perseant */
1738 1.203 perseant static void
1739 1.203 perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1740 1.203 perseant {
1741 1.203 perseant if ((pg->flags & PG_BUSY) == 0)
1742 1.203 perseant return; /* Nothing to wait for! */
1743 1.203 perseant
1744 1.204 perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1745 1.203 perseant static struct vm_page *lastpg;
1746 1.203 perseant
1747 1.203 perseant if (label != NULL && pg != lastpg) {
1748 1.203 perseant if (pg->owner_tag) {
1749 1.203 perseant printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1750 1.203 perseant curproc->p_pid, curlwp->l_lid, label,
1751 1.203 perseant pg, pg->owner, pg->lowner, pg->owner_tag);
1752 1.203 perseant } else {
1753 1.203 perseant printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1754 1.203 perseant curproc->p_pid, curlwp->l_lid, label, pg);
1755 1.203 perseant }
1756 1.203 perseant }
1757 1.203 perseant lastpg = pg;
1758 1.203 perseant #endif
1759 1.203 perseant
1760 1.203 perseant pg->flags |= PG_WANTED;
1761 1.203 perseant UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1762 1.214 ad mutex_enter(&vp->v_interlock);
1763 1.203 perseant }
1764 1.203 perseant
1765 1.203 perseant /*
1766 1.203 perseant * This routine is called by lfs_putpages() when it can't complete the
1767 1.203 perseant * write because a page is busy. This means that either (1) someone,
1768 1.203 perseant * possibly the pagedaemon, is looking at this page, and will give it up
1769 1.203 perseant * presently; or (2) we ourselves are holding the page busy in the
1770 1.203 perseant * process of being written (either gathered or actually on its way to
1771 1.203 perseant * disk). We don't need to give up the segment lock, but we might need
1772 1.203 perseant * to call lfs_writeseg() to expedite the page's journey to disk.
1773 1.204 perseant *
1774 1.204 perseant * Called with vp->v_interlock held; return with it held.
1775 1.203 perseant */
1776 1.203 perseant /* #define BUSYWAIT */
1777 1.203 perseant static void
1778 1.203 perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1779 1.203 perseant int seglocked, const char *label)
1780 1.203 perseant {
1781 1.203 perseant #ifndef BUSYWAIT
1782 1.203 perseant struct inode *ip = VTOI(vp);
1783 1.203 perseant struct segment *sp = fs->lfs_sp;
1784 1.203 perseant int count = 0;
1785 1.203 perseant
1786 1.203 perseant if (pg == NULL)
1787 1.203 perseant return;
1788 1.203 perseant
1789 1.226 eeh while (pg->flags & PG_BUSY &&
1790 1.226 eeh pg->uobject == &vp->v_uobj) {
1791 1.214 ad mutex_exit(&vp->v_interlock);
1792 1.203 perseant if (sp->cbpp - sp->bpp > 1) {
1793 1.203 perseant /* Write gathered pages */
1794 1.203 perseant lfs_updatemeta(sp);
1795 1.203 perseant lfs_release_finfo(fs);
1796 1.203 perseant (void) lfs_writeseg(fs, sp);
1797 1.203 perseant
1798 1.203 perseant /*
1799 1.203 perseant * Reinitialize FIP
1800 1.203 perseant */
1801 1.203 perseant KASSERT(sp->vp == vp);
1802 1.203 perseant lfs_acquire_finfo(fs, ip->i_number,
1803 1.203 perseant ip->i_gen);
1804 1.203 perseant }
1805 1.204 perseant ++count;
1806 1.214 ad mutex_enter(&vp->v_interlock);
1807 1.203 perseant wait_for_page(vp, pg, label);
1808 1.203 perseant }
1809 1.203 perseant if (label != NULL && count > 1)
1810 1.203 perseant printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1811 1.203 perseant label, (count > 0 ? "looping, " : ""), count);
1812 1.203 perseant #else
1813 1.203 perseant preempt(1);
1814 1.203 perseant #endif
1815 1.203 perseant }
1816 1.203 perseant
1817 1.84 perseant /*
1818 1.84 perseant * Make sure that for all pages in every block in the given range,
1819 1.84 perseant * either all are dirty or all are clean. If any of the pages
1820 1.84 perseant * we've seen so far are dirty, put the vnode on the paging chain,
1821 1.84 perseant * and mark it IN_PAGING.
1822 1.105 perseant *
1823 1.105 perseant * If checkfirst != 0, don't check all the pages but return at the
1824 1.105 perseant * first dirty page.
1825 1.84 perseant */
1826 1.84 perseant static int
1827 1.84 perseant check_dirty(struct lfs *fs, struct vnode *vp,
1828 1.84 perseant off_t startoffset, off_t endoffset, off_t blkeof,
1829 1.203 perseant int flags, int checkfirst, struct vm_page **pgp)
1830 1.84 perseant {
1831 1.86 perseant int by_list;
1832 1.122 christos struct vm_page *curpg = NULL; /* XXX: gcc */
1833 1.122 christos struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1834 1.122 christos off_t soff = 0; /* XXX: gcc */
1835 1.84 perseant voff_t off;
1836 1.115 yamt int i;
1837 1.115 yamt int nonexistent;
1838 1.115 yamt int any_dirty; /* number of dirty pages */
1839 1.115 yamt int dirty; /* number of dirty pages in a block */
1840 1.115 yamt int tdirty;
1841 1.84 perseant int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1842 1.207 ad int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1843 1.84 perseant
1844 1.141 perseant ASSERT_MAYBE_SEGLOCK(fs);
1845 1.84 perseant top:
1846 1.84 perseant by_list = (vp->v_uobj.uo_npages <=
1847 1.84 perseant ((endoffset - startoffset) >> PAGE_SHIFT) *
1848 1.219 yamt UVM_PAGE_TREE_PENALTY);
1849 1.84 perseant any_dirty = 0;
1850 1.84 perseant
1851 1.84 perseant if (by_list) {
1852 1.84 perseant curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1853 1.84 perseant } else {
1854 1.84 perseant soff = startoffset;
1855 1.84 perseant }
1856 1.84 perseant while (by_list || soff < MIN(blkeof, endoffset)) {
1857 1.84 perseant if (by_list) {
1858 1.115 yamt /*
1859 1.138 perseant * Find the first page in a block. Skip
1860 1.138 perseant * blocks outside our area of interest or beyond
1861 1.138 perseant * the end of file.
1862 1.115 yamt */
1863 1.230 hannken KASSERT((curpg->flags & PG_MARKER) == 0);
1864 1.84 perseant if (pages_per_block > 1) {
1865 1.138 perseant while (curpg &&
1866 1.230 hannken ((curpg->offset & fs->lfs_bmask) ||
1867 1.230 hannken curpg->offset >= vp->v_size ||
1868 1.230 hannken curpg->offset >= endoffset)) {
1869 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1870 1.230 hannken KASSERT(curpg == NULL ||
1871 1.230 hannken (curpg->flags & PG_MARKER) == 0);
1872 1.230 hannken }
1873 1.84 perseant }
1874 1.84 perseant if (curpg == NULL)
1875 1.84 perseant break;
1876 1.84 perseant soff = curpg->offset;
1877 1.84 perseant }
1878 1.84 perseant
1879 1.84 perseant /*
1880 1.84 perseant * Mark all pages in extended range busy; find out if any
1881 1.84 perseant * of them are dirty.
1882 1.84 perseant */
1883 1.84 perseant nonexistent = dirty = 0;
1884 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1885 1.84 perseant if (by_list && pages_per_block <= 1) {
1886 1.84 perseant pgs[i] = pg = curpg;
1887 1.84 perseant } else {
1888 1.84 perseant off = soff + (i << PAGE_SHIFT);
1889 1.84 perseant pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1890 1.84 perseant if (pg == NULL) {
1891 1.84 perseant ++nonexistent;
1892 1.84 perseant continue;
1893 1.84 perseant }
1894 1.84 perseant }
1895 1.84 perseant KASSERT(pg != NULL);
1896 1.158 perseant
1897 1.158 perseant /*
1898 1.177 perseant * If we're holding the segment lock, we can deadlock
1899 1.158 perseant * against a process that has our page and is waiting
1900 1.158 perseant * for the cleaner, while the cleaner waits for the
1901 1.158 perseant * segment lock. Just bail in that case.
1902 1.158 perseant */
1903 1.159 perseant if ((pg->flags & PG_BUSY) &&
1904 1.159 perseant (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1905 1.203 perseant if (i > 0)
1906 1.159 perseant uvm_page_unbusy(pgs, i);
1907 1.159 perseant DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1908 1.203 perseant if (pgp)
1909 1.203 perseant *pgp = pg;
1910 1.159 perseant return -1;
1911 1.158 perseant }
1912 1.158 perseant
1913 1.84 perseant while (pg->flags & PG_BUSY) {
1914 1.203 perseant wait_for_page(vp, pg, NULL);
1915 1.203 perseant if (i > 0)
1916 1.203 perseant uvm_page_unbusy(pgs, i);
1917 1.203 perseant goto top;
1918 1.84 perseant }
1919 1.84 perseant pg->flags |= PG_BUSY;
1920 1.84 perseant UVM_PAGE_OWN(pg, "lfs_putpages");
1921 1.84 perseant
1922 1.84 perseant pmap_page_protect(pg, VM_PROT_NONE);
1923 1.84 perseant tdirty = (pmap_clear_modify(pg) ||
1924 1.84 perseant (pg->flags & PG_CLEAN) == 0);
1925 1.84 perseant dirty += tdirty;
1926 1.84 perseant }
1927 1.84 perseant if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1928 1.84 perseant if (by_list) {
1929 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1930 1.84 perseant } else {
1931 1.84 perseant soff += fs->lfs_bsize;
1932 1.84 perseant }
1933 1.84 perseant continue;
1934 1.84 perseant }
1935 1.84 perseant
1936 1.84 perseant any_dirty += dirty;
1937 1.84 perseant KASSERT(nonexistent == 0);
1938 1.84 perseant
1939 1.84 perseant /*
1940 1.84 perseant * If any are dirty make all dirty; unbusy them,
1941 1.88 perseant * but if we were asked to clean, wire them so that
1942 1.88 perseant * the pagedaemon doesn't bother us about them while
1943 1.88 perseant * they're on their way to disk.
1944 1.84 perseant */
1945 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1946 1.84 perseant pg = pgs[i];
1947 1.84 perseant KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1948 1.84 perseant if (dirty) {
1949 1.84 perseant pg->flags &= ~PG_CLEAN;
1950 1.84 perseant if (flags & PGO_FREE) {
1951 1.85 yamt /*
1952 1.96 perseant * Wire the page so that
1953 1.96 perseant * pdaemon doesn't see it again.
1954 1.85 yamt */
1955 1.214 ad mutex_enter(&uvm_pageqlock);
1956 1.85 yamt uvm_pagewire(pg);
1957 1.214 ad mutex_exit(&uvm_pageqlock);
1958 1.88 perseant
1959 1.84 perseant /* Suspended write flag */
1960 1.84 perseant pg->flags |= PG_DELWRI;
1961 1.84 perseant }
1962 1.84 perseant }
1963 1.84 perseant if (pg->flags & PG_WANTED)
1964 1.84 perseant wakeup(pg);
1965 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY);
1966 1.85 yamt UVM_PAGE_OWN(pg, NULL);
1967 1.84 perseant }
1968 1.84 perseant
1969 1.103 perseant if (checkfirst && any_dirty)
1970 1.130 yamt break;
1971 1.103 perseant
1972 1.84 perseant if (by_list) {
1973 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1974 1.84 perseant } else {
1975 1.84 perseant soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1976 1.84 perseant }
1977 1.84 perseant }
1978 1.84 perseant
1979 1.84 perseant return any_dirty;
1980 1.84 perseant }
1981 1.84 perseant
1982 1.84 perseant /*
1983 1.84 perseant * lfs_putpages functions like genfs_putpages except that
1984 1.135 perry *
1985 1.84 perseant * (1) It needs to bounds-check the incoming requests to ensure that
1986 1.84 perseant * they are block-aligned; if they are not, expand the range and
1987 1.84 perseant * do the right thing in case, e.g., the requested range is clean
1988 1.84 perseant * but the expanded range is dirty.
1989 1.178 perseant *
1990 1.84 perseant * (2) It needs to explicitly send blocks to be written when it is done.
1991 1.202 perseant * If VOP_PUTPAGES is called without the seglock held, we simply take
1992 1.202 perseant * the seglock and let lfs_segunlock wait for us.
1993 1.202 perseant * XXX There might be a bad situation if we have to flush a vnode while
1994 1.202 perseant * XXX lfs_markv is in operation. As of this writing we panic in this
1995 1.202 perseant * XXX case.
1996 1.84 perseant *
1997 1.84 perseant * Assumptions:
1998 1.84 perseant *
1999 1.84 perseant * (1) The caller does not hold any pages in this vnode busy. If it does,
2000 1.84 perseant * there is a danger that when we expand the page range and busy the
2001 1.84 perseant * pages we will deadlock.
2002 1.178 perseant *
2003 1.84 perseant * (2) We are called with vp->v_interlock held; we must return with it
2004 1.84 perseant * released.
2005 1.178 perseant *
2006 1.84 perseant * (3) We don't absolutely have to free pages right away, provided that
2007 1.84 perseant * the request does not have PGO_SYNCIO. When the pagedaemon gives
2008 1.84 perseant * us a request with PGO_FREE, we take the pages out of the paging
2009 1.84 perseant * queue and wake up the writer, which will handle freeing them for us.
2010 1.84 perseant *
2011 1.84 perseant * We ensure that for any filesystem block, all pages for that
2012 1.84 perseant * block are either resident or not, even if those pages are higher
2013 1.84 perseant * than EOF; that means that we will be getting requests to free
2014 1.84 perseant * "unused" pages above EOF all the time, and should ignore them.
2015 1.115 yamt *
2016 1.178 perseant * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2017 1.178 perseant * into has been set up for us by lfs_writefile. If not, we will
2018 1.178 perseant * have to handle allocating and/or freeing an finfo entry.
2019 1.178 perseant *
2020 1.115 yamt * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2021 1.84 perseant */
2022 1.84 perseant
2023 1.203 perseant /* How many times to loop before we should start to worry */
2024 1.203 perseant #define TOOMANY 4
2025 1.203 perseant
2026 1.84 perseant int
2027 1.84 perseant lfs_putpages(void *v)
2028 1.84 perseant {
2029 1.84 perseant int error;
2030 1.84 perseant struct vop_putpages_args /* {
2031 1.84 perseant struct vnode *a_vp;
2032 1.84 perseant voff_t a_offlo;
2033 1.84 perseant voff_t a_offhi;
2034 1.84 perseant int a_flags;
2035 1.84 perseant } */ *ap = v;
2036 1.84 perseant struct vnode *vp;
2037 1.84 perseant struct inode *ip;
2038 1.84 perseant struct lfs *fs;
2039 1.84 perseant struct segment *sp;
2040 1.84 perseant off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2041 1.95 perseant off_t off, max_endoffset;
2042 1.200 thorpej bool seglocked, sync, pagedaemon;
2043 1.203 perseant struct vm_page *pg, *busypg;
2044 1.84 perseant UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2045 1.203 perseant #ifdef DEBUG
2046 1.203 perseant int debug_n_again, debug_n_dirtyclean;
2047 1.203 perseant #endif
2048 1.84 perseant
2049 1.84 perseant vp = ap->a_vp;
2050 1.84 perseant ip = VTOI(vp);
2051 1.84 perseant fs = ip->i_lfs;
2052 1.126 yamt sync = (ap->a_flags & PGO_SYNCIO) != 0;
2053 1.207 ad pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2054 1.84 perseant
2055 1.84 perseant /* Putpages does nothing for metadata. */
2056 1.84 perseant if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2057 1.214 ad mutex_exit(&vp->v_interlock);
2058 1.84 perseant return 0;
2059 1.84 perseant }
2060 1.84 perseant
2061 1.84 perseant /*
2062 1.84 perseant * If there are no pages, don't do anything.
2063 1.84 perseant */
2064 1.84 perseant if (vp->v_uobj.uo_npages == 0) {
2065 1.195 perseant if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2066 1.212 ad (vp->v_iflag & VI_ONWORKLST) &&
2067 1.195 perseant LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2068 1.212 ad vp->v_iflag &= ~VI_WRMAPDIRTY;
2069 1.192 reinoud vn_syncer_remove_from_worklist(vp);
2070 1.195 perseant }
2071 1.214 ad mutex_exit(&vp->v_interlock);
2072 1.164 perseant
2073 1.164 perseant /* Remove us from paging queue, if we were on it */
2074 1.214 ad mutex_enter(&lfs_lock);
2075 1.164 perseant if (ip->i_flags & IN_PAGING) {
2076 1.164 perseant ip->i_flags &= ~IN_PAGING;
2077 1.164 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2078 1.164 perseant }
2079 1.214 ad mutex_exit(&lfs_lock);
2080 1.84 perseant return 0;
2081 1.84 perseant }
2082 1.84 perseant
2083 1.102 fvdl blkeof = blkroundup(fs, ip->i_size);
2084 1.84 perseant
2085 1.84 perseant /*
2086 1.84 perseant * Ignore requests to free pages past EOF but in the same block
2087 1.158 perseant * as EOF, unless the request is synchronous. (If the request is
2088 1.158 perseant * sync, it comes from lfs_truncate.)
2089 1.84 perseant * XXXUBC Make these pages look "active" so the pagedaemon won't
2090 1.84 perseant * XXXUBC bother us with them again.
2091 1.84 perseant */
2092 1.102 fvdl if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2093 1.84 perseant origoffset = ap->a_offlo;
2094 1.95 perseant for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2095 1.95 perseant pg = uvm_pagelookup(&vp->v_uobj, off);
2096 1.95 perseant KASSERT(pg != NULL);
2097 1.95 perseant while (pg->flags & PG_BUSY) {
2098 1.95 perseant pg->flags |= PG_WANTED;
2099 1.95 perseant UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2100 1.95 perseant "lfsput2", 0);
2101 1.214 ad mutex_enter(&vp->v_interlock);
2102 1.95 perseant }
2103 1.214 ad mutex_enter(&uvm_pageqlock);
2104 1.95 perseant uvm_pageactivate(pg);
2105 1.214 ad mutex_exit(&uvm_pageqlock);
2106 1.95 perseant }
2107 1.84 perseant ap->a_offlo = blkeof;
2108 1.84 perseant if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2109 1.214 ad mutex_exit(&vp->v_interlock);
2110 1.84 perseant return 0;
2111 1.84 perseant }
2112 1.84 perseant }
2113 1.84 perseant
2114 1.84 perseant /*
2115 1.84 perseant * Extend page range to start and end at block boundaries.
2116 1.84 perseant * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2117 1.84 perseant */
2118 1.86 perseant origoffset = ap->a_offlo;
2119 1.84 perseant origendoffset = ap->a_offhi;
2120 1.86 perseant startoffset = origoffset & ~(fs->lfs_bmask);
2121 1.84 perseant max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2122 1.84 perseant << fs->lfs_bshift;
2123 1.84 perseant
2124 1.84 perseant if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2125 1.86 perseant endoffset = max_endoffset;
2126 1.84 perseant origendoffset = endoffset;
2127 1.86 perseant } else {
2128 1.84 perseant origendoffset = round_page(ap->a_offhi);
2129 1.84 perseant endoffset = round_page(blkroundup(fs, origendoffset));
2130 1.84 perseant }
2131 1.84 perseant
2132 1.84 perseant KASSERT(startoffset > 0 || endoffset >= startoffset);
2133 1.84 perseant if (startoffset == endoffset) {
2134 1.84 perseant /* Nothing to do, why were we called? */
2135 1.214 ad mutex_exit(&vp->v_interlock);
2136 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2137 1.136 perseant PRId64 "\n", startoffset));
2138 1.84 perseant return 0;
2139 1.84 perseant }
2140 1.84 perseant
2141 1.84 perseant ap->a_offlo = startoffset;
2142 1.84 perseant ap->a_offhi = endoffset;
2143 1.84 perseant
2144 1.203 perseant /*
2145 1.203 perseant * If not cleaning, just send the pages through genfs_putpages
2146 1.203 perseant * to be returned to the pool.
2147 1.203 perseant */
2148 1.84 perseant if (!(ap->a_flags & PGO_CLEANIT))
2149 1.84 perseant return genfs_putpages(v);
2150 1.84 perseant
2151 1.203 perseant /* Set PGO_BUSYFAIL to avoid deadlocks */
2152 1.203 perseant ap->a_flags |= PGO_BUSYFAIL;
2153 1.203 perseant
2154 1.84 perseant /*
2155 1.203 perseant * Likewise, if we are asked to clean but the pages are not
2156 1.203 perseant * dirty, we can just free them using genfs_putpages.
2157 1.84 perseant */
2158 1.203 perseant #ifdef DEBUG
2159 1.203 perseant debug_n_dirtyclean = 0;
2160 1.203 perseant #endif
2161 1.103 perseant do {
2162 1.103 perseant int r;
2163 1.103 perseant
2164 1.203 perseant /* Count the number of dirty pages */
2165 1.158 perseant r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2166 1.203 perseant ap->a_flags, 1, NULL);
2167 1.158 perseant if (r < 0) {
2168 1.203 perseant /* Pages are busy with another process */
2169 1.214 ad mutex_exit(&vp->v_interlock);
2170 1.158 perseant return EDEADLK;
2171 1.158 perseant }
2172 1.203 perseant if (r > 0) /* Some pages are dirty */
2173 1.103 perseant break;
2174 1.103 perseant
2175 1.134 perseant /*
2176 1.134 perseant * Sometimes pages are dirtied between the time that
2177 1.134 perseant * we check and the time we try to clean them.
2178 1.134 perseant * Instruct lfs_gop_write to return EDEADLK in this case
2179 1.134 perseant * so we can write them properly.
2180 1.134 perseant */
2181 1.134 perseant ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2182 1.206 perseant r = genfs_do_putpages(vp, startoffset, endoffset,
2183 1.226 eeh ap->a_flags & ~PGO_SYNCIO, &busypg);
2184 1.134 perseant ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2185 1.134 perseant if (r != EDEADLK)
2186 1.103 perseant return r;
2187 1.103 perseant
2188 1.203 perseant /* One of the pages was busy. Start over. */
2189 1.214 ad mutex_enter(&vp->v_interlock);
2190 1.203 perseant wait_for_page(vp, busypg, "dirtyclean");
2191 1.203 perseant #ifdef DEBUG
2192 1.203 perseant ++debug_n_dirtyclean;
2193 1.203 perseant #endif
2194 1.103 perseant } while(1);
2195 1.135 perry
2196 1.203 perseant #ifdef DEBUG
2197 1.203 perseant if (debug_n_dirtyclean > TOOMANY)
2198 1.203 perseant printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2199 1.203 perseant debug_n_dirtyclean);
2200 1.203 perseant #endif
2201 1.203 perseant
2202 1.84 perseant /*
2203 1.84 perseant * Dirty and asked to clean.
2204 1.84 perseant *
2205 1.84 perseant * Pagedaemon can't actually write LFS pages; wake up
2206 1.84 perseant * the writer to take care of that. The writer will
2207 1.84 perseant * notice the pager inode queue and act on that.
2208 1.84 perseant */
2209 1.84 perseant if (pagedaemon) {
2210 1.214 ad mutex_enter(&lfs_lock);
2211 1.164 perseant if (!(ip->i_flags & IN_PAGING)) {
2212 1.164 perseant ip->i_flags |= IN_PAGING;
2213 1.164 perseant TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2214 1.164 perseant }
2215 1.164 perseant wakeup(&lfs_writer_daemon);
2216 1.214 ad mutex_exit(&lfs_lock);
2217 1.214 ad mutex_exit(&vp->v_interlock);
2218 1.198 ad preempt();
2219 1.84 perseant return EWOULDBLOCK;
2220 1.84 perseant }
2221 1.84 perseant
2222 1.84 perseant /*
2223 1.84 perseant * If this is a file created in a recent dirop, we can't flush its
2224 1.84 perseant * inode until the dirop is complete. Drain dirops, then flush the
2225 1.84 perseant * filesystem (taking care of any other pending dirops while we're
2226 1.84 perseant * at it).
2227 1.84 perseant */
2228 1.84 perseant if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2229 1.212 ad (vp->v_uflag & VU_DIROP)) {
2230 1.84 perseant int locked;
2231 1.84 perseant
2232 1.212 ad DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2233 1.228 hannken /* XXX VOP_ISLOCKED() may not be used for lock decisions. */
2234 1.189 perseant locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2235 1.214 ad mutex_exit(&vp->v_interlock);
2236 1.140 perseant lfs_writer_enter(fs, "ppdirop");
2237 1.84 perseant if (locked)
2238 1.229 hannken VOP_UNLOCK(vp); /* XXX why? */
2239 1.135 perry
2240 1.214 ad mutex_enter(&lfs_lock);
2241 1.84 perseant lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2242 1.214 ad mutex_exit(&lfs_lock);
2243 1.135 perry
2244 1.228 hannken if (locked)
2245 1.228 hannken VOP_LOCK(vp, LK_EXCLUSIVE);
2246 1.214 ad mutex_enter(&vp->v_interlock);
2247 1.111 yamt lfs_writer_leave(fs);
2248 1.84 perseant
2249 1.84 perseant /* XXX the flush should have taken care of this one too! */
2250 1.84 perseant }
2251 1.84 perseant
2252 1.84 perseant /*
2253 1.86 perseant * This is it. We are going to write some pages. From here on
2254 1.84 perseant * down it's all just mechanics.
2255 1.84 perseant *
2256 1.103 perseant * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2257 1.84 perseant */
2258 1.84 perseant ap->a_flags &= ~PGO_SYNCIO;
2259 1.84 perseant
2260 1.84 perseant /*
2261 1.84 perseant * If we've already got the seglock, flush the node and return.
2262 1.84 perseant * The FIP has already been set up for us by lfs_writefile,
2263 1.84 perseant * and FIP cleanup and lfs_updatemeta will also be done there,
2264 1.84 perseant * unless genfs_putpages returns EDEADLK; then we must flush
2265 1.84 perseant * what we have, and correct FIP and segment header accounting.
2266 1.84 perseant */
2267 1.203 perseant get_seglock:
2268 1.203 perseant /*
2269 1.203 perseant * If we are not called with the segment locked, lock it.
2270 1.203 perseant * Account for a new FIP in the segment header, and set sp->vp.
2271 1.203 perseant * (This should duplicate the setup at the top of lfs_writefile().)
2272 1.203 perseant */
2273 1.126 yamt seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2274 1.126 yamt if (!seglocked) {
2275 1.214 ad mutex_exit(&vp->v_interlock);
2276 1.126 yamt error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2277 1.126 yamt if (error != 0)
2278 1.126 yamt return error;
2279 1.214 ad mutex_enter(&vp->v_interlock);
2280 1.203 perseant lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2281 1.84 perseant }
2282 1.84 perseant sp = fs->lfs_sp;
2283 1.120 yamt KASSERT(sp->vp == NULL);
2284 1.84 perseant sp->vp = vp;
2285 1.135 perry
2286 1.203 perseant /*
2287 1.203 perseant * Ensure that the partial segment is marked SS_DIROP if this
2288 1.203 perseant * vnode is a DIROP.
2289 1.203 perseant */
2290 1.212 ad if (!seglocked && vp->v_uflag & VU_DIROP)
2291 1.203 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2292 1.135 perry
2293 1.84 perseant /*
2294 1.203 perseant * Loop over genfs_putpages until all pages are gathered.
2295 1.88 perseant * genfs_putpages() drops the interlock, so reacquire it if necessary.
2296 1.103 perseant * Whenever we lose the interlock we have to rerun check_dirty, as
2297 1.203 perseant * well, since more pages might have been dirtied in our absence.
2298 1.84 perseant */
2299 1.203 perseant #ifdef DEBUG
2300 1.203 perseant debug_n_again = 0;
2301 1.203 perseant #endif
2302 1.203 perseant do {
2303 1.203 perseant busypg = NULL;
2304 1.203 perseant if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2305 1.203 perseant ap->a_flags, 0, &busypg) < 0) {
2306 1.214 ad mutex_exit(&vp->v_interlock);
2307 1.103 perseant
2308 1.214 ad mutex_enter(&vp->v_interlock);
2309 1.203 perseant write_and_wait(fs, vp, busypg, seglocked, NULL);
2310 1.203 perseant if (!seglocked) {
2311 1.225 eeh mutex_exit(&vp->v_interlock);
2312 1.203 perseant lfs_release_finfo(fs);
2313 1.203 perseant lfs_segunlock(fs);
2314 1.225 eeh mutex_enter(&vp->v_interlock);
2315 1.203 perseant }
2316 1.208 perseant sp->vp = NULL;
2317 1.203 perseant goto get_seglock;
2318 1.88 perseant }
2319 1.203 perseant
2320 1.203 perseant busypg = NULL;
2321 1.206 perseant error = genfs_do_putpages(vp, startoffset, endoffset,
2322 1.203 perseant ap->a_flags, &busypg);
2323 1.203 perseant
2324 1.203 perseant if (error == EDEADLK || error == EAGAIN) {
2325 1.203 perseant DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2326 1.203 perseant " %d ino %d off %x (seg %d)\n", error,
2327 1.203 perseant ip->i_number, fs->lfs_offset,
2328 1.203 perseant dtosn(fs, fs->lfs_offset)));
2329 1.84 perseant
2330 1.214 ad mutex_enter(&vp->v_interlock);
2331 1.203 perseant write_and_wait(fs, vp, busypg, seglocked, "again");
2332 1.167 perseant }
2333 1.203 perseant #ifdef DEBUG
2334 1.203 perseant ++debug_n_again;
2335 1.203 perseant #endif
2336 1.203 perseant } while (error == EDEADLK);
2337 1.203 perseant #ifdef DEBUG
2338 1.203 perseant if (debug_n_again > TOOMANY)
2339 1.203 perseant printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2340 1.203 perseant #endif
2341 1.103 perseant
2342 1.203 perseant KASSERT(sp != NULL && sp->vp == vp);
2343 1.126 yamt if (!seglocked) {
2344 1.178 perseant sp->vp = NULL;
2345 1.126 yamt
2346 1.126 yamt /* Write indirect blocks as well */
2347 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2348 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2349 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2350 1.120 yamt
2351 1.126 yamt KASSERT(sp->vp == NULL);
2352 1.126 yamt sp->vp = vp;
2353 1.126 yamt }
2354 1.84 perseant
2355 1.84 perseant /*
2356 1.84 perseant * Blocks are now gathered into a segment waiting to be written.
2357 1.84 perseant * All that's left to do is update metadata, and write them.
2358 1.84 perseant */
2359 1.120 yamt lfs_updatemeta(sp);
2360 1.120 yamt KASSERT(sp->vp == vp);
2361 1.120 yamt sp->vp = NULL;
2362 1.126 yamt
2363 1.203 perseant /*
2364 1.203 perseant * If we were called from lfs_writefile, we don't need to clean up
2365 1.203 perseant * the FIP or unlock the segment lock. We're done.
2366 1.203 perseant */
2367 1.203 perseant if (seglocked)
2368 1.126 yamt return error;
2369 1.120 yamt
2370 1.178 perseant /* Clean up FIP and send it to disk. */
2371 1.178 perseant lfs_release_finfo(fs);
2372 1.88 perseant lfs_writeseg(fs, fs->lfs_sp);
2373 1.88 perseant
2374 1.84 perseant /*
2375 1.203 perseant * Remove us from paging queue if we wrote all our pages.
2376 1.164 perseant */
2377 1.203 perseant if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2378 1.214 ad mutex_enter(&lfs_lock);
2379 1.203 perseant if (ip->i_flags & IN_PAGING) {
2380 1.203 perseant ip->i_flags &= ~IN_PAGING;
2381 1.203 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2382 1.203 perseant }
2383 1.214 ad mutex_exit(&lfs_lock);
2384 1.164 perseant }
2385 1.164 perseant
2386 1.164 perseant /*
2387 1.84 perseant * XXX - with the malloc/copy writeseg, the pages are freed by now
2388 1.84 perseant * even if we don't wait (e.g. if we hold a nested lock). This
2389 1.84 perseant * will not be true if we stop using malloc/copy.
2390 1.84 perseant */
2391 1.84 perseant KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2392 1.84 perseant lfs_segunlock(fs);
2393 1.84 perseant
2394 1.84 perseant /*
2395 1.84 perseant * Wait for v_numoutput to drop to zero. The seglock should
2396 1.84 perseant * take care of this, but there is a slight possibility that
2397 1.84 perseant * aiodoned might not have got around to our buffers yet.
2398 1.84 perseant */
2399 1.84 perseant if (sync) {
2400 1.214 ad mutex_enter(&vp->v_interlock);
2401 1.98 perseant while (vp->v_numoutput > 0) {
2402 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2403 1.136 perseant " num %d\n", ip->i_number, vp->v_numoutput));
2404 1.214 ad cv_wait(&vp->v_cv, &vp->v_interlock);
2405 1.84 perseant }
2406 1.214 ad mutex_exit(&vp->v_interlock);
2407 1.84 perseant }
2408 1.84 perseant return error;
2409 1.84 perseant }
2410 1.84 perseant
2411 1.84 perseant /*
2412 1.84 perseant * Return the last logical file offset that should be written for this file
2413 1.86 perseant * if we're doing a write that ends at "size". If writing, we need to know
2414 1.84 perseant * about sizes on disk, i.e. fragments if there are any; if reading, we need
2415 1.84 perseant * to know about entire blocks.
2416 1.84 perseant */
2417 1.84 perseant void
2418 1.84 perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2419 1.84 perseant {
2420 1.84 perseant struct inode *ip = VTOI(vp);
2421 1.135 perry struct lfs *fs = ip->i_lfs;
2422 1.84 perseant daddr_t olbn, nlbn;
2423 1.84 perseant
2424 1.102 fvdl olbn = lblkno(fs, ip->i_size);
2425 1.84 perseant nlbn = lblkno(fs, size);
2426 1.118 yamt if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2427 1.86 perseant *eobp = fragroundup(fs, size);
2428 1.86 perseant } else {
2429 1.86 perseant *eobp = blkroundup(fs, size);
2430 1.86 perseant }
2431 1.84 perseant }
2432 1.84 perseant
2433 1.84 perseant #ifdef DEBUG
2434 1.84 perseant void lfs_dump_vop(void *);
2435 1.84 perseant
2436 1.84 perseant void
2437 1.84 perseant lfs_dump_vop(void *v)
2438 1.84 perseant {
2439 1.86 perseant struct vop_putpages_args /* {
2440 1.86 perseant struct vnode *a_vp;
2441 1.86 perseant voff_t a_offlo;
2442 1.86 perseant voff_t a_offhi;
2443 1.86 perseant int a_flags;
2444 1.86 perseant } */ *ap = v;
2445 1.84 perseant
2446 1.106 ragge #ifdef DDB
2447 1.84 perseant vfs_vnode_print(ap->a_vp, 0, printf);
2448 1.106 ragge #endif
2449 1.102 fvdl lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2450 1.84 perseant }
2451 1.84 perseant #endif
2452 1.84 perseant
2453 1.84 perseant int
2454 1.84 perseant lfs_mmap(void *v)
2455 1.84 perseant {
2456 1.84 perseant struct vop_mmap_args /* {
2457 1.86 perseant const struct vnodeop_desc *a_desc;
2458 1.86 perseant struct vnode *a_vp;
2459 1.209 pooka vm_prot_t a_prot;
2460 1.176 elad kauth_cred_t a_cred;
2461 1.84 perseant } */ *ap = v;
2462 1.84 perseant
2463 1.84 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2464 1.84 perseant return EOPNOTSUPP;
2465 1.84 perseant return ufs_mmap(v);
2466 1.84 perseant }
2467