Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.238.6.1
      1  1.238.6.1       mrg /*	$NetBSD: lfs_vnops.c,v 1.238.6.1 2012/02/18 07:35:55 mrg Exp $	*/
      2        1.2       cgd 
      3       1.22  perseant /*-
      4       1.84  perseant  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5       1.22  perseant  * All rights reserved.
      6       1.22  perseant  *
      7       1.22  perseant  * This code is derived from software contributed to The NetBSD Foundation
      8       1.22  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9       1.22  perseant  *
     10       1.22  perseant  * Redistribution and use in source and binary forms, with or without
     11       1.22  perseant  * modification, are permitted provided that the following conditions
     12       1.22  perseant  * are met:
     13       1.22  perseant  * 1. Redistributions of source code must retain the above copyright
     14       1.22  perseant  *    notice, this list of conditions and the following disclaimer.
     15       1.22  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.22  perseant  *    notice, this list of conditions and the following disclaimer in the
     17       1.22  perseant  *    documentation and/or other materials provided with the distribution.
     18       1.22  perseant  *
     19       1.22  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.22  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.22  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.22  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.22  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.22  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.22  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.22  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.22  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.22  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.22  perseant  * POSSIBILITY OF SUCH DAMAGE.
     30       1.22  perseant  */
     31        1.1   mycroft /*
     32       1.15      fvdl  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     34        1.1   mycroft  *
     35        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     36        1.1   mycroft  * modification, are permitted provided that the following conditions
     37        1.1   mycroft  * are met:
     38        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     39        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     40        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     41        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     42        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     43      1.114       agc  * 3. Neither the name of the University nor the names of its contributors
     44        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     45        1.1   mycroft  *    without specific prior written permission.
     46        1.1   mycroft  *
     47        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57        1.1   mycroft  * SUCH DAMAGE.
     58        1.1   mycroft  *
     59       1.15      fvdl  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60        1.1   mycroft  */
     61       1.58     lukem 
     62       1.58     lukem #include <sys/cdefs.h>
     63  1.238.6.1       mrg __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.238.6.1 2012/02/18 07:35:55 mrg Exp $");
     64      1.182    martin 
     65      1.183    martin #ifdef _KERNEL_OPT
     66      1.182    martin #include "opt_compat_netbsd.h"
     67      1.238       chs #include "opt_uvm_page_trkown.h"
     68      1.183    martin #endif
     69       1.17  sommerfe 
     70        1.1   mycroft #include <sys/param.h>
     71        1.1   mycroft #include <sys/systm.h>
     72        1.1   mycroft #include <sys/namei.h>
     73        1.1   mycroft #include <sys/resourcevar.h>
     74        1.1   mycroft #include <sys/kernel.h>
     75        1.1   mycroft #include <sys/file.h>
     76        1.1   mycroft #include <sys/stat.h>
     77        1.1   mycroft #include <sys/buf.h>
     78        1.1   mycroft #include <sys/proc.h>
     79        1.1   mycroft #include <sys/mount.h>
     80        1.1   mycroft #include <sys/vnode.h>
     81       1.19   thorpej #include <sys/pool.h>
     82       1.10  christos #include <sys/signalvar.h>
     83      1.176      elad #include <sys/kauth.h>
     84      1.179  perseant #include <sys/syslog.h>
     85      1.197   hannken #include <sys/fstrans.h>
     86        1.1   mycroft 
     87       1.12   mycroft #include <miscfs/fifofs/fifo.h>
     88       1.12   mycroft #include <miscfs/genfs/genfs.h>
     89        1.1   mycroft #include <miscfs/specfs/specdev.h>
     90        1.1   mycroft 
     91        1.1   mycroft #include <ufs/ufs/inode.h>
     92        1.1   mycroft #include <ufs/ufs/dir.h>
     93        1.1   mycroft #include <ufs/ufs/ufsmount.h>
     94  1.238.6.1       mrg #include <ufs/ufs/ufs_bswap.h>
     95        1.1   mycroft #include <ufs/ufs/ufs_extern.h>
     96        1.1   mycroft 
     97       1.84  perseant #include <uvm/uvm.h>
     98       1.95  perseant #include <uvm/uvm_pmap.h>
     99       1.95  perseant #include <uvm/uvm_stat.h>
    100       1.95  perseant #include <uvm/uvm_pager.h>
    101       1.84  perseant 
    102        1.1   mycroft #include <ufs/lfs/lfs.h>
    103        1.1   mycroft #include <ufs/lfs/lfs_extern.h>
    104        1.1   mycroft 
    105       1.91      yamt extern pid_t lfs_writer_daemon;
    106      1.203  perseant int lfs_ignore_lazy_sync = 1;
    107      1.203  perseant 
    108        1.1   mycroft /* Global vfs data structures for lfs. */
    109       1.51  perseant int (**lfs_vnodeop_p)(void *);
    110       1.50  jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    111        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    112        1.1   mycroft 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    113       1.22  perseant 	{ &vop_create_desc, lfs_create },		/* create */
    114       1.82      yamt 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    115       1.22  perseant 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    116        1.1   mycroft 	{ &vop_open_desc, ufs_open },			/* open */
    117        1.1   mycroft 	{ &vop_close_desc, lfs_close },			/* close */
    118        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    119        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    120       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    121        1.1   mycroft 	{ &vop_read_desc, lfs_read },			/* read */
    122        1.1   mycroft 	{ &vop_write_desc, lfs_write },			/* write */
    123       1.90  perseant 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    124       1.90  perseant 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    125       1.13   mycroft 	{ &vop_poll_desc, ufs_poll },			/* poll */
    126       1.68  jdolecek 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    127       1.15      fvdl 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    128       1.84  perseant 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    129        1.1   mycroft 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    130        1.1   mycroft 	{ &vop_seek_desc, ufs_seek },			/* seek */
    131       1.22  perseant 	{ &vop_remove_desc, lfs_remove },		/* remove */
    132       1.22  perseant 	{ &vop_link_desc, lfs_link },			/* link */
    133       1.22  perseant 	{ &vop_rename_desc, lfs_rename },		/* rename */
    134       1.22  perseant 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    135       1.22  perseant 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    136       1.22  perseant 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    137        1.1   mycroft 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    138        1.1   mycroft 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    139        1.1   mycroft 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    140       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    141        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    142        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    143        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    144        1.1   mycroft 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    145       1.94  perseant 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    146        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    147        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    148        1.1   mycroft 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    149        1.1   mycroft 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    150        1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    151       1.60       chs 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    152       1.60       chs 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    153       1.53       chs 	{ NULL, NULL }
    154        1.1   mycroft };
    155       1.50  jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    156        1.1   mycroft 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    157        1.1   mycroft 
    158       1.51  perseant int (**lfs_specop_p)(void *);
    159       1.50  jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    160        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    161        1.1   mycroft 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    162        1.1   mycroft 	{ &vop_create_desc, spec_create },		/* create */
    163        1.1   mycroft 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    164        1.1   mycroft 	{ &vop_open_desc, spec_open },			/* open */
    165       1.65  perseant 	{ &vop_close_desc, lfsspec_close },		/* close */
    166        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    167        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    168       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    169        1.1   mycroft 	{ &vop_read_desc, ufsspec_read },		/* read */
    170        1.1   mycroft 	{ &vop_write_desc, ufsspec_write },		/* write */
    171        1.1   mycroft 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172       1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    173       1.13   mycroft 	{ &vop_poll_desc, spec_poll },			/* poll */
    174       1.68  jdolecek 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175       1.15      fvdl 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176        1.1   mycroft 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177        1.1   mycroft 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178        1.1   mycroft 	{ &vop_seek_desc, spec_seek },			/* seek */
    179        1.1   mycroft 	{ &vop_remove_desc, spec_remove },		/* remove */
    180        1.1   mycroft 	{ &vop_link_desc, spec_link },			/* link */
    181        1.1   mycroft 	{ &vop_rename_desc, spec_rename },		/* rename */
    182        1.1   mycroft 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183        1.1   mycroft 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184        1.1   mycroft 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185        1.1   mycroft 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186        1.1   mycroft 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187        1.1   mycroft 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    191        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    192        1.1   mycroft 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193        1.1   mycroft 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    195        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    196        1.1   mycroft 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197        1.1   mycroft 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198       1.28  perseant 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199       1.53       chs 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200       1.53       chs 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201       1.53       chs 	{ NULL, NULL }
    202        1.1   mycroft };
    203       1.50  jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
    204        1.1   mycroft 	{ &lfs_specop_p, lfs_specop_entries };
    205        1.1   mycroft 
    206       1.51  perseant int (**lfs_fifoop_p)(void *);
    207       1.50  jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    209      1.227     pooka 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    210      1.227     pooka 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    211      1.227     pooka 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    212      1.227     pooka 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    213       1.65  perseant 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    215        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217        1.1   mycroft 	{ &vop_read_desc, ufsfifo_read },		/* read */
    218        1.1   mycroft 	{ &vop_write_desc, ufsfifo_write },		/* write */
    219      1.227     pooka 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    220       1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    221      1.227     pooka 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    222      1.227     pooka 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    223      1.227     pooka 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    224      1.227     pooka 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    225      1.227     pooka 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    226      1.227     pooka 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    227      1.227     pooka 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    228      1.227     pooka 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    229      1.227     pooka 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    230      1.227     pooka 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    231      1.227     pooka 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    232      1.227     pooka 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    233      1.227     pooka 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    234      1.227     pooka 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    235      1.227     pooka 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    236       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    239        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    240      1.227     pooka 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    241      1.227     pooka 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    242        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    243        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    244      1.227     pooka 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    245      1.227     pooka 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    246        1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247      1.227     pooka 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    248       1.53       chs 	{ NULL, NULL }
    249        1.1   mycroft };
    250       1.50  jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251        1.1   mycroft 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252        1.1   mycroft 
    253      1.203  perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    254      1.134  perseant 
    255        1.1   mycroft #define	LFS_READWRITE
    256        1.1   mycroft #include <ufs/ufs/ufs_readwrite.c>
    257        1.1   mycroft #undef	LFS_READWRITE
    258        1.1   mycroft 
    259        1.1   mycroft /*
    260        1.1   mycroft  * Synch an open file.
    261        1.1   mycroft  */
    262        1.1   mycroft /* ARGSUSED */
    263       1.10  christos int
    264       1.51  perseant lfs_fsync(void *v)
    265       1.10  christos {
    266        1.1   mycroft 	struct vop_fsync_args /* {
    267        1.1   mycroft 		struct vnode *a_vp;
    268      1.176      elad 		kauth_cred_t a_cred;
    269       1.22  perseant 		int a_flags;
    270       1.49    toshii 		off_t offlo;
    271       1.49    toshii 		off_t offhi;
    272       1.10  christos 	} */ *ap = v;
    273       1.60       chs 	struct vnode *vp = ap->a_vp;
    274       1.84  perseant 	int error, wait;
    275      1.203  perseant 	struct inode *ip = VTOI(vp);
    276      1.203  perseant 	struct lfs *fs = ip->i_lfs;
    277       1.84  perseant 
    278      1.161  perseant 	/* If we're mounted read-only, don't try to sync. */
    279      1.203  perseant 	if (fs->lfs_ronly)
    280      1.161  perseant 		return 0;
    281      1.161  perseant 
    282      1.231   hannken 	/* If a removed vnode is being cleaned, no need to sync here. */
    283      1.231   hannken 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    284      1.231   hannken 		return 0;
    285      1.231   hannken 
    286       1.86  perseant 	/*
    287      1.203  perseant 	 * Trickle sync simply adds this vnode to the pager list, as if
    288      1.203  perseant 	 * the pagedaemon had requested a pageout.
    289       1.86  perseant 	 */
    290       1.84  perseant 	if (ap->a_flags & FSYNC_LAZY) {
    291      1.203  perseant 		if (lfs_ignore_lazy_sync == 0) {
    292      1.214        ad 			mutex_enter(&lfs_lock);
    293      1.203  perseant 			if (!(ip->i_flags & IN_PAGING)) {
    294      1.203  perseant 				ip->i_flags |= IN_PAGING;
    295      1.203  perseant 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    296      1.203  perseant 						  i_lfs_pchain);
    297      1.203  perseant 			}
    298      1.203  perseant 			wakeup(&lfs_writer_daemon);
    299      1.214        ad 			mutex_exit(&lfs_lock);
    300      1.203  perseant 		}
    301       1.47  perseant 		return 0;
    302       1.84  perseant 	}
    303       1.47  perseant 
    304      1.175  perseant 	/*
    305      1.188  perseant 	 * If a vnode is bring cleaned, flush it out before we try to
    306      1.188  perseant 	 * reuse it.  This prevents the cleaner from writing files twice
    307      1.188  perseant 	 * in the same partial segment, causing an accounting underflow.
    308      1.188  perseant 	 */
    309      1.203  perseant 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    310      1.188  perseant 		lfs_vflush(vp);
    311      1.175  perseant 	}
    312      1.175  perseant 
    313       1.84  perseant 	wait = (ap->a_flags & FSYNC_WAIT);
    314      1.203  perseant 	do {
    315      1.235     rmind 		mutex_enter(vp->v_interlock);
    316      1.203  perseant 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    317      1.203  perseant 				     round_page(ap->a_offhi),
    318      1.203  perseant 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    319      1.205  perseant 		if (error == EAGAIN) {
    320      1.214        ad 			mutex_enter(&lfs_lock);
    321      1.214        ad 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    322      1.214        ad 				hz / 100 + 1, &lfs_lock);
    323      1.214        ad 			mutex_exit(&lfs_lock);
    324      1.205  perseant 		}
    325      1.203  perseant 	} while (error == EAGAIN);
    326      1.103  perseant 	if (error)
    327      1.103  perseant 		return error;
    328      1.203  perseant 
    329      1.203  perseant 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    330      1.203  perseant 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    331      1.203  perseant 
    332      1.133  wrstuden 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    333      1.133  wrstuden 		int l = 0;
    334      1.203  perseant 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    335      1.213     pooka 				  curlwp->l_cred);
    336      1.133  wrstuden 	}
    337      1.103  perseant 	if (wait && !VPISEMPTY(vp))
    338      1.203  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
    339       1.84  perseant 
    340       1.63  perseant 	return error;
    341        1.1   mycroft }
    342        1.1   mycroft 
    343        1.1   mycroft /*
    344       1.40  perseant  * Take IN_ADIROP off, then call ufs_inactive.
    345       1.40  perseant  */
    346       1.40  perseant int
    347       1.51  perseant lfs_inactive(void *v)
    348       1.40  perseant {
    349       1.40  perseant 	struct vop_inactive_args /* {
    350       1.40  perseant 		struct vnode *a_vp;
    351       1.40  perseant 	} */ *ap = v;
    352       1.72      yamt 
    353       1.76      yamt 	lfs_unmark_vnode(ap->a_vp);
    354       1.76      yamt 
    355       1.97  perseant 	/*
    356       1.97  perseant 	 * The Ifile is only ever inactivated on unmount.
    357       1.97  perseant 	 * Streamline this process by not giving it more dirty blocks.
    358       1.97  perseant 	 */
    359       1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    360      1.214        ad 		mutex_enter(&lfs_lock);
    361       1.97  perseant 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    362      1.214        ad 		mutex_exit(&lfs_lock);
    363      1.229   hannken 		VOP_UNLOCK(ap->a_vp);
    364       1.97  perseant 		return 0;
    365       1.97  perseant 	}
    366       1.97  perseant 
    367  1.238.6.1       mrg #ifdef DEBUG
    368  1.238.6.1       mrg 	/*
    369  1.238.6.1       mrg 	 * This might happen on unmount.
    370  1.238.6.1       mrg 	 * XXX If it happens at any other time, it should be a panic.
    371  1.238.6.1       mrg 	 */
    372  1.238.6.1       mrg 	if (ap->a_vp->v_uflag & VU_DIROP) {
    373  1.238.6.1       mrg 		struct inode *ip = VTOI(ap->a_vp);
    374  1.238.6.1       mrg 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    375  1.238.6.1       mrg 	}
    376  1.238.6.1       mrg #endif /* DIAGNOSTIC */
    377  1.238.6.1       mrg 
    378       1.75      yamt 	return ufs_inactive(v);
    379       1.40  perseant }
    380       1.40  perseant 
    381       1.40  perseant /*
    382        1.1   mycroft  * These macros are used to bracket UFS directory ops, so that we can
    383        1.1   mycroft  * identify all the pages touched during directory ops which need to
    384        1.1   mycroft  * be ordered and flushed atomically, so that they may be recovered.
    385      1.138  perseant  *
    386      1.212        ad  * Because we have to mark nodes VU_DIROP in order to prevent
    387       1.22  perseant  * the cache from reclaiming them while a dirop is in progress, we must
    388       1.22  perseant  * also manage the number of nodes so marked (otherwise we can run out).
    389       1.22  perseant  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    390      1.212        ad  * is decremented during segment write, when VU_DIROP is taken off.
    391       1.22  perseant  */
    392      1.138  perseant #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    393      1.138  perseant #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    394      1.138  perseant #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    395      1.138  perseant #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    396      1.138  perseant static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    397       1.71      yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
    398       1.24  perseant 
    399       1.46  perseant static int
    400      1.138  perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    401       1.40  perseant {
    402       1.24  perseant 	struct lfs *fs;
    403       1.24  perseant 	int error;
    404       1.24  perseant 
    405      1.138  perseant 	KASSERT(VOP_ISLOCKED(dvp));
    406      1.138  perseant 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    407       1.71      yamt 
    408      1.138  perseant 	fs = VTOI(dvp)->i_lfs;
    409      1.141  perseant 
    410      1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    411       1.44  perseant 	/*
    412      1.134  perseant 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    413      1.134  perseant 	 * as an inode block; an overestimate in most cases.
    414       1.44  perseant 	 */
    415      1.138  perseant 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    416       1.44  perseant 		return (error);
    417       1.70      yamt 
    418      1.214        ad     restart:
    419      1.214        ad 	mutex_enter(&lfs_lock);
    420      1.141  perseant 	if (fs->lfs_dirops == 0) {
    421      1.214        ad 		mutex_exit(&lfs_lock);
    422      1.138  perseant 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    423      1.214        ad 		mutex_enter(&lfs_lock);
    424      1.113      yamt 	}
    425      1.190  perseant 	while (fs->lfs_writer) {
    426      1.214        ad 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    427      1.214        ad 		    "lfs_sdirop", 0, &lfs_lock);
    428      1.190  perseant 		if (error == EINTR) {
    429      1.214        ad 			mutex_exit(&lfs_lock);
    430      1.190  perseant 			goto unreserve;
    431      1.190  perseant 		}
    432      1.190  perseant 	}
    433      1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    434      1.113      yamt 		wakeup(&lfs_writer_daemon);
    435      1.214        ad 		mutex_exit(&lfs_lock);
    436      1.198        ad 		preempt();
    437      1.113      yamt 		goto restart;
    438      1.113      yamt 	}
    439       1.33  perseant 
    440      1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    441      1.136  perseant 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    442      1.136  perseant 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    443      1.214        ad 		if ((error = mtsleep(&lfs_dirvcount,
    444      1.214        ad 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    445      1.214        ad 		    &lfs_lock)) != 0) {
    446      1.113      yamt 			goto unreserve;
    447      1.113      yamt 		}
    448      1.113      yamt 		goto restart;
    449      1.135     perry 	}
    450      1.113      yamt 
    451      1.135     perry 	++fs->lfs_dirops;
    452  1.238.6.1       mrg 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    453      1.214        ad 	mutex_exit(&lfs_lock);
    454       1.24  perseant 
    455       1.46  perseant 	/* Hold a reference so SET_ENDOP will be happy */
    456      1.138  perseant 	vref(dvp);
    457      1.138  perseant 	if (vp) {
    458      1.138  perseant 		vref(vp);
    459      1.138  perseant 		MARK_VNODE(vp);
    460      1.138  perseant 	}
    461       1.46  perseant 
    462      1.138  perseant 	MARK_VNODE(dvp);
    463       1.24  perseant 	return 0;
    464       1.70      yamt 
    465      1.203  perseant   unreserve:
    466      1.138  perseant 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    467       1.70      yamt 	return error;
    468        1.1   mycroft }
    469        1.1   mycroft 
    470      1.138  perseant /*
    471      1.138  perseant  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    472      1.138  perseant  * in getnewvnode(), if we have a stacked filesystem mounted on top
    473      1.138  perseant  * of us.
    474      1.138  perseant  *
    475      1.138  perseant  * NB: this means we have to clear the new vnodes on error.  Fortunately
    476      1.138  perseant  * SET_ENDOP is there to do that for us.
    477      1.138  perseant  */
    478      1.138  perseant static int
    479      1.138  perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    480      1.138  perseant {
    481      1.138  perseant 	int error;
    482      1.138  perseant 	struct lfs *fs;
    483      1.138  perseant 
    484      1.138  perseant 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    485      1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    486      1.138  perseant 	if (fs->lfs_ronly)
    487      1.138  perseant 		return EROFS;
    488      1.235     rmind 	if (vpp == NULL) {
    489      1.235     rmind 		return lfs_set_dirop(dvp, NULL);
    490      1.235     rmind 	}
    491      1.235     rmind 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    492      1.235     rmind 	if (error) {
    493      1.138  perseant 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    494      1.138  perseant 		      dvp, error));
    495      1.138  perseant 		return error;
    496      1.138  perseant 	}
    497      1.138  perseant 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    498      1.235     rmind 		ungetnewvnode(*vpp);
    499      1.235     rmind 		*vpp = NULL;
    500      1.138  perseant 		return error;
    501      1.138  perseant 	}
    502      1.138  perseant 	return 0;
    503        1.1   mycroft }
    504        1.1   mycroft 
    505      1.138  perseant #define	SET_ENDOP_BASE(fs, dvp, str)					\
    506      1.138  perseant 	do {								\
    507      1.214        ad 		mutex_enter(&lfs_lock);				\
    508      1.138  perseant 		--(fs)->lfs_dirops;					\
    509      1.138  perseant 		if (!(fs)->lfs_dirops) {				\
    510      1.138  perseant 			if ((fs)->lfs_nadirop) {			\
    511      1.138  perseant 				panic("SET_ENDOP: %s: no dirops but "	\
    512      1.138  perseant 					" nadirop=%d", (str),		\
    513      1.138  perseant 					(fs)->lfs_nadirop);		\
    514      1.138  perseant 			}						\
    515      1.138  perseant 			wakeup(&(fs)->lfs_writer);			\
    516      1.214        ad 			mutex_exit(&lfs_lock);				\
    517      1.138  perseant 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    518      1.138  perseant 		} else							\
    519      1.214        ad 			mutex_exit(&lfs_lock);				\
    520      1.138  perseant 	} while(0)
    521      1.138  perseant #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    522      1.138  perseant 	do {								\
    523      1.138  perseant 		UNMARK_VNODE(dvp);					\
    524      1.138  perseant 		if (nvpp && *nvpp)					\
    525      1.138  perseant 			UNMARK_VNODE(*nvpp);				\
    526      1.138  perseant 		/* Check for error return to stem vnode leakage */	\
    527      1.212        ad 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    528      1.138  perseant 			ungetnewvnode(*(nvpp));				\
    529      1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    530      1.138  perseant 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    531      1.138  perseant 		vrele(dvp);						\
    532      1.138  perseant 	} while(0)
    533      1.138  perseant #define SET_ENDOP_CREATE_AP(ap, str)					\
    534      1.138  perseant 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    535      1.138  perseant 			 (ap)->a_vpp, (str))
    536      1.138  perseant #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    537      1.138  perseant 	do {								\
    538      1.138  perseant 		UNMARK_VNODE(dvp);					\
    539      1.138  perseant 		if (ovp)						\
    540      1.138  perseant 			UNMARK_VNODE(ovp);				\
    541      1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    542      1.138  perseant 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    543      1.138  perseant 		vrele(dvp);						\
    544      1.138  perseant 		if (ovp)						\
    545      1.138  perseant 			vrele(ovp);					\
    546      1.138  perseant 	} while(0)
    547      1.117      yamt 
    548      1.117      yamt void
    549      1.117      yamt lfs_mark_vnode(struct vnode *vp)
    550      1.117      yamt {
    551      1.117      yamt 	struct inode *ip = VTOI(vp);
    552      1.117      yamt 	struct lfs *fs = ip->i_lfs;
    553       1.37  perseant 
    554      1.214        ad 	mutex_enter(&lfs_lock);
    555      1.117      yamt 	if (!(ip->i_flag & IN_ADIROP)) {
    556      1.212        ad 		if (!(vp->v_uflag & VU_DIROP)) {
    557  1.238.6.1       mrg 			mutex_exit(&lfs_lock);
    558      1.235     rmind 			mutex_enter(vp->v_interlock);
    559  1.238.6.1       mrg 			if (lfs_vref(vp) != 0)
    560  1.238.6.1       mrg 				panic("lfs_mark_vnode: could not vref");
    561  1.238.6.1       mrg 			mutex_enter(&lfs_lock);
    562      1.117      yamt 			++lfs_dirvcount;
    563      1.173  perseant 			++fs->lfs_dirvcount;
    564      1.117      yamt 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    565      1.212        ad 			vp->v_uflag |= VU_DIROP;
    566      1.117      yamt 		}
    567      1.117      yamt 		++fs->lfs_nadirop;
    568  1.238.6.1       mrg 		ip->i_flag &= ~IN_CDIROP;
    569      1.117      yamt 		ip->i_flag |= IN_ADIROP;
    570      1.117      yamt 	} else
    571      1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    572      1.214        ad 	mutex_exit(&lfs_lock);
    573      1.117      yamt }
    574       1.40  perseant 
    575      1.117      yamt void
    576      1.117      yamt lfs_unmark_vnode(struct vnode *vp)
    577       1.40  perseant {
    578      1.117      yamt 	struct inode *ip = VTOI(vp);
    579       1.40  perseant 
    580  1.238.6.1       mrg 	mutex_enter(&lfs_lock);
    581      1.146  perseant 	if (ip && (ip->i_flag & IN_ADIROP)) {
    582      1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    583       1.40  perseant 		--ip->i_lfs->lfs_nadirop;
    584      1.117      yamt 		ip->i_flag &= ~IN_ADIROP;
    585      1.117      yamt 	}
    586  1.238.6.1       mrg 	mutex_exit(&lfs_lock);
    587       1.40  perseant }
    588       1.15      fvdl 
    589        1.1   mycroft int
    590       1.51  perseant lfs_symlink(void *v)
    591       1.10  christos {
    592        1.1   mycroft 	struct vop_symlink_args /* {
    593        1.1   mycroft 		struct vnode *a_dvp;
    594        1.1   mycroft 		struct vnode **a_vpp;
    595        1.1   mycroft 		struct componentname *a_cnp;
    596        1.1   mycroft 		struct vattr *a_vap;
    597        1.1   mycroft 		char *a_target;
    598       1.10  christos 	} */ *ap = v;
    599       1.37  perseant 	int error;
    600        1.1   mycroft 
    601      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    602       1.34  perseant 		vput(ap->a_dvp);
    603       1.37  perseant 		return error;
    604       1.34  perseant 	}
    605       1.37  perseant 	error = ufs_symlink(ap);
    606      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "symlink");
    607       1.37  perseant 	return (error);
    608        1.1   mycroft }
    609        1.1   mycroft 
    610        1.1   mycroft int
    611       1.51  perseant lfs_mknod(void *v)
    612       1.10  christos {
    613       1.22  perseant 	struct vop_mknod_args	/* {
    614        1.1   mycroft 		struct vnode *a_dvp;
    615        1.1   mycroft 		struct vnode **a_vpp;
    616        1.1   mycroft 		struct componentname *a_cnp;
    617        1.1   mycroft 		struct vattr *a_vap;
    618      1.203  perseant 	} */ *ap = v;
    619       1.86  perseant 	struct vattr *vap = ap->a_vap;
    620       1.86  perseant 	struct vnode **vpp = ap->a_vpp;
    621       1.86  perseant 	struct inode *ip;
    622       1.86  perseant 	int error;
    623      1.135     perry 	struct mount	*mp;
    624       1.52     assar 	ino_t		ino;
    625      1.237  dholland 	struct ufs_lookup_results *ulr;
    626      1.237  dholland 
    627      1.237  dholland 	/* XXX should handle this material another way */
    628      1.237  dholland 	ulr = &VTOI(ap->a_dvp)->i_crap;
    629      1.237  dholland 	UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    630        1.1   mycroft 
    631      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    632       1.34  perseant 		vput(ap->a_dvp);
    633       1.28  perseant 		return error;
    634       1.34  perseant 	}
    635       1.28  perseant 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    636      1.237  dholland 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    637       1.28  perseant 
    638       1.28  perseant 	/* Either way we're done with the dirop at this point */
    639      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mknod");
    640       1.28  perseant 
    641       1.86  perseant 	if (error)
    642       1.28  perseant 		return (error);
    643       1.28  perseant 
    644       1.86  perseant 	ip = VTOI(*vpp);
    645       1.52     assar 	mp  = (*vpp)->v_mount;
    646       1.52     assar 	ino = ip->i_number;
    647       1.86  perseant 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    648       1.86  perseant 	if (vap->va_rdev != VNOVAL) {
    649       1.86  perseant 		/*
    650       1.86  perseant 		 * Want to be able to use this to make badblock
    651       1.86  perseant 		 * inodes, so don't truncate the dev number.
    652       1.86  perseant 		 */
    653       1.28  perseant #if 0
    654      1.102      fvdl 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    655      1.203  perseant 					   UFS_MPNEEDSWAP((*vpp)->v_mount));
    656       1.28  perseant #else
    657      1.102      fvdl 		ip->i_ffs1_rdev = vap->va_rdev;
    658       1.28  perseant #endif
    659       1.86  perseant 	}
    660      1.134  perseant 
    661       1.28  perseant 	/*
    662       1.28  perseant 	 * Call fsync to write the vnode so that we don't have to deal with
    663      1.212        ad 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    664       1.28  perseant 	 *
    665       1.28  perseant 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    666       1.28  perseant 	 * return.  But, that leaves this vnode in limbo, also not good.
    667       1.28  perseant 	 * Can this ever happen (barring hardware failure)?
    668       1.28  perseant 	 */
    669      1.213     pooka 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    670      1.153  christos 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    671      1.203  perseant 		      (unsigned long long)ino);
    672      1.136  perseant 		/* return (error); */
    673       1.40  perseant 	}
    674       1.86  perseant 	/*
    675       1.86  perseant 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    676       1.86  perseant 	 * checked to see if it is an alias of an existing entry in
    677       1.86  perseant 	 * the inode cache.
    678       1.86  perseant 	 */
    679       1.28  perseant 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    680      1.134  perseant 
    681      1.229   hannken 	VOP_UNLOCK(*vpp);
    682       1.86  perseant 	(*vpp)->v_type = VNON;
    683       1.86  perseant 	vgone(*vpp);
    684      1.108   thorpej 	error = VFS_VGET(mp, ino, vpp);
    685      1.134  perseant 
    686       1.52     assar 	if (error != 0) {
    687       1.52     assar 		*vpp = NULL;
    688       1.52     assar 		return (error);
    689       1.52     assar 	}
    690       1.86  perseant 	return (0);
    691        1.1   mycroft }
    692        1.1   mycroft 
    693        1.1   mycroft int
    694       1.51  perseant lfs_create(void *v)
    695       1.10  christos {
    696       1.22  perseant 	struct vop_create_args	/* {
    697        1.1   mycroft 		struct vnode *a_dvp;
    698        1.1   mycroft 		struct vnode **a_vpp;
    699        1.1   mycroft 		struct componentname *a_cnp;
    700        1.1   mycroft 		struct vattr *a_vap;
    701       1.10  christos 	} */ *ap = v;
    702       1.37  perseant 	int error;
    703        1.1   mycroft 
    704      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    705       1.34  perseant 		vput(ap->a_dvp);
    706       1.37  perseant 		return error;
    707       1.34  perseant 	}
    708       1.37  perseant 	error = ufs_create(ap);
    709      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "create");
    710       1.37  perseant 	return (error);
    711       1.22  perseant }
    712       1.22  perseant 
    713       1.22  perseant int
    714       1.51  perseant lfs_mkdir(void *v)
    715       1.10  christos {
    716       1.22  perseant 	struct vop_mkdir_args	/* {
    717        1.1   mycroft 		struct vnode *a_dvp;
    718        1.1   mycroft 		struct vnode **a_vpp;
    719        1.1   mycroft 		struct componentname *a_cnp;
    720        1.1   mycroft 		struct vattr *a_vap;
    721       1.10  christos 	} */ *ap = v;
    722       1.37  perseant 	int error;
    723        1.1   mycroft 
    724      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    725       1.34  perseant 		vput(ap->a_dvp);
    726       1.37  perseant 		return error;
    727       1.34  perseant 	}
    728       1.37  perseant 	error = ufs_mkdir(ap);
    729      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    730       1.37  perseant 	return (error);
    731        1.1   mycroft }
    732        1.1   mycroft 
    733        1.1   mycroft int
    734       1.51  perseant lfs_remove(void *v)
    735       1.10  christos {
    736       1.22  perseant 	struct vop_remove_args	/* {
    737        1.1   mycroft 		struct vnode *a_dvp;
    738        1.1   mycroft 		struct vnode *a_vp;
    739        1.1   mycroft 		struct componentname *a_cnp;
    740       1.10  christos 	} */ *ap = v;
    741       1.34  perseant 	struct vnode *dvp, *vp;
    742      1.188  perseant 	struct inode *ip;
    743       1.37  perseant 	int error;
    744       1.34  perseant 
    745       1.34  perseant 	dvp = ap->a_dvp;
    746       1.34  perseant 	vp = ap->a_vp;
    747      1.188  perseant 	ip = VTOI(vp);
    748      1.138  perseant 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    749       1.34  perseant 		if (dvp == vp)
    750       1.34  perseant 			vrele(vp);
    751       1.34  perseant 		else
    752       1.34  perseant 			vput(vp);
    753       1.34  perseant 		vput(dvp);
    754       1.37  perseant 		return error;
    755       1.34  perseant 	}
    756       1.37  perseant 	error = ufs_remove(ap);
    757      1.188  perseant 	if (ip->i_nlink == 0)
    758      1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    759      1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    760       1.37  perseant 	return (error);
    761        1.1   mycroft }
    762        1.1   mycroft 
    763        1.1   mycroft int
    764       1.51  perseant lfs_rmdir(void *v)
    765       1.10  christos {
    766       1.22  perseant 	struct vop_rmdir_args	/* {
    767        1.1   mycroft 		struct vnodeop_desc *a_desc;
    768        1.1   mycroft 		struct vnode *a_dvp;
    769        1.1   mycroft 		struct vnode *a_vp;
    770        1.1   mycroft 		struct componentname *a_cnp;
    771       1.10  christos 	} */ *ap = v;
    772       1.84  perseant 	struct vnode *vp;
    773      1.188  perseant 	struct inode *ip;
    774       1.37  perseant 	int error;
    775        1.1   mycroft 
    776       1.84  perseant 	vp = ap->a_vp;
    777      1.188  perseant 	ip = VTOI(vp);
    778      1.138  perseant 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    779      1.194       chs 		if (ap->a_dvp == vp)
    780      1.194       chs 			vrele(ap->a_dvp);
    781      1.194       chs 		else
    782      1.194       chs 			vput(ap->a_dvp);
    783       1.84  perseant 		vput(vp);
    784       1.37  perseant 		return error;
    785       1.34  perseant 	}
    786       1.37  perseant 	error = ufs_rmdir(ap);
    787      1.188  perseant 	if (ip->i_nlink == 0)
    788      1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    789      1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    790       1.37  perseant 	return (error);
    791        1.1   mycroft }
    792        1.1   mycroft 
    793        1.1   mycroft int
    794       1.51  perseant lfs_link(void *v)
    795       1.10  christos {
    796       1.22  perseant 	struct vop_link_args	/* {
    797        1.9   mycroft 		struct vnode *a_dvp;
    798        1.1   mycroft 		struct vnode *a_vp;
    799        1.1   mycroft 		struct componentname *a_cnp;
    800       1.10  christos 	} */ *ap = v;
    801       1.37  perseant 	int error;
    802      1.138  perseant 	struct vnode **vpp = NULL;
    803        1.1   mycroft 
    804      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    805       1.34  perseant 		vput(ap->a_dvp);
    806       1.37  perseant 		return error;
    807       1.34  perseant 	}
    808       1.37  perseant 	error = ufs_link(ap);
    809      1.138  perseant 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    810       1.37  perseant 	return (error);
    811        1.1   mycroft }
    812       1.22  perseant 
    813  1.238.6.1       mrg /* XXX following lifted from ufs_lookup.c */
    814  1.238.6.1       mrg #define	FSFMT(vp)	(((vp)->v_mount->mnt_iflag & IMNT_DTYPE) == 0)
    815  1.238.6.1       mrg 
    816  1.238.6.1       mrg /*
    817  1.238.6.1       mrg  * Check if either entry referred to by FROM_ULR is within the range
    818  1.238.6.1       mrg  * of entries named by TO_ULR.
    819  1.238.6.1       mrg  */
    820  1.238.6.1       mrg static int
    821  1.238.6.1       mrg ulr_overlap(const struct ufs_lookup_results *from_ulr,
    822  1.238.6.1       mrg 	    const struct ufs_lookup_results *to_ulr)
    823  1.238.6.1       mrg {
    824  1.238.6.1       mrg 	doff_t from_start, from_prevstart;
    825  1.238.6.1       mrg 	doff_t to_start, to_end;
    826  1.238.6.1       mrg 
    827  1.238.6.1       mrg 	/*
    828  1.238.6.1       mrg 	 * FROM is a DELETE result; offset points to the entry to
    829  1.238.6.1       mrg 	 * remove and subtracting count gives the previous entry.
    830  1.238.6.1       mrg 	 */
    831  1.238.6.1       mrg 	from_start = from_ulr->ulr_offset - from_ulr->ulr_count;
    832  1.238.6.1       mrg 	from_prevstart = from_ulr->ulr_offset;
    833  1.238.6.1       mrg 
    834  1.238.6.1       mrg 	/*
    835  1.238.6.1       mrg 	 * TO is a RENAME (thus non-DELETE) result; offset points
    836  1.238.6.1       mrg 	 * to the beginning of a region to write in, and adding
    837  1.238.6.1       mrg 	 * count gives the end of the region.
    838  1.238.6.1       mrg 	 */
    839  1.238.6.1       mrg 	to_start = to_ulr->ulr_offset;
    840  1.238.6.1       mrg 	to_end = to_ulr->ulr_offset + to_ulr->ulr_count;
    841  1.238.6.1       mrg 
    842  1.238.6.1       mrg 	if (from_prevstart >= to_start && from_prevstart < to_end) {
    843  1.238.6.1       mrg 		return 1;
    844  1.238.6.1       mrg 	}
    845  1.238.6.1       mrg 	if (from_start >= to_start && from_start < to_end) {
    846  1.238.6.1       mrg 		return 1;
    847  1.238.6.1       mrg 	}
    848  1.238.6.1       mrg 	return 0;
    849  1.238.6.1       mrg }
    850  1.238.6.1       mrg 
    851  1.238.6.1       mrg /*
    852  1.238.6.1       mrg  * A virgin directory (no blushing please).
    853  1.238.6.1       mrg  */
    854  1.238.6.1       mrg static const struct dirtemplate mastertemplate = {
    855  1.238.6.1       mrg 	0,	12,		DT_DIR,	1,	".",
    856  1.238.6.1       mrg 	0,	DIRBLKSIZ - 12,	DT_DIR,	2,	".."
    857  1.238.6.1       mrg };
    858  1.238.6.1       mrg 
    859  1.238.6.1       mrg /*
    860  1.238.6.1       mrg  * Wrapper for relookup that also updates the supplemental results.
    861  1.238.6.1       mrg  */
    862  1.238.6.1       mrg static int
    863  1.238.6.1       mrg do_relookup(struct vnode *dvp, struct ufs_lookup_results *ulr,
    864  1.238.6.1       mrg 	    struct vnode **vp, struct componentname *cnp)
    865  1.238.6.1       mrg {
    866  1.238.6.1       mrg 	int error;
    867  1.238.6.1       mrg 
    868  1.238.6.1       mrg 	error = relookup(dvp, vp, cnp, 0);
    869  1.238.6.1       mrg 	if (error) {
    870  1.238.6.1       mrg 		return error;
    871  1.238.6.1       mrg 	}
    872  1.238.6.1       mrg 	/* update the supplemental reasults */
    873  1.238.6.1       mrg 	*ulr = VTOI(dvp)->i_crap;
    874  1.238.6.1       mrg 	UFS_CHECK_CRAPCOUNTER(VTOI(dvp));
    875  1.238.6.1       mrg 	return 0;
    876  1.238.6.1       mrg }
    877  1.238.6.1       mrg 
    878  1.238.6.1       mrg /*
    879  1.238.6.1       mrg  * Lock and relookup a sequence of two directories and two children.
    880  1.238.6.1       mrg  *
    881  1.238.6.1       mrg  */
    882  1.238.6.1       mrg static int
    883  1.238.6.1       mrg lock_vnode_sequence(struct vnode *d1, struct ufs_lookup_results *ulr1,
    884  1.238.6.1       mrg 		    struct vnode **v1_ret, struct componentname *cn1,
    885  1.238.6.1       mrg 		    int v1_missing_ok,
    886  1.238.6.1       mrg 		    int overlap_error,
    887  1.238.6.1       mrg 		    struct vnode *d2, struct ufs_lookup_results *ulr2,
    888  1.238.6.1       mrg 		    struct vnode **v2_ret, struct componentname *cn2,
    889  1.238.6.1       mrg 		    int v2_missing_ok)
    890  1.238.6.1       mrg {
    891  1.238.6.1       mrg 	struct vnode *v1, *v2;
    892  1.238.6.1       mrg 	int error;
    893  1.238.6.1       mrg 
    894  1.238.6.1       mrg 	KASSERT(d1 != d2);
    895  1.238.6.1       mrg 
    896  1.238.6.1       mrg 	vn_lock(d1, LK_EXCLUSIVE | LK_RETRY);
    897  1.238.6.1       mrg 	if (VTOI(d1)->i_size == 0) {
    898  1.238.6.1       mrg 		/* d1 has been rmdir'd */
    899  1.238.6.1       mrg 		VOP_UNLOCK(d1);
    900  1.238.6.1       mrg 		return ENOENT;
    901  1.238.6.1       mrg 	}
    902  1.238.6.1       mrg 	error = do_relookup(d1, ulr1, &v1, cn1);
    903  1.238.6.1       mrg 	if (v1_missing_ok) {
    904  1.238.6.1       mrg 		if (error == ENOENT) {
    905  1.238.6.1       mrg 			/*
    906  1.238.6.1       mrg 			 * Note: currently if the name doesn't exist,
    907  1.238.6.1       mrg 			 * relookup succeeds (it intercepts the
    908  1.238.6.1       mrg 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
    909  1.238.6.1       mrg 			 * to NULL. Therefore, we will never get
    910  1.238.6.1       mrg 			 * ENOENT and this branch is not needed.
    911  1.238.6.1       mrg 			 * However, in a saner future the EJUSTRETURN
    912  1.238.6.1       mrg 			 * garbage will go away, so let's DTRT.
    913  1.238.6.1       mrg 			 */
    914  1.238.6.1       mrg 			v1 = NULL;
    915  1.238.6.1       mrg 			error = 0;
    916  1.238.6.1       mrg 		}
    917  1.238.6.1       mrg 	} else {
    918  1.238.6.1       mrg 		if (error == 0 && v1 == NULL) {
    919  1.238.6.1       mrg 			/* This is what relookup sets if v1 disappeared. */
    920  1.238.6.1       mrg 			error = ENOENT;
    921  1.238.6.1       mrg 		}
    922  1.238.6.1       mrg 	}
    923  1.238.6.1       mrg 	if (error) {
    924  1.238.6.1       mrg 		VOP_UNLOCK(d1);
    925  1.238.6.1       mrg 		return error;
    926  1.238.6.1       mrg 	}
    927  1.238.6.1       mrg 	if (v1 && v1 == d2) {
    928  1.238.6.1       mrg 		VOP_UNLOCK(d1);
    929  1.238.6.1       mrg 		VOP_UNLOCK(v1);
    930  1.238.6.1       mrg 		vrele(v1);
    931  1.238.6.1       mrg 		return overlap_error;
    932  1.238.6.1       mrg 	}
    933  1.238.6.1       mrg 
    934  1.238.6.1       mrg 	/*
    935  1.238.6.1       mrg 	 * The right way to do this is to do lookups without locking
    936  1.238.6.1       mrg 	 * the results, and lock the results afterwards; then at the
    937  1.238.6.1       mrg 	 * end we can avoid trying to lock v2 if v2 == v1.
    938  1.238.6.1       mrg 	 *
    939  1.238.6.1       mrg 	 * However, for the reasons described in the fdvp == tdvp case
    940  1.238.6.1       mrg 	 * in rename below, we can't do that safely. So, in the case
    941  1.238.6.1       mrg 	 * where v1 is not a directory, unlock it and lock it again
    942  1.238.6.1       mrg 	 * afterwards. This is safe in locking order because a
    943  1.238.6.1       mrg 	 * non-directory can't be above anything else in the tree. If
    944  1.238.6.1       mrg 	 * v1 *is* a directory, that's not true, but then because d1
    945  1.238.6.1       mrg 	 * != d2, v1 != v2.
    946  1.238.6.1       mrg 	 */
    947  1.238.6.1       mrg 	if (v1 && v1->v_type != VDIR) {
    948  1.238.6.1       mrg 		VOP_UNLOCK(v1);
    949  1.238.6.1       mrg 	}
    950  1.238.6.1       mrg 	vn_lock(d2, LK_EXCLUSIVE | LK_RETRY);
    951  1.238.6.1       mrg 	if (VTOI(d2)->i_size == 0) {
    952  1.238.6.1       mrg 		/* d2 has been rmdir'd */
    953  1.238.6.1       mrg 		VOP_UNLOCK(d2);
    954  1.238.6.1       mrg 		if (v1 && v1->v_type == VDIR) {
    955  1.238.6.1       mrg 			VOP_UNLOCK(v1);
    956  1.238.6.1       mrg 		}
    957  1.238.6.1       mrg 		VOP_UNLOCK(d1);
    958  1.238.6.1       mrg 		if (v1) {
    959  1.238.6.1       mrg 			vrele(v1);
    960  1.238.6.1       mrg 		}
    961  1.238.6.1       mrg 		return ENOENT;
    962  1.238.6.1       mrg 	}
    963  1.238.6.1       mrg 	error = do_relookup(d2, ulr2, &v2, cn2);
    964  1.238.6.1       mrg 	if (v2_missing_ok) {
    965  1.238.6.1       mrg 		if (error == ENOENT) {
    966  1.238.6.1       mrg 			/* as above */
    967  1.238.6.1       mrg 			v2 = NULL;
    968  1.238.6.1       mrg 			error = 0;
    969  1.238.6.1       mrg 		}
    970  1.238.6.1       mrg 	} else {
    971  1.238.6.1       mrg 		if (error == 0 && v2 == NULL) {
    972  1.238.6.1       mrg 			/* This is what relookup sets if v2 disappeared. */
    973  1.238.6.1       mrg 			error = ENOENT;
    974  1.238.6.1       mrg 		}
    975  1.238.6.1       mrg 	}
    976  1.238.6.1       mrg 	if (error) {
    977  1.238.6.1       mrg 		VOP_UNLOCK(d2);
    978  1.238.6.1       mrg 		if (v1 && v1->v_type == VDIR) {
    979  1.238.6.1       mrg 			VOP_UNLOCK(v1);
    980  1.238.6.1       mrg 		}
    981  1.238.6.1       mrg 		VOP_UNLOCK(d1);
    982  1.238.6.1       mrg 		if (v1) {
    983  1.238.6.1       mrg 			vrele(v1);
    984  1.238.6.1       mrg 		}
    985  1.238.6.1       mrg 		return error;
    986  1.238.6.1       mrg 	}
    987  1.238.6.1       mrg 	if (v1 && v1->v_type != VDIR && v1 != v2) {
    988  1.238.6.1       mrg 		vn_lock(v1, LK_EXCLUSIVE | LK_RETRY);
    989  1.238.6.1       mrg 	}
    990  1.238.6.1       mrg 	*v1_ret = v1;
    991  1.238.6.1       mrg 	*v2_ret = v2;
    992  1.238.6.1       mrg 	return 0;
    993  1.238.6.1       mrg }
    994  1.238.6.1       mrg 
    995        1.1   mycroft int
    996       1.51  perseant lfs_rename(void *v)
    997       1.10  christos {
    998       1.22  perseant 	struct vop_rename_args	/* {
    999        1.1   mycroft 		struct vnode *a_fdvp;
   1000        1.1   mycroft 		struct vnode *a_fvp;
   1001        1.1   mycroft 		struct componentname *a_fcnp;
   1002        1.1   mycroft 		struct vnode *a_tdvp;
   1003        1.1   mycroft 		struct vnode *a_tvp;
   1004        1.1   mycroft 		struct componentname *a_tcnp;
   1005       1.10  christos 	} */ *ap = v;
   1006  1.238.6.1       mrg 	struct vnode		*tvp, *tdvp, *fvp, *fdvp;
   1007       1.83  perseant 	struct componentname *tcnp, *fcnp;
   1008  1.238.6.1       mrg 	struct inode		*ip, *txp, *fxp, *tdp, *fdp;
   1009  1.238.6.1       mrg 	struct mount		*mp;
   1010  1.238.6.1       mrg 	struct direct		*newdir;
   1011  1.238.6.1       mrg 	int			doingdirectory, error, marked;
   1012  1.238.6.1       mrg 	ino_t			oldparent, newparent;
   1013  1.238.6.1       mrg 
   1014  1.238.6.1       mrg 	struct ufs_lookup_results from_ulr, to_ulr;
   1015  1.238.6.1       mrg 	struct lfs *fs = VTOI(ap->a_fvp)->i_lfs;
   1016       1.29  perseant 
   1017       1.30  perseant 	tvp = ap->a_tvp;
   1018       1.30  perseant 	tdvp = ap->a_tdvp;
   1019       1.30  perseant 	fvp = ap->a_fvp;
   1020       1.30  perseant 	fdvp = ap->a_fdvp;
   1021  1.238.6.1       mrg 	tcnp = ap->a_tcnp;
   1022       1.83  perseant 	fcnp = ap->a_fcnp;
   1023  1.238.6.1       mrg 	doingdirectory = error = 0;
   1024  1.238.6.1       mrg 	oldparent = newparent = 0;
   1025  1.238.6.1       mrg 	marked = 0;
   1026  1.238.6.1       mrg 
   1027  1.238.6.1       mrg 	/* save the supplemental lookup results as they currently exist */
   1028  1.238.6.1       mrg 	from_ulr = VTOI(fdvp)->i_crap;
   1029  1.238.6.1       mrg 	to_ulr = VTOI(tdvp)->i_crap;
   1030  1.238.6.1       mrg 	UFS_CHECK_CRAPCOUNTER(VTOI(fdvp));
   1031  1.238.6.1       mrg 	UFS_CHECK_CRAPCOUNTER(VTOI(tdvp));
   1032  1.238.6.1       mrg 
   1033  1.238.6.1       mrg 	/*
   1034  1.238.6.1       mrg 	 * Owing to VFS oddities we are currently called with tdvp/tvp
   1035  1.238.6.1       mrg 	 * locked and not fdvp/fvp. In a sane world we'd be passed
   1036  1.238.6.1       mrg 	 * tdvp and fdvp only, unlocked, and two name strings. Pretend
   1037  1.238.6.1       mrg 	 * we have a sane world and unlock tdvp and tvp.
   1038  1.238.6.1       mrg 	 */
   1039  1.238.6.1       mrg 	VOP_UNLOCK(tdvp);
   1040  1.238.6.1       mrg 	if (tvp && tvp != tdvp) {
   1041  1.238.6.1       mrg 		VOP_UNLOCK(tvp);
   1042  1.238.6.1       mrg 	}
   1043  1.238.6.1       mrg 
   1044  1.238.6.1       mrg 	/* Also pretend we have a sane world and vrele fvp/tvp. */
   1045  1.238.6.1       mrg 	vrele(fvp);
   1046  1.238.6.1       mrg 	fvp = NULL;
   1047  1.238.6.1       mrg 	if (tvp) {
   1048  1.238.6.1       mrg 		vrele(tvp);
   1049  1.238.6.1       mrg 		tvp = NULL;
   1050  1.238.6.1       mrg 	}
   1051       1.30  perseant 
   1052       1.30  perseant 	/*
   1053       1.30  perseant 	 * Check for cross-device rename.
   1054       1.30  perseant 	 */
   1055  1.238.6.1       mrg 	if (fdvp->v_mount != tdvp->v_mount) {
   1056       1.30  perseant 		error = EXDEV;
   1057  1.238.6.1       mrg 		goto abort;
   1058       1.30  perseant 	}
   1059       1.83  perseant 
   1060       1.83  perseant 	/*
   1061  1.238.6.1       mrg 	 * Reject "." and ".."
   1062  1.238.6.1       mrg 	 */
   1063  1.238.6.1       mrg 	if ((fcnp->cn_flags & ISDOTDOT) || (tcnp->cn_flags & ISDOTDOT) ||
   1064  1.238.6.1       mrg 	    (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1065  1.238.6.1       mrg 	    (tcnp->cn_namelen == 1 && tcnp->cn_nameptr[0] == '.')) {
   1066  1.238.6.1       mrg 		error = EINVAL;
   1067  1.238.6.1       mrg 		goto abort;
   1068  1.238.6.1       mrg 	}
   1069  1.238.6.1       mrg 
   1070  1.238.6.1       mrg 	/*
   1071  1.238.6.1       mrg 	 * Get locks.
   1072  1.238.6.1       mrg 	 */
   1073  1.238.6.1       mrg 
   1074  1.238.6.1       mrg 	/* paranoia */
   1075  1.238.6.1       mrg 	fcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1076  1.238.6.1       mrg 	tcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1077  1.238.6.1       mrg 
   1078  1.238.6.1       mrg 	if (fdvp == tdvp) {
   1079  1.238.6.1       mrg 		/* One directory. Lock it and relookup both children. */
   1080  1.238.6.1       mrg 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
   1081  1.238.6.1       mrg 
   1082  1.238.6.1       mrg 		if (VTOI(fdvp)->i_size == 0) {
   1083  1.238.6.1       mrg 			/* directory has been rmdir'd */
   1084  1.238.6.1       mrg 			VOP_UNLOCK(fdvp);
   1085  1.238.6.1       mrg 			error = ENOENT;
   1086  1.238.6.1       mrg 			goto abort;
   1087  1.238.6.1       mrg 		}
   1088  1.238.6.1       mrg 
   1089  1.238.6.1       mrg 		error = do_relookup(fdvp, &from_ulr, &fvp, fcnp);
   1090  1.238.6.1       mrg 		if (error == 0 && fvp == NULL) {
   1091  1.238.6.1       mrg 			/* relookup may produce this if fvp disappears */
   1092  1.238.6.1       mrg 			error = ENOENT;
   1093  1.238.6.1       mrg 		}
   1094  1.238.6.1       mrg 		if (error) {
   1095  1.238.6.1       mrg 			VOP_UNLOCK(fdvp);
   1096  1.238.6.1       mrg 			goto abort;
   1097  1.238.6.1       mrg 		}
   1098  1.238.6.1       mrg 
   1099  1.238.6.1       mrg 		/*
   1100  1.238.6.1       mrg 		 * The right way to do this is to look up both children
   1101  1.238.6.1       mrg 		 * without locking either, and then lock both unless they
   1102  1.238.6.1       mrg 		 * turn out to be the same. However, due to deep-seated
   1103  1.238.6.1       mrg 		 * VFS-level issues all lookups lock the child regardless
   1104  1.238.6.1       mrg 		 * of whether LOCKLEAF is set (if LOCKLEAF is not set,
   1105  1.238.6.1       mrg 		 * the child is locked during lookup and then unlocked)
   1106  1.238.6.1       mrg 		 * so it is not safe to look up tvp while fvp is locked.
   1107  1.238.6.1       mrg 		 *
   1108  1.238.6.1       mrg 		 * Unlocking fvp here temporarily is more or less safe,
   1109  1.238.6.1       mrg 		 * because with the directory locked there's not much
   1110  1.238.6.1       mrg 		 * that can happen to it. However, ideally it wouldn't
   1111  1.238.6.1       mrg 		 * be necessary. XXX.
   1112  1.238.6.1       mrg 		 */
   1113  1.238.6.1       mrg 		VOP_UNLOCK(fvp);
   1114  1.238.6.1       mrg 		/* remember fdvp == tdvp so tdvp is locked */
   1115  1.238.6.1       mrg 		error = do_relookup(tdvp, &to_ulr, &tvp, tcnp);
   1116  1.238.6.1       mrg 		if (error && error != ENOENT) {
   1117  1.238.6.1       mrg 			VOP_UNLOCK(fdvp);
   1118  1.238.6.1       mrg 			goto abort;
   1119  1.238.6.1       mrg 		}
   1120  1.238.6.1       mrg 		if (error == ENOENT) {
   1121  1.238.6.1       mrg 			/*
   1122  1.238.6.1       mrg 			 * Note: currently if the name doesn't exist,
   1123  1.238.6.1       mrg 			 * relookup succeeds (it intercepts the
   1124  1.238.6.1       mrg 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
   1125  1.238.6.1       mrg 			 * to NULL. Therefore, we will never get
   1126  1.238.6.1       mrg 			 * ENOENT and this branch is not needed.
   1127  1.238.6.1       mrg 			 * However, in a saner future the EJUSTRETURN
   1128  1.238.6.1       mrg 			 * garbage will go away, so let's DTRT.
   1129  1.238.6.1       mrg 			 */
   1130  1.238.6.1       mrg 			tvp = NULL;
   1131  1.238.6.1       mrg 		}
   1132  1.238.6.1       mrg 
   1133  1.238.6.1       mrg 		/* tvp is locked; lock fvp if necessary */
   1134  1.238.6.1       mrg 		if (!tvp || tvp != fvp) {
   1135  1.238.6.1       mrg 			vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
   1136  1.238.6.1       mrg 		}
   1137  1.238.6.1       mrg 	} else {
   1138  1.238.6.1       mrg 		int found_fdvp;
   1139  1.238.6.1       mrg 		struct vnode *illegal_fvp;
   1140  1.238.6.1       mrg 
   1141  1.238.6.1       mrg 		/*
   1142  1.238.6.1       mrg 		 * The source must not be above the destination. (If
   1143  1.238.6.1       mrg 		 * it were, the rename would detach a section of the
   1144  1.238.6.1       mrg 		 * tree.)
   1145  1.238.6.1       mrg 		 *
   1146  1.238.6.1       mrg 		 * Look up the tree from tdvp to see if we find fdvp,
   1147  1.238.6.1       mrg 		 * and if so, return the immediate child of fdvp we're
   1148  1.238.6.1       mrg 		 * under; that must not turn out to be the same as
   1149  1.238.6.1       mrg 		 * fvp.
   1150       1.83  perseant 	 *
   1151  1.238.6.1       mrg 		 * The per-volume rename lock guarantees that the
   1152  1.238.6.1       mrg 		 * result of this check remains true until we finish
   1153  1.238.6.1       mrg 		 * looking up and locking.
   1154       1.83  perseant 	 */
   1155  1.238.6.1       mrg 		error = ufs_parentcheck(fdvp, tdvp, fcnp->cn_cred,
   1156  1.238.6.1       mrg 					&found_fdvp, &illegal_fvp);
   1157  1.238.6.1       mrg 		if (error) {
   1158  1.238.6.1       mrg 			goto abort;
   1159  1.238.6.1       mrg 		}
   1160  1.238.6.1       mrg 
   1161  1.238.6.1       mrg 		/* Must lock in tree order. */
   1162  1.238.6.1       mrg 
   1163  1.238.6.1       mrg 		if (found_fdvp) {
   1164  1.238.6.1       mrg 			/* fdvp -> fvp -> tdvp -> tvp */
   1165  1.238.6.1       mrg 			error = lock_vnode_sequence(fdvp, &from_ulr,
   1166  1.238.6.1       mrg 						    &fvp, fcnp, 0,
   1167  1.238.6.1       mrg 						    EINVAL,
   1168  1.238.6.1       mrg 						    tdvp, &to_ulr,
   1169  1.238.6.1       mrg 						    &tvp, tcnp, 1);
   1170  1.238.6.1       mrg 		} else {
   1171  1.238.6.1       mrg 			/* tdvp -> tvp -> fdvp -> fvp */
   1172  1.238.6.1       mrg 			error = lock_vnode_sequence(tdvp, &to_ulr,
   1173  1.238.6.1       mrg 						    &tvp, tcnp, 1,
   1174  1.238.6.1       mrg 						    ENOTEMPTY,
   1175  1.238.6.1       mrg 						    fdvp, &from_ulr,
   1176  1.238.6.1       mrg 						    &fvp, fcnp, 0);
   1177  1.238.6.1       mrg 		}
   1178  1.238.6.1       mrg 		if (error) {
   1179  1.238.6.1       mrg 			if (illegal_fvp) {
   1180  1.238.6.1       mrg 				vrele(illegal_fvp);
   1181  1.238.6.1       mrg 			}
   1182  1.238.6.1       mrg 			goto abort;
   1183  1.238.6.1       mrg 		}
   1184  1.238.6.1       mrg 		KASSERT(fvp != NULL);
   1185  1.238.6.1       mrg 
   1186  1.238.6.1       mrg 		if (illegal_fvp && fvp == illegal_fvp) {
   1187  1.238.6.1       mrg 			vrele(illegal_fvp);
   1188  1.238.6.1       mrg 			error = EINVAL;
   1189  1.238.6.1       mrg 			goto abort_withlocks;
   1190  1.238.6.1       mrg 		}
   1191  1.238.6.1       mrg 
   1192  1.238.6.1       mrg 		if (illegal_fvp) {
   1193  1.238.6.1       mrg 			vrele(illegal_fvp);
   1194  1.238.6.1       mrg 		}
   1195  1.238.6.1       mrg 	}
   1196  1.238.6.1       mrg 
   1197  1.238.6.1       mrg 	KASSERT(fdvp && VOP_ISLOCKED(fdvp));
   1198  1.238.6.1       mrg 	KASSERT(fvp && VOP_ISLOCKED(fvp));
   1199  1.238.6.1       mrg 	KASSERT(tdvp && VOP_ISLOCKED(tdvp));
   1200  1.238.6.1       mrg 	KASSERT(tvp == NULL || VOP_ISLOCKED(tvp));
   1201  1.238.6.1       mrg 
   1202  1.238.6.1       mrg 	/* --- everything is now locked --- */
   1203  1.238.6.1       mrg 
   1204      1.102      fvdl 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
   1205      1.203  perseant 		    (VTOI(tdvp)->i_flags & APPEND))) {
   1206       1.83  perseant 		error = EPERM;
   1207  1.238.6.1       mrg 		goto abort_withlocks;
   1208       1.83  perseant 	}
   1209  1.238.6.1       mrg 
   1210  1.238.6.1       mrg 	/*
   1211  1.238.6.1       mrg 	 * Check if just deleting a link name.
   1212  1.238.6.1       mrg 	 */
   1213       1.86  perseant 	if (fvp == tvp) {
   1214       1.86  perseant 		if (fvp->v_type == VDIR) {
   1215       1.86  perseant 			error = EINVAL;
   1216  1.238.6.1       mrg 			goto abort_withlocks;
   1217       1.86  perseant 		}
   1218       1.86  perseant 
   1219  1.238.6.1       mrg 		/* Release destination completely. Leave fdvp locked. */
   1220       1.86  perseant 		VOP_ABORTOP(tdvp, tcnp);
   1221  1.238.6.1       mrg 		if (fdvp != tdvp) {
   1222  1.238.6.1       mrg 			VOP_UNLOCK(tdvp);
   1223  1.238.6.1       mrg 		}
   1224  1.238.6.1       mrg 		VOP_UNLOCK(tvp);
   1225  1.238.6.1       mrg 		vrele(tdvp);
   1226  1.238.6.1       mrg 		vrele(tvp);
   1227       1.86  perseant 
   1228       1.86  perseant 		/* Delete source. */
   1229  1.238.6.1       mrg 		/* XXX: do we really need to relookup again? */
   1230  1.238.6.1       mrg 
   1231  1.238.6.1       mrg 		/*
   1232  1.238.6.1       mrg 		 * fdvp is still locked, but we just unlocked fvp
   1233  1.238.6.1       mrg 		 * (because fvp == tvp) so just decref fvp
   1234  1.238.6.1       mrg 		 */
   1235       1.86  perseant 		vrele(fvp);
   1236      1.233  dholland 		fcnp->cn_flags &= ~(MODMASK);
   1237       1.86  perseant 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
   1238       1.86  perseant 		fcnp->cn_nameiop = DELETE;
   1239      1.233  dholland 		if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
   1240      1.194       chs 			vput(fdvp);
   1241       1.86  perseant 			return (error);
   1242       1.86  perseant 		}
   1243       1.86  perseant 		return (VOP_REMOVE(fdvp, fvp, fcnp));
   1244       1.86  perseant 	}
   1245       1.83  perseant 
   1246  1.238.6.1       mrg 	/* The tiny bit of actual LFS code in this function */
   1247      1.138  perseant 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
   1248  1.238.6.1       mrg 		goto abort_withlocks;
   1249       1.30  perseant 	MARK_VNODE(fdvp);
   1250       1.71      yamt 	MARK_VNODE(fvp);
   1251  1.238.6.1       mrg 	marked = 1;
   1252  1.238.6.1       mrg 
   1253  1.238.6.1       mrg 	fdp = VTOI(fdvp);
   1254  1.238.6.1       mrg 	ip = VTOI(fvp);
   1255  1.238.6.1       mrg 	if ((nlink_t) ip->i_nlink >= LINK_MAX) {
   1256  1.238.6.1       mrg 		error = EMLINK;
   1257  1.238.6.1       mrg 		goto abort_withlocks;
   1258  1.238.6.1       mrg 	}
   1259  1.238.6.1       mrg 	if ((ip->i_flags & (IMMUTABLE | APPEND)) ||
   1260  1.238.6.1       mrg 		(fdp->i_flags & APPEND)) {
   1261  1.238.6.1       mrg 		error = EPERM;
   1262  1.238.6.1       mrg 		goto abort_withlocks;
   1263  1.238.6.1       mrg 	}
   1264  1.238.6.1       mrg 	if ((ip->i_mode & IFMT) == IFDIR) {
   1265  1.238.6.1       mrg 		/*
   1266  1.238.6.1       mrg 		 * Avoid ".", "..", and aliases of "." for obvious reasons.
   1267  1.238.6.1       mrg 		 */
   1268  1.238.6.1       mrg 		if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1269  1.238.6.1       mrg 		    fdp == ip ||
   1270  1.238.6.1       mrg 		    (fcnp->cn_flags & ISDOTDOT) ||
   1271  1.238.6.1       mrg 		    (tcnp->cn_flags & ISDOTDOT) ||
   1272  1.238.6.1       mrg 		    (ip->i_flag & IN_RENAME)) {
   1273  1.238.6.1       mrg 			error = EINVAL;
   1274  1.238.6.1       mrg 			goto abort_withlocks;
   1275  1.238.6.1       mrg 		}
   1276  1.238.6.1       mrg 		ip->i_flag |= IN_RENAME;
   1277  1.238.6.1       mrg 		doingdirectory = 1;
   1278  1.238.6.1       mrg 	}
   1279  1.238.6.1       mrg 	oldparent = fdp->i_number;
   1280  1.238.6.1       mrg 	VN_KNOTE(fdvp, NOTE_WRITE);		/* XXXLUKEM/XXX: right place? */
   1281  1.238.6.1       mrg 
   1282  1.238.6.1       mrg 	/*
   1283  1.238.6.1       mrg 	 * Both the directory
   1284  1.238.6.1       mrg 	 * and target vnodes are locked.
   1285  1.238.6.1       mrg 	 */
   1286  1.238.6.1       mrg 	tdp = VTOI(tdvp);
   1287  1.238.6.1       mrg 	txp = NULL;
   1288  1.238.6.1       mrg 	if (tvp)
   1289  1.238.6.1       mrg 		txp = VTOI(tvp);
   1290  1.238.6.1       mrg 
   1291  1.238.6.1       mrg 	mp = fdvp->v_mount;
   1292  1.238.6.1       mrg 	fstrans_start(mp, FSTRANS_SHARED);
   1293  1.238.6.1       mrg 
   1294  1.238.6.1       mrg 	if (oldparent != tdp->i_number)
   1295  1.238.6.1       mrg 		newparent = tdp->i_number;
   1296      1.135     perry 
   1297  1.238.6.1       mrg 	/*
   1298  1.238.6.1       mrg 	 * If ".." must be changed (ie the directory gets a new
   1299  1.238.6.1       mrg 	 * parent) the user must have write permission in the source
   1300  1.238.6.1       mrg 	 * so as to be able to change "..".
   1301  1.238.6.1       mrg 	 */
   1302  1.238.6.1       mrg 	if (doingdirectory && newparent) {
   1303  1.238.6.1       mrg 		error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred);
   1304  1.238.6.1       mrg 		if (error)
   1305  1.238.6.1       mrg 			goto out;
   1306  1.238.6.1       mrg 	}
   1307  1.238.6.1       mrg 
   1308  1.238.6.1       mrg 	KASSERT(fdvp != tvp);
   1309  1.238.6.1       mrg 
   1310  1.238.6.1       mrg 	if (newparent) {
   1311  1.238.6.1       mrg 		/* Check for the rename("foo/foo", "foo") case. */
   1312  1.238.6.1       mrg 		if (fdvp == tvp) {
   1313  1.238.6.1       mrg 			error = doingdirectory ? ENOTEMPTY : EISDIR;
   1314  1.238.6.1       mrg 			goto out;
   1315  1.238.6.1       mrg 		}
   1316  1.238.6.1       mrg 	}
   1317  1.238.6.1       mrg 
   1318  1.238.6.1       mrg 	fxp = VTOI(fvp);
   1319  1.238.6.1       mrg 	fdp = VTOI(fdvp);
   1320  1.238.6.1       mrg 
   1321  1.238.6.1       mrg 	error = UFS_WAPBL_BEGIN(fdvp->v_mount);
   1322  1.238.6.1       mrg 	if (error)
   1323  1.238.6.1       mrg 		goto out2;
   1324  1.238.6.1       mrg 
   1325  1.238.6.1       mrg 	/*
   1326  1.238.6.1       mrg 	 * 1) Bump link count while we're moving stuff
   1327  1.238.6.1       mrg 	 *    around.  If we crash somewhere before
   1328  1.238.6.1       mrg 	 *    completing our work, the link count
   1329  1.238.6.1       mrg 	 *    may be wrong, but correctable.
   1330  1.238.6.1       mrg 	 */
   1331  1.238.6.1       mrg 	ip->i_nlink++;
   1332  1.238.6.1       mrg 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1333  1.238.6.1       mrg 	ip->i_flag |= IN_CHANGE;
   1334  1.238.6.1       mrg 	if ((error = UFS_UPDATE(fvp, NULL, NULL, UPDATE_DIROP)) != 0) {
   1335  1.238.6.1       mrg 		goto bad;
   1336  1.238.6.1       mrg 	}
   1337  1.238.6.1       mrg 
   1338  1.238.6.1       mrg 	/*
   1339  1.238.6.1       mrg 	 * 2) If target doesn't exist, link the target
   1340  1.238.6.1       mrg 	 *    to the source and unlink the source.
   1341  1.238.6.1       mrg 	 *    Otherwise, rewrite the target directory
   1342  1.238.6.1       mrg 	 *    entry to reference the source inode and
   1343  1.238.6.1       mrg 	 *    expunge the original entry's existence.
   1344  1.238.6.1       mrg 	 */
   1345  1.238.6.1       mrg 	if (txp == NULL) {
   1346  1.238.6.1       mrg 		if (tdp->i_dev != ip->i_dev)
   1347  1.238.6.1       mrg 			panic("rename: EXDEV");
   1348  1.238.6.1       mrg 		/*
   1349  1.238.6.1       mrg 		 * Account for ".." in new directory.
   1350  1.238.6.1       mrg 		 * When source and destination have the same
   1351  1.238.6.1       mrg 		 * parent we don't fool with the link count.
   1352  1.238.6.1       mrg 		 */
   1353  1.238.6.1       mrg 		if (doingdirectory && newparent) {
   1354  1.238.6.1       mrg 			if ((nlink_t)tdp->i_nlink >= LINK_MAX) {
   1355  1.238.6.1       mrg 				error = EMLINK;
   1356  1.238.6.1       mrg 				goto bad;
   1357  1.238.6.1       mrg 			}
   1358  1.238.6.1       mrg 			tdp->i_nlink++;
   1359  1.238.6.1       mrg 			DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1360  1.238.6.1       mrg 			tdp->i_flag |= IN_CHANGE;
   1361  1.238.6.1       mrg 			if ((error = UFS_UPDATE(tdvp, NULL, NULL,
   1362  1.238.6.1       mrg 			    UPDATE_DIROP)) != 0) {
   1363  1.238.6.1       mrg 				tdp->i_nlink--;
   1364  1.238.6.1       mrg 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1365  1.238.6.1       mrg 				tdp->i_flag |= IN_CHANGE;
   1366  1.238.6.1       mrg 				goto bad;
   1367  1.238.6.1       mrg 			}
   1368  1.238.6.1       mrg 		}
   1369  1.238.6.1       mrg 		newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK);
   1370  1.238.6.1       mrg 		ufs_makedirentry(ip, tcnp, newdir);
   1371  1.238.6.1       mrg 		error = ufs_direnter(tdvp, &to_ulr,
   1372  1.238.6.1       mrg 				     NULL, newdir, tcnp, NULL);
   1373  1.238.6.1       mrg 		pool_cache_put(ufs_direct_cache, newdir);
   1374  1.238.6.1       mrg 		if (error != 0) {
   1375  1.238.6.1       mrg 			if (doingdirectory && newparent) {
   1376  1.238.6.1       mrg 				tdp->i_nlink--;
   1377  1.238.6.1       mrg 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1378  1.238.6.1       mrg 				tdp->i_flag |= IN_CHANGE;
   1379  1.238.6.1       mrg 				(void)UFS_UPDATE(tdvp, NULL, NULL,
   1380  1.238.6.1       mrg 						 UPDATE_WAIT | UPDATE_DIROP);
   1381  1.238.6.1       mrg 			}
   1382  1.238.6.1       mrg 			goto bad;
   1383  1.238.6.1       mrg 		}
   1384  1.238.6.1       mrg 		VN_KNOTE(tdvp, NOTE_WRITE);
   1385  1.238.6.1       mrg 	} else {
   1386  1.238.6.1       mrg 		if (txp->i_dev != tdp->i_dev || txp->i_dev != ip->i_dev)
   1387  1.238.6.1       mrg 			panic("rename: EXDEV");
   1388  1.238.6.1       mrg 		/*
   1389  1.238.6.1       mrg 		 * Short circuit rename(foo, foo).
   1390  1.238.6.1       mrg 		 */
   1391  1.238.6.1       mrg 		if (txp->i_number == ip->i_number)
   1392  1.238.6.1       mrg 			panic("rename: same file");
   1393  1.238.6.1       mrg 		/*
   1394  1.238.6.1       mrg 		 * If the parent directory is "sticky", then the user must
   1395  1.238.6.1       mrg 		 * own the parent directory, or the destination of the rename,
   1396  1.238.6.1       mrg 		 * otherwise the destination may not be changed (except by
   1397  1.238.6.1       mrg 		 * root). This implements append-only directories.
   1398  1.238.6.1       mrg 		 */
   1399  1.238.6.1       mrg 		if ((tdp->i_mode & S_ISTXT) &&
   1400  1.238.6.1       mrg 		    kauth_authorize_generic(tcnp->cn_cred,
   1401  1.238.6.1       mrg 		     KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
   1402  1.238.6.1       mrg 		    kauth_cred_geteuid(tcnp->cn_cred) != tdp->i_uid &&
   1403  1.238.6.1       mrg 		    txp->i_uid != kauth_cred_geteuid(tcnp->cn_cred)) {
   1404  1.238.6.1       mrg 			error = EPERM;
   1405  1.238.6.1       mrg 			goto bad;
   1406  1.238.6.1       mrg 		}
   1407  1.238.6.1       mrg 		/*
   1408  1.238.6.1       mrg 		 * Target must be empty if a directory and have no links
   1409  1.238.6.1       mrg 		 * to it. Also, ensure source and target are compatible
   1410  1.238.6.1       mrg 		 * (both directories, or both not directories).
   1411  1.238.6.1       mrg 		 */
   1412  1.238.6.1       mrg 		if ((txp->i_mode & IFMT) == IFDIR) {
   1413  1.238.6.1       mrg 			if (txp->i_nlink > 2 ||
   1414  1.238.6.1       mrg 			    !ufs_dirempty(txp, tdp->i_number, tcnp->cn_cred)) {
   1415  1.238.6.1       mrg 				error = ENOTEMPTY;
   1416  1.238.6.1       mrg 				goto bad;
   1417  1.238.6.1       mrg 			}
   1418  1.238.6.1       mrg 			if (!doingdirectory) {
   1419  1.238.6.1       mrg 				error = ENOTDIR;
   1420  1.238.6.1       mrg 				goto bad;
   1421  1.238.6.1       mrg 			}
   1422  1.238.6.1       mrg 			cache_purge(tdvp);
   1423  1.238.6.1       mrg 		} else if (doingdirectory) {
   1424  1.238.6.1       mrg 			error = EISDIR;
   1425  1.238.6.1       mrg 			goto bad;
   1426  1.238.6.1       mrg 		}
   1427  1.238.6.1       mrg 		if ((error = ufs_dirrewrite(tdp, to_ulr.ulr_offset,
   1428  1.238.6.1       mrg 		    txp, ip->i_number,
   1429  1.238.6.1       mrg 		    IFTODT(ip->i_mode), doingdirectory && newparent ?
   1430  1.238.6.1       mrg 		    newparent : doingdirectory, IN_CHANGE | IN_UPDATE)) != 0)
   1431  1.238.6.1       mrg 			goto bad;
   1432  1.238.6.1       mrg 		if (doingdirectory) {
   1433  1.238.6.1       mrg 			/*
   1434  1.238.6.1       mrg 			 * Truncate inode. The only stuff left in the directory
   1435  1.238.6.1       mrg 			 * is "." and "..". The "." reference is inconsequential
   1436  1.238.6.1       mrg 			 * since we are quashing it. We have removed the "."
   1437  1.238.6.1       mrg 			 * reference and the reference in the parent directory,
   1438  1.238.6.1       mrg 			 * but there may be other hard links.
   1439  1.238.6.1       mrg 			 */
   1440  1.238.6.1       mrg 			if (!newparent) {
   1441  1.238.6.1       mrg 				tdp->i_nlink--;
   1442  1.238.6.1       mrg 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1443  1.238.6.1       mrg 				tdp->i_flag |= IN_CHANGE;
   1444  1.238.6.1       mrg 				UFS_WAPBL_UPDATE(tdvp, NULL, NULL, 0);
   1445  1.238.6.1       mrg 			}
   1446  1.238.6.1       mrg 			txp->i_nlink--;
   1447  1.238.6.1       mrg 			DIP_ASSIGN(txp, nlink, txp->i_nlink);
   1448  1.238.6.1       mrg 			txp->i_flag |= IN_CHANGE;
   1449  1.238.6.1       mrg 			if ((error = UFS_TRUNCATE(tvp, (off_t)0, IO_SYNC,
   1450  1.238.6.1       mrg 			    tcnp->cn_cred)))
   1451  1.238.6.1       mrg 				goto bad;
   1452  1.238.6.1       mrg 		}
   1453  1.238.6.1       mrg 		VN_KNOTE(tdvp, NOTE_WRITE);
   1454  1.238.6.1       mrg 		VN_KNOTE(tvp, NOTE_DELETE);
   1455  1.238.6.1       mrg 	}
   1456  1.238.6.1       mrg 
   1457  1.238.6.1       mrg 	/*
   1458  1.238.6.1       mrg 	 * Handle case where the directory entry we need to remove,
   1459  1.238.6.1       mrg 	 * which is/was at from_ulr.ulr_offset, or the one before it,
   1460  1.238.6.1       mrg 	 * which is/was at from_ulr.ulr_offset - from_ulr.ulr_count,
   1461  1.238.6.1       mrg 	 * may have been moved when the directory insertion above
   1462  1.238.6.1       mrg 	 * performed compaction.
   1463  1.238.6.1       mrg 	 */
   1464  1.238.6.1       mrg 	if (tdp->i_number == fdp->i_number &&
   1465  1.238.6.1       mrg 	    ulr_overlap(&from_ulr, &to_ulr)) {
   1466  1.238.6.1       mrg 
   1467  1.238.6.1       mrg 		struct buf *bp;
   1468  1.238.6.1       mrg 		struct direct *ep;
   1469  1.238.6.1       mrg 		struct ufsmount *ump = fdp->i_ump;
   1470  1.238.6.1       mrg 		doff_t curpos;
   1471  1.238.6.1       mrg 		doff_t endsearch;	/* offset to end directory search */
   1472  1.238.6.1       mrg 		uint32_t prev_reclen;
   1473  1.238.6.1       mrg 		int dirblksiz = ump->um_dirblksiz;
   1474  1.238.6.1       mrg 		const int needswap = UFS_MPNEEDSWAP(ump);
   1475  1.238.6.1       mrg 		u_long bmask;
   1476  1.238.6.1       mrg 		int namlen, entryoffsetinblock;
   1477  1.238.6.1       mrg 		char *dirbuf;
   1478  1.238.6.1       mrg 
   1479  1.238.6.1       mrg 		bmask = fdvp->v_mount->mnt_stat.f_iosize - 1;
   1480  1.238.6.1       mrg 
   1481  1.238.6.1       mrg 		/*
   1482  1.238.6.1       mrg 		 * The fcnp entry will be somewhere between the start of
   1483  1.238.6.1       mrg 		 * compaction (to_ulr.ulr_offset) and the original location
   1484  1.238.6.1       mrg 		 * (from_ulr.ulr_offset).
   1485  1.238.6.1       mrg 		 */
   1486  1.238.6.1       mrg 		curpos = to_ulr.ulr_offset;
   1487  1.238.6.1       mrg 		endsearch = from_ulr.ulr_offset + from_ulr.ulr_reclen;
   1488  1.238.6.1       mrg 		entryoffsetinblock = 0;
   1489  1.238.6.1       mrg 
   1490  1.238.6.1       mrg 		/*
   1491  1.238.6.1       mrg 		 * Get the directory block containing the start of
   1492  1.238.6.1       mrg 		 * compaction.
   1493  1.238.6.1       mrg 		 */
   1494  1.238.6.1       mrg 		error = ufs_blkatoff(fdvp, (off_t)to_ulr.ulr_offset, &dirbuf,
   1495  1.238.6.1       mrg 		    &bp, false);
   1496  1.238.6.1       mrg 		if (error)
   1497  1.238.6.1       mrg 			goto bad;
   1498  1.238.6.1       mrg 
   1499  1.238.6.1       mrg 		/*
   1500  1.238.6.1       mrg 		 * Keep existing ulr_count (length of previous record)
   1501  1.238.6.1       mrg 		 * for the case where compaction did not include the
   1502  1.238.6.1       mrg 		 * previous entry but started at the from-entry.
   1503  1.238.6.1       mrg 		 */
   1504  1.238.6.1       mrg 		prev_reclen = from_ulr.ulr_count;
   1505  1.238.6.1       mrg 
   1506  1.238.6.1       mrg 		while (curpos < endsearch) {
   1507  1.238.6.1       mrg 			uint32_t reclen;
   1508  1.238.6.1       mrg 
   1509  1.238.6.1       mrg 			/*
   1510  1.238.6.1       mrg 			 * If necessary, get the next directory block.
   1511  1.238.6.1       mrg 			 *
   1512  1.238.6.1       mrg 			 * dholland 7/13/11 to the best of my understanding
   1513  1.238.6.1       mrg 			 * this should never happen; compaction occurs only
   1514  1.238.6.1       mrg 			 * within single blocks. I think.
   1515  1.238.6.1       mrg 			 */
   1516  1.238.6.1       mrg 			if ((curpos & bmask) == 0) {
   1517  1.238.6.1       mrg 				if (bp != NULL)
   1518  1.238.6.1       mrg 					brelse(bp, 0);
   1519  1.238.6.1       mrg 				error = ufs_blkatoff(fdvp, (off_t)curpos,
   1520  1.238.6.1       mrg 				    &dirbuf, &bp, false);
   1521  1.238.6.1       mrg 				if (error)
   1522  1.238.6.1       mrg 					goto bad;
   1523  1.238.6.1       mrg 				entryoffsetinblock = 0;
   1524  1.238.6.1       mrg 			}
   1525  1.238.6.1       mrg 
   1526  1.238.6.1       mrg 			KASSERT(bp != NULL);
   1527  1.238.6.1       mrg 			ep = (struct direct *)(dirbuf + entryoffsetinblock);
   1528  1.238.6.1       mrg 			reclen = ufs_rw16(ep->d_reclen, needswap);
   1529  1.238.6.1       mrg 
   1530  1.238.6.1       mrg #if (BYTE_ORDER == LITTLE_ENDIAN)
   1531  1.238.6.1       mrg 			if (FSFMT(fdvp) && needswap == 0)
   1532  1.238.6.1       mrg 				namlen = ep->d_type;
   1533  1.238.6.1       mrg 			else
   1534  1.238.6.1       mrg 				namlen = ep->d_namlen;
   1535  1.238.6.1       mrg #else
   1536  1.238.6.1       mrg 			if (FSFMT(fdvp) && needswap != 0)
   1537  1.238.6.1       mrg 				namlen = ep->d_type;
   1538  1.238.6.1       mrg 			else
   1539  1.238.6.1       mrg 				namlen = ep->d_namlen;
   1540  1.238.6.1       mrg #endif
   1541  1.238.6.1       mrg 			if ((ep->d_ino != 0) &&
   1542  1.238.6.1       mrg 			    (ufs_rw32(ep->d_ino, needswap) != WINO) &&
   1543  1.238.6.1       mrg 			    (namlen == fcnp->cn_namelen) &&
   1544  1.238.6.1       mrg 			    memcmp(ep->d_name, fcnp->cn_nameptr, namlen) == 0) {
   1545  1.238.6.1       mrg 				from_ulr.ulr_reclen = reclen;
   1546  1.238.6.1       mrg 				break;
   1547  1.238.6.1       mrg 			}
   1548  1.238.6.1       mrg 			curpos += reclen;
   1549  1.238.6.1       mrg 			entryoffsetinblock += reclen;
   1550  1.238.6.1       mrg 			prev_reclen = reclen;
   1551  1.238.6.1       mrg 		}
   1552  1.238.6.1       mrg 
   1553  1.238.6.1       mrg 		from_ulr.ulr_offset = curpos;
   1554  1.238.6.1       mrg 		from_ulr.ulr_count = prev_reclen;
   1555  1.238.6.1       mrg 
   1556  1.238.6.1       mrg 		KASSERT(curpos <= endsearch);
   1557  1.238.6.1       mrg 
   1558  1.238.6.1       mrg 		/*
   1559  1.238.6.1       mrg 		 * If ulr_offset points to start of a directory block,
   1560  1.238.6.1       mrg 		 * clear ulr_count so ufs_dirremove() doesn't try to
   1561  1.238.6.1       mrg 		 * merge free space over a directory block boundary.
   1562  1.238.6.1       mrg 		 */
   1563  1.238.6.1       mrg 		if ((from_ulr.ulr_offset & (dirblksiz - 1)) == 0)
   1564  1.238.6.1       mrg 			from_ulr.ulr_count = 0;
   1565  1.238.6.1       mrg 
   1566  1.238.6.1       mrg 		brelse(bp, 0);
   1567  1.238.6.1       mrg 	}
   1568  1.238.6.1       mrg 
   1569  1.238.6.1       mrg 	/*
   1570  1.238.6.1       mrg 	 * 3) Unlink the source.
   1571  1.238.6.1       mrg 	 */
   1572  1.238.6.1       mrg 
   1573  1.238.6.1       mrg #if 0
   1574  1.238.6.1       mrg 	/*
   1575  1.238.6.1       mrg 	 * Ensure that the directory entry still exists and has not
   1576  1.238.6.1       mrg 	 * changed while the new name has been entered. If the source is
   1577  1.238.6.1       mrg 	 * a file then the entry may have been unlinked or renamed. In
   1578  1.238.6.1       mrg 	 * either case there is no further work to be done. If the source
   1579  1.238.6.1       mrg 	 * is a directory then it cannot have been rmdir'ed; The IRENAME
   1580  1.238.6.1       mrg 	 * flag ensures that it cannot be moved by another rename or removed
   1581  1.238.6.1       mrg 	 * by a rmdir.
   1582  1.238.6.1       mrg 	 */
   1583  1.238.6.1       mrg #endif
   1584  1.238.6.1       mrg 	KASSERT(fxp == ip);
   1585  1.238.6.1       mrg 
   1586  1.238.6.1       mrg 	/*
   1587  1.238.6.1       mrg 	 * If the source is a directory with a new parent, the link
   1588  1.238.6.1       mrg 	 * count of the old parent directory must be decremented and
   1589  1.238.6.1       mrg 	 * ".." set to point to the new parent.
   1590  1.238.6.1       mrg 	 */
   1591  1.238.6.1       mrg 	if (doingdirectory && newparent) {
   1592  1.238.6.1       mrg 		KASSERT(fdp != NULL);
   1593  1.238.6.1       mrg 		ufs_dirrewrite(fxp, mastertemplate.dot_reclen,
   1594  1.238.6.1       mrg 			       fdp, newparent, DT_DIR, 0, IN_CHANGE);
   1595  1.238.6.1       mrg 		cache_purge(fdvp);
   1596  1.238.6.1       mrg 	}
   1597  1.238.6.1       mrg 	error = ufs_dirremove(fdvp, &from_ulr,
   1598  1.238.6.1       mrg 			      fxp, fcnp->cn_flags, 0);
   1599  1.238.6.1       mrg 	fxp->i_flag &= ~IN_RENAME;
   1600  1.238.6.1       mrg 
   1601  1.238.6.1       mrg 	VN_KNOTE(fvp, NOTE_RENAME);
   1602  1.238.6.1       mrg 	goto done;
   1603  1.238.6.1       mrg 
   1604  1.238.6.1       mrg  out:
   1605  1.238.6.1       mrg 	goto out2;
   1606  1.238.6.1       mrg 
   1607  1.238.6.1       mrg 	/* exit routines from steps 1 & 2 */
   1608  1.238.6.1       mrg  bad:
   1609  1.238.6.1       mrg 	if (doingdirectory)
   1610  1.238.6.1       mrg 		ip->i_flag &= ~IN_RENAME;
   1611  1.238.6.1       mrg 	ip->i_nlink--;
   1612  1.238.6.1       mrg 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1613  1.238.6.1       mrg 	ip->i_flag |= IN_CHANGE;
   1614  1.238.6.1       mrg 	ip->i_flag &= ~IN_RENAME;
   1615  1.238.6.1       mrg 	UFS_WAPBL_UPDATE(fvp, NULL, NULL, 0);
   1616  1.238.6.1       mrg  done:
   1617  1.238.6.1       mrg 	UFS_WAPBL_END(fdvp->v_mount);
   1618  1.238.6.1       mrg  out2:
   1619  1.238.6.1       mrg 	/*
   1620  1.238.6.1       mrg 	 * clear IN_RENAME - some exit paths happen too early to go
   1621  1.238.6.1       mrg 	 * through the cleanup done in the "bad" case above, so we
   1622  1.238.6.1       mrg 	 * always do this mini-cleanup here.
   1623  1.238.6.1       mrg 	 */
   1624  1.238.6.1       mrg 	ip->i_flag &= ~IN_RENAME;
   1625  1.238.6.1       mrg 
   1626  1.238.6.1       mrg 	VOP_UNLOCK(fdvp);
   1627  1.238.6.1       mrg 	if (tdvp != fdvp) {
   1628  1.238.6.1       mrg 		VOP_UNLOCK(tdvp);
   1629  1.238.6.1       mrg 	}
   1630  1.238.6.1       mrg 	VOP_UNLOCK(fvp);
   1631  1.238.6.1       mrg 	if (tvp && tvp != fvp) {
   1632  1.238.6.1       mrg 		VOP_UNLOCK(tvp);
   1633  1.238.6.1       mrg 	}
   1634  1.238.6.1       mrg 
   1635  1.238.6.1       mrg 	vrele(fdvp);
   1636  1.238.6.1       mrg 	vrele(tdvp);
   1637  1.238.6.1       mrg 	vrele(fvp);
   1638  1.238.6.1       mrg 	if (tvp) {
   1639  1.238.6.1       mrg 		vrele(tvp);
   1640  1.238.6.1       mrg 	}
   1641  1.238.6.1       mrg 
   1642  1.238.6.1       mrg 	fstrans_done(mp);
   1643  1.238.6.1       mrg 	if (marked) {
   1644       1.37  perseant 	UNMARK_VNODE(fdvp);
   1645       1.71      yamt 	UNMARK_VNODE(fvp);
   1646      1.138  perseant 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1647  1.238.6.1       mrg 	}
   1648       1.34  perseant 	return (error);
   1649       1.34  perseant 
   1650  1.238.6.1       mrg  abort_withlocks:
   1651  1.238.6.1       mrg 	VOP_UNLOCK(fdvp);
   1652  1.238.6.1       mrg 	if (tdvp != fdvp) {
   1653  1.238.6.1       mrg 		VOP_UNLOCK(tdvp);
   1654  1.238.6.1       mrg 	}
   1655  1.238.6.1       mrg 	VOP_UNLOCK(fvp);
   1656  1.238.6.1       mrg 	if (tvp && tvp != fvp) {
   1657  1.238.6.1       mrg 		VOP_UNLOCK(tvp);
   1658  1.238.6.1       mrg 	}
   1659  1.238.6.1       mrg 
   1660  1.238.6.1       mrg  abort:
   1661  1.238.6.1       mrg 	VOP_ABORTOP(fdvp, fcnp); /* XXX, why not in NFS? */
   1662  1.238.6.1       mrg 	VOP_ABORTOP(tdvp, tcnp); /* XXX, why not in NFS? */
   1663       1.34  perseant 		vrele(tdvp);
   1664  1.238.6.1       mrg 	if (tvp) {
   1665  1.238.6.1       mrg 		vrele(tvp);
   1666  1.238.6.1       mrg 	}
   1667       1.34  perseant 	vrele(fdvp);
   1668  1.238.6.1       mrg 	if (fvp) {
   1669       1.34  perseant 	vrele(fvp);
   1670  1.238.6.1       mrg 	}
   1671  1.238.6.1       mrg 	if (marked) {
   1672  1.238.6.1       mrg 		UNMARK_VNODE(fdvp);
   1673  1.238.6.1       mrg 		UNMARK_VNODE(fvp);
   1674  1.238.6.1       mrg 		SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1675  1.238.6.1       mrg 	}
   1676       1.30  perseant 	return (error);
   1677        1.1   mycroft }
   1678       1.22  perseant 
   1679        1.1   mycroft /* XXX hack to avoid calling ITIMES in getattr */
   1680        1.1   mycroft int
   1681       1.51  perseant lfs_getattr(void *v)
   1682       1.10  christos {
   1683        1.1   mycroft 	struct vop_getattr_args /* {
   1684        1.1   mycroft 		struct vnode *a_vp;
   1685        1.1   mycroft 		struct vattr *a_vap;
   1686      1.176      elad 		kauth_cred_t a_cred;
   1687       1.10  christos 	} */ *ap = v;
   1688       1.35  augustss 	struct vnode *vp = ap->a_vp;
   1689       1.35  augustss 	struct inode *ip = VTOI(vp);
   1690       1.35  augustss 	struct vattr *vap = ap->a_vap;
   1691       1.51  perseant 	struct lfs *fs = ip->i_lfs;
   1692        1.1   mycroft 	/*
   1693        1.1   mycroft 	 * Copy from inode table
   1694        1.1   mycroft 	 */
   1695        1.1   mycroft 	vap->va_fsid = ip->i_dev;
   1696        1.1   mycroft 	vap->va_fileid = ip->i_number;
   1697      1.102      fvdl 	vap->va_mode = ip->i_mode & ~IFMT;
   1698      1.102      fvdl 	vap->va_nlink = ip->i_nlink;
   1699      1.102      fvdl 	vap->va_uid = ip->i_uid;
   1700      1.102      fvdl 	vap->va_gid = ip->i_gid;
   1701      1.102      fvdl 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
   1702       1.55       chs 	vap->va_size = vp->v_size;
   1703      1.102      fvdl 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
   1704      1.102      fvdl 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
   1705      1.102      fvdl 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
   1706      1.102      fvdl 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
   1707      1.102      fvdl 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
   1708      1.102      fvdl 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
   1709      1.102      fvdl 	vap->va_flags = ip->i_flags;
   1710      1.102      fvdl 	vap->va_gen = ip->i_gen;
   1711        1.1   mycroft 	/* this doesn't belong here */
   1712        1.1   mycroft 	if (vp->v_type == VBLK)
   1713        1.1   mycroft 		vap->va_blocksize = BLKDEV_IOSIZE;
   1714        1.1   mycroft 	else if (vp->v_type == VCHR)
   1715        1.1   mycroft 		vap->va_blocksize = MAXBSIZE;
   1716        1.1   mycroft 	else
   1717        1.1   mycroft 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
   1718       1.84  perseant 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
   1719        1.1   mycroft 	vap->va_type = vp->v_type;
   1720        1.1   mycroft 	vap->va_filerev = ip->i_modrev;
   1721        1.1   mycroft 	return (0);
   1722       1.61  perseant }
   1723       1.61  perseant 
   1724       1.61  perseant /*
   1725       1.61  perseant  * Check to make sure the inode blocks won't choke the buffer
   1726       1.61  perseant  * cache, then call ufs_setattr as usual.
   1727       1.61  perseant  */
   1728       1.61  perseant int
   1729       1.61  perseant lfs_setattr(void *v)
   1730       1.61  perseant {
   1731      1.149     skrll 	struct vop_setattr_args /* {
   1732       1.61  perseant 		struct vnode *a_vp;
   1733       1.61  perseant 		struct vattr *a_vap;
   1734      1.176      elad 		kauth_cred_t a_cred;
   1735       1.61  perseant 	} */ *ap = v;
   1736       1.61  perseant 	struct vnode *vp = ap->a_vp;
   1737       1.61  perseant 
   1738       1.61  perseant 	lfs_check(vp, LFS_UNUSED_LBN, 0);
   1739       1.61  perseant 	return ufs_setattr(v);
   1740        1.1   mycroft }
   1741       1.22  perseant 
   1742        1.1   mycroft /*
   1743      1.179  perseant  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
   1744      1.188  perseant  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
   1745      1.179  perseant  */
   1746      1.179  perseant static int
   1747      1.193  christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
   1748      1.179  perseant {
   1749      1.214        ad 	if (fs->lfs_stoplwp != curlwp)
   1750      1.179  perseant 		return EBUSY;
   1751      1.179  perseant 
   1752      1.214        ad 	fs->lfs_stoplwp = NULL;
   1753      1.214        ad 	cv_signal(&fs->lfs_stopcv);
   1754      1.179  perseant 
   1755      1.179  perseant 	KASSERT(fs->lfs_nowrap > 0);
   1756      1.179  perseant 	if (fs->lfs_nowrap <= 0) {
   1757      1.179  perseant 		return 0;
   1758      1.179  perseant 	}
   1759      1.179  perseant 
   1760      1.179  perseant 	if (--fs->lfs_nowrap == 0) {
   1761      1.179  perseant 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
   1762      1.188  perseant 		wakeup(&fs->lfs_wrappass);
   1763      1.180  perseant 		lfs_wakeup_cleaner(fs);
   1764      1.179  perseant 	}
   1765      1.179  perseant 	if (waitfor) {
   1766      1.214        ad 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1767      1.214        ad 		    0, &lfs_lock);
   1768      1.179  perseant 	}
   1769      1.179  perseant 
   1770      1.179  perseant 	return 0;
   1771      1.179  perseant }
   1772      1.179  perseant 
   1773      1.179  perseant /*
   1774        1.1   mycroft  * Close called
   1775        1.1   mycroft  */
   1776        1.1   mycroft /* ARGSUSED */
   1777        1.1   mycroft int
   1778       1.51  perseant lfs_close(void *v)
   1779       1.10  christos {
   1780        1.1   mycroft 	struct vop_close_args /* {
   1781        1.1   mycroft 		struct vnode *a_vp;
   1782        1.1   mycroft 		int  a_fflag;
   1783      1.176      elad 		kauth_cred_t a_cred;
   1784       1.10  christos 	} */ *ap = v;
   1785       1.35  augustss 	struct vnode *vp = ap->a_vp;
   1786       1.35  augustss 	struct inode *ip = VTOI(vp);
   1787      1.180  perseant 	struct lfs *fs = ip->i_lfs;
   1788        1.1   mycroft 
   1789      1.190  perseant 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1790      1.214        ad 	    fs->lfs_stoplwp == curlwp) {
   1791      1.214        ad 		mutex_enter(&lfs_lock);
   1792      1.188  perseant 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1793      1.180  perseant 		lfs_wrapgo(fs, ip, 0);
   1794      1.214        ad 		mutex_exit(&lfs_lock);
   1795      1.179  perseant 	}
   1796      1.179  perseant 
   1797       1.97  perseant 	if (vp == ip->i_lfs->lfs_ivnode &&
   1798      1.119       dbj 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1799       1.97  perseant 		return 0;
   1800       1.97  perseant 
   1801       1.97  perseant 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1802      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1803        1.1   mycroft 	}
   1804        1.1   mycroft 	return (0);
   1805       1.65  perseant }
   1806       1.65  perseant 
   1807       1.65  perseant /*
   1808       1.65  perseant  * Close wrapper for special devices.
   1809       1.65  perseant  *
   1810       1.65  perseant  * Update the times on the inode then do device close.
   1811       1.65  perseant  */
   1812       1.65  perseant int
   1813       1.65  perseant lfsspec_close(void *v)
   1814       1.65  perseant {
   1815       1.65  perseant 	struct vop_close_args /* {
   1816       1.65  perseant 		struct vnode	*a_vp;
   1817       1.65  perseant 		int		a_fflag;
   1818      1.176      elad 		kauth_cred_t	a_cred;
   1819       1.65  perseant 	} */ *ap = v;
   1820       1.65  perseant 	struct vnode	*vp;
   1821       1.65  perseant 	struct inode	*ip;
   1822       1.65  perseant 
   1823       1.65  perseant 	vp = ap->a_vp;
   1824       1.65  perseant 	ip = VTOI(vp);
   1825       1.65  perseant 	if (vp->v_usecount > 1) {
   1826      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1827       1.65  perseant 	}
   1828       1.65  perseant 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1829       1.65  perseant }
   1830       1.65  perseant 
   1831       1.65  perseant /*
   1832       1.65  perseant  * Close wrapper for fifo's.
   1833       1.65  perseant  *
   1834       1.65  perseant  * Update the times on the inode then do device close.
   1835       1.65  perseant  */
   1836       1.65  perseant int
   1837       1.65  perseant lfsfifo_close(void *v)
   1838       1.65  perseant {
   1839       1.65  perseant 	struct vop_close_args /* {
   1840       1.65  perseant 		struct vnode	*a_vp;
   1841       1.65  perseant 		int		a_fflag;
   1842      1.176      elad 		kauth_cred_	a_cred;
   1843       1.65  perseant 	} */ *ap = v;
   1844       1.65  perseant 	struct vnode	*vp;
   1845       1.65  perseant 	struct inode	*ip;
   1846       1.65  perseant 
   1847       1.65  perseant 	vp = ap->a_vp;
   1848       1.65  perseant 	ip = VTOI(vp);
   1849       1.65  perseant 	if (ap->a_vp->v_usecount > 1) {
   1850      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1851       1.65  perseant 	}
   1852       1.65  perseant 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1853        1.1   mycroft }
   1854        1.1   mycroft 
   1855        1.1   mycroft /*
   1856       1.15      fvdl  * Reclaim an inode so that it can be used for other purposes.
   1857        1.1   mycroft  */
   1858        1.1   mycroft 
   1859        1.1   mycroft int
   1860       1.51  perseant lfs_reclaim(void *v)
   1861       1.10  christos {
   1862        1.1   mycroft 	struct vop_reclaim_args /* {
   1863        1.1   mycroft 		struct vnode *a_vp;
   1864       1.10  christos 	} */ *ap = v;
   1865       1.15      fvdl 	struct vnode *vp = ap->a_vp;
   1866       1.84  perseant 	struct inode *ip = VTOI(vp);
   1867      1.203  perseant 	struct lfs *fs = ip->i_lfs;
   1868        1.1   mycroft 	int error;
   1869       1.77      yamt 
   1870      1.231   hannken 	/*
   1871      1.231   hannken 	 * The inode must be freed and updated before being removed
   1872      1.231   hannken 	 * from its hash chain.  Other threads trying to gain a hold
   1873      1.231   hannken 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1874      1.231   hannken 	 */
   1875      1.231   hannken 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1876      1.231   hannken 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1877      1.231   hannken 
   1878      1.214        ad 	mutex_enter(&lfs_lock);
   1879       1.84  perseant 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1880      1.214        ad 	mutex_exit(&lfs_lock);
   1881      1.213     pooka 	if ((error = ufs_reclaim(vp)))
   1882        1.1   mycroft 		return (error);
   1883      1.203  perseant 
   1884      1.203  perseant 	/*
   1885      1.203  perseant 	 * Take us off the paging and/or dirop queues if we were on them.
   1886      1.203  perseant 	 * We shouldn't be on them.
   1887      1.203  perseant 	 */
   1888      1.214        ad 	mutex_enter(&lfs_lock);
   1889      1.203  perseant 	if (ip->i_flags & IN_PAGING) {
   1890      1.203  perseant 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1891      1.203  perseant 		    fs->lfs_fsmnt);
   1892      1.203  perseant 		ip->i_flags &= ~IN_PAGING;
   1893      1.203  perseant 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1894      1.203  perseant 	}
   1895      1.212        ad 	if (vp->v_uflag & VU_DIROP) {
   1896      1.212        ad 		panic("reclaimed vnode is VU_DIROP");
   1897      1.212        ad 		vp->v_uflag &= ~VU_DIROP;
   1898      1.203  perseant 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1899      1.203  perseant 	}
   1900      1.214        ad 	mutex_exit(&lfs_lock);
   1901      1.203  perseant 
   1902      1.142  perseant 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1903      1.145  perseant 	lfs_deregister_all(vp);
   1904       1.84  perseant 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1905       1.84  perseant 	ip->inode_ext.lfs = NULL;
   1906      1.199        ad 	genfs_node_destroy(vp);
   1907       1.19   thorpej 	pool_put(&lfs_inode_pool, vp->v_data);
   1908        1.1   mycroft 	vp->v_data = NULL;
   1909       1.94  perseant 	return (0);
   1910       1.94  perseant }
   1911       1.94  perseant 
   1912       1.94  perseant /*
   1913      1.101      yamt  * Read a block from a storage device.
   1914       1.94  perseant  * In order to avoid reading blocks that are in the process of being
   1915       1.94  perseant  * written by the cleaner---and hence are not mutexed by the normal
   1916       1.94  perseant  * buffer cache / page cache mechanisms---check for collisions before
   1917       1.94  perseant  * reading.
   1918       1.94  perseant  *
   1919       1.94  perseant  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1920       1.94  perseant  * the active cleaner test.
   1921       1.94  perseant  *
   1922       1.94  perseant  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1923       1.94  perseant  */
   1924       1.94  perseant int
   1925       1.94  perseant lfs_strategy(void *v)
   1926       1.94  perseant {
   1927       1.94  perseant 	struct vop_strategy_args /* {
   1928      1.128   hannken 		struct vnode *a_vp;
   1929       1.94  perseant 		struct buf *a_bp;
   1930       1.94  perseant 	} */ *ap = v;
   1931       1.94  perseant 	struct buf	*bp;
   1932       1.94  perseant 	struct lfs	*fs;
   1933       1.94  perseant 	struct vnode	*vp;
   1934       1.94  perseant 	struct inode	*ip;
   1935       1.94  perseant 	daddr_t		tbn;
   1936  1.238.6.1       mrg #define MAXLOOP 25
   1937  1.238.6.1       mrg 	int		i, sn, error, slept, loopcount;
   1938       1.94  perseant 
   1939       1.94  perseant 	bp = ap->a_bp;
   1940      1.128   hannken 	vp = ap->a_vp;
   1941       1.94  perseant 	ip = VTOI(vp);
   1942       1.94  perseant 	fs = ip->i_lfs;
   1943       1.94  perseant 
   1944      1.101      yamt 	/* lfs uses its strategy routine only for read */
   1945      1.101      yamt 	KASSERT(bp->b_flags & B_READ);
   1946      1.101      yamt 
   1947       1.94  perseant 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1948       1.94  perseant 		panic("lfs_strategy: spec");
   1949       1.94  perseant 	KASSERT(bp->b_bcount != 0);
   1950       1.94  perseant 	if (bp->b_blkno == bp->b_lblkno) {
   1951       1.94  perseant 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1952       1.94  perseant 				 NULL);
   1953       1.94  perseant 		if (error) {
   1954       1.94  perseant 			bp->b_error = error;
   1955      1.214        ad 			bp->b_resid = bp->b_bcount;
   1956       1.94  perseant 			biodone(bp);
   1957       1.94  perseant 			return (error);
   1958       1.94  perseant 		}
   1959       1.94  perseant 		if ((long)bp->b_blkno == -1) /* no valid data */
   1960       1.94  perseant 			clrbuf(bp);
   1961       1.94  perseant 	}
   1962       1.94  perseant 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1963      1.214        ad 		bp->b_resid = bp->b_bcount;
   1964       1.94  perseant 		biodone(bp);
   1965       1.94  perseant 		return (0);
   1966       1.94  perseant 	}
   1967       1.94  perseant 
   1968       1.94  perseant 	slept = 1;
   1969  1.238.6.1       mrg 	loopcount = 0;
   1970      1.214        ad 	mutex_enter(&lfs_lock);
   1971      1.101      yamt 	while (slept && fs->lfs_seglock) {
   1972      1.214        ad 		mutex_exit(&lfs_lock);
   1973       1.94  perseant 		/*
   1974       1.94  perseant 		 * Look through list of intervals.
   1975       1.94  perseant 		 * There will only be intervals to look through
   1976       1.94  perseant 		 * if the cleaner holds the seglock.
   1977       1.94  perseant 		 * Since the cleaner is synchronous, we can trust
   1978       1.94  perseant 		 * the list of intervals to be current.
   1979       1.94  perseant 		 */
   1980       1.94  perseant 		tbn = dbtofsb(fs, bp->b_blkno);
   1981       1.94  perseant 		sn = dtosn(fs, tbn);
   1982       1.94  perseant 		slept = 0;
   1983       1.94  perseant 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1984       1.94  perseant 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1985       1.94  perseant 			    tbn >= fs->lfs_cleanint[i]) {
   1986      1.136  perseant 				DLOG((DLOG_CLEAN,
   1987      1.136  perseant 				      "lfs_strategy: ino %d lbn %" PRId64
   1988      1.203  perseant 				      " ind %d sn %d fsb %" PRIx32
   1989      1.203  perseant 				      " given sn %d fsb %" PRIx64 "\n",
   1990      1.203  perseant 				      ip->i_number, bp->b_lblkno, i,
   1991      1.203  perseant 				      dtosn(fs, fs->lfs_cleanint[i]),
   1992      1.203  perseant 				      fs->lfs_cleanint[i], sn, tbn));
   1993      1.136  perseant 				DLOG((DLOG_CLEAN,
   1994      1.136  perseant 				      "lfs_strategy: sleeping on ino %d lbn %"
   1995      1.136  perseant 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1996      1.214        ad 				mutex_enter(&lfs_lock);
   1997      1.170  perseant 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1998  1.238.6.1       mrg 					/*
   1999  1.238.6.1       mrg 					 * Cleaner can't wait for itself.
   2000  1.238.6.1       mrg 					 * Instead, wait for the blocks
   2001  1.238.6.1       mrg 					 * to be written to disk.
   2002  1.238.6.1       mrg 					 * XXX we need pribio in the test
   2003  1.238.6.1       mrg 					 * XXX here.
   2004  1.238.6.1       mrg 					 */
   2005  1.238.6.1       mrg  					mtsleep(&fs->lfs_iocount,
   2006  1.238.6.1       mrg  						(PRIBIO + 1) | PNORELOCK,
   2007  1.238.6.1       mrg 						"clean2", hz/10 + 1,
   2008  1.238.6.1       mrg  						&lfs_lock);
   2009      1.170  perseant 					slept = 1;
   2010  1.238.6.1       mrg 					++loopcount;
   2011      1.170  perseant 					break;
   2012      1.170  perseant 				} else if (fs->lfs_seglock) {
   2013      1.214        ad 					mtsleep(&fs->lfs_seglock,
   2014      1.141  perseant 						(PRIBIO + 1) | PNORELOCK,
   2015      1.170  perseant 						"clean1", 0,
   2016      1.214        ad 						&lfs_lock);
   2017      1.167  perseant 					slept = 1;
   2018      1.167  perseant 					break;
   2019      1.167  perseant 				}
   2020      1.214        ad 				mutex_exit(&lfs_lock);
   2021       1.94  perseant 			}
   2022       1.94  perseant 		}
   2023      1.214        ad 		mutex_enter(&lfs_lock);
   2024  1.238.6.1       mrg 		if (loopcount > MAXLOOP) {
   2025  1.238.6.1       mrg 			printf("lfs_strategy: breaking out of clean2 loop\n");
   2026  1.238.6.1       mrg 			break;
   2027  1.238.6.1       mrg 		}
   2028       1.94  perseant 	}
   2029      1.214        ad 	mutex_exit(&lfs_lock);
   2030       1.94  perseant 
   2031       1.94  perseant 	vp = ip->i_devvp;
   2032      1.127   hannken 	VOP_STRATEGY(vp, bp);
   2033        1.1   mycroft 	return (0);
   2034       1.89  perseant }
   2035       1.89  perseant 
   2036  1.238.6.1       mrg /*
   2037  1.238.6.1       mrg  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   2038  1.238.6.1       mrg  * Technically this is a checkpoint (the on-disk state is valid)
   2039  1.238.6.1       mrg  * even though we are leaving out all the file data.
   2040  1.238.6.1       mrg  */
   2041  1.238.6.1       mrg int
   2042       1.92  perseant lfs_flush_dirops(struct lfs *fs)
   2043       1.92  perseant {
   2044       1.92  perseant 	struct inode *ip, *nip;
   2045       1.92  perseant 	struct vnode *vp;
   2046       1.92  perseant 	extern int lfs_dostats;
   2047       1.92  perseant 	struct segment *sp;
   2048  1.238.6.1       mrg 	int flags = 0;
   2049  1.238.6.1       mrg 	int error = 0;
   2050       1.92  perseant 
   2051      1.163  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   2052      1.171  perseant 	KASSERT(fs->lfs_nadirop == 0);
   2053      1.141  perseant 
   2054       1.92  perseant 	if (fs->lfs_ronly)
   2055  1.238.6.1       mrg 		return EROFS;
   2056       1.92  perseant 
   2057      1.214        ad 	mutex_enter(&lfs_lock);
   2058      1.141  perseant 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   2059      1.214        ad 		mutex_exit(&lfs_lock);
   2060  1.238.6.1       mrg 		return 0;
   2061      1.141  perseant 	} else
   2062      1.214        ad 		mutex_exit(&lfs_lock);
   2063       1.92  perseant 
   2064       1.92  perseant 	if (lfs_dostats)
   2065       1.92  perseant 		++lfs_stats.flush_invoked;
   2066       1.92  perseant 
   2067       1.92  perseant 	lfs_imtime(fs);
   2068  1.238.6.1       mrg 	lfs_seglock(fs, flags);
   2069       1.92  perseant 	sp = fs->lfs_sp;
   2070       1.92  perseant 
   2071       1.92  perseant 	/*
   2072       1.92  perseant 	 * lfs_writevnodes, optimized to get dirops out of the way.
   2073       1.92  perseant 	 * Only write dirops, and don't flush files' pages, only
   2074       1.92  perseant 	 * blocks from the directories.
   2075       1.92  perseant 	 *
   2076       1.92  perseant 	 * We don't need to vref these files because they are
   2077       1.92  perseant 	 * dirops and so hold an extra reference until the
   2078       1.92  perseant 	 * segunlock clears them of that status.
   2079       1.92  perseant 	 *
   2080       1.92  perseant 	 * We don't need to check for IN_ADIROP because we know that
   2081       1.92  perseant 	 * no dirops are active.
   2082       1.92  perseant 	 *
   2083       1.92  perseant 	 */
   2084      1.214        ad 	mutex_enter(&lfs_lock);
   2085       1.92  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   2086       1.92  perseant 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   2087      1.214        ad 		mutex_exit(&lfs_lock);
   2088       1.92  perseant 		vp = ITOV(ip);
   2089       1.92  perseant 
   2090      1.171  perseant 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   2091  1.238.6.1       mrg 		KASSERT(vp->v_uflag & VU_DIROP);
   2092  1.238.6.1       mrg 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   2093      1.171  perseant 
   2094       1.92  perseant 		/*
   2095       1.92  perseant 		 * All writes to directories come from dirops; all
   2096       1.92  perseant 		 * writes to files' direct blocks go through the page
   2097       1.92  perseant 		 * cache, which we're not touching.  Reads to files
   2098       1.92  perseant 		 * and/or directories will not be affected by writing
   2099       1.92  perseant 		 * directory blocks inodes and file inodes.  So we don't
   2100  1.238.6.1       mrg 		 * really need to lock.
   2101       1.92  perseant 		 */
   2102      1.214        ad 		if (vp->v_iflag & VI_XLOCK) {
   2103      1.214        ad 			mutex_enter(&lfs_lock);
   2104       1.92  perseant 			continue;
   2105      1.167  perseant 		}
   2106      1.228   hannken 		/* XXX see below
   2107      1.228   hannken 		 * waslocked = VOP_ISLOCKED(vp);
   2108      1.228   hannken 		 */
   2109       1.92  perseant 		if (vp->v_type != VREG &&
   2110       1.92  perseant 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   2111  1.238.6.1       mrg 			error = lfs_writefile(fs, sp, vp);
   2112       1.92  perseant 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2113       1.92  perseant 			    !(ip->i_flag & IN_ALLMOD)) {
   2114      1.214        ad 			    	mutex_enter(&lfs_lock);
   2115       1.92  perseant 				LFS_SET_UINO(ip, IN_MODIFIED);
   2116      1.214        ad 			    	mutex_exit(&lfs_lock);
   2117       1.92  perseant 			}
   2118  1.238.6.1       mrg 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2119  1.238.6.1       mrg 				mutex_enter(&lfs_lock);
   2120  1.238.6.1       mrg 				error = EAGAIN;
   2121  1.238.6.1       mrg 				break;
   2122  1.238.6.1       mrg 			}
   2123       1.92  perseant 		}
   2124      1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2125  1.238.6.1       mrg 		error = lfs_writeinode(fs, sp, ip);
   2126      1.214        ad 		mutex_enter(&lfs_lock);
   2127  1.238.6.1       mrg 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2128  1.238.6.1       mrg 			error = EAGAIN;
   2129  1.238.6.1       mrg 			break;
   2130  1.238.6.1       mrg 		}
   2131  1.238.6.1       mrg 
   2132      1.228   hannken 		/*
   2133  1.238.6.1       mrg 		 * We might need to update these inodes again,
   2134  1.238.6.1       mrg 		 * for example, if they have data blocks to write.
   2135  1.238.6.1       mrg 		 * Make sure that after this flush, they are still
   2136  1.238.6.1       mrg 		 * marked IN_MODIFIED so that we don't forget to
   2137  1.238.6.1       mrg 		 * write them.
   2138      1.228   hannken 		 */
   2139  1.238.6.1       mrg 		/* XXX only for non-directories? --KS */
   2140  1.238.6.1       mrg 		LFS_SET_UINO(ip, IN_MODIFIED);
   2141       1.92  perseant 	}
   2142      1.214        ad 	mutex_exit(&lfs_lock);
   2143       1.92  perseant 	/* We've written all the dirops there are */
   2144       1.92  perseant 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   2145      1.170  perseant 	lfs_finalize_fs_seguse(fs);
   2146       1.92  perseant 	(void) lfs_writeseg(fs, sp);
   2147       1.92  perseant 	lfs_segunlock(fs);
   2148  1.238.6.1       mrg 
   2149  1.238.6.1       mrg 	return error;
   2150       1.92  perseant }
   2151       1.92  perseant 
   2152       1.89  perseant /*
   2153      1.164  perseant  * Flush all vnodes for which the pagedaemon has requested pageouts.
   2154      1.212        ad  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   2155      1.164  perseant  * has just run, this would be an error).  If we have to skip a vnode
   2156      1.164  perseant  * for any reason, just skip it; if we have to wait for the cleaner,
   2157      1.164  perseant  * abort.  The writer daemon will call us again later.
   2158      1.164  perseant  */
   2159  1.238.6.1       mrg int
   2160      1.164  perseant lfs_flush_pchain(struct lfs *fs)
   2161      1.164  perseant {
   2162      1.164  perseant 	struct inode *ip, *nip;
   2163      1.164  perseant 	struct vnode *vp;
   2164      1.164  perseant 	extern int lfs_dostats;
   2165      1.164  perseant 	struct segment *sp;
   2166  1.238.6.1       mrg 	int error, error2;
   2167      1.164  perseant 
   2168      1.164  perseant 	ASSERT_NO_SEGLOCK(fs);
   2169      1.164  perseant 
   2170      1.164  perseant 	if (fs->lfs_ronly)
   2171  1.238.6.1       mrg 		return EROFS;
   2172      1.164  perseant 
   2173      1.214        ad 	mutex_enter(&lfs_lock);
   2174      1.164  perseant 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   2175      1.214        ad 		mutex_exit(&lfs_lock);
   2176  1.238.6.1       mrg 		return 0;
   2177      1.164  perseant 	} else
   2178      1.214        ad 		mutex_exit(&lfs_lock);
   2179      1.164  perseant 
   2180      1.164  perseant 	/* Get dirops out of the way */
   2181  1.238.6.1       mrg 	if ((error = lfs_flush_dirops(fs)) != 0)
   2182  1.238.6.1       mrg 		return error;
   2183      1.164  perseant 
   2184      1.164  perseant 	if (lfs_dostats)
   2185      1.164  perseant 		++lfs_stats.flush_invoked;
   2186      1.164  perseant 
   2187      1.164  perseant 	/*
   2188      1.164  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   2189      1.164  perseant 	 */
   2190      1.164  perseant 	lfs_imtime(fs);
   2191      1.164  perseant 	lfs_seglock(fs, 0);
   2192      1.164  perseant 	sp = fs->lfs_sp;
   2193      1.164  perseant 
   2194      1.164  perseant 	/*
   2195      1.164  perseant 	 * lfs_writevnodes, optimized to clear pageout requests.
   2196      1.164  perseant 	 * Only write non-dirop files that are in the pageout queue.
   2197      1.164  perseant 	 * We're very conservative about what we write; we want to be
   2198      1.164  perseant 	 * fast and async.
   2199      1.164  perseant 	 */
   2200      1.214        ad 	mutex_enter(&lfs_lock);
   2201      1.214        ad     top:
   2202      1.164  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   2203      1.164  perseant 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   2204      1.164  perseant 		vp = ITOV(ip);
   2205      1.164  perseant 
   2206      1.164  perseant 		if (!(ip->i_flags & IN_PAGING))
   2207      1.164  perseant 			goto top;
   2208      1.164  perseant 
   2209      1.235     rmind 		mutex_enter(vp->v_interlock);
   2210      1.214        ad 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   2211      1.235     rmind 			mutex_exit(vp->v_interlock);
   2212      1.164  perseant 			continue;
   2213      1.214        ad 		}
   2214      1.214        ad 		if (vp->v_type != VREG) {
   2215      1.235     rmind 			mutex_exit(vp->v_interlock);
   2216      1.164  perseant 			continue;
   2217      1.214        ad 		}
   2218      1.164  perseant 		if (lfs_vref(vp))
   2219      1.164  perseant 			continue;
   2220      1.214        ad 		mutex_exit(&lfs_lock);
   2221      1.169  perseant 
   2222      1.228   hannken 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   2223      1.165  perseant 			lfs_vunref(vp);
   2224      1.214        ad 			mutex_enter(&lfs_lock);
   2225      1.164  perseant 			continue;
   2226      1.165  perseant 		}
   2227      1.164  perseant 
   2228      1.164  perseant 		error = lfs_writefile(fs, sp, vp);
   2229      1.164  perseant 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2230      1.164  perseant 		    !(ip->i_flag & IN_ALLMOD)) {
   2231      1.214        ad 		    	mutex_enter(&lfs_lock);
   2232      1.164  perseant 			LFS_SET_UINO(ip, IN_MODIFIED);
   2233      1.214        ad 		    	mutex_exit(&lfs_lock);
   2234      1.164  perseant 		}
   2235      1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2236  1.238.6.1       mrg 		error2 = lfs_writeinode(fs, sp, ip);
   2237      1.164  perseant 
   2238      1.229   hannken 		VOP_UNLOCK(vp);
   2239      1.164  perseant 		lfs_vunref(vp);
   2240      1.164  perseant 
   2241  1.238.6.1       mrg 		if (error == EAGAIN || error2 == EAGAIN) {
   2242      1.164  perseant 			lfs_writeseg(fs, sp);
   2243      1.214        ad 			mutex_enter(&lfs_lock);
   2244      1.164  perseant 			break;
   2245      1.164  perseant 		}
   2246      1.214        ad 		mutex_enter(&lfs_lock);
   2247      1.164  perseant 	}
   2248      1.214        ad 	mutex_exit(&lfs_lock);
   2249      1.164  perseant 	(void) lfs_writeseg(fs, sp);
   2250      1.164  perseant 	lfs_segunlock(fs);
   2251  1.238.6.1       mrg 
   2252  1.238.6.1       mrg 	return 0;
   2253      1.164  perseant }
   2254      1.164  perseant 
   2255      1.164  perseant /*
   2256       1.90  perseant  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   2257       1.89  perseant  */
   2258       1.89  perseant int
   2259       1.90  perseant lfs_fcntl(void *v)
   2260       1.89  perseant {
   2261      1.137    simonb 	struct vop_fcntl_args /* {
   2262      1.137    simonb 		struct vnode *a_vp;
   2263      1.218  gmcgarry 		u_int a_command;
   2264      1.201  christos 		void * a_data;
   2265      1.137    simonb 		int  a_fflag;
   2266      1.176      elad 		kauth_cred_t a_cred;
   2267      1.137    simonb 	} */ *ap = v;
   2268      1.222  christos 	struct timeval tv;
   2269       1.89  perseant 	struct timeval *tvp;
   2270       1.89  perseant 	BLOCK_INFO *blkiov;
   2271       1.92  perseant 	CLEANERINFO *cip;
   2272      1.148  perseant 	SEGUSE *sup;
   2273       1.92  perseant 	int blkcnt, error, oclean;
   2274      1.181    martin 	size_t fh_size;
   2275       1.90  perseant 	struct lfs_fcntl_markv blkvp;
   2276      1.185        ad 	struct lwp *l;
   2277       1.89  perseant 	fsid_t *fsidp;
   2278       1.92  perseant 	struct lfs *fs;
   2279       1.92  perseant 	struct buf *bp;
   2280      1.134  perseant 	fhandle_t *fhp;
   2281       1.92  perseant 	daddr_t off;
   2282       1.89  perseant 
   2283       1.90  perseant 	/* Only respect LFS fcntls on fs root or Ifile */
   2284       1.89  perseant 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   2285       1.89  perseant 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   2286       1.90  perseant 		return ufs_fcntl(v);
   2287       1.89  perseant 	}
   2288       1.89  perseant 
   2289      1.100  perseant 	/* Avoid locking a draining lock */
   2290      1.119       dbj 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   2291      1.100  perseant 		return ESHUTDOWN;
   2292      1.100  perseant 	}
   2293      1.100  perseant 
   2294      1.184  perseant 	/* LFS control and monitoring fcntls are available only to root */
   2295      1.213     pooka 	l = curlwp;
   2296      1.184  perseant 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   2297      1.185        ad 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2298      1.203  perseant 					     NULL)) != 0)
   2299      1.184  perseant 		return (error);
   2300      1.184  perseant 
   2301      1.100  perseant 	fs = VTOI(ap->a_vp)->i_lfs;
   2302      1.131  christos 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   2303       1.89  perseant 
   2304      1.188  perseant 	error = 0;
   2305      1.218  gmcgarry 	switch ((int)ap->a_command) {
   2306      1.222  christos 	    case LFCNSEGWAITALL_COMPAT_50:
   2307      1.222  christos 	    case LFCNSEGWAITALL_COMPAT:
   2308      1.222  christos 		fsidp = NULL;
   2309      1.222  christos 		/* FALLSTHROUGH */
   2310      1.222  christos 	    case LFCNSEGWAIT_COMPAT_50:
   2311      1.222  christos 	    case LFCNSEGWAIT_COMPAT:
   2312      1.222  christos 		{
   2313      1.222  christos 			struct timeval50 *tvp50
   2314      1.222  christos 				= (struct timeval50 *)ap->a_data;
   2315      1.222  christos 			timeval50_to_timeval(tvp50, &tv);
   2316      1.222  christos 			tvp = &tv;
   2317      1.222  christos 		}
   2318      1.222  christos 		goto segwait_common;
   2319       1.90  perseant 	    case LFCNSEGWAITALL:
   2320      1.214        ad 		fsidp = NULL;
   2321      1.214        ad 		/* FALLSTHROUGH */
   2322       1.90  perseant 	    case LFCNSEGWAIT:
   2323      1.214        ad 		tvp = (struct timeval *)ap->a_data;
   2324      1.222  christos segwait_common:
   2325      1.214        ad 		mutex_enter(&lfs_lock);
   2326      1.214        ad 		++fs->lfs_sleepers;
   2327      1.214        ad 		mutex_exit(&lfs_lock);
   2328      1.214        ad 
   2329      1.214        ad 		error = lfs_segwait(fsidp, tvp);
   2330      1.214        ad 
   2331      1.214        ad 		mutex_enter(&lfs_lock);
   2332      1.214        ad 		if (--fs->lfs_sleepers == 0)
   2333      1.214        ad 			wakeup(&fs->lfs_sleepers);
   2334      1.214        ad 		mutex_exit(&lfs_lock);
   2335      1.214        ad 		return error;
   2336       1.89  perseant 
   2337       1.90  perseant 	    case LFCNBMAPV:
   2338       1.90  perseant 	    case LFCNMARKV:
   2339      1.214        ad 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   2340       1.89  perseant 
   2341      1.214        ad 		blkcnt = blkvp.blkcnt;
   2342      1.214        ad 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   2343      1.214        ad 			return (EINVAL);
   2344      1.214        ad 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   2345      1.214        ad 		if ((error = copyin(blkvp.blkiov, blkiov,
   2346      1.214        ad 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   2347      1.214        ad 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2348      1.214        ad 			return error;
   2349      1.214        ad 		}
   2350      1.214        ad 
   2351      1.214        ad 		mutex_enter(&lfs_lock);
   2352      1.214        ad 		++fs->lfs_sleepers;
   2353      1.214        ad 		mutex_exit(&lfs_lock);
   2354      1.214        ad 		if (ap->a_command == LFCNBMAPV)
   2355      1.214        ad 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   2356      1.214        ad 		else /* LFCNMARKV */
   2357      1.214        ad 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   2358      1.214        ad 		if (error == 0)
   2359      1.214        ad 			error = copyout(blkiov, blkvp.blkiov,
   2360      1.214        ad 					blkcnt * sizeof(BLOCK_INFO));
   2361      1.214        ad 		mutex_enter(&lfs_lock);
   2362      1.214        ad 		if (--fs->lfs_sleepers == 0)
   2363      1.214        ad 			wakeup(&fs->lfs_sleepers);
   2364      1.214        ad 		mutex_exit(&lfs_lock);
   2365      1.214        ad 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2366      1.214        ad 		return error;
   2367       1.92  perseant 
   2368       1.92  perseant 	    case LFCNRECLAIM:
   2369      1.214        ad 		/*
   2370      1.214        ad 		 * Flush dirops and write Ifile, allowing empty segments
   2371      1.214        ad 		 * to be immediately reclaimed.
   2372      1.214        ad 		 */
   2373      1.214        ad 		lfs_writer_enter(fs, "pndirop");
   2374      1.214        ad 		off = fs->lfs_offset;
   2375      1.214        ad 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   2376      1.214        ad 		lfs_flush_dirops(fs);
   2377      1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   2378      1.214        ad 		oclean = cip->clean;
   2379      1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   2380      1.214        ad 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   2381      1.214        ad 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   2382      1.214        ad 		lfs_segunlock(fs);
   2383      1.214        ad 		lfs_writer_leave(fs);
   2384       1.92  perseant 
   2385      1.136  perseant #ifdef DEBUG
   2386      1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   2387      1.214        ad 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   2388      1.214        ad 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   2389      1.214        ad 		      fs->lfs_offset - off, cip->clean - oclean,
   2390      1.214        ad 		      fs->lfs_activesb));
   2391      1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   2392       1.92  perseant #endif
   2393       1.92  perseant 
   2394      1.214        ad 		return 0;
   2395       1.89  perseant 
   2396      1.182    martin 	    case LFCNIFILEFH_COMPAT:
   2397      1.214        ad 		/* Return the filehandle of the Ifile */
   2398      1.221      elad 		if ((error = kauth_authorize_system(l->l_cred,
   2399      1.221      elad 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   2400      1.214        ad 			return (error);
   2401      1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   2402      1.214        ad 		fhp->fh_fsid = *fsidp;
   2403      1.214        ad 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   2404      1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2405      1.182    martin 
   2406      1.187    martin 	    case LFCNIFILEFH_COMPAT2:
   2407      1.134  perseant 	    case LFCNIFILEFH:
   2408      1.214        ad 		/* Return the filehandle of the Ifile */
   2409      1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   2410      1.214        ad 		fhp->fh_fsid = *fsidp;
   2411      1.214        ad 		fh_size = sizeof(struct lfs_fhandle) -
   2412      1.214        ad 		    offsetof(fhandle_t, fh_fid);
   2413      1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2414      1.134  perseant 
   2415      1.148  perseant 	    case LFCNREWIND:
   2416      1.214        ad 		/* Move lfs_offset to the lowest-numbered segment */
   2417      1.214        ad 		return lfs_rewind(fs, *(int *)ap->a_data);
   2418      1.148  perseant 
   2419      1.148  perseant 	    case LFCNINVAL:
   2420      1.214        ad 		/* Mark a segment SEGUSE_INVAL */
   2421      1.214        ad 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   2422      1.214        ad 		if (sup->su_nbytes > 0) {
   2423      1.214        ad 			brelse(bp, 0);
   2424      1.214        ad 			lfs_unset_inval_all(fs);
   2425      1.214        ad 			return EBUSY;
   2426      1.214        ad 		}
   2427      1.214        ad 		sup->su_flags |= SEGUSE_INVAL;
   2428      1.236   hannken 		VOP_BWRITE(bp->b_vp, bp);
   2429      1.214        ad 		return 0;
   2430      1.148  perseant 
   2431      1.148  perseant 	    case LFCNRESIZE:
   2432      1.214        ad 		/* Resize the filesystem */
   2433      1.214        ad 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   2434      1.148  perseant 
   2435      1.168  perseant 	    case LFCNWRAPSTOP:
   2436      1.179  perseant 	    case LFCNWRAPSTOP_COMPAT:
   2437      1.214        ad 		/*
   2438      1.214        ad 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   2439      1.214        ad 		 * the filesystem wraps around.  To support external agents
   2440      1.214        ad 		 * (dump, fsck-based regression test) that need to look at
   2441      1.214        ad 		 * a snapshot of the filesystem, without necessarily
   2442      1.214        ad 		 * requiring that all fs activity stops.
   2443      1.214        ad 		 */
   2444      1.214        ad 		if (fs->lfs_stoplwp == curlwp)
   2445      1.214        ad 			return EALREADY;
   2446      1.214        ad 
   2447      1.214        ad 		mutex_enter(&lfs_lock);
   2448      1.214        ad 		while (fs->lfs_stoplwp != NULL)
   2449      1.214        ad 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   2450      1.214        ad 		fs->lfs_stoplwp = curlwp;
   2451      1.214        ad 		if (fs->lfs_nowrap == 0)
   2452      1.214        ad 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   2453      1.214        ad 		++fs->lfs_nowrap;
   2454      1.222  christos 		if (*(int *)ap->a_data == 1
   2455      1.224     pooka 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   2456      1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   2457      1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2458      1.214        ad 				"segwrap", 0, &lfs_lock);
   2459      1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   2460      1.214        ad 			if (error) {
   2461      1.214        ad 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   2462      1.214        ad 			}
   2463      1.214        ad 		}
   2464      1.214        ad 		mutex_exit(&lfs_lock);
   2465      1.214        ad 		return 0;
   2466      1.168  perseant 
   2467      1.168  perseant 	    case LFCNWRAPGO:
   2468      1.179  perseant 	    case LFCNWRAPGO_COMPAT:
   2469      1.214        ad 		/*
   2470      1.214        ad 		 * Having done its work, the agent wakes up the writer.
   2471      1.214        ad 		 * If the argument is 1, it sleeps until a new segment
   2472      1.214        ad 		 * is selected.
   2473      1.214        ad 		 */
   2474      1.214        ad 		mutex_enter(&lfs_lock);
   2475      1.214        ad 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   2476      1.222  christos 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   2477      1.222  christos 				    *((int *)ap->a_data));
   2478      1.214        ad 		mutex_exit(&lfs_lock);
   2479      1.214        ad 		return error;
   2480      1.168  perseant 
   2481      1.188  perseant 	    case LFCNWRAPPASS:
   2482      1.214        ad 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   2483      1.214        ad 			return EALREADY;
   2484      1.214        ad 		mutex_enter(&lfs_lock);
   2485      1.214        ad 		if (fs->lfs_stoplwp != curlwp) {
   2486      1.214        ad 			mutex_exit(&lfs_lock);
   2487      1.214        ad 			return EALREADY;
   2488      1.214        ad 		}
   2489      1.214        ad 		if (fs->lfs_nowrap == 0) {
   2490      1.214        ad 			mutex_exit(&lfs_lock);
   2491      1.214        ad 			return EBUSY;
   2492      1.214        ad 		}
   2493      1.214        ad 		fs->lfs_wrappass = 1;
   2494      1.214        ad 		wakeup(&fs->lfs_wrappass);
   2495      1.214        ad 		/* Wait for the log to wrap, if asked */
   2496      1.214        ad 		if (*(int *)ap->a_data) {
   2497      1.235     rmind 			mutex_enter(ap->a_vp->v_interlock);
   2498  1.238.6.1       mrg 			if (lfs_vref(ap->a_vp) != 0)
   2499  1.238.6.1       mrg 				panic("LFCNWRAPPASS: lfs_vref failed");
   2500      1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   2501      1.214        ad 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   2502      1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2503      1.214        ad 				"segwrap", 0, &lfs_lock);
   2504      1.214        ad 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   2505      1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   2506      1.214        ad 			lfs_vunref(ap->a_vp);
   2507      1.214        ad 		}
   2508      1.214        ad 		mutex_exit(&lfs_lock);
   2509      1.214        ad 		return error;
   2510      1.188  perseant 
   2511      1.188  perseant 	    case LFCNWRAPSTATUS:
   2512      1.214        ad 		mutex_enter(&lfs_lock);
   2513      1.214        ad 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   2514      1.214        ad 		mutex_exit(&lfs_lock);
   2515      1.214        ad 		return 0;
   2516      1.188  perseant 
   2517       1.89  perseant 	    default:
   2518      1.214        ad 		return ufs_fcntl(v);
   2519       1.89  perseant 	}
   2520       1.89  perseant 	return 0;
   2521       1.60       chs }
   2522       1.60       chs 
   2523       1.60       chs int
   2524       1.60       chs lfs_getpages(void *v)
   2525       1.60       chs {
   2526       1.60       chs 	struct vop_getpages_args /* {
   2527       1.60       chs 		struct vnode *a_vp;
   2528       1.60       chs 		voff_t a_offset;
   2529       1.60       chs 		struct vm_page **a_m;
   2530       1.60       chs 		int *a_count;
   2531       1.60       chs 		int a_centeridx;
   2532       1.60       chs 		vm_prot_t a_access_type;
   2533       1.60       chs 		int a_advice;
   2534       1.60       chs 		int a_flags;
   2535       1.60       chs 	} */ *ap = v;
   2536       1.60       chs 
   2537       1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   2538       1.97  perseant 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   2539       1.97  perseant 		return EPERM;
   2540       1.97  perseant 	}
   2541       1.60       chs 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   2542      1.214        ad 		mutex_enter(&lfs_lock);
   2543       1.60       chs 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   2544      1.214        ad 		mutex_exit(&lfs_lock);
   2545       1.60       chs 	}
   2546      1.115      yamt 
   2547      1.115      yamt 	/*
   2548      1.115      yamt 	 * we're relying on the fact that genfs_getpages() always read in
   2549      1.115      yamt 	 * entire filesystem blocks.
   2550      1.115      yamt 	 */
   2551       1.95  perseant 	return genfs_getpages(v);
   2552        1.1   mycroft }
   2553       1.84  perseant 
   2554      1.204  perseant /*
   2555      1.204  perseant  * Wait for a page to become unbusy, possibly printing diagnostic messages
   2556      1.204  perseant  * as well.
   2557      1.204  perseant  *
   2558      1.204  perseant  * Called with vp->v_interlock held; return with it held.
   2559      1.204  perseant  */
   2560      1.203  perseant static void
   2561      1.203  perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   2562      1.203  perseant {
   2563  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2564      1.203  perseant 	if ((pg->flags & PG_BUSY) == 0)
   2565      1.203  perseant 		return;		/* Nothing to wait for! */
   2566      1.203  perseant 
   2567      1.204  perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   2568      1.203  perseant 	static struct vm_page *lastpg;
   2569      1.203  perseant 
   2570      1.203  perseant 	if (label != NULL && pg != lastpg) {
   2571      1.203  perseant 		if (pg->owner_tag) {
   2572      1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   2573      1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label,
   2574      1.203  perseant 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   2575      1.203  perseant 		} else {
   2576      1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   2577      1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label, pg);
   2578      1.203  perseant 		}
   2579      1.203  perseant 	}
   2580      1.203  perseant 	lastpg = pg;
   2581      1.203  perseant #endif
   2582      1.203  perseant 
   2583      1.203  perseant 	pg->flags |= PG_WANTED;
   2584      1.235     rmind 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   2585      1.235     rmind 	mutex_enter(vp->v_interlock);
   2586      1.203  perseant }
   2587      1.203  perseant 
   2588      1.203  perseant /*
   2589      1.203  perseant  * This routine is called by lfs_putpages() when it can't complete the
   2590      1.203  perseant  * write because a page is busy.  This means that either (1) someone,
   2591      1.203  perseant  * possibly the pagedaemon, is looking at this page, and will give it up
   2592      1.203  perseant  * presently; or (2) we ourselves are holding the page busy in the
   2593      1.203  perseant  * process of being written (either gathered or actually on its way to
   2594      1.203  perseant  * disk).  We don't need to give up the segment lock, but we might need
   2595      1.203  perseant  * to call lfs_writeseg() to expedite the page's journey to disk.
   2596      1.204  perseant  *
   2597      1.204  perseant  * Called with vp->v_interlock held; return with it held.
   2598      1.203  perseant  */
   2599      1.203  perseant /* #define BUSYWAIT */
   2600      1.203  perseant static void
   2601      1.203  perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   2602      1.203  perseant 	       int seglocked, const char *label)
   2603      1.203  perseant {
   2604  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2605      1.203  perseant #ifndef BUSYWAIT
   2606      1.203  perseant 	struct inode *ip = VTOI(vp);
   2607      1.203  perseant 	struct segment *sp = fs->lfs_sp;
   2608      1.203  perseant 	int count = 0;
   2609      1.203  perseant 
   2610      1.203  perseant 	if (pg == NULL)
   2611      1.203  perseant 		return;
   2612      1.203  perseant 
   2613      1.226       eeh 	while (pg->flags & PG_BUSY &&
   2614      1.226       eeh 	    pg->uobject == &vp->v_uobj) {
   2615      1.235     rmind 		mutex_exit(vp->v_interlock);
   2616      1.203  perseant 		if (sp->cbpp - sp->bpp > 1) {
   2617      1.203  perseant 			/* Write gathered pages */
   2618      1.203  perseant 			lfs_updatemeta(sp);
   2619      1.203  perseant 			lfs_release_finfo(fs);
   2620      1.203  perseant 			(void) lfs_writeseg(fs, sp);
   2621      1.203  perseant 
   2622      1.203  perseant 			/*
   2623      1.203  perseant 			 * Reinitialize FIP
   2624      1.203  perseant 			 */
   2625      1.203  perseant 			KASSERT(sp->vp == vp);
   2626      1.203  perseant 			lfs_acquire_finfo(fs, ip->i_number,
   2627      1.203  perseant 					  ip->i_gen);
   2628      1.203  perseant 		}
   2629      1.204  perseant 		++count;
   2630      1.235     rmind 		mutex_enter(vp->v_interlock);
   2631      1.203  perseant 		wait_for_page(vp, pg, label);
   2632      1.203  perseant 	}
   2633  1.238.6.1       mrg 	if (label != NULL && count > 1) {
   2634  1.238.6.1       mrg 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   2635  1.238.6.1       mrg 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   2636  1.238.6.1       mrg 		      count));
   2637  1.238.6.1       mrg 	}
   2638      1.203  perseant #else
   2639      1.203  perseant 	preempt(1);
   2640      1.203  perseant #endif
   2641  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2642      1.203  perseant }
   2643      1.203  perseant 
   2644       1.84  perseant /*
   2645       1.84  perseant  * Make sure that for all pages in every block in the given range,
   2646       1.84  perseant  * either all are dirty or all are clean.  If any of the pages
   2647       1.84  perseant  * we've seen so far are dirty, put the vnode on the paging chain,
   2648       1.84  perseant  * and mark it IN_PAGING.
   2649      1.105  perseant  *
   2650      1.105  perseant  * If checkfirst != 0, don't check all the pages but return at the
   2651      1.105  perseant  * first dirty page.
   2652       1.84  perseant  */
   2653       1.84  perseant static int
   2654       1.84  perseant check_dirty(struct lfs *fs, struct vnode *vp,
   2655       1.84  perseant 	    off_t startoffset, off_t endoffset, off_t blkeof,
   2656      1.203  perseant 	    int flags, int checkfirst, struct vm_page **pgp)
   2657       1.84  perseant {
   2658       1.86  perseant 	int by_list;
   2659      1.122  christos 	struct vm_page *curpg = NULL; /* XXX: gcc */
   2660      1.122  christos 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   2661      1.122  christos 	off_t soff = 0; /* XXX: gcc */
   2662       1.84  perseant 	voff_t off;
   2663      1.115      yamt 	int i;
   2664      1.115      yamt 	int nonexistent;
   2665      1.115      yamt 	int any_dirty;	/* number of dirty pages */
   2666      1.115      yamt 	int dirty;	/* number of dirty pages in a block */
   2667      1.115      yamt 	int tdirty;
   2668       1.84  perseant 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   2669      1.207        ad 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2670       1.84  perseant 
   2671  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2672      1.141  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   2673       1.84  perseant   top:
   2674       1.84  perseant 	by_list = (vp->v_uobj.uo_npages <=
   2675       1.84  perseant 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   2676      1.219      yamt 		   UVM_PAGE_TREE_PENALTY);
   2677       1.84  perseant 	any_dirty = 0;
   2678       1.84  perseant 
   2679       1.84  perseant 	if (by_list) {
   2680       1.84  perseant 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   2681       1.84  perseant 	} else {
   2682       1.84  perseant 		soff = startoffset;
   2683       1.84  perseant 	}
   2684       1.84  perseant 	while (by_list || soff < MIN(blkeof, endoffset)) {
   2685       1.84  perseant 		if (by_list) {
   2686      1.115      yamt 			/*
   2687      1.138  perseant 			 * Find the first page in a block.  Skip
   2688      1.138  perseant 			 * blocks outside our area of interest or beyond
   2689      1.138  perseant 			 * the end of file.
   2690      1.115      yamt 			 */
   2691      1.234    martin 			KASSERT(curpg == NULL
   2692      1.234    martin 			    || (curpg->flags & PG_MARKER) == 0);
   2693       1.84  perseant 			if (pages_per_block > 1) {
   2694      1.138  perseant 				while (curpg &&
   2695      1.230   hannken 				    ((curpg->offset & fs->lfs_bmask) ||
   2696      1.230   hannken 				    curpg->offset >= vp->v_size ||
   2697      1.230   hannken 				    curpg->offset >= endoffset)) {
   2698      1.217        ad 					curpg = TAILQ_NEXT(curpg, listq.queue);
   2699      1.230   hannken 					KASSERT(curpg == NULL ||
   2700      1.230   hannken 					    (curpg->flags & PG_MARKER) == 0);
   2701      1.230   hannken 				}
   2702       1.84  perseant 			}
   2703       1.84  perseant 			if (curpg == NULL)
   2704       1.84  perseant 				break;
   2705       1.84  perseant 			soff = curpg->offset;
   2706       1.84  perseant 		}
   2707       1.84  perseant 
   2708       1.84  perseant 		/*
   2709       1.84  perseant 		 * Mark all pages in extended range busy; find out if any
   2710       1.84  perseant 		 * of them are dirty.
   2711       1.84  perseant 		 */
   2712       1.84  perseant 		nonexistent = dirty = 0;
   2713       1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2714  1.238.6.1       mrg 			KASSERT(mutex_owned(vp->v_interlock));
   2715       1.84  perseant 			if (by_list && pages_per_block <= 1) {
   2716       1.84  perseant 				pgs[i] = pg = curpg;
   2717       1.84  perseant 			} else {
   2718       1.84  perseant 				off = soff + (i << PAGE_SHIFT);
   2719       1.84  perseant 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   2720       1.84  perseant 				if (pg == NULL) {
   2721       1.84  perseant 					++nonexistent;
   2722       1.84  perseant 					continue;
   2723       1.84  perseant 				}
   2724       1.84  perseant 			}
   2725       1.84  perseant 			KASSERT(pg != NULL);
   2726      1.158  perseant 
   2727      1.158  perseant 			/*
   2728      1.177  perseant 			 * If we're holding the segment lock, we can deadlock
   2729      1.158  perseant 			 * against a process that has our page and is waiting
   2730      1.158  perseant 			 * for the cleaner, while the cleaner waits for the
   2731      1.158  perseant 			 * segment lock.  Just bail in that case.
   2732      1.158  perseant 			 */
   2733      1.159  perseant 			if ((pg->flags & PG_BUSY) &&
   2734      1.159  perseant 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   2735      1.203  perseant 				if (i > 0)
   2736      1.159  perseant 					uvm_page_unbusy(pgs, i);
   2737      1.159  perseant 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   2738      1.203  perseant 				if (pgp)
   2739      1.203  perseant 					*pgp = pg;
   2740  1.238.6.1       mrg 				KASSERT(mutex_owned(vp->v_interlock));
   2741      1.159  perseant 				return -1;
   2742      1.158  perseant 			}
   2743      1.158  perseant 
   2744       1.84  perseant 			while (pg->flags & PG_BUSY) {
   2745      1.203  perseant 				wait_for_page(vp, pg, NULL);
   2746  1.238.6.1       mrg 				KASSERT(mutex_owned(vp->v_interlock));
   2747      1.203  perseant 				if (i > 0)
   2748      1.203  perseant 					uvm_page_unbusy(pgs, i);
   2749  1.238.6.1       mrg 				KASSERT(mutex_owned(vp->v_interlock));
   2750      1.203  perseant 				goto top;
   2751       1.84  perseant 			}
   2752       1.84  perseant 			pg->flags |= PG_BUSY;
   2753       1.84  perseant 			UVM_PAGE_OWN(pg, "lfs_putpages");
   2754       1.84  perseant 
   2755       1.84  perseant 			pmap_page_protect(pg, VM_PROT_NONE);
   2756       1.84  perseant 			tdirty = (pmap_clear_modify(pg) ||
   2757       1.84  perseant 				  (pg->flags & PG_CLEAN) == 0);
   2758       1.84  perseant 			dirty += tdirty;
   2759       1.84  perseant 		}
   2760       1.84  perseant 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   2761       1.84  perseant 			if (by_list) {
   2762      1.217        ad 				curpg = TAILQ_NEXT(curpg, listq.queue);
   2763       1.84  perseant 			} else {
   2764       1.84  perseant 				soff += fs->lfs_bsize;
   2765       1.84  perseant 			}
   2766       1.84  perseant 			continue;
   2767       1.84  perseant 		}
   2768       1.84  perseant 
   2769       1.84  perseant 		any_dirty += dirty;
   2770       1.84  perseant 		KASSERT(nonexistent == 0);
   2771  1.238.6.1       mrg 		KASSERT(mutex_owned(vp->v_interlock));
   2772       1.84  perseant 
   2773       1.84  perseant 		/*
   2774       1.84  perseant 		 * If any are dirty make all dirty; unbusy them,
   2775       1.88  perseant 		 * but if we were asked to clean, wire them so that
   2776       1.88  perseant 		 * the pagedaemon doesn't bother us about them while
   2777       1.88  perseant 		 * they're on their way to disk.
   2778       1.84  perseant 		 */
   2779       1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2780  1.238.6.1       mrg 			KASSERT(mutex_owned(vp->v_interlock));
   2781       1.84  perseant 			pg = pgs[i];
   2782       1.84  perseant 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2783  1.238.6.1       mrg 			KASSERT(pg->flags & PG_BUSY);
   2784       1.84  perseant 			if (dirty) {
   2785       1.84  perseant 				pg->flags &= ~PG_CLEAN;
   2786       1.84  perseant 				if (flags & PGO_FREE) {
   2787       1.85      yamt 					/*
   2788       1.96  perseant 					 * Wire the page so that
   2789       1.96  perseant 					 * pdaemon doesn't see it again.
   2790       1.85      yamt 					 */
   2791      1.214        ad 					mutex_enter(&uvm_pageqlock);
   2792       1.85      yamt 					uvm_pagewire(pg);
   2793      1.214        ad 					mutex_exit(&uvm_pageqlock);
   2794       1.88  perseant 
   2795       1.84  perseant 					/* Suspended write flag */
   2796       1.84  perseant 					pg->flags |= PG_DELWRI;
   2797       1.84  perseant 				}
   2798       1.84  perseant 			}
   2799       1.84  perseant 			if (pg->flags & PG_WANTED)
   2800       1.84  perseant 				wakeup(pg);
   2801       1.84  perseant 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2802       1.85      yamt 			UVM_PAGE_OWN(pg, NULL);
   2803       1.84  perseant 		}
   2804       1.84  perseant 
   2805      1.103  perseant 		if (checkfirst && any_dirty)
   2806      1.130      yamt 			break;
   2807      1.103  perseant 
   2808       1.84  perseant 		if (by_list) {
   2809      1.217        ad 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2810       1.84  perseant 		} else {
   2811       1.84  perseant 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2812       1.84  perseant 		}
   2813       1.84  perseant 	}
   2814       1.84  perseant 
   2815  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2816       1.84  perseant 	return any_dirty;
   2817       1.84  perseant }
   2818       1.84  perseant 
   2819       1.84  perseant /*
   2820       1.84  perseant  * lfs_putpages functions like genfs_putpages except that
   2821      1.135     perry  *
   2822       1.84  perseant  * (1) It needs to bounds-check the incoming requests to ensure that
   2823       1.84  perseant  *     they are block-aligned; if they are not, expand the range and
   2824       1.84  perseant  *     do the right thing in case, e.g., the requested range is clean
   2825       1.84  perseant  *     but the expanded range is dirty.
   2826      1.178  perseant  *
   2827       1.84  perseant  * (2) It needs to explicitly send blocks to be written when it is done.
   2828      1.202  perseant  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2829      1.202  perseant  *     the seglock and let lfs_segunlock wait for us.
   2830      1.202  perseant  *     XXX There might be a bad situation if we have to flush a vnode while
   2831      1.202  perseant  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2832      1.202  perseant  *     XXX case.
   2833       1.84  perseant  *
   2834       1.84  perseant  * Assumptions:
   2835       1.84  perseant  *
   2836       1.84  perseant  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2837       1.84  perseant  *     there is a danger that when we expand the page range and busy the
   2838       1.84  perseant  *     pages we will deadlock.
   2839      1.178  perseant  *
   2840       1.84  perseant  * (2) We are called with vp->v_interlock held; we must return with it
   2841       1.84  perseant  *     released.
   2842      1.178  perseant  *
   2843       1.84  perseant  * (3) We don't absolutely have to free pages right away, provided that
   2844       1.84  perseant  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2845       1.84  perseant  *     us a request with PGO_FREE, we take the pages out of the paging
   2846       1.84  perseant  *     queue and wake up the writer, which will handle freeing them for us.
   2847       1.84  perseant  *
   2848       1.84  perseant  *     We ensure that for any filesystem block, all pages for that
   2849       1.84  perseant  *     block are either resident or not, even if those pages are higher
   2850       1.84  perseant  *     than EOF; that means that we will be getting requests to free
   2851       1.84  perseant  *     "unused" pages above EOF all the time, and should ignore them.
   2852      1.115      yamt  *
   2853      1.178  perseant  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2854      1.178  perseant  *     into has been set up for us by lfs_writefile.  If not, we will
   2855      1.178  perseant  *     have to handle allocating and/or freeing an finfo entry.
   2856      1.178  perseant  *
   2857      1.115      yamt  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2858       1.84  perseant  */
   2859       1.84  perseant 
   2860      1.203  perseant /* How many times to loop before we should start to worry */
   2861      1.203  perseant #define TOOMANY 4
   2862      1.203  perseant 
   2863       1.84  perseant int
   2864       1.84  perseant lfs_putpages(void *v)
   2865       1.84  perseant {
   2866       1.84  perseant 	int error;
   2867       1.84  perseant 	struct vop_putpages_args /* {
   2868       1.84  perseant 		struct vnode *a_vp;
   2869       1.84  perseant 		voff_t a_offlo;
   2870       1.84  perseant 		voff_t a_offhi;
   2871       1.84  perseant 		int a_flags;
   2872       1.84  perseant 	} */ *ap = v;
   2873       1.84  perseant 	struct vnode *vp;
   2874       1.84  perseant 	struct inode *ip;
   2875       1.84  perseant 	struct lfs *fs;
   2876       1.84  perseant 	struct segment *sp;
   2877       1.84  perseant 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2878       1.95  perseant 	off_t off, max_endoffset;
   2879  1.238.6.1       mrg 	bool seglocked, sync, pagedaemon, reclaim;
   2880      1.203  perseant 	struct vm_page *pg, *busypg;
   2881       1.84  perseant 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2882  1.238.6.1       mrg 	int oreclaim = 0;
   2883  1.238.6.1       mrg 	int donewriting = 0;
   2884      1.203  perseant #ifdef DEBUG
   2885      1.203  perseant 	int debug_n_again, debug_n_dirtyclean;
   2886      1.203  perseant #endif
   2887       1.84  perseant 
   2888       1.84  perseant 	vp = ap->a_vp;
   2889       1.84  perseant 	ip = VTOI(vp);
   2890       1.84  perseant 	fs = ip->i_lfs;
   2891      1.126      yamt 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2892  1.238.6.1       mrg 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2893      1.207        ad 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2894       1.84  perseant 
   2895  1.238.6.1       mrg 	KASSERT(mutex_owned(vp->v_interlock));
   2896  1.238.6.1       mrg 
   2897       1.84  perseant 	/* Putpages does nothing for metadata. */
   2898       1.84  perseant 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2899      1.235     rmind 		mutex_exit(vp->v_interlock);
   2900       1.84  perseant 		return 0;
   2901       1.84  perseant 	}
   2902       1.84  perseant 
   2903       1.84  perseant 	/*
   2904       1.84  perseant 	 * If there are no pages, don't do anything.
   2905       1.84  perseant 	 */
   2906       1.84  perseant 	if (vp->v_uobj.uo_npages == 0) {
   2907      1.195  perseant 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2908      1.212        ad 		    (vp->v_iflag & VI_ONWORKLST) &&
   2909      1.195  perseant 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2910      1.212        ad 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2911      1.192   reinoud 			vn_syncer_remove_from_worklist(vp);
   2912      1.195  perseant 		}
   2913      1.235     rmind 		mutex_exit(vp->v_interlock);
   2914      1.164  perseant 
   2915      1.164  perseant 		/* Remove us from paging queue, if we were on it */
   2916      1.214        ad 		mutex_enter(&lfs_lock);
   2917      1.164  perseant 		if (ip->i_flags & IN_PAGING) {
   2918      1.164  perseant 			ip->i_flags &= ~IN_PAGING;
   2919      1.164  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2920      1.164  perseant 		}
   2921      1.214        ad 		mutex_exit(&lfs_lock);
   2922  1.238.6.1       mrg 
   2923  1.238.6.1       mrg 		KASSERT(!mutex_owned(vp->v_interlock));
   2924       1.84  perseant 		return 0;
   2925       1.84  perseant 	}
   2926       1.84  perseant 
   2927      1.102      fvdl 	blkeof = blkroundup(fs, ip->i_size);
   2928       1.84  perseant 
   2929       1.84  perseant 	/*
   2930       1.84  perseant 	 * Ignore requests to free pages past EOF but in the same block
   2931  1.238.6.1       mrg 	 * as EOF, unless the vnode is being reclaimed or the request
   2932  1.238.6.1       mrg 	 * is synchronous.  (If the request is sync, it comes from
   2933  1.238.6.1       mrg 	 * lfs_truncate.)
   2934  1.238.6.1       mrg 	 *
   2935  1.238.6.1       mrg 	 * To avoid being flooded with this request, make these pages
   2936  1.238.6.1       mrg 	 * look "active".
   2937       1.84  perseant 	 */
   2938  1.238.6.1       mrg 	if (!sync && !reclaim &&
   2939  1.238.6.1       mrg 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2940       1.84  perseant 		origoffset = ap->a_offlo;
   2941       1.95  perseant 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2942       1.95  perseant 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2943       1.95  perseant 			KASSERT(pg != NULL);
   2944       1.95  perseant 			while (pg->flags & PG_BUSY) {
   2945       1.95  perseant 				pg->flags |= PG_WANTED;
   2946      1.235     rmind 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2947       1.95  perseant 						    "lfsput2", 0);
   2948      1.235     rmind 				mutex_enter(vp->v_interlock);
   2949       1.95  perseant 			}
   2950      1.214        ad 			mutex_enter(&uvm_pageqlock);
   2951       1.95  perseant 			uvm_pageactivate(pg);
   2952      1.214        ad 			mutex_exit(&uvm_pageqlock);
   2953       1.95  perseant 		}
   2954       1.84  perseant 		ap->a_offlo = blkeof;
   2955       1.84  perseant 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2956      1.235     rmind 			mutex_exit(vp->v_interlock);
   2957       1.84  perseant 			return 0;
   2958       1.84  perseant 		}
   2959       1.84  perseant 	}
   2960       1.84  perseant 
   2961       1.84  perseant 	/*
   2962       1.84  perseant 	 * Extend page range to start and end at block boundaries.
   2963       1.84  perseant 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2964       1.84  perseant 	 */
   2965       1.86  perseant 	origoffset = ap->a_offlo;
   2966       1.84  perseant 	origendoffset = ap->a_offhi;
   2967       1.86  perseant 	startoffset = origoffset & ~(fs->lfs_bmask);
   2968       1.84  perseant 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2969       1.84  perseant 					       << fs->lfs_bshift;
   2970       1.84  perseant 
   2971       1.84  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2972       1.86  perseant 		endoffset = max_endoffset;
   2973       1.84  perseant 		origendoffset = endoffset;
   2974       1.86  perseant 	} else {
   2975       1.84  perseant 		origendoffset = round_page(ap->a_offhi);
   2976       1.84  perseant 		endoffset = round_page(blkroundup(fs, origendoffset));
   2977       1.84  perseant 	}
   2978       1.84  perseant 
   2979       1.84  perseant 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2980       1.84  perseant 	if (startoffset == endoffset) {
   2981       1.84  perseant 		/* Nothing to do, why were we called? */
   2982      1.235     rmind 		mutex_exit(vp->v_interlock);
   2983      1.136  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2984      1.136  perseant 		      PRId64 "\n", startoffset));
   2985       1.84  perseant 		return 0;
   2986       1.84  perseant 	}
   2987       1.84  perseant 
   2988       1.84  perseant 	ap->a_offlo = startoffset;
   2989       1.84  perseant 	ap->a_offhi = endoffset;
   2990       1.84  perseant 
   2991      1.203  perseant 	/*
   2992      1.203  perseant 	 * If not cleaning, just send the pages through genfs_putpages
   2993      1.203  perseant 	 * to be returned to the pool.
   2994      1.203  perseant 	 */
   2995  1.238.6.1       mrg 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2996  1.238.6.1       mrg 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2997  1.238.6.1       mrg 		      vp, (int)ip->i_number, ap->a_flags));
   2998  1.238.6.1       mrg 		int r = genfs_putpages(v);
   2999  1.238.6.1       mrg 		KASSERT(!mutex_owned(vp->v_interlock));
   3000  1.238.6.1       mrg 		return r;
   3001  1.238.6.1       mrg 	}
   3002       1.84  perseant 
   3003      1.203  perseant 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   3004      1.203  perseant 	ap->a_flags |= PGO_BUSYFAIL;
   3005      1.203  perseant 
   3006       1.84  perseant 	/*
   3007      1.203  perseant 	 * Likewise, if we are asked to clean but the pages are not
   3008      1.203  perseant 	 * dirty, we can just free them using genfs_putpages.
   3009       1.84  perseant 	 */
   3010      1.203  perseant #ifdef DEBUG
   3011      1.203  perseant 	debug_n_dirtyclean = 0;
   3012      1.203  perseant #endif
   3013      1.103  perseant 	do {
   3014      1.103  perseant 		int r;
   3015  1.238.6.1       mrg 		KASSERT(mutex_owned(vp->v_interlock));
   3016      1.103  perseant 
   3017      1.203  perseant 		/* Count the number of dirty pages */
   3018      1.158  perseant 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3019      1.203  perseant 				ap->a_flags, 1, NULL);
   3020      1.158  perseant 		if (r < 0) {
   3021      1.203  perseant 			/* Pages are busy with another process */
   3022      1.235     rmind 			mutex_exit(vp->v_interlock);
   3023      1.158  perseant 			return EDEADLK;
   3024      1.158  perseant 		}
   3025      1.203  perseant 		if (r > 0) /* Some pages are dirty */
   3026      1.103  perseant 			break;
   3027      1.103  perseant 
   3028      1.134  perseant 		/*
   3029      1.134  perseant 		 * Sometimes pages are dirtied between the time that
   3030      1.134  perseant 		 * we check and the time we try to clean them.
   3031      1.134  perseant 		 * Instruct lfs_gop_write to return EDEADLK in this case
   3032      1.134  perseant 		 * so we can write them properly.
   3033      1.134  perseant 		 */
   3034      1.134  perseant 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   3035      1.206  perseant 		r = genfs_do_putpages(vp, startoffset, endoffset,
   3036      1.226       eeh 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   3037      1.134  perseant 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   3038  1.238.6.1       mrg 		if (r != EDEADLK) {
   3039  1.238.6.1       mrg 			KASSERT(!mutex_owned(vp->v_interlock));
   3040  1.238.6.1       mrg  			return r;
   3041  1.238.6.1       mrg 		}
   3042      1.103  perseant 
   3043      1.203  perseant 		/* One of the pages was busy.  Start over. */
   3044      1.235     rmind 		mutex_enter(vp->v_interlock);
   3045      1.203  perseant 		wait_for_page(vp, busypg, "dirtyclean");
   3046      1.203  perseant #ifdef DEBUG
   3047      1.203  perseant 		++debug_n_dirtyclean;
   3048      1.203  perseant #endif
   3049      1.103  perseant 	} while(1);
   3050      1.135     perry 
   3051      1.203  perseant #ifdef DEBUG
   3052      1.203  perseant 	if (debug_n_dirtyclean > TOOMANY)
   3053  1.238.6.1       mrg 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   3054  1.238.6.1       mrg 		      debug_n_dirtyclean));
   3055      1.203  perseant #endif
   3056      1.203  perseant 
   3057       1.84  perseant 	/*
   3058       1.84  perseant 	 * Dirty and asked to clean.
   3059       1.84  perseant 	 *
   3060       1.84  perseant 	 * Pagedaemon can't actually write LFS pages; wake up
   3061       1.84  perseant 	 * the writer to take care of that.  The writer will
   3062       1.84  perseant 	 * notice the pager inode queue and act on that.
   3063      1.232       eeh 	 *
   3064      1.232       eeh 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   3065      1.232       eeh 	 * get a nasty deadlock with lfs_flush_pchain().
   3066       1.84  perseant 	 */
   3067       1.84  perseant 	if (pagedaemon) {
   3068      1.235     rmind 		mutex_exit(vp->v_interlock);
   3069      1.214        ad 		mutex_enter(&lfs_lock);
   3070      1.164  perseant 		if (!(ip->i_flags & IN_PAGING)) {
   3071      1.164  perseant 			ip->i_flags |= IN_PAGING;
   3072      1.164  perseant 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3073      1.232       eeh 		}
   3074      1.164  perseant 		wakeup(&lfs_writer_daemon);
   3075      1.214        ad 		mutex_exit(&lfs_lock);
   3076      1.198        ad 		preempt();
   3077  1.238.6.1       mrg 		KASSERT(!mutex_owned(vp->v_interlock));
   3078       1.84  perseant 		return EWOULDBLOCK;
   3079       1.84  perseant 	}
   3080       1.84  perseant 
   3081       1.84  perseant 	/*
   3082       1.84  perseant 	 * If this is a file created in a recent dirop, we can't flush its
   3083       1.84  perseant 	 * inode until the dirop is complete.  Drain dirops, then flush the
   3084       1.84  perseant 	 * filesystem (taking care of any other pending dirops while we're
   3085       1.84  perseant 	 * at it).
   3086       1.84  perseant 	 */
   3087       1.84  perseant 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   3088      1.212        ad 	    (vp->v_uflag & VU_DIROP)) {
   3089      1.212        ad 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   3090  1.238.6.1       mrg 
   3091  1.238.6.1       mrg  		lfs_writer_enter(fs, "ppdirop");
   3092  1.238.6.1       mrg 
   3093  1.238.6.1       mrg 		/* Note if we hold the vnode locked */
   3094  1.238.6.1       mrg 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   3095  1.238.6.1       mrg 		{
   3096  1.238.6.1       mrg 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   3097  1.238.6.1       mrg 		} else {
   3098  1.238.6.1       mrg 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   3099  1.238.6.1       mrg 		}
   3100      1.235     rmind 		mutex_exit(vp->v_interlock);
   3101      1.135     perry 
   3102      1.214        ad 		mutex_enter(&lfs_lock);
   3103       1.84  perseant 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   3104      1.214        ad 		mutex_exit(&lfs_lock);
   3105      1.135     perry 
   3106      1.235     rmind 		mutex_enter(vp->v_interlock);
   3107      1.111      yamt 		lfs_writer_leave(fs);
   3108       1.84  perseant 
   3109  1.238.6.1       mrg 		/* The flush will have cleaned out this vnode as well,
   3110  1.238.6.1       mrg 		   no need to do more to it. */
   3111       1.84  perseant 	}
   3112       1.84  perseant 
   3113       1.84  perseant 	/*
   3114       1.86  perseant 	 * This is it.	We are going to write some pages.  From here on
   3115       1.84  perseant 	 * down it's all just mechanics.
   3116       1.84  perseant 	 *
   3117      1.103  perseant 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   3118       1.84  perseant 	 */
   3119       1.84  perseant 	ap->a_flags &= ~PGO_SYNCIO;
   3120       1.84  perseant 
   3121       1.84  perseant 	/*
   3122       1.84  perseant 	 * If we've already got the seglock, flush the node and return.
   3123       1.84  perseant 	 * The FIP has already been set up for us by lfs_writefile,
   3124       1.84  perseant 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   3125       1.84  perseant 	 * unless genfs_putpages returns EDEADLK; then we must flush
   3126       1.84  perseant 	 * what we have, and correct FIP and segment header accounting.
   3127       1.84  perseant 	 */
   3128      1.203  perseant   get_seglock:
   3129      1.203  perseant 	/*
   3130      1.203  perseant 	 * If we are not called with the segment locked, lock it.
   3131      1.203  perseant 	 * Account for a new FIP in the segment header, and set sp->vp.
   3132      1.203  perseant 	 * (This should duplicate the setup at the top of lfs_writefile().)
   3133      1.203  perseant 	 */
   3134      1.126      yamt 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   3135      1.126      yamt 	if (!seglocked) {
   3136      1.235     rmind 		mutex_exit(vp->v_interlock);
   3137      1.126      yamt 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   3138  1.238.6.1       mrg 		if (error != 0) {
   3139  1.238.6.1       mrg 			KASSERT(!mutex_owned(vp->v_interlock));
   3140  1.238.6.1       mrg  			return error;
   3141  1.238.6.1       mrg 		}
   3142      1.235     rmind 		mutex_enter(vp->v_interlock);
   3143      1.203  perseant 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   3144       1.84  perseant 	}
   3145       1.84  perseant 	sp = fs->lfs_sp;
   3146      1.120      yamt 	KASSERT(sp->vp == NULL);
   3147       1.84  perseant 	sp->vp = vp;
   3148      1.135     perry 
   3149  1.238.6.1       mrg 	/* Note segments written by reclaim; only for debugging */
   3150  1.238.6.1       mrg 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   3151  1.238.6.1       mrg 		sp->seg_flags |= SEGM_RECLAIM;
   3152  1.238.6.1       mrg 		fs->lfs_reclino = ip->i_number;
   3153  1.238.6.1       mrg 	}
   3154  1.238.6.1       mrg 
   3155      1.203  perseant 	/*
   3156      1.203  perseant 	 * Ensure that the partial segment is marked SS_DIROP if this
   3157      1.203  perseant 	 * vnode is a DIROP.
   3158      1.203  perseant 	 */
   3159      1.212        ad 	if (!seglocked && vp->v_uflag & VU_DIROP)
   3160      1.203  perseant 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   3161      1.135     perry 
   3162       1.84  perseant 	/*
   3163      1.203  perseant 	 * Loop over genfs_putpages until all pages are gathered.
   3164       1.88  perseant 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   3165      1.103  perseant 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   3166      1.203  perseant 	 * well, since more pages might have been dirtied in our absence.
   3167       1.84  perseant 	 */
   3168      1.203  perseant #ifdef DEBUG
   3169      1.203  perseant 	debug_n_again = 0;
   3170      1.203  perseant #endif
   3171      1.203  perseant 	do {
   3172      1.203  perseant 		busypg = NULL;
   3173  1.238.6.1       mrg 		KASSERT(mutex_owned(vp->v_interlock));
   3174      1.203  perseant 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3175      1.203  perseant 				ap->a_flags, 0, &busypg) < 0) {
   3176      1.235     rmind 			mutex_exit(vp->v_interlock);
   3177  1.238.6.1       mrg 			/* XXX why? --ks */
   3178      1.235     rmind 			mutex_enter(vp->v_interlock);
   3179      1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   3180      1.203  perseant 			if (!seglocked) {
   3181      1.235     rmind 				mutex_exit(vp->v_interlock);
   3182      1.203  perseant 				lfs_release_finfo(fs);
   3183      1.203  perseant 				lfs_segunlock(fs);
   3184      1.235     rmind 				mutex_enter(vp->v_interlock);
   3185      1.203  perseant 			}
   3186      1.208  perseant 			sp->vp = NULL;
   3187      1.203  perseant 			goto get_seglock;
   3188       1.88  perseant 		}
   3189      1.203  perseant 
   3190      1.203  perseant 		busypg = NULL;
   3191  1.238.6.1       mrg 		KASSERT(!mutex_owned(&uvm_pageqlock));
   3192  1.238.6.1       mrg 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   3193  1.238.6.1       mrg 		ap->a_flags &= ~PGO_RECLAIM;
   3194      1.206  perseant 		error = genfs_do_putpages(vp, startoffset, endoffset,
   3195      1.203  perseant 					   ap->a_flags, &busypg);
   3196  1.238.6.1       mrg 		ap->a_flags |= oreclaim;
   3197      1.203  perseant 
   3198      1.203  perseant 		if (error == EDEADLK || error == EAGAIN) {
   3199      1.203  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3200      1.203  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   3201      1.203  perseant 			      ip->i_number, fs->lfs_offset,
   3202      1.203  perseant 			      dtosn(fs, fs->lfs_offset)));
   3203       1.84  perseant 
   3204  1.238.6.1       mrg 			if (oreclaim) {
   3205  1.238.6.1       mrg 				mutex_enter(vp->v_interlock);
   3206  1.238.6.1       mrg 				write_and_wait(fs, vp, busypg, seglocked, "again");
   3207  1.238.6.1       mrg 				mutex_exit(vp->v_interlock);
   3208  1.238.6.1       mrg 			} else {
   3209  1.238.6.1       mrg 				if ((sp->seg_flags & SEGM_SINGLE) &&
   3210  1.238.6.1       mrg 				    fs->lfs_curseg != fs->lfs_startseg)
   3211  1.238.6.1       mrg 					donewriting = 1;
   3212  1.238.6.1       mrg 			}
   3213  1.238.6.1       mrg 		} else if (error) {
   3214  1.238.6.1       mrg 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3215  1.238.6.1       mrg 			      " %d ino %d off %x (seg %d)\n", error,
   3216  1.238.6.1       mrg 			      (int)ip->i_number, fs->lfs_offset,
   3217  1.238.6.1       mrg 			      dtosn(fs, fs->lfs_offset)));
   3218      1.167  perseant 		}
   3219  1.238.6.1       mrg 		/* genfs_do_putpages loses the interlock */
   3220      1.203  perseant #ifdef DEBUG
   3221      1.203  perseant 		++debug_n_again;
   3222      1.203  perseant #endif
   3223  1.238.6.1       mrg 		if (oreclaim && error == EAGAIN) {
   3224  1.238.6.1       mrg 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   3225  1.238.6.1       mrg 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   3226  1.238.6.1       mrg 			mutex_enter(vp->v_interlock);
   3227  1.238.6.1       mrg 		}
   3228  1.238.6.1       mrg 		if (error == EDEADLK)
   3229  1.238.6.1       mrg 			mutex_enter(vp->v_interlock);
   3230  1.238.6.1       mrg 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   3231      1.203  perseant #ifdef DEBUG
   3232      1.203  perseant 	if (debug_n_again > TOOMANY)
   3233  1.238.6.1       mrg 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   3234      1.203  perseant #endif
   3235      1.103  perseant 
   3236      1.203  perseant 	KASSERT(sp != NULL && sp->vp == vp);
   3237  1.238.6.1       mrg 	if (!seglocked && !donewriting) {
   3238      1.178  perseant 		sp->vp = NULL;
   3239      1.126      yamt 
   3240      1.126      yamt 		/* Write indirect blocks as well */
   3241      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   3242      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   3243      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   3244      1.120      yamt 
   3245      1.126      yamt 		KASSERT(sp->vp == NULL);
   3246      1.126      yamt 		sp->vp = vp;
   3247      1.126      yamt 	}
   3248       1.84  perseant 
   3249       1.84  perseant 	/*
   3250       1.84  perseant 	 * Blocks are now gathered into a segment waiting to be written.
   3251       1.84  perseant 	 * All that's left to do is update metadata, and write them.
   3252       1.84  perseant 	 */
   3253      1.120      yamt 	lfs_updatemeta(sp);
   3254      1.120      yamt 	KASSERT(sp->vp == vp);
   3255      1.120      yamt 	sp->vp = NULL;
   3256      1.126      yamt 
   3257      1.203  perseant 	/*
   3258      1.203  perseant 	 * If we were called from lfs_writefile, we don't need to clean up
   3259      1.203  perseant 	 * the FIP or unlock the segment lock.	We're done.
   3260      1.203  perseant 	 */
   3261  1.238.6.1       mrg 	if (seglocked) {
   3262  1.238.6.1       mrg 		KASSERT(!mutex_owned(vp->v_interlock));
   3263      1.126      yamt 		return error;
   3264  1.238.6.1       mrg 	}
   3265      1.120      yamt 
   3266      1.178  perseant 	/* Clean up FIP and send it to disk. */
   3267      1.178  perseant 	lfs_release_finfo(fs);
   3268       1.88  perseant 	lfs_writeseg(fs, fs->lfs_sp);
   3269       1.88  perseant 
   3270       1.84  perseant 	/*
   3271      1.203  perseant 	 * Remove us from paging queue if we wrote all our pages.
   3272      1.164  perseant 	 */
   3273      1.203  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   3274      1.214        ad 		mutex_enter(&lfs_lock);
   3275      1.203  perseant 		if (ip->i_flags & IN_PAGING) {
   3276      1.203  perseant 			ip->i_flags &= ~IN_PAGING;
   3277      1.203  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3278      1.203  perseant 		}
   3279      1.214        ad 		mutex_exit(&lfs_lock);
   3280      1.164  perseant 	}
   3281      1.164  perseant 
   3282      1.164  perseant 	/*
   3283       1.84  perseant 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   3284       1.84  perseant 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   3285       1.84  perseant 	 * will not be true if we stop using malloc/copy.
   3286       1.84  perseant 	 */
   3287       1.84  perseant 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   3288       1.84  perseant 	lfs_segunlock(fs);
   3289       1.84  perseant 
   3290       1.84  perseant 	/*
   3291       1.84  perseant 	 * Wait for v_numoutput to drop to zero.  The seglock should
   3292       1.84  perseant 	 * take care of this, but there is a slight possibility that
   3293       1.84  perseant 	 * aiodoned might not have got around to our buffers yet.
   3294       1.84  perseant 	 */
   3295       1.84  perseant 	if (sync) {
   3296      1.235     rmind 		mutex_enter(vp->v_interlock);
   3297       1.98  perseant 		while (vp->v_numoutput > 0) {
   3298      1.136  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   3299      1.136  perseant 			      " num %d\n", ip->i_number, vp->v_numoutput));
   3300      1.235     rmind 			cv_wait(&vp->v_cv, vp->v_interlock);
   3301       1.84  perseant 		}
   3302      1.235     rmind 		mutex_exit(vp->v_interlock);
   3303       1.84  perseant 	}
   3304  1.238.6.1       mrg 	KASSERT(!mutex_owned(vp->v_interlock));
   3305       1.84  perseant 	return error;
   3306       1.84  perseant }
   3307       1.84  perseant 
   3308       1.84  perseant /*
   3309       1.84  perseant  * Return the last logical file offset that should be written for this file
   3310       1.86  perseant  * if we're doing a write that ends at "size".	If writing, we need to know
   3311       1.84  perseant  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   3312       1.84  perseant  * to know about entire blocks.
   3313       1.84  perseant  */
   3314       1.84  perseant void
   3315       1.84  perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   3316       1.84  perseant {
   3317       1.84  perseant 	struct inode *ip = VTOI(vp);
   3318      1.135     perry 	struct lfs *fs = ip->i_lfs;
   3319       1.84  perseant 	daddr_t olbn, nlbn;
   3320       1.84  perseant 
   3321      1.102      fvdl 	olbn = lblkno(fs, ip->i_size);
   3322       1.84  perseant 	nlbn = lblkno(fs, size);
   3323      1.118      yamt 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   3324       1.86  perseant 		*eobp = fragroundup(fs, size);
   3325       1.86  perseant 	} else {
   3326       1.86  perseant 		*eobp = blkroundup(fs, size);
   3327       1.86  perseant 	}
   3328       1.84  perseant }
   3329       1.84  perseant 
   3330       1.84  perseant #ifdef DEBUG
   3331       1.84  perseant void lfs_dump_vop(void *);
   3332       1.84  perseant 
   3333       1.84  perseant void
   3334       1.84  perseant lfs_dump_vop(void *v)
   3335       1.84  perseant {
   3336       1.86  perseant 	struct vop_putpages_args /* {
   3337       1.86  perseant 		struct vnode *a_vp;
   3338       1.86  perseant 		voff_t a_offlo;
   3339       1.86  perseant 		voff_t a_offhi;
   3340       1.86  perseant 		int a_flags;
   3341       1.86  perseant 	} */ *ap = v;
   3342       1.84  perseant 
   3343      1.106     ragge #ifdef DDB
   3344       1.84  perseant 	vfs_vnode_print(ap->a_vp, 0, printf);
   3345      1.106     ragge #endif
   3346      1.102      fvdl 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   3347       1.84  perseant }
   3348       1.84  perseant #endif
   3349       1.84  perseant 
   3350       1.84  perseant int
   3351       1.84  perseant lfs_mmap(void *v)
   3352       1.84  perseant {
   3353       1.84  perseant 	struct vop_mmap_args /* {
   3354       1.86  perseant 		const struct vnodeop_desc *a_desc;
   3355       1.86  perseant 		struct vnode *a_vp;
   3356      1.209     pooka 		vm_prot_t a_prot;
   3357      1.176      elad 		kauth_cred_t a_cred;
   3358       1.84  perseant 	} */ *ap = v;
   3359       1.84  perseant 
   3360       1.84  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   3361       1.84  perseant 		return EOPNOTSUPP;
   3362       1.84  perseant 	return ufs_mmap(v);
   3363       1.84  perseant }
   3364