Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.239.2.2
      1  1.239.2.2    bouyer /*	$NetBSD: lfs_vnops.c,v 1.239.2.2 2016/08/27 14:13:18 bouyer Exp $	*/
      2        1.2       cgd 
      3       1.22  perseant /*-
      4       1.84  perseant  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5       1.22  perseant  * All rights reserved.
      6       1.22  perseant  *
      7       1.22  perseant  * This code is derived from software contributed to The NetBSD Foundation
      8       1.22  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9       1.22  perseant  *
     10       1.22  perseant  * Redistribution and use in source and binary forms, with or without
     11       1.22  perseant  * modification, are permitted provided that the following conditions
     12       1.22  perseant  * are met:
     13       1.22  perseant  * 1. Redistributions of source code must retain the above copyright
     14       1.22  perseant  *    notice, this list of conditions and the following disclaimer.
     15       1.22  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.22  perseant  *    notice, this list of conditions and the following disclaimer in the
     17       1.22  perseant  *    documentation and/or other materials provided with the distribution.
     18       1.22  perseant  *
     19       1.22  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.22  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.22  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.22  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.22  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.22  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.22  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.22  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.22  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.22  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.22  perseant  * POSSIBILITY OF SUCH DAMAGE.
     30       1.22  perseant  */
     31        1.1   mycroft /*
     32       1.15      fvdl  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     34        1.1   mycroft  *
     35        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     36        1.1   mycroft  * modification, are permitted provided that the following conditions
     37        1.1   mycroft  * are met:
     38        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     39        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     40        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     41        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     42        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     43      1.114       agc  * 3. Neither the name of the University nor the names of its contributors
     44        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     45        1.1   mycroft  *    without specific prior written permission.
     46        1.1   mycroft  *
     47        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57        1.1   mycroft  * SUCH DAMAGE.
     58        1.1   mycroft  *
     59       1.15      fvdl  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60        1.1   mycroft  */
     61       1.58     lukem 
     62       1.58     lukem #include <sys/cdefs.h>
     63  1.239.2.2    bouyer __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.239.2.2 2016/08/27 14:13:18 bouyer Exp $");
     64      1.182    martin 
     65      1.183    martin #ifdef _KERNEL_OPT
     66      1.182    martin #include "opt_compat_netbsd.h"
     67      1.238       chs #include "opt_uvm_page_trkown.h"
     68      1.183    martin #endif
     69       1.17  sommerfe 
     70        1.1   mycroft #include <sys/param.h>
     71        1.1   mycroft #include <sys/systm.h>
     72        1.1   mycroft #include <sys/namei.h>
     73        1.1   mycroft #include <sys/resourcevar.h>
     74        1.1   mycroft #include <sys/kernel.h>
     75        1.1   mycroft #include <sys/file.h>
     76        1.1   mycroft #include <sys/stat.h>
     77        1.1   mycroft #include <sys/buf.h>
     78        1.1   mycroft #include <sys/proc.h>
     79        1.1   mycroft #include <sys/mount.h>
     80        1.1   mycroft #include <sys/vnode.h>
     81       1.19   thorpej #include <sys/pool.h>
     82       1.10  christos #include <sys/signalvar.h>
     83      1.176      elad #include <sys/kauth.h>
     84      1.179  perseant #include <sys/syslog.h>
     85      1.197   hannken #include <sys/fstrans.h>
     86        1.1   mycroft 
     87       1.12   mycroft #include <miscfs/fifofs/fifo.h>
     88       1.12   mycroft #include <miscfs/genfs/genfs.h>
     89        1.1   mycroft #include <miscfs/specfs/specdev.h>
     90        1.1   mycroft 
     91        1.1   mycroft #include <ufs/ufs/inode.h>
     92        1.1   mycroft #include <ufs/ufs/dir.h>
     93        1.1   mycroft #include <ufs/ufs/ufsmount.h>
     94  1.239.2.1    bouyer #include <ufs/ufs/ufs_bswap.h>
     95        1.1   mycroft #include <ufs/ufs/ufs_extern.h>
     96        1.1   mycroft 
     97       1.84  perseant #include <uvm/uvm.h>
     98       1.95  perseant #include <uvm/uvm_pmap.h>
     99       1.95  perseant #include <uvm/uvm_stat.h>
    100       1.95  perseant #include <uvm/uvm_pager.h>
    101       1.84  perseant 
    102        1.1   mycroft #include <ufs/lfs/lfs.h>
    103        1.1   mycroft #include <ufs/lfs/lfs_extern.h>
    104        1.1   mycroft 
    105       1.91      yamt extern pid_t lfs_writer_daemon;
    106      1.203  perseant int lfs_ignore_lazy_sync = 1;
    107      1.203  perseant 
    108        1.1   mycroft /* Global vfs data structures for lfs. */
    109       1.51  perseant int (**lfs_vnodeop_p)(void *);
    110       1.50  jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    111        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    112        1.1   mycroft 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    113       1.22  perseant 	{ &vop_create_desc, lfs_create },		/* create */
    114       1.82      yamt 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    115       1.22  perseant 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    116        1.1   mycroft 	{ &vop_open_desc, ufs_open },			/* open */
    117        1.1   mycroft 	{ &vop_close_desc, lfs_close },			/* close */
    118        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    119        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    120       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    121        1.1   mycroft 	{ &vop_read_desc, lfs_read },			/* read */
    122        1.1   mycroft 	{ &vop_write_desc, lfs_write },			/* write */
    123       1.90  perseant 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    124       1.90  perseant 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    125       1.13   mycroft 	{ &vop_poll_desc, ufs_poll },			/* poll */
    126       1.68  jdolecek 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    127       1.15      fvdl 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    128       1.84  perseant 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    129        1.1   mycroft 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    130        1.1   mycroft 	{ &vop_seek_desc, ufs_seek },			/* seek */
    131       1.22  perseant 	{ &vop_remove_desc, lfs_remove },		/* remove */
    132       1.22  perseant 	{ &vop_link_desc, lfs_link },			/* link */
    133       1.22  perseant 	{ &vop_rename_desc, lfs_rename },		/* rename */
    134       1.22  perseant 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    135       1.22  perseant 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    136       1.22  perseant 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    137        1.1   mycroft 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    138        1.1   mycroft 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    139        1.1   mycroft 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    140       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    141        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    142        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    143        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    144        1.1   mycroft 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    145       1.94  perseant 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    146        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    147        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    148        1.1   mycroft 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    149        1.1   mycroft 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    150        1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    151       1.60       chs 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    152       1.60       chs 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    153       1.53       chs 	{ NULL, NULL }
    154        1.1   mycroft };
    155       1.50  jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    156        1.1   mycroft 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    157        1.1   mycroft 
    158       1.51  perseant int (**lfs_specop_p)(void *);
    159       1.50  jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    160        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    161        1.1   mycroft 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    162        1.1   mycroft 	{ &vop_create_desc, spec_create },		/* create */
    163        1.1   mycroft 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    164        1.1   mycroft 	{ &vop_open_desc, spec_open },			/* open */
    165       1.65  perseant 	{ &vop_close_desc, lfsspec_close },		/* close */
    166        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    167        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    168       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    169        1.1   mycroft 	{ &vop_read_desc, ufsspec_read },		/* read */
    170        1.1   mycroft 	{ &vop_write_desc, ufsspec_write },		/* write */
    171        1.1   mycroft 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172       1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    173       1.13   mycroft 	{ &vop_poll_desc, spec_poll },			/* poll */
    174       1.68  jdolecek 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175       1.15      fvdl 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176        1.1   mycroft 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177        1.1   mycroft 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178        1.1   mycroft 	{ &vop_seek_desc, spec_seek },			/* seek */
    179        1.1   mycroft 	{ &vop_remove_desc, spec_remove },		/* remove */
    180        1.1   mycroft 	{ &vop_link_desc, spec_link },			/* link */
    181        1.1   mycroft 	{ &vop_rename_desc, spec_rename },		/* rename */
    182        1.1   mycroft 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183        1.1   mycroft 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184        1.1   mycroft 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185        1.1   mycroft 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186        1.1   mycroft 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187        1.1   mycroft 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    191        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    192        1.1   mycroft 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193        1.1   mycroft 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    195        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    196        1.1   mycroft 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197        1.1   mycroft 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198       1.28  perseant 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199       1.53       chs 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200       1.53       chs 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201       1.53       chs 	{ NULL, NULL }
    202        1.1   mycroft };
    203       1.50  jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
    204        1.1   mycroft 	{ &lfs_specop_p, lfs_specop_entries };
    205        1.1   mycroft 
    206       1.51  perseant int (**lfs_fifoop_p)(void *);
    207       1.50  jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208        1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    209      1.227     pooka 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    210      1.227     pooka 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    211      1.227     pooka 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    212      1.227     pooka 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    213       1.65  perseant 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214        1.1   mycroft 	{ &vop_access_desc, ufs_access },		/* access */
    215        1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216       1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217        1.1   mycroft 	{ &vop_read_desc, ufsfifo_read },		/* read */
    218        1.1   mycroft 	{ &vop_write_desc, ufsfifo_write },		/* write */
    219      1.227     pooka 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    220       1.27  wrstuden 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    221      1.227     pooka 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    222      1.227     pooka 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    223      1.227     pooka 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    224      1.227     pooka 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    225      1.227     pooka 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    226      1.227     pooka 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    227      1.227     pooka 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    228      1.227     pooka 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    229      1.227     pooka 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    230      1.227     pooka 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    231      1.227     pooka 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    232      1.227     pooka 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    233      1.227     pooka 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    234      1.227     pooka 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    235      1.227     pooka 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    236       1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237        1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238        1.1   mycroft 	{ &vop_lock_desc, ufs_lock },			/* lock */
    239        1.1   mycroft 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    240      1.227     pooka 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    241      1.227     pooka 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    242        1.1   mycroft 	{ &vop_print_desc, ufs_print },			/* print */
    243        1.1   mycroft 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    244      1.227     pooka 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    245      1.227     pooka 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    246        1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247      1.227     pooka 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    248       1.53       chs 	{ NULL, NULL }
    249        1.1   mycroft };
    250       1.50  jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251        1.1   mycroft 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252        1.1   mycroft 
    253      1.203  perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    254      1.134  perseant 
    255        1.1   mycroft #define	LFS_READWRITE
    256        1.1   mycroft #include <ufs/ufs/ufs_readwrite.c>
    257        1.1   mycroft #undef	LFS_READWRITE
    258        1.1   mycroft 
    259        1.1   mycroft /*
    260        1.1   mycroft  * Synch an open file.
    261        1.1   mycroft  */
    262        1.1   mycroft /* ARGSUSED */
    263       1.10  christos int
    264       1.51  perseant lfs_fsync(void *v)
    265       1.10  christos {
    266        1.1   mycroft 	struct vop_fsync_args /* {
    267        1.1   mycroft 		struct vnode *a_vp;
    268      1.176      elad 		kauth_cred_t a_cred;
    269       1.22  perseant 		int a_flags;
    270       1.49    toshii 		off_t offlo;
    271       1.49    toshii 		off_t offhi;
    272       1.10  christos 	} */ *ap = v;
    273       1.60       chs 	struct vnode *vp = ap->a_vp;
    274       1.84  perseant 	int error, wait;
    275      1.203  perseant 	struct inode *ip = VTOI(vp);
    276      1.203  perseant 	struct lfs *fs = ip->i_lfs;
    277       1.84  perseant 
    278      1.161  perseant 	/* If we're mounted read-only, don't try to sync. */
    279      1.203  perseant 	if (fs->lfs_ronly)
    280      1.161  perseant 		return 0;
    281      1.161  perseant 
    282      1.231   hannken 	/* If a removed vnode is being cleaned, no need to sync here. */
    283      1.231   hannken 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    284      1.231   hannken 		return 0;
    285      1.231   hannken 
    286       1.86  perseant 	/*
    287      1.203  perseant 	 * Trickle sync simply adds this vnode to the pager list, as if
    288      1.203  perseant 	 * the pagedaemon had requested a pageout.
    289       1.86  perseant 	 */
    290       1.84  perseant 	if (ap->a_flags & FSYNC_LAZY) {
    291      1.203  perseant 		if (lfs_ignore_lazy_sync == 0) {
    292      1.214        ad 			mutex_enter(&lfs_lock);
    293      1.203  perseant 			if (!(ip->i_flags & IN_PAGING)) {
    294      1.203  perseant 				ip->i_flags |= IN_PAGING;
    295      1.203  perseant 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    296      1.203  perseant 						  i_lfs_pchain);
    297      1.203  perseant 			}
    298      1.203  perseant 			wakeup(&lfs_writer_daemon);
    299      1.214        ad 			mutex_exit(&lfs_lock);
    300      1.203  perseant 		}
    301       1.47  perseant 		return 0;
    302       1.84  perseant 	}
    303       1.47  perseant 
    304      1.175  perseant 	/*
    305      1.188  perseant 	 * If a vnode is bring cleaned, flush it out before we try to
    306      1.188  perseant 	 * reuse it.  This prevents the cleaner from writing files twice
    307      1.188  perseant 	 * in the same partial segment, causing an accounting underflow.
    308      1.188  perseant 	 */
    309      1.203  perseant 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    310      1.188  perseant 		lfs_vflush(vp);
    311      1.175  perseant 	}
    312      1.175  perseant 
    313       1.84  perseant 	wait = (ap->a_flags & FSYNC_WAIT);
    314      1.203  perseant 	do {
    315      1.235     rmind 		mutex_enter(vp->v_interlock);
    316      1.203  perseant 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    317      1.203  perseant 				     round_page(ap->a_offhi),
    318      1.203  perseant 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    319      1.205  perseant 		if (error == EAGAIN) {
    320      1.214        ad 			mutex_enter(&lfs_lock);
    321      1.214        ad 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    322      1.214        ad 				hz / 100 + 1, &lfs_lock);
    323      1.214        ad 			mutex_exit(&lfs_lock);
    324      1.205  perseant 		}
    325      1.203  perseant 	} while (error == EAGAIN);
    326      1.103  perseant 	if (error)
    327      1.103  perseant 		return error;
    328      1.203  perseant 
    329      1.203  perseant 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    330      1.203  perseant 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    331      1.203  perseant 
    332      1.133  wrstuden 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    333      1.133  wrstuden 		int l = 0;
    334      1.203  perseant 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    335      1.213     pooka 				  curlwp->l_cred);
    336      1.133  wrstuden 	}
    337      1.103  perseant 	if (wait && !VPISEMPTY(vp))
    338      1.203  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
    339       1.84  perseant 
    340       1.63  perseant 	return error;
    341        1.1   mycroft }
    342        1.1   mycroft 
    343        1.1   mycroft /*
    344       1.40  perseant  * Take IN_ADIROP off, then call ufs_inactive.
    345       1.40  perseant  */
    346       1.40  perseant int
    347       1.51  perseant lfs_inactive(void *v)
    348       1.40  perseant {
    349       1.40  perseant 	struct vop_inactive_args /* {
    350       1.40  perseant 		struct vnode *a_vp;
    351       1.40  perseant 	} */ *ap = v;
    352       1.72      yamt 
    353       1.76      yamt 	lfs_unmark_vnode(ap->a_vp);
    354       1.76      yamt 
    355       1.97  perseant 	/*
    356       1.97  perseant 	 * The Ifile is only ever inactivated on unmount.
    357       1.97  perseant 	 * Streamline this process by not giving it more dirty blocks.
    358       1.97  perseant 	 */
    359       1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    360      1.214        ad 		mutex_enter(&lfs_lock);
    361       1.97  perseant 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    362      1.214        ad 		mutex_exit(&lfs_lock);
    363      1.229   hannken 		VOP_UNLOCK(ap->a_vp);
    364       1.97  perseant 		return 0;
    365       1.97  perseant 	}
    366       1.97  perseant 
    367      1.239  perseant #ifdef DEBUG
    368      1.239  perseant 	/*
    369      1.239  perseant 	 * This might happen on unmount.
    370      1.239  perseant 	 * XXX If it happens at any other time, it should be a panic.
    371      1.239  perseant 	 */
    372      1.239  perseant 	if (ap->a_vp->v_uflag & VU_DIROP) {
    373      1.239  perseant 		struct inode *ip = VTOI(ap->a_vp);
    374      1.239  perseant 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    375      1.239  perseant 	}
    376      1.239  perseant #endif /* DIAGNOSTIC */
    377      1.239  perseant 
    378       1.75      yamt 	return ufs_inactive(v);
    379       1.40  perseant }
    380       1.40  perseant 
    381       1.40  perseant /*
    382        1.1   mycroft  * These macros are used to bracket UFS directory ops, so that we can
    383        1.1   mycroft  * identify all the pages touched during directory ops which need to
    384        1.1   mycroft  * be ordered and flushed atomically, so that they may be recovered.
    385      1.138  perseant  *
    386      1.212        ad  * Because we have to mark nodes VU_DIROP in order to prevent
    387       1.22  perseant  * the cache from reclaiming them while a dirop is in progress, we must
    388       1.22  perseant  * also manage the number of nodes so marked (otherwise we can run out).
    389       1.22  perseant  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    390      1.212        ad  * is decremented during segment write, when VU_DIROP is taken off.
    391       1.22  perseant  */
    392      1.138  perseant #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    393      1.138  perseant #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    394      1.138  perseant #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    395      1.138  perseant #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    396      1.138  perseant static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    397       1.71      yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
    398       1.24  perseant 
    399       1.46  perseant static int
    400      1.138  perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    401       1.40  perseant {
    402       1.24  perseant 	struct lfs *fs;
    403       1.24  perseant 	int error;
    404       1.24  perseant 
    405      1.138  perseant 	KASSERT(VOP_ISLOCKED(dvp));
    406      1.138  perseant 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    407       1.71      yamt 
    408      1.138  perseant 	fs = VTOI(dvp)->i_lfs;
    409      1.141  perseant 
    410      1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    411       1.44  perseant 	/*
    412      1.134  perseant 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    413      1.134  perseant 	 * as an inode block; an overestimate in most cases.
    414       1.44  perseant 	 */
    415      1.138  perseant 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    416       1.44  perseant 		return (error);
    417       1.70      yamt 
    418      1.214        ad     restart:
    419      1.214        ad 	mutex_enter(&lfs_lock);
    420      1.141  perseant 	if (fs->lfs_dirops == 0) {
    421      1.214        ad 		mutex_exit(&lfs_lock);
    422      1.138  perseant 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    423      1.214        ad 		mutex_enter(&lfs_lock);
    424      1.113      yamt 	}
    425      1.190  perseant 	while (fs->lfs_writer) {
    426      1.214        ad 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    427      1.214        ad 		    "lfs_sdirop", 0, &lfs_lock);
    428      1.190  perseant 		if (error == EINTR) {
    429      1.214        ad 			mutex_exit(&lfs_lock);
    430      1.190  perseant 			goto unreserve;
    431      1.190  perseant 		}
    432      1.190  perseant 	}
    433      1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    434      1.113      yamt 		wakeup(&lfs_writer_daemon);
    435      1.214        ad 		mutex_exit(&lfs_lock);
    436      1.198        ad 		preempt();
    437      1.113      yamt 		goto restart;
    438      1.113      yamt 	}
    439       1.33  perseant 
    440      1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    441      1.136  perseant 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    442      1.136  perseant 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    443      1.214        ad 		if ((error = mtsleep(&lfs_dirvcount,
    444      1.214        ad 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    445      1.214        ad 		    &lfs_lock)) != 0) {
    446  1.239.2.2    bouyer 			mutex_exit(&lfs_lock);
    447      1.113      yamt 			goto unreserve;
    448      1.113      yamt 		}
    449  1.239.2.2    bouyer 		mutex_exit(&lfs_lock);
    450      1.113      yamt 		goto restart;
    451      1.135     perry 	}
    452      1.113      yamt 
    453      1.135     perry 	++fs->lfs_dirops;
    454      1.239  perseant 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    455      1.214        ad 	mutex_exit(&lfs_lock);
    456       1.24  perseant 
    457       1.46  perseant 	/* Hold a reference so SET_ENDOP will be happy */
    458      1.138  perseant 	vref(dvp);
    459      1.138  perseant 	if (vp) {
    460      1.138  perseant 		vref(vp);
    461      1.138  perseant 		MARK_VNODE(vp);
    462      1.138  perseant 	}
    463       1.46  perseant 
    464      1.138  perseant 	MARK_VNODE(dvp);
    465       1.24  perseant 	return 0;
    466       1.70      yamt 
    467      1.203  perseant   unreserve:
    468      1.138  perseant 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    469       1.70      yamt 	return error;
    470        1.1   mycroft }
    471        1.1   mycroft 
    472      1.138  perseant /*
    473      1.138  perseant  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    474      1.138  perseant  * in getnewvnode(), if we have a stacked filesystem mounted on top
    475      1.138  perseant  * of us.
    476      1.138  perseant  *
    477      1.138  perseant  * NB: this means we have to clear the new vnodes on error.  Fortunately
    478      1.138  perseant  * SET_ENDOP is there to do that for us.
    479      1.138  perseant  */
    480      1.138  perseant static int
    481      1.138  perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    482      1.138  perseant {
    483      1.138  perseant 	int error;
    484      1.138  perseant 	struct lfs *fs;
    485      1.138  perseant 
    486      1.138  perseant 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    487      1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    488      1.138  perseant 	if (fs->lfs_ronly)
    489      1.138  perseant 		return EROFS;
    490      1.235     rmind 	if (vpp == NULL) {
    491      1.235     rmind 		return lfs_set_dirop(dvp, NULL);
    492      1.235     rmind 	}
    493      1.235     rmind 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    494      1.235     rmind 	if (error) {
    495      1.138  perseant 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    496      1.138  perseant 		      dvp, error));
    497      1.138  perseant 		return error;
    498      1.138  perseant 	}
    499      1.138  perseant 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    500      1.235     rmind 		ungetnewvnode(*vpp);
    501      1.235     rmind 		*vpp = NULL;
    502      1.138  perseant 		return error;
    503      1.138  perseant 	}
    504      1.138  perseant 	return 0;
    505        1.1   mycroft }
    506        1.1   mycroft 
    507      1.138  perseant #define	SET_ENDOP_BASE(fs, dvp, str)					\
    508      1.138  perseant 	do {								\
    509      1.214        ad 		mutex_enter(&lfs_lock);				\
    510      1.138  perseant 		--(fs)->lfs_dirops;					\
    511      1.138  perseant 		if (!(fs)->lfs_dirops) {				\
    512      1.138  perseant 			if ((fs)->lfs_nadirop) {			\
    513      1.138  perseant 				panic("SET_ENDOP: %s: no dirops but "	\
    514      1.138  perseant 					" nadirop=%d", (str),		\
    515      1.138  perseant 					(fs)->lfs_nadirop);		\
    516      1.138  perseant 			}						\
    517      1.138  perseant 			wakeup(&(fs)->lfs_writer);			\
    518      1.214        ad 			mutex_exit(&lfs_lock);				\
    519      1.138  perseant 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    520      1.138  perseant 		} else							\
    521      1.214        ad 			mutex_exit(&lfs_lock);				\
    522      1.138  perseant 	} while(0)
    523      1.138  perseant #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    524      1.138  perseant 	do {								\
    525      1.138  perseant 		UNMARK_VNODE(dvp);					\
    526      1.138  perseant 		if (nvpp && *nvpp)					\
    527      1.138  perseant 			UNMARK_VNODE(*nvpp);				\
    528      1.138  perseant 		/* Check for error return to stem vnode leakage */	\
    529      1.212        ad 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    530      1.138  perseant 			ungetnewvnode(*(nvpp));				\
    531      1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    532      1.138  perseant 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    533      1.138  perseant 		vrele(dvp);						\
    534      1.138  perseant 	} while(0)
    535      1.138  perseant #define SET_ENDOP_CREATE_AP(ap, str)					\
    536      1.138  perseant 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    537      1.138  perseant 			 (ap)->a_vpp, (str))
    538      1.138  perseant #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    539      1.138  perseant 	do {								\
    540      1.138  perseant 		UNMARK_VNODE(dvp);					\
    541      1.138  perseant 		if (ovp)						\
    542      1.138  perseant 			UNMARK_VNODE(ovp);				\
    543      1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    544      1.138  perseant 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    545      1.138  perseant 		vrele(dvp);						\
    546      1.138  perseant 		if (ovp)						\
    547      1.138  perseant 			vrele(ovp);					\
    548      1.138  perseant 	} while(0)
    549      1.117      yamt 
    550      1.117      yamt void
    551      1.117      yamt lfs_mark_vnode(struct vnode *vp)
    552      1.117      yamt {
    553      1.117      yamt 	struct inode *ip = VTOI(vp);
    554      1.117      yamt 	struct lfs *fs = ip->i_lfs;
    555       1.37  perseant 
    556      1.214        ad 	mutex_enter(&lfs_lock);
    557      1.117      yamt 	if (!(ip->i_flag & IN_ADIROP)) {
    558      1.212        ad 		if (!(vp->v_uflag & VU_DIROP)) {
    559  1.239.2.1    bouyer 			mutex_exit(&lfs_lock);
    560      1.235     rmind 			mutex_enter(vp->v_interlock);
    561      1.239  perseant 			if (lfs_vref(vp) != 0)
    562      1.239  perseant 				panic("lfs_mark_vnode: could not vref");
    563  1.239.2.1    bouyer 			mutex_enter(&lfs_lock);
    564      1.117      yamt 			++lfs_dirvcount;
    565      1.173  perseant 			++fs->lfs_dirvcount;
    566      1.117      yamt 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    567      1.212        ad 			vp->v_uflag |= VU_DIROP;
    568      1.117      yamt 		}
    569      1.117      yamt 		++fs->lfs_nadirop;
    570      1.239  perseant 		ip->i_flag &= ~IN_CDIROP;
    571      1.117      yamt 		ip->i_flag |= IN_ADIROP;
    572      1.117      yamt 	} else
    573      1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    574      1.214        ad 	mutex_exit(&lfs_lock);
    575      1.117      yamt }
    576       1.40  perseant 
    577      1.117      yamt void
    578      1.117      yamt lfs_unmark_vnode(struct vnode *vp)
    579       1.40  perseant {
    580      1.117      yamt 	struct inode *ip = VTOI(vp);
    581       1.40  perseant 
    582  1.239.2.1    bouyer 	mutex_enter(&lfs_lock);
    583      1.146  perseant 	if (ip && (ip->i_flag & IN_ADIROP)) {
    584      1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    585       1.40  perseant 		--ip->i_lfs->lfs_nadirop;
    586      1.117      yamt 		ip->i_flag &= ~IN_ADIROP;
    587      1.117      yamt 	}
    588  1.239.2.1    bouyer 	mutex_exit(&lfs_lock);
    589       1.40  perseant }
    590       1.15      fvdl 
    591        1.1   mycroft int
    592       1.51  perseant lfs_symlink(void *v)
    593       1.10  christos {
    594        1.1   mycroft 	struct vop_symlink_args /* {
    595        1.1   mycroft 		struct vnode *a_dvp;
    596        1.1   mycroft 		struct vnode **a_vpp;
    597        1.1   mycroft 		struct componentname *a_cnp;
    598        1.1   mycroft 		struct vattr *a_vap;
    599        1.1   mycroft 		char *a_target;
    600       1.10  christos 	} */ *ap = v;
    601       1.37  perseant 	int error;
    602        1.1   mycroft 
    603      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    604       1.34  perseant 		vput(ap->a_dvp);
    605       1.37  perseant 		return error;
    606       1.34  perseant 	}
    607       1.37  perseant 	error = ufs_symlink(ap);
    608      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "symlink");
    609       1.37  perseant 	return (error);
    610        1.1   mycroft }
    611        1.1   mycroft 
    612        1.1   mycroft int
    613       1.51  perseant lfs_mknod(void *v)
    614       1.10  christos {
    615       1.22  perseant 	struct vop_mknod_args	/* {
    616        1.1   mycroft 		struct vnode *a_dvp;
    617        1.1   mycroft 		struct vnode **a_vpp;
    618        1.1   mycroft 		struct componentname *a_cnp;
    619        1.1   mycroft 		struct vattr *a_vap;
    620      1.203  perseant 	} */ *ap = v;
    621       1.86  perseant 	struct vattr *vap = ap->a_vap;
    622       1.86  perseant 	struct vnode **vpp = ap->a_vpp;
    623       1.86  perseant 	struct inode *ip;
    624       1.86  perseant 	int error;
    625      1.135     perry 	struct mount	*mp;
    626       1.52     assar 	ino_t		ino;
    627      1.237  dholland 	struct ufs_lookup_results *ulr;
    628      1.237  dholland 
    629      1.237  dholland 	/* XXX should handle this material another way */
    630      1.237  dholland 	ulr = &VTOI(ap->a_dvp)->i_crap;
    631      1.237  dholland 	UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    632        1.1   mycroft 
    633      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    634       1.34  perseant 		vput(ap->a_dvp);
    635       1.28  perseant 		return error;
    636       1.34  perseant 	}
    637       1.28  perseant 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    638      1.237  dholland 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    639       1.28  perseant 
    640       1.28  perseant 	/* Either way we're done with the dirop at this point */
    641      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mknod");
    642       1.28  perseant 
    643       1.86  perseant 	if (error)
    644       1.28  perseant 		return (error);
    645       1.28  perseant 
    646       1.86  perseant 	ip = VTOI(*vpp);
    647       1.52     assar 	mp  = (*vpp)->v_mount;
    648       1.52     assar 	ino = ip->i_number;
    649       1.86  perseant 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    650       1.86  perseant 	if (vap->va_rdev != VNOVAL) {
    651       1.86  perseant 		/*
    652       1.86  perseant 		 * Want to be able to use this to make badblock
    653       1.86  perseant 		 * inodes, so don't truncate the dev number.
    654       1.86  perseant 		 */
    655       1.28  perseant #if 0
    656      1.102      fvdl 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    657      1.203  perseant 					   UFS_MPNEEDSWAP((*vpp)->v_mount));
    658       1.28  perseant #else
    659      1.102      fvdl 		ip->i_ffs1_rdev = vap->va_rdev;
    660       1.28  perseant #endif
    661       1.86  perseant 	}
    662      1.134  perseant 
    663       1.28  perseant 	/*
    664       1.28  perseant 	 * Call fsync to write the vnode so that we don't have to deal with
    665      1.212        ad 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    666       1.28  perseant 	 *
    667       1.28  perseant 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    668       1.28  perseant 	 * return.  But, that leaves this vnode in limbo, also not good.
    669       1.28  perseant 	 * Can this ever happen (barring hardware failure)?
    670       1.28  perseant 	 */
    671      1.213     pooka 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    672      1.153  christos 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    673      1.203  perseant 		      (unsigned long long)ino);
    674      1.136  perseant 		/* return (error); */
    675       1.40  perseant 	}
    676       1.86  perseant 	/*
    677       1.86  perseant 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    678       1.86  perseant 	 * checked to see if it is an alias of an existing entry in
    679       1.86  perseant 	 * the inode cache.
    680       1.86  perseant 	 */
    681       1.28  perseant 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    682      1.134  perseant 
    683      1.229   hannken 	VOP_UNLOCK(*vpp);
    684       1.86  perseant 	(*vpp)->v_type = VNON;
    685       1.86  perseant 	vgone(*vpp);
    686      1.108   thorpej 	error = VFS_VGET(mp, ino, vpp);
    687      1.134  perseant 
    688       1.52     assar 	if (error != 0) {
    689       1.52     assar 		*vpp = NULL;
    690       1.52     assar 		return (error);
    691       1.52     assar 	}
    692       1.86  perseant 	return (0);
    693        1.1   mycroft }
    694        1.1   mycroft 
    695        1.1   mycroft int
    696       1.51  perseant lfs_create(void *v)
    697       1.10  christos {
    698       1.22  perseant 	struct vop_create_args	/* {
    699        1.1   mycroft 		struct vnode *a_dvp;
    700        1.1   mycroft 		struct vnode **a_vpp;
    701        1.1   mycroft 		struct componentname *a_cnp;
    702        1.1   mycroft 		struct vattr *a_vap;
    703       1.10  christos 	} */ *ap = v;
    704       1.37  perseant 	int error;
    705        1.1   mycroft 
    706      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    707       1.34  perseant 		vput(ap->a_dvp);
    708       1.37  perseant 		return error;
    709       1.34  perseant 	}
    710       1.37  perseant 	error = ufs_create(ap);
    711      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "create");
    712       1.37  perseant 	return (error);
    713       1.22  perseant }
    714       1.22  perseant 
    715       1.22  perseant int
    716       1.51  perseant lfs_mkdir(void *v)
    717       1.10  christos {
    718       1.22  perseant 	struct vop_mkdir_args	/* {
    719        1.1   mycroft 		struct vnode *a_dvp;
    720        1.1   mycroft 		struct vnode **a_vpp;
    721        1.1   mycroft 		struct componentname *a_cnp;
    722        1.1   mycroft 		struct vattr *a_vap;
    723       1.10  christos 	} */ *ap = v;
    724       1.37  perseant 	int error;
    725        1.1   mycroft 
    726      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    727       1.34  perseant 		vput(ap->a_dvp);
    728       1.37  perseant 		return error;
    729       1.34  perseant 	}
    730       1.37  perseant 	error = ufs_mkdir(ap);
    731      1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    732       1.37  perseant 	return (error);
    733        1.1   mycroft }
    734        1.1   mycroft 
    735        1.1   mycroft int
    736       1.51  perseant lfs_remove(void *v)
    737       1.10  christos {
    738       1.22  perseant 	struct vop_remove_args	/* {
    739        1.1   mycroft 		struct vnode *a_dvp;
    740        1.1   mycroft 		struct vnode *a_vp;
    741        1.1   mycroft 		struct componentname *a_cnp;
    742       1.10  christos 	} */ *ap = v;
    743       1.34  perseant 	struct vnode *dvp, *vp;
    744      1.188  perseant 	struct inode *ip;
    745       1.37  perseant 	int error;
    746       1.34  perseant 
    747       1.34  perseant 	dvp = ap->a_dvp;
    748       1.34  perseant 	vp = ap->a_vp;
    749      1.188  perseant 	ip = VTOI(vp);
    750      1.138  perseant 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    751       1.34  perseant 		if (dvp == vp)
    752       1.34  perseant 			vrele(vp);
    753       1.34  perseant 		else
    754       1.34  perseant 			vput(vp);
    755       1.34  perseant 		vput(dvp);
    756       1.37  perseant 		return error;
    757       1.34  perseant 	}
    758       1.37  perseant 	error = ufs_remove(ap);
    759      1.188  perseant 	if (ip->i_nlink == 0)
    760      1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    761      1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    762       1.37  perseant 	return (error);
    763        1.1   mycroft }
    764        1.1   mycroft 
    765        1.1   mycroft int
    766       1.51  perseant lfs_rmdir(void *v)
    767       1.10  christos {
    768       1.22  perseant 	struct vop_rmdir_args	/* {
    769        1.1   mycroft 		struct vnodeop_desc *a_desc;
    770        1.1   mycroft 		struct vnode *a_dvp;
    771        1.1   mycroft 		struct vnode *a_vp;
    772        1.1   mycroft 		struct componentname *a_cnp;
    773       1.10  christos 	} */ *ap = v;
    774       1.84  perseant 	struct vnode *vp;
    775      1.188  perseant 	struct inode *ip;
    776       1.37  perseant 	int error;
    777        1.1   mycroft 
    778       1.84  perseant 	vp = ap->a_vp;
    779      1.188  perseant 	ip = VTOI(vp);
    780      1.138  perseant 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    781      1.194       chs 		if (ap->a_dvp == vp)
    782      1.194       chs 			vrele(ap->a_dvp);
    783      1.194       chs 		else
    784      1.194       chs 			vput(ap->a_dvp);
    785       1.84  perseant 		vput(vp);
    786       1.37  perseant 		return error;
    787       1.34  perseant 	}
    788       1.37  perseant 	error = ufs_rmdir(ap);
    789      1.188  perseant 	if (ip->i_nlink == 0)
    790      1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    791      1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    792       1.37  perseant 	return (error);
    793        1.1   mycroft }
    794        1.1   mycroft 
    795        1.1   mycroft int
    796       1.51  perseant lfs_link(void *v)
    797       1.10  christos {
    798       1.22  perseant 	struct vop_link_args	/* {
    799        1.9   mycroft 		struct vnode *a_dvp;
    800        1.1   mycroft 		struct vnode *a_vp;
    801        1.1   mycroft 		struct componentname *a_cnp;
    802       1.10  christos 	} */ *ap = v;
    803       1.37  perseant 	int error;
    804      1.138  perseant 	struct vnode **vpp = NULL;
    805        1.1   mycroft 
    806      1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    807       1.34  perseant 		vput(ap->a_dvp);
    808       1.37  perseant 		return error;
    809       1.34  perseant 	}
    810       1.37  perseant 	error = ufs_link(ap);
    811      1.138  perseant 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    812       1.37  perseant 	return (error);
    813        1.1   mycroft }
    814       1.22  perseant 
    815  1.239.2.1    bouyer /* XXX following lifted from ufs_lookup.c */
    816  1.239.2.1    bouyer #define	FSFMT(vp)	(((vp)->v_mount->mnt_iflag & IMNT_DTYPE) == 0)
    817  1.239.2.1    bouyer 
    818  1.239.2.1    bouyer /*
    819  1.239.2.1    bouyer  * Check if either entry referred to by FROM_ULR is within the range
    820  1.239.2.1    bouyer  * of entries named by TO_ULR.
    821  1.239.2.1    bouyer  */
    822  1.239.2.1    bouyer static int
    823  1.239.2.1    bouyer ulr_overlap(const struct ufs_lookup_results *from_ulr,
    824  1.239.2.1    bouyer 	    const struct ufs_lookup_results *to_ulr)
    825  1.239.2.1    bouyer {
    826  1.239.2.1    bouyer 	doff_t from_start, from_prevstart;
    827  1.239.2.1    bouyer 	doff_t to_start, to_end;
    828  1.239.2.1    bouyer 
    829  1.239.2.1    bouyer 	/*
    830  1.239.2.1    bouyer 	 * FROM is a DELETE result; offset points to the entry to
    831  1.239.2.1    bouyer 	 * remove and subtracting count gives the previous entry.
    832  1.239.2.1    bouyer 	 */
    833  1.239.2.1    bouyer 	from_start = from_ulr->ulr_offset - from_ulr->ulr_count;
    834  1.239.2.1    bouyer 	from_prevstart = from_ulr->ulr_offset;
    835  1.239.2.1    bouyer 
    836  1.239.2.1    bouyer 	/*
    837  1.239.2.1    bouyer 	 * TO is a RENAME (thus non-DELETE) result; offset points
    838  1.239.2.1    bouyer 	 * to the beginning of a region to write in, and adding
    839  1.239.2.1    bouyer 	 * count gives the end of the region.
    840  1.239.2.1    bouyer 	 */
    841  1.239.2.1    bouyer 	to_start = to_ulr->ulr_offset;
    842  1.239.2.1    bouyer 	to_end = to_ulr->ulr_offset + to_ulr->ulr_count;
    843  1.239.2.1    bouyer 
    844  1.239.2.1    bouyer 	if (from_prevstart >= to_start && from_prevstart < to_end) {
    845  1.239.2.1    bouyer 		return 1;
    846  1.239.2.1    bouyer 	}
    847  1.239.2.1    bouyer 	if (from_start >= to_start && from_start < to_end) {
    848  1.239.2.1    bouyer 		return 1;
    849  1.239.2.1    bouyer 	}
    850  1.239.2.1    bouyer 	return 0;
    851  1.239.2.1    bouyer }
    852  1.239.2.1    bouyer 
    853  1.239.2.1    bouyer /*
    854  1.239.2.1    bouyer  * A virgin directory (no blushing please).
    855  1.239.2.1    bouyer  */
    856  1.239.2.1    bouyer static const struct dirtemplate mastertemplate = {
    857  1.239.2.1    bouyer 	0,	12,		DT_DIR,	1,	".",
    858  1.239.2.1    bouyer 	0,	DIRBLKSIZ - 12,	DT_DIR,	2,	".."
    859  1.239.2.1    bouyer };
    860  1.239.2.1    bouyer 
    861  1.239.2.1    bouyer /*
    862  1.239.2.1    bouyer  * Wrapper for relookup that also updates the supplemental results.
    863  1.239.2.1    bouyer  */
    864  1.239.2.1    bouyer static int
    865  1.239.2.1    bouyer do_relookup(struct vnode *dvp, struct ufs_lookup_results *ulr,
    866  1.239.2.1    bouyer 	    struct vnode **vp, struct componentname *cnp)
    867  1.239.2.1    bouyer {
    868  1.239.2.1    bouyer 	int error;
    869  1.239.2.1    bouyer 
    870  1.239.2.1    bouyer 	error = relookup(dvp, vp, cnp, 0);
    871  1.239.2.1    bouyer 	if (error) {
    872  1.239.2.1    bouyer 		return error;
    873  1.239.2.1    bouyer 	}
    874  1.239.2.1    bouyer 	/* update the supplemental reasults */
    875  1.239.2.1    bouyer 	*ulr = VTOI(dvp)->i_crap;
    876  1.239.2.1    bouyer 	UFS_CHECK_CRAPCOUNTER(VTOI(dvp));
    877  1.239.2.1    bouyer 	return 0;
    878  1.239.2.1    bouyer }
    879  1.239.2.1    bouyer 
    880  1.239.2.1    bouyer /*
    881  1.239.2.1    bouyer  * Lock and relookup a sequence of two directories and two children.
    882  1.239.2.1    bouyer  *
    883  1.239.2.1    bouyer  */
    884  1.239.2.1    bouyer static int
    885  1.239.2.1    bouyer lock_vnode_sequence(struct vnode *d1, struct ufs_lookup_results *ulr1,
    886  1.239.2.1    bouyer 		    struct vnode **v1_ret, struct componentname *cn1,
    887  1.239.2.1    bouyer 		    int v1_missing_ok,
    888  1.239.2.1    bouyer 		    int overlap_error,
    889  1.239.2.1    bouyer 		    struct vnode *d2, struct ufs_lookup_results *ulr2,
    890  1.239.2.1    bouyer 		    struct vnode **v2_ret, struct componentname *cn2,
    891  1.239.2.1    bouyer 		    int v2_missing_ok)
    892  1.239.2.1    bouyer {
    893  1.239.2.1    bouyer 	struct vnode *v1, *v2;
    894  1.239.2.1    bouyer 	int error;
    895  1.239.2.1    bouyer 
    896  1.239.2.1    bouyer 	KASSERT(d1 != d2);
    897  1.239.2.1    bouyer 
    898  1.239.2.1    bouyer 	vn_lock(d1, LK_EXCLUSIVE | LK_RETRY);
    899  1.239.2.1    bouyer 	if (VTOI(d1)->i_size == 0) {
    900  1.239.2.1    bouyer 		/* d1 has been rmdir'd */
    901  1.239.2.1    bouyer 		VOP_UNLOCK(d1);
    902  1.239.2.1    bouyer 		return ENOENT;
    903  1.239.2.1    bouyer 	}
    904  1.239.2.1    bouyer 	error = do_relookup(d1, ulr1, &v1, cn1);
    905  1.239.2.1    bouyer 	if (v1_missing_ok) {
    906  1.239.2.1    bouyer 		if (error == ENOENT) {
    907  1.239.2.1    bouyer 			/*
    908  1.239.2.1    bouyer 			 * Note: currently if the name doesn't exist,
    909  1.239.2.1    bouyer 			 * relookup succeeds (it intercepts the
    910  1.239.2.1    bouyer 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
    911  1.239.2.1    bouyer 			 * to NULL. Therefore, we will never get
    912  1.239.2.1    bouyer 			 * ENOENT and this branch is not needed.
    913  1.239.2.1    bouyer 			 * However, in a saner future the EJUSTRETURN
    914  1.239.2.1    bouyer 			 * garbage will go away, so let's DTRT.
    915  1.239.2.1    bouyer 			 */
    916  1.239.2.1    bouyer 			v1 = NULL;
    917  1.239.2.1    bouyer 			error = 0;
    918  1.239.2.1    bouyer 		}
    919  1.239.2.1    bouyer 	} else {
    920  1.239.2.1    bouyer 		if (error == 0 && v1 == NULL) {
    921  1.239.2.1    bouyer 			/* This is what relookup sets if v1 disappeared. */
    922  1.239.2.1    bouyer 			error = ENOENT;
    923  1.239.2.1    bouyer 		}
    924  1.239.2.1    bouyer 	}
    925  1.239.2.1    bouyer 	if (error) {
    926  1.239.2.1    bouyer 		VOP_UNLOCK(d1);
    927  1.239.2.1    bouyer 		return error;
    928  1.239.2.1    bouyer 	}
    929  1.239.2.1    bouyer 	if (v1 && v1 == d2) {
    930  1.239.2.1    bouyer 		VOP_UNLOCK(d1);
    931  1.239.2.1    bouyer 		VOP_UNLOCK(v1);
    932  1.239.2.1    bouyer 		vrele(v1);
    933  1.239.2.1    bouyer 		return overlap_error;
    934  1.239.2.1    bouyer 	}
    935  1.239.2.1    bouyer 
    936  1.239.2.1    bouyer 	/*
    937  1.239.2.1    bouyer 	 * The right way to do this is to do lookups without locking
    938  1.239.2.1    bouyer 	 * the results, and lock the results afterwards; then at the
    939  1.239.2.1    bouyer 	 * end we can avoid trying to lock v2 if v2 == v1.
    940  1.239.2.1    bouyer 	 *
    941  1.239.2.1    bouyer 	 * However, for the reasons described in the fdvp == tdvp case
    942  1.239.2.1    bouyer 	 * in rename below, we can't do that safely. So, in the case
    943  1.239.2.1    bouyer 	 * where v1 is not a directory, unlock it and lock it again
    944  1.239.2.1    bouyer 	 * afterwards. This is safe in locking order because a
    945  1.239.2.1    bouyer 	 * non-directory can't be above anything else in the tree. If
    946  1.239.2.1    bouyer 	 * v1 *is* a directory, that's not true, but then because d1
    947  1.239.2.1    bouyer 	 * != d2, v1 != v2.
    948  1.239.2.1    bouyer 	 */
    949  1.239.2.1    bouyer 	if (v1 && v1->v_type != VDIR) {
    950  1.239.2.1    bouyer 		VOP_UNLOCK(v1);
    951  1.239.2.1    bouyer 	}
    952  1.239.2.1    bouyer 	vn_lock(d2, LK_EXCLUSIVE | LK_RETRY);
    953  1.239.2.1    bouyer 	if (VTOI(d2)->i_size == 0) {
    954  1.239.2.1    bouyer 		/* d2 has been rmdir'd */
    955  1.239.2.1    bouyer 		VOP_UNLOCK(d2);
    956  1.239.2.1    bouyer 		if (v1 && v1->v_type == VDIR) {
    957  1.239.2.1    bouyer 			VOP_UNLOCK(v1);
    958  1.239.2.1    bouyer 		}
    959  1.239.2.1    bouyer 		VOP_UNLOCK(d1);
    960  1.239.2.1    bouyer 		if (v1) {
    961  1.239.2.1    bouyer 			vrele(v1);
    962  1.239.2.1    bouyer 		}
    963  1.239.2.1    bouyer 		return ENOENT;
    964  1.239.2.1    bouyer 	}
    965  1.239.2.1    bouyer 	error = do_relookup(d2, ulr2, &v2, cn2);
    966  1.239.2.1    bouyer 	if (v2_missing_ok) {
    967  1.239.2.1    bouyer 		if (error == ENOENT) {
    968  1.239.2.1    bouyer 			/* as above */
    969  1.239.2.1    bouyer 			v2 = NULL;
    970  1.239.2.1    bouyer 			error = 0;
    971  1.239.2.1    bouyer 		}
    972  1.239.2.1    bouyer 	} else {
    973  1.239.2.1    bouyer 		if (error == 0 && v2 == NULL) {
    974  1.239.2.1    bouyer 			/* This is what relookup sets if v2 disappeared. */
    975  1.239.2.1    bouyer 			error = ENOENT;
    976  1.239.2.1    bouyer 		}
    977  1.239.2.1    bouyer 	}
    978  1.239.2.1    bouyer 	if (error) {
    979  1.239.2.1    bouyer 		VOP_UNLOCK(d2);
    980  1.239.2.1    bouyer 		if (v1 && v1->v_type == VDIR) {
    981  1.239.2.1    bouyer 			VOP_UNLOCK(v1);
    982  1.239.2.1    bouyer 		}
    983  1.239.2.1    bouyer 		VOP_UNLOCK(d1);
    984  1.239.2.1    bouyer 		if (v1) {
    985  1.239.2.1    bouyer 			vrele(v1);
    986  1.239.2.1    bouyer 		}
    987  1.239.2.1    bouyer 		return error;
    988  1.239.2.1    bouyer 	}
    989  1.239.2.1    bouyer 	if (v1 && v1->v_type != VDIR && v1 != v2) {
    990  1.239.2.1    bouyer 		vn_lock(v1, LK_EXCLUSIVE | LK_RETRY);
    991  1.239.2.1    bouyer 	}
    992  1.239.2.1    bouyer 	*v1_ret = v1;
    993  1.239.2.1    bouyer 	*v2_ret = v2;
    994  1.239.2.1    bouyer 	return 0;
    995  1.239.2.1    bouyer }
    996  1.239.2.1    bouyer 
    997        1.1   mycroft int
    998       1.51  perseant lfs_rename(void *v)
    999       1.10  christos {
   1000       1.22  perseant 	struct vop_rename_args	/* {
   1001        1.1   mycroft 		struct vnode *a_fdvp;
   1002        1.1   mycroft 		struct vnode *a_fvp;
   1003        1.1   mycroft 		struct componentname *a_fcnp;
   1004        1.1   mycroft 		struct vnode *a_tdvp;
   1005        1.1   mycroft 		struct vnode *a_tvp;
   1006        1.1   mycroft 		struct componentname *a_tcnp;
   1007       1.10  christos 	} */ *ap = v;
   1008  1.239.2.1    bouyer 	struct vnode		*tvp, *tdvp, *fvp, *fdvp;
   1009       1.83  perseant 	struct componentname *tcnp, *fcnp;
   1010  1.239.2.1    bouyer 	struct inode		*ip, *txp, *fxp, *tdp, *fdp;
   1011  1.239.2.1    bouyer 	struct mount		*mp;
   1012  1.239.2.1    bouyer 	struct direct		*newdir;
   1013  1.239.2.1    bouyer 	int			doingdirectory, error, marked;
   1014  1.239.2.1    bouyer 	ino_t			oldparent, newparent;
   1015  1.239.2.1    bouyer 
   1016  1.239.2.1    bouyer 	struct ufs_lookup_results from_ulr, to_ulr;
   1017  1.239.2.1    bouyer 	struct lfs *fs = VTOI(ap->a_fvp)->i_lfs;
   1018       1.29  perseant 
   1019       1.30  perseant 	tvp = ap->a_tvp;
   1020       1.30  perseant 	tdvp = ap->a_tdvp;
   1021       1.30  perseant 	fvp = ap->a_fvp;
   1022       1.30  perseant 	fdvp = ap->a_fdvp;
   1023  1.239.2.1    bouyer 	tcnp = ap->a_tcnp;
   1024       1.83  perseant 	fcnp = ap->a_fcnp;
   1025  1.239.2.1    bouyer 	doingdirectory = error = 0;
   1026  1.239.2.1    bouyer 	oldparent = newparent = 0;
   1027  1.239.2.1    bouyer 	marked = 0;
   1028  1.239.2.1    bouyer 
   1029  1.239.2.1    bouyer 	/* save the supplemental lookup results as they currently exist */
   1030  1.239.2.1    bouyer 	from_ulr = VTOI(fdvp)->i_crap;
   1031  1.239.2.1    bouyer 	to_ulr = VTOI(tdvp)->i_crap;
   1032  1.239.2.1    bouyer 	UFS_CHECK_CRAPCOUNTER(VTOI(fdvp));
   1033  1.239.2.1    bouyer 	UFS_CHECK_CRAPCOUNTER(VTOI(tdvp));
   1034  1.239.2.1    bouyer 
   1035  1.239.2.1    bouyer 	/*
   1036  1.239.2.1    bouyer 	 * Owing to VFS oddities we are currently called with tdvp/tvp
   1037  1.239.2.1    bouyer 	 * locked and not fdvp/fvp. In a sane world we'd be passed
   1038  1.239.2.1    bouyer 	 * tdvp and fdvp only, unlocked, and two name strings. Pretend
   1039  1.239.2.1    bouyer 	 * we have a sane world and unlock tdvp and tvp.
   1040  1.239.2.1    bouyer 	 */
   1041  1.239.2.1    bouyer 	VOP_UNLOCK(tdvp);
   1042  1.239.2.1    bouyer 	if (tvp && tvp != tdvp) {
   1043  1.239.2.1    bouyer 		VOP_UNLOCK(tvp);
   1044  1.239.2.1    bouyer 	}
   1045  1.239.2.1    bouyer 
   1046  1.239.2.1    bouyer 	/* Also pretend we have a sane world and vrele fvp/tvp. */
   1047  1.239.2.1    bouyer 	vrele(fvp);
   1048  1.239.2.1    bouyer 	fvp = NULL;
   1049  1.239.2.1    bouyer 	if (tvp) {
   1050  1.239.2.1    bouyer 		vrele(tvp);
   1051  1.239.2.1    bouyer 		tvp = NULL;
   1052  1.239.2.1    bouyer 	}
   1053       1.30  perseant 
   1054       1.30  perseant 	/*
   1055       1.30  perseant 	 * Check for cross-device rename.
   1056       1.30  perseant 	 */
   1057  1.239.2.1    bouyer 	if (fdvp->v_mount != tdvp->v_mount) {
   1058       1.30  perseant 		error = EXDEV;
   1059  1.239.2.1    bouyer 		goto abort;
   1060       1.30  perseant 	}
   1061       1.83  perseant 
   1062       1.83  perseant 	/*
   1063  1.239.2.1    bouyer 	 * Reject "." and ".."
   1064  1.239.2.1    bouyer 	 */
   1065  1.239.2.1    bouyer 	if ((fcnp->cn_flags & ISDOTDOT) || (tcnp->cn_flags & ISDOTDOT) ||
   1066  1.239.2.1    bouyer 	    (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1067  1.239.2.1    bouyer 	    (tcnp->cn_namelen == 1 && tcnp->cn_nameptr[0] == '.')) {
   1068  1.239.2.1    bouyer 		error = EINVAL;
   1069  1.239.2.1    bouyer 		goto abort;
   1070  1.239.2.1    bouyer 	}
   1071  1.239.2.1    bouyer 
   1072  1.239.2.1    bouyer 	/*
   1073  1.239.2.1    bouyer 	 * Get locks.
   1074  1.239.2.1    bouyer 	 */
   1075  1.239.2.1    bouyer 
   1076  1.239.2.1    bouyer 	/* paranoia */
   1077  1.239.2.1    bouyer 	fcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1078  1.239.2.1    bouyer 	tcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1079  1.239.2.1    bouyer 
   1080  1.239.2.1    bouyer 	if (fdvp == tdvp) {
   1081  1.239.2.1    bouyer 		/* One directory. Lock it and relookup both children. */
   1082  1.239.2.1    bouyer 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
   1083  1.239.2.1    bouyer 
   1084  1.239.2.1    bouyer 		if (VTOI(fdvp)->i_size == 0) {
   1085  1.239.2.1    bouyer 			/* directory has been rmdir'd */
   1086  1.239.2.1    bouyer 			VOP_UNLOCK(fdvp);
   1087  1.239.2.1    bouyer 			error = ENOENT;
   1088  1.239.2.1    bouyer 			goto abort;
   1089  1.239.2.1    bouyer 		}
   1090  1.239.2.1    bouyer 
   1091  1.239.2.1    bouyer 		error = do_relookup(fdvp, &from_ulr, &fvp, fcnp);
   1092  1.239.2.1    bouyer 		if (error == 0 && fvp == NULL) {
   1093  1.239.2.1    bouyer 			/* relookup may produce this if fvp disappears */
   1094  1.239.2.1    bouyer 			error = ENOENT;
   1095  1.239.2.1    bouyer 		}
   1096  1.239.2.1    bouyer 		if (error) {
   1097  1.239.2.1    bouyer 			VOP_UNLOCK(fdvp);
   1098  1.239.2.1    bouyer 			goto abort;
   1099  1.239.2.1    bouyer 		}
   1100  1.239.2.1    bouyer 
   1101  1.239.2.1    bouyer 		/*
   1102  1.239.2.1    bouyer 		 * The right way to do this is to look up both children
   1103  1.239.2.1    bouyer 		 * without locking either, and then lock both unless they
   1104  1.239.2.1    bouyer 		 * turn out to be the same. However, due to deep-seated
   1105  1.239.2.1    bouyer 		 * VFS-level issues all lookups lock the child regardless
   1106  1.239.2.1    bouyer 		 * of whether LOCKLEAF is set (if LOCKLEAF is not set,
   1107  1.239.2.1    bouyer 		 * the child is locked during lookup and then unlocked)
   1108  1.239.2.1    bouyer 		 * so it is not safe to look up tvp while fvp is locked.
   1109  1.239.2.1    bouyer 		 *
   1110  1.239.2.1    bouyer 		 * Unlocking fvp here temporarily is more or less safe,
   1111  1.239.2.1    bouyer 		 * because with the directory locked there's not much
   1112  1.239.2.1    bouyer 		 * that can happen to it. However, ideally it wouldn't
   1113  1.239.2.1    bouyer 		 * be necessary. XXX.
   1114  1.239.2.1    bouyer 		 */
   1115  1.239.2.1    bouyer 		VOP_UNLOCK(fvp);
   1116  1.239.2.1    bouyer 		/* remember fdvp == tdvp so tdvp is locked */
   1117  1.239.2.1    bouyer 		error = do_relookup(tdvp, &to_ulr, &tvp, tcnp);
   1118  1.239.2.1    bouyer 		if (error && error != ENOENT) {
   1119  1.239.2.1    bouyer 			VOP_UNLOCK(fdvp);
   1120  1.239.2.1    bouyer 			goto abort;
   1121  1.239.2.1    bouyer 		}
   1122  1.239.2.1    bouyer 		if (error == ENOENT) {
   1123  1.239.2.1    bouyer 			/*
   1124  1.239.2.1    bouyer 			 * Note: currently if the name doesn't exist,
   1125  1.239.2.1    bouyer 			 * relookup succeeds (it intercepts the
   1126  1.239.2.1    bouyer 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
   1127  1.239.2.1    bouyer 			 * to NULL. Therefore, we will never get
   1128  1.239.2.1    bouyer 			 * ENOENT and this branch is not needed.
   1129  1.239.2.1    bouyer 			 * However, in a saner future the EJUSTRETURN
   1130  1.239.2.1    bouyer 			 * garbage will go away, so let's DTRT.
   1131  1.239.2.1    bouyer 			 */
   1132  1.239.2.1    bouyer 			tvp = NULL;
   1133  1.239.2.1    bouyer 		}
   1134  1.239.2.1    bouyer 
   1135  1.239.2.1    bouyer 		/* tvp is locked; lock fvp if necessary */
   1136  1.239.2.1    bouyer 		if (!tvp || tvp != fvp) {
   1137  1.239.2.1    bouyer 			vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
   1138  1.239.2.1    bouyer 		}
   1139  1.239.2.1    bouyer 	} else {
   1140  1.239.2.1    bouyer 		int found_fdvp;
   1141  1.239.2.1    bouyer 		struct vnode *illegal_fvp;
   1142  1.239.2.1    bouyer 
   1143  1.239.2.1    bouyer 		/*
   1144  1.239.2.1    bouyer 		 * The source must not be above the destination. (If
   1145  1.239.2.1    bouyer 		 * it were, the rename would detach a section of the
   1146  1.239.2.1    bouyer 		 * tree.)
   1147  1.239.2.1    bouyer 		 *
   1148  1.239.2.1    bouyer 		 * Look up the tree from tdvp to see if we find fdvp,
   1149  1.239.2.1    bouyer 		 * and if so, return the immediate child of fdvp we're
   1150  1.239.2.1    bouyer 		 * under; that must not turn out to be the same as
   1151  1.239.2.1    bouyer 		 * fvp.
   1152       1.83  perseant 	 *
   1153  1.239.2.1    bouyer 		 * The per-volume rename lock guarantees that the
   1154  1.239.2.1    bouyer 		 * result of this check remains true until we finish
   1155  1.239.2.1    bouyer 		 * looking up and locking.
   1156       1.83  perseant 	 */
   1157  1.239.2.1    bouyer 		error = ufs_parentcheck(fdvp, tdvp, fcnp->cn_cred,
   1158  1.239.2.1    bouyer 					&found_fdvp, &illegal_fvp);
   1159  1.239.2.1    bouyer 		if (error) {
   1160  1.239.2.1    bouyer 			goto abort;
   1161  1.239.2.1    bouyer 		}
   1162  1.239.2.1    bouyer 
   1163  1.239.2.1    bouyer 		/* Must lock in tree order. */
   1164  1.239.2.1    bouyer 
   1165  1.239.2.1    bouyer 		if (found_fdvp) {
   1166  1.239.2.1    bouyer 			/* fdvp -> fvp -> tdvp -> tvp */
   1167  1.239.2.1    bouyer 			error = lock_vnode_sequence(fdvp, &from_ulr,
   1168  1.239.2.1    bouyer 						    &fvp, fcnp, 0,
   1169  1.239.2.1    bouyer 						    EINVAL,
   1170  1.239.2.1    bouyer 						    tdvp, &to_ulr,
   1171  1.239.2.1    bouyer 						    &tvp, tcnp, 1);
   1172  1.239.2.1    bouyer 		} else {
   1173  1.239.2.1    bouyer 			/* tdvp -> tvp -> fdvp -> fvp */
   1174  1.239.2.1    bouyer 			error = lock_vnode_sequence(tdvp, &to_ulr,
   1175  1.239.2.1    bouyer 						    &tvp, tcnp, 1,
   1176  1.239.2.1    bouyer 						    ENOTEMPTY,
   1177  1.239.2.1    bouyer 						    fdvp, &from_ulr,
   1178  1.239.2.1    bouyer 						    &fvp, fcnp, 0);
   1179  1.239.2.1    bouyer 		}
   1180  1.239.2.1    bouyer 		if (error) {
   1181  1.239.2.1    bouyer 			if (illegal_fvp) {
   1182  1.239.2.1    bouyer 				vrele(illegal_fvp);
   1183  1.239.2.1    bouyer 			}
   1184  1.239.2.1    bouyer 			goto abort;
   1185  1.239.2.1    bouyer 		}
   1186  1.239.2.1    bouyer 		KASSERT(fvp != NULL);
   1187  1.239.2.1    bouyer 
   1188  1.239.2.1    bouyer 		if (illegal_fvp && fvp == illegal_fvp) {
   1189  1.239.2.1    bouyer 			vrele(illegal_fvp);
   1190  1.239.2.1    bouyer 			error = EINVAL;
   1191  1.239.2.1    bouyer 			goto abort_withlocks;
   1192  1.239.2.1    bouyer 		}
   1193  1.239.2.1    bouyer 
   1194  1.239.2.1    bouyer 		if (illegal_fvp) {
   1195  1.239.2.1    bouyer 			vrele(illegal_fvp);
   1196  1.239.2.1    bouyer 		}
   1197  1.239.2.1    bouyer 	}
   1198  1.239.2.1    bouyer 
   1199  1.239.2.1    bouyer 	KASSERT(fdvp && VOP_ISLOCKED(fdvp));
   1200  1.239.2.1    bouyer 	KASSERT(fvp && VOP_ISLOCKED(fvp));
   1201  1.239.2.1    bouyer 	KASSERT(tdvp && VOP_ISLOCKED(tdvp));
   1202  1.239.2.1    bouyer 	KASSERT(tvp == NULL || VOP_ISLOCKED(tvp));
   1203  1.239.2.1    bouyer 
   1204  1.239.2.1    bouyer 	/* --- everything is now locked --- */
   1205  1.239.2.1    bouyer 
   1206      1.102      fvdl 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
   1207      1.203  perseant 		    (VTOI(tdvp)->i_flags & APPEND))) {
   1208       1.83  perseant 		error = EPERM;
   1209  1.239.2.1    bouyer 		goto abort_withlocks;
   1210       1.83  perseant 	}
   1211  1.239.2.1    bouyer 
   1212  1.239.2.1    bouyer 	/*
   1213  1.239.2.1    bouyer 	 * Check if just deleting a link name.
   1214  1.239.2.1    bouyer 	 */
   1215       1.86  perseant 	if (fvp == tvp) {
   1216       1.86  perseant 		if (fvp->v_type == VDIR) {
   1217       1.86  perseant 			error = EINVAL;
   1218  1.239.2.1    bouyer 			goto abort_withlocks;
   1219       1.86  perseant 		}
   1220       1.86  perseant 
   1221  1.239.2.1    bouyer 		/* Release destination completely. Leave fdvp locked. */
   1222       1.86  perseant 		VOP_ABORTOP(tdvp, tcnp);
   1223  1.239.2.1    bouyer 		if (fdvp != tdvp) {
   1224  1.239.2.1    bouyer 			VOP_UNLOCK(tdvp);
   1225  1.239.2.1    bouyer 		}
   1226  1.239.2.1    bouyer 		VOP_UNLOCK(tvp);
   1227  1.239.2.1    bouyer 		vrele(tdvp);
   1228  1.239.2.1    bouyer 		vrele(tvp);
   1229       1.86  perseant 
   1230       1.86  perseant 		/* Delete source. */
   1231  1.239.2.1    bouyer 		/* XXX: do we really need to relookup again? */
   1232  1.239.2.1    bouyer 
   1233  1.239.2.1    bouyer 		/*
   1234  1.239.2.1    bouyer 		 * fdvp is still locked, but we just unlocked fvp
   1235  1.239.2.1    bouyer 		 * (because fvp == tvp) so just decref fvp
   1236  1.239.2.1    bouyer 		 */
   1237       1.86  perseant 		vrele(fvp);
   1238      1.233  dholland 		fcnp->cn_flags &= ~(MODMASK);
   1239       1.86  perseant 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
   1240       1.86  perseant 		fcnp->cn_nameiop = DELETE;
   1241      1.233  dholland 		if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
   1242      1.194       chs 			vput(fdvp);
   1243       1.86  perseant 			return (error);
   1244       1.86  perseant 		}
   1245       1.86  perseant 		return (VOP_REMOVE(fdvp, fvp, fcnp));
   1246       1.86  perseant 	}
   1247       1.83  perseant 
   1248  1.239.2.1    bouyer 	/* The tiny bit of actual LFS code in this function */
   1249      1.138  perseant 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
   1250  1.239.2.1    bouyer 		goto abort_withlocks;
   1251       1.30  perseant 	MARK_VNODE(fdvp);
   1252       1.71      yamt 	MARK_VNODE(fvp);
   1253  1.239.2.1    bouyer 	marked = 1;
   1254  1.239.2.1    bouyer 
   1255  1.239.2.1    bouyer 	fdp = VTOI(fdvp);
   1256  1.239.2.1    bouyer 	ip = VTOI(fvp);
   1257  1.239.2.1    bouyer 	if ((nlink_t) ip->i_nlink >= LINK_MAX) {
   1258  1.239.2.1    bouyer 		error = EMLINK;
   1259  1.239.2.1    bouyer 		goto abort_withlocks;
   1260  1.239.2.1    bouyer 	}
   1261  1.239.2.1    bouyer 	if ((ip->i_flags & (IMMUTABLE | APPEND)) ||
   1262  1.239.2.1    bouyer 		(fdp->i_flags & APPEND)) {
   1263  1.239.2.1    bouyer 		error = EPERM;
   1264  1.239.2.1    bouyer 		goto abort_withlocks;
   1265  1.239.2.1    bouyer 	}
   1266  1.239.2.1    bouyer 	if ((ip->i_mode & IFMT) == IFDIR) {
   1267  1.239.2.1    bouyer 		/*
   1268  1.239.2.1    bouyer 		 * Avoid ".", "..", and aliases of "." for obvious reasons.
   1269  1.239.2.1    bouyer 		 */
   1270  1.239.2.1    bouyer 		if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1271  1.239.2.1    bouyer 		    fdp == ip ||
   1272  1.239.2.1    bouyer 		    (fcnp->cn_flags & ISDOTDOT) ||
   1273  1.239.2.1    bouyer 		    (tcnp->cn_flags & ISDOTDOT) ||
   1274  1.239.2.1    bouyer 		    (ip->i_flag & IN_RENAME)) {
   1275  1.239.2.1    bouyer 			error = EINVAL;
   1276  1.239.2.1    bouyer 			goto abort_withlocks;
   1277  1.239.2.1    bouyer 		}
   1278  1.239.2.1    bouyer 		ip->i_flag |= IN_RENAME;
   1279  1.239.2.1    bouyer 		doingdirectory = 1;
   1280  1.239.2.1    bouyer 	}
   1281  1.239.2.1    bouyer 	oldparent = fdp->i_number;
   1282  1.239.2.1    bouyer 	VN_KNOTE(fdvp, NOTE_WRITE);		/* XXXLUKEM/XXX: right place? */
   1283  1.239.2.1    bouyer 
   1284  1.239.2.1    bouyer 	/*
   1285  1.239.2.1    bouyer 	 * Both the directory
   1286  1.239.2.1    bouyer 	 * and target vnodes are locked.
   1287  1.239.2.1    bouyer 	 */
   1288  1.239.2.1    bouyer 	tdp = VTOI(tdvp);
   1289  1.239.2.1    bouyer 	txp = NULL;
   1290  1.239.2.1    bouyer 	if (tvp)
   1291  1.239.2.1    bouyer 		txp = VTOI(tvp);
   1292  1.239.2.1    bouyer 
   1293  1.239.2.1    bouyer 	mp = fdvp->v_mount;
   1294  1.239.2.1    bouyer 	fstrans_start(mp, FSTRANS_SHARED);
   1295  1.239.2.1    bouyer 
   1296  1.239.2.1    bouyer 	if (oldparent != tdp->i_number)
   1297  1.239.2.1    bouyer 		newparent = tdp->i_number;
   1298  1.239.2.1    bouyer 
   1299  1.239.2.1    bouyer 	/*
   1300  1.239.2.1    bouyer 	 * If ".." must be changed (ie the directory gets a new
   1301  1.239.2.1    bouyer 	 * parent) the user must have write permission in the source
   1302  1.239.2.1    bouyer 	 * so as to be able to change "..".
   1303  1.239.2.1    bouyer 	 */
   1304  1.239.2.1    bouyer 	if (doingdirectory && newparent) {
   1305  1.239.2.1    bouyer 		error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred);
   1306  1.239.2.1    bouyer 		if (error)
   1307  1.239.2.1    bouyer 			goto out;
   1308  1.239.2.1    bouyer 	}
   1309  1.239.2.1    bouyer 
   1310  1.239.2.1    bouyer 	KASSERT(fdvp != tvp);
   1311  1.239.2.1    bouyer 
   1312  1.239.2.1    bouyer 	if (newparent) {
   1313  1.239.2.1    bouyer 		/* Check for the rename("foo/foo", "foo") case. */
   1314  1.239.2.1    bouyer 		if (fdvp == tvp) {
   1315  1.239.2.1    bouyer 			error = doingdirectory ? ENOTEMPTY : EISDIR;
   1316  1.239.2.1    bouyer 			goto out;
   1317  1.239.2.1    bouyer 		}
   1318  1.239.2.1    bouyer 	}
   1319  1.239.2.1    bouyer 
   1320  1.239.2.1    bouyer 	fxp = VTOI(fvp);
   1321  1.239.2.1    bouyer 	fdp = VTOI(fdvp);
   1322      1.135     perry 
   1323  1.239.2.1    bouyer 	error = UFS_WAPBL_BEGIN(fdvp->v_mount);
   1324  1.239.2.1    bouyer 	if (error)
   1325  1.239.2.1    bouyer 		goto out2;
   1326  1.239.2.1    bouyer 
   1327  1.239.2.1    bouyer 	/*
   1328  1.239.2.1    bouyer 	 * 1) Bump link count while we're moving stuff
   1329  1.239.2.1    bouyer 	 *    around.  If we crash somewhere before
   1330  1.239.2.1    bouyer 	 *    completing our work, the link count
   1331  1.239.2.1    bouyer 	 *    may be wrong, but correctable.
   1332  1.239.2.1    bouyer 	 */
   1333  1.239.2.1    bouyer 	ip->i_nlink++;
   1334  1.239.2.1    bouyer 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1335  1.239.2.1    bouyer 	ip->i_flag |= IN_CHANGE;
   1336  1.239.2.1    bouyer 	if ((error = UFS_UPDATE(fvp, NULL, NULL, UPDATE_DIROP)) != 0) {
   1337  1.239.2.1    bouyer 		goto bad;
   1338  1.239.2.1    bouyer 	}
   1339  1.239.2.1    bouyer 
   1340  1.239.2.1    bouyer 	/*
   1341  1.239.2.1    bouyer 	 * 2) If target doesn't exist, link the target
   1342  1.239.2.1    bouyer 	 *    to the source and unlink the source.
   1343  1.239.2.1    bouyer 	 *    Otherwise, rewrite the target directory
   1344  1.239.2.1    bouyer 	 *    entry to reference the source inode and
   1345  1.239.2.1    bouyer 	 *    expunge the original entry's existence.
   1346  1.239.2.1    bouyer 	 */
   1347  1.239.2.1    bouyer 	if (txp == NULL) {
   1348  1.239.2.1    bouyer 		if (tdp->i_dev != ip->i_dev)
   1349  1.239.2.1    bouyer 			panic("rename: EXDEV");
   1350  1.239.2.1    bouyer 		/*
   1351  1.239.2.1    bouyer 		 * Account for ".." in new directory.
   1352  1.239.2.1    bouyer 		 * When source and destination have the same
   1353  1.239.2.1    bouyer 		 * parent we don't fool with the link count.
   1354  1.239.2.1    bouyer 		 */
   1355  1.239.2.1    bouyer 		if (doingdirectory && newparent) {
   1356  1.239.2.1    bouyer 			if ((nlink_t)tdp->i_nlink >= LINK_MAX) {
   1357  1.239.2.1    bouyer 				error = EMLINK;
   1358  1.239.2.1    bouyer 				goto bad;
   1359  1.239.2.1    bouyer 			}
   1360  1.239.2.1    bouyer 			tdp->i_nlink++;
   1361  1.239.2.1    bouyer 			DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1362  1.239.2.1    bouyer 			tdp->i_flag |= IN_CHANGE;
   1363  1.239.2.1    bouyer 			if ((error = UFS_UPDATE(tdvp, NULL, NULL,
   1364  1.239.2.1    bouyer 			    UPDATE_DIROP)) != 0) {
   1365  1.239.2.1    bouyer 				tdp->i_nlink--;
   1366  1.239.2.1    bouyer 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1367  1.239.2.1    bouyer 				tdp->i_flag |= IN_CHANGE;
   1368  1.239.2.1    bouyer 				goto bad;
   1369  1.239.2.1    bouyer 			}
   1370  1.239.2.1    bouyer 		}
   1371  1.239.2.1    bouyer 		newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK);
   1372  1.239.2.1    bouyer 		ufs_makedirentry(ip, tcnp, newdir);
   1373  1.239.2.1    bouyer 		error = ufs_direnter(tdvp, &to_ulr,
   1374  1.239.2.1    bouyer 				     NULL, newdir, tcnp, NULL);
   1375  1.239.2.1    bouyer 		pool_cache_put(ufs_direct_cache, newdir);
   1376  1.239.2.1    bouyer 		if (error != 0) {
   1377  1.239.2.1    bouyer 			if (doingdirectory && newparent) {
   1378  1.239.2.1    bouyer 				tdp->i_nlink--;
   1379  1.239.2.1    bouyer 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1380  1.239.2.1    bouyer 				tdp->i_flag |= IN_CHANGE;
   1381  1.239.2.1    bouyer 				(void)UFS_UPDATE(tdvp, NULL, NULL,
   1382  1.239.2.1    bouyer 						 UPDATE_WAIT | UPDATE_DIROP);
   1383  1.239.2.1    bouyer 			}
   1384  1.239.2.1    bouyer 			goto bad;
   1385  1.239.2.1    bouyer 		}
   1386  1.239.2.1    bouyer 		VN_KNOTE(tdvp, NOTE_WRITE);
   1387  1.239.2.1    bouyer 	} else {
   1388  1.239.2.1    bouyer 		if (txp->i_dev != tdp->i_dev || txp->i_dev != ip->i_dev)
   1389  1.239.2.1    bouyer 			panic("rename: EXDEV");
   1390  1.239.2.1    bouyer 		/*
   1391  1.239.2.1    bouyer 		 * Short circuit rename(foo, foo).
   1392  1.239.2.1    bouyer 		 */
   1393  1.239.2.1    bouyer 		if (txp->i_number == ip->i_number)
   1394  1.239.2.1    bouyer 			panic("rename: same file");
   1395  1.239.2.1    bouyer 		/*
   1396  1.239.2.1    bouyer 		 * If the parent directory is "sticky", then the user must
   1397  1.239.2.1    bouyer 		 * own the parent directory, or the destination of the rename,
   1398  1.239.2.1    bouyer 		 * otherwise the destination may not be changed (except by
   1399  1.239.2.1    bouyer 		 * root). This implements append-only directories.
   1400  1.239.2.1    bouyer 		 */
   1401  1.239.2.1    bouyer 		if ((tdp->i_mode & S_ISTXT) &&
   1402  1.239.2.1    bouyer 		    kauth_authorize_generic(tcnp->cn_cred,
   1403  1.239.2.1    bouyer 		     KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
   1404  1.239.2.1    bouyer 		    kauth_cred_geteuid(tcnp->cn_cred) != tdp->i_uid &&
   1405  1.239.2.1    bouyer 		    txp->i_uid != kauth_cred_geteuid(tcnp->cn_cred)) {
   1406  1.239.2.1    bouyer 			error = EPERM;
   1407  1.239.2.1    bouyer 			goto bad;
   1408  1.239.2.1    bouyer 		}
   1409  1.239.2.1    bouyer 		/*
   1410  1.239.2.1    bouyer 		 * Target must be empty if a directory and have no links
   1411  1.239.2.1    bouyer 		 * to it. Also, ensure source and target are compatible
   1412  1.239.2.1    bouyer 		 * (both directories, or both not directories).
   1413  1.239.2.1    bouyer 		 */
   1414  1.239.2.1    bouyer 		if ((txp->i_mode & IFMT) == IFDIR) {
   1415  1.239.2.1    bouyer 			if (txp->i_nlink > 2 ||
   1416  1.239.2.1    bouyer 			    !ufs_dirempty(txp, tdp->i_number, tcnp->cn_cred)) {
   1417  1.239.2.1    bouyer 				error = ENOTEMPTY;
   1418  1.239.2.1    bouyer 				goto bad;
   1419  1.239.2.1    bouyer 			}
   1420  1.239.2.1    bouyer 			if (!doingdirectory) {
   1421  1.239.2.1    bouyer 				error = ENOTDIR;
   1422  1.239.2.1    bouyer 				goto bad;
   1423  1.239.2.1    bouyer 			}
   1424  1.239.2.1    bouyer 			cache_purge(tdvp);
   1425  1.239.2.1    bouyer 		} else if (doingdirectory) {
   1426  1.239.2.1    bouyer 			error = EISDIR;
   1427  1.239.2.1    bouyer 			goto bad;
   1428  1.239.2.1    bouyer 		}
   1429  1.239.2.1    bouyer 		if ((error = ufs_dirrewrite(tdp, to_ulr.ulr_offset,
   1430  1.239.2.1    bouyer 		    txp, ip->i_number,
   1431  1.239.2.1    bouyer 		    IFTODT(ip->i_mode), doingdirectory && newparent ?
   1432  1.239.2.1    bouyer 		    newparent : doingdirectory, IN_CHANGE | IN_UPDATE)) != 0)
   1433  1.239.2.1    bouyer 			goto bad;
   1434  1.239.2.1    bouyer 		if (doingdirectory) {
   1435  1.239.2.1    bouyer 			/*
   1436  1.239.2.1    bouyer 			 * Truncate inode. The only stuff left in the directory
   1437  1.239.2.1    bouyer 			 * is "." and "..". The "." reference is inconsequential
   1438  1.239.2.1    bouyer 			 * since we are quashing it. We have removed the "."
   1439  1.239.2.1    bouyer 			 * reference and the reference in the parent directory,
   1440  1.239.2.1    bouyer 			 * but there may be other hard links.
   1441  1.239.2.1    bouyer 			 */
   1442  1.239.2.1    bouyer 			if (!newparent) {
   1443  1.239.2.1    bouyer 				tdp->i_nlink--;
   1444  1.239.2.1    bouyer 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1445  1.239.2.1    bouyer 				tdp->i_flag |= IN_CHANGE;
   1446  1.239.2.1    bouyer 				UFS_WAPBL_UPDATE(tdvp, NULL, NULL, 0);
   1447  1.239.2.1    bouyer 			}
   1448  1.239.2.1    bouyer 			txp->i_nlink--;
   1449  1.239.2.1    bouyer 			DIP_ASSIGN(txp, nlink, txp->i_nlink);
   1450  1.239.2.1    bouyer 			txp->i_flag |= IN_CHANGE;
   1451  1.239.2.1    bouyer 			if ((error = UFS_TRUNCATE(tvp, (off_t)0, IO_SYNC,
   1452  1.239.2.1    bouyer 			    tcnp->cn_cred)))
   1453  1.239.2.1    bouyer 				goto bad;
   1454  1.239.2.1    bouyer 		}
   1455  1.239.2.1    bouyer 		VN_KNOTE(tdvp, NOTE_WRITE);
   1456  1.239.2.1    bouyer 		VN_KNOTE(tvp, NOTE_DELETE);
   1457  1.239.2.1    bouyer 	}
   1458  1.239.2.1    bouyer 
   1459  1.239.2.1    bouyer 	/*
   1460  1.239.2.1    bouyer 	 * Handle case where the directory entry we need to remove,
   1461  1.239.2.1    bouyer 	 * which is/was at from_ulr.ulr_offset, or the one before it,
   1462  1.239.2.1    bouyer 	 * which is/was at from_ulr.ulr_offset - from_ulr.ulr_count,
   1463  1.239.2.1    bouyer 	 * may have been moved when the directory insertion above
   1464  1.239.2.1    bouyer 	 * performed compaction.
   1465  1.239.2.1    bouyer 	 */
   1466  1.239.2.1    bouyer 	if (tdp->i_number == fdp->i_number &&
   1467  1.239.2.1    bouyer 	    ulr_overlap(&from_ulr, &to_ulr)) {
   1468  1.239.2.1    bouyer 
   1469  1.239.2.1    bouyer 		struct buf *bp;
   1470  1.239.2.1    bouyer 		struct direct *ep;
   1471  1.239.2.1    bouyer 		struct ufsmount *ump = fdp->i_ump;
   1472  1.239.2.1    bouyer 		doff_t curpos;
   1473  1.239.2.1    bouyer 		doff_t endsearch;	/* offset to end directory search */
   1474  1.239.2.1    bouyer 		uint32_t prev_reclen;
   1475  1.239.2.1    bouyer 		int dirblksiz = ump->um_dirblksiz;
   1476  1.239.2.1    bouyer 		const int needswap = UFS_MPNEEDSWAP(ump);
   1477  1.239.2.1    bouyer 		u_long bmask;
   1478  1.239.2.1    bouyer 		int namlen, entryoffsetinblock;
   1479  1.239.2.1    bouyer 		char *dirbuf;
   1480  1.239.2.1    bouyer 
   1481  1.239.2.1    bouyer 		bmask = fdvp->v_mount->mnt_stat.f_iosize - 1;
   1482  1.239.2.1    bouyer 
   1483  1.239.2.1    bouyer 		/*
   1484  1.239.2.1    bouyer 		 * The fcnp entry will be somewhere between the start of
   1485  1.239.2.1    bouyer 		 * compaction (to_ulr.ulr_offset) and the original location
   1486  1.239.2.1    bouyer 		 * (from_ulr.ulr_offset).
   1487  1.239.2.1    bouyer 		 */
   1488  1.239.2.1    bouyer 		curpos = to_ulr.ulr_offset;
   1489  1.239.2.1    bouyer 		endsearch = from_ulr.ulr_offset + from_ulr.ulr_reclen;
   1490  1.239.2.1    bouyer 		entryoffsetinblock = 0;
   1491  1.239.2.1    bouyer 
   1492  1.239.2.1    bouyer 		/*
   1493  1.239.2.1    bouyer 		 * Get the directory block containing the start of
   1494  1.239.2.1    bouyer 		 * compaction.
   1495  1.239.2.1    bouyer 		 */
   1496  1.239.2.1    bouyer 		error = ufs_blkatoff(fdvp, (off_t)to_ulr.ulr_offset, &dirbuf,
   1497  1.239.2.1    bouyer 		    &bp, false);
   1498  1.239.2.1    bouyer 		if (error)
   1499  1.239.2.1    bouyer 			goto bad;
   1500  1.239.2.1    bouyer 
   1501  1.239.2.1    bouyer 		/*
   1502  1.239.2.1    bouyer 		 * Keep existing ulr_count (length of previous record)
   1503  1.239.2.1    bouyer 		 * for the case where compaction did not include the
   1504  1.239.2.1    bouyer 		 * previous entry but started at the from-entry.
   1505  1.239.2.1    bouyer 		 */
   1506  1.239.2.1    bouyer 		prev_reclen = from_ulr.ulr_count;
   1507  1.239.2.1    bouyer 
   1508  1.239.2.1    bouyer 		while (curpos < endsearch) {
   1509  1.239.2.1    bouyer 			uint32_t reclen;
   1510  1.239.2.1    bouyer 
   1511  1.239.2.1    bouyer 			/*
   1512  1.239.2.1    bouyer 			 * If necessary, get the next directory block.
   1513  1.239.2.1    bouyer 			 *
   1514  1.239.2.1    bouyer 			 * dholland 7/13/11 to the best of my understanding
   1515  1.239.2.1    bouyer 			 * this should never happen; compaction occurs only
   1516  1.239.2.1    bouyer 			 * within single blocks. I think.
   1517  1.239.2.1    bouyer 			 */
   1518  1.239.2.1    bouyer 			if ((curpos & bmask) == 0) {
   1519  1.239.2.1    bouyer 				if (bp != NULL)
   1520  1.239.2.1    bouyer 					brelse(bp, 0);
   1521  1.239.2.1    bouyer 				error = ufs_blkatoff(fdvp, (off_t)curpos,
   1522  1.239.2.1    bouyer 				    &dirbuf, &bp, false);
   1523  1.239.2.1    bouyer 				if (error)
   1524  1.239.2.1    bouyer 					goto bad;
   1525  1.239.2.1    bouyer 				entryoffsetinblock = 0;
   1526  1.239.2.1    bouyer 			}
   1527  1.239.2.1    bouyer 
   1528  1.239.2.1    bouyer 			KASSERT(bp != NULL);
   1529  1.239.2.1    bouyer 			ep = (struct direct *)(dirbuf + entryoffsetinblock);
   1530  1.239.2.1    bouyer 			reclen = ufs_rw16(ep->d_reclen, needswap);
   1531  1.239.2.1    bouyer 
   1532  1.239.2.1    bouyer #if (BYTE_ORDER == LITTLE_ENDIAN)
   1533  1.239.2.1    bouyer 			if (FSFMT(fdvp) && needswap == 0)
   1534  1.239.2.1    bouyer 				namlen = ep->d_type;
   1535  1.239.2.1    bouyer 			else
   1536  1.239.2.1    bouyer 				namlen = ep->d_namlen;
   1537  1.239.2.1    bouyer #else
   1538  1.239.2.1    bouyer 			if (FSFMT(fdvp) && needswap != 0)
   1539  1.239.2.1    bouyer 				namlen = ep->d_type;
   1540  1.239.2.1    bouyer 			else
   1541  1.239.2.1    bouyer 				namlen = ep->d_namlen;
   1542  1.239.2.1    bouyer #endif
   1543  1.239.2.1    bouyer 			if ((ep->d_ino != 0) &&
   1544  1.239.2.1    bouyer 			    (ufs_rw32(ep->d_ino, needswap) != WINO) &&
   1545  1.239.2.1    bouyer 			    (namlen == fcnp->cn_namelen) &&
   1546  1.239.2.1    bouyer 			    memcmp(ep->d_name, fcnp->cn_nameptr, namlen) == 0) {
   1547  1.239.2.1    bouyer 				from_ulr.ulr_reclen = reclen;
   1548  1.239.2.1    bouyer 				break;
   1549  1.239.2.1    bouyer 			}
   1550  1.239.2.1    bouyer 			curpos += reclen;
   1551  1.239.2.1    bouyer 			entryoffsetinblock += reclen;
   1552  1.239.2.1    bouyer 			prev_reclen = reclen;
   1553  1.239.2.1    bouyer 		}
   1554  1.239.2.1    bouyer 
   1555  1.239.2.1    bouyer 		from_ulr.ulr_offset = curpos;
   1556  1.239.2.1    bouyer 		from_ulr.ulr_count = prev_reclen;
   1557  1.239.2.1    bouyer 
   1558  1.239.2.1    bouyer 		KASSERT(curpos <= endsearch);
   1559  1.239.2.1    bouyer 
   1560  1.239.2.1    bouyer 		/*
   1561  1.239.2.1    bouyer 		 * If ulr_offset points to start of a directory block,
   1562  1.239.2.1    bouyer 		 * clear ulr_count so ufs_dirremove() doesn't try to
   1563  1.239.2.1    bouyer 		 * merge free space over a directory block boundary.
   1564  1.239.2.1    bouyer 		 */
   1565  1.239.2.1    bouyer 		if ((from_ulr.ulr_offset & (dirblksiz - 1)) == 0)
   1566  1.239.2.1    bouyer 			from_ulr.ulr_count = 0;
   1567  1.239.2.1    bouyer 
   1568  1.239.2.1    bouyer 		brelse(bp, 0);
   1569  1.239.2.1    bouyer 	}
   1570  1.239.2.1    bouyer 
   1571  1.239.2.1    bouyer 	/*
   1572  1.239.2.1    bouyer 	 * 3) Unlink the source.
   1573  1.239.2.1    bouyer 	 */
   1574  1.239.2.1    bouyer 
   1575  1.239.2.1    bouyer #if 0
   1576  1.239.2.1    bouyer 	/*
   1577  1.239.2.1    bouyer 	 * Ensure that the directory entry still exists and has not
   1578  1.239.2.1    bouyer 	 * changed while the new name has been entered. If the source is
   1579  1.239.2.1    bouyer 	 * a file then the entry may have been unlinked or renamed. In
   1580  1.239.2.1    bouyer 	 * either case there is no further work to be done. If the source
   1581  1.239.2.1    bouyer 	 * is a directory then it cannot have been rmdir'ed; The IRENAME
   1582  1.239.2.1    bouyer 	 * flag ensures that it cannot be moved by another rename or removed
   1583  1.239.2.1    bouyer 	 * by a rmdir.
   1584  1.239.2.1    bouyer 	 */
   1585  1.239.2.1    bouyer #endif
   1586  1.239.2.1    bouyer 	KASSERT(fxp == ip);
   1587  1.239.2.1    bouyer 
   1588  1.239.2.1    bouyer 	/*
   1589  1.239.2.1    bouyer 	 * If the source is a directory with a new parent, the link
   1590  1.239.2.1    bouyer 	 * count of the old parent directory must be decremented and
   1591  1.239.2.1    bouyer 	 * ".." set to point to the new parent.
   1592  1.239.2.1    bouyer 	 */
   1593  1.239.2.1    bouyer 	if (doingdirectory && newparent) {
   1594  1.239.2.1    bouyer 		KASSERT(fdp != NULL);
   1595  1.239.2.1    bouyer 		ufs_dirrewrite(fxp, mastertemplate.dot_reclen,
   1596  1.239.2.1    bouyer 			       fdp, newparent, DT_DIR, 0, IN_CHANGE);
   1597  1.239.2.1    bouyer 		cache_purge(fdvp);
   1598  1.239.2.1    bouyer 	}
   1599  1.239.2.1    bouyer 	error = ufs_dirremove(fdvp, &from_ulr,
   1600  1.239.2.1    bouyer 			      fxp, fcnp->cn_flags, 0);
   1601  1.239.2.1    bouyer 	fxp->i_flag &= ~IN_RENAME;
   1602  1.239.2.1    bouyer 
   1603  1.239.2.1    bouyer 	VN_KNOTE(fvp, NOTE_RENAME);
   1604  1.239.2.1    bouyer 	goto done;
   1605  1.239.2.1    bouyer 
   1606  1.239.2.1    bouyer  out:
   1607  1.239.2.1    bouyer 	goto out2;
   1608  1.239.2.1    bouyer 
   1609  1.239.2.1    bouyer 	/* exit routines from steps 1 & 2 */
   1610  1.239.2.1    bouyer  bad:
   1611  1.239.2.1    bouyer 	if (doingdirectory)
   1612  1.239.2.1    bouyer 		ip->i_flag &= ~IN_RENAME;
   1613  1.239.2.1    bouyer 	ip->i_nlink--;
   1614  1.239.2.1    bouyer 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1615  1.239.2.1    bouyer 	ip->i_flag |= IN_CHANGE;
   1616  1.239.2.1    bouyer 	ip->i_flag &= ~IN_RENAME;
   1617  1.239.2.1    bouyer 	UFS_WAPBL_UPDATE(fvp, NULL, NULL, 0);
   1618  1.239.2.1    bouyer  done:
   1619  1.239.2.1    bouyer 	UFS_WAPBL_END(fdvp->v_mount);
   1620  1.239.2.1    bouyer  out2:
   1621  1.239.2.1    bouyer 	/*
   1622  1.239.2.1    bouyer 	 * clear IN_RENAME - some exit paths happen too early to go
   1623  1.239.2.1    bouyer 	 * through the cleanup done in the "bad" case above, so we
   1624  1.239.2.1    bouyer 	 * always do this mini-cleanup here.
   1625  1.239.2.1    bouyer 	 */
   1626  1.239.2.1    bouyer 	ip->i_flag &= ~IN_RENAME;
   1627  1.239.2.1    bouyer 
   1628  1.239.2.1    bouyer 	VOP_UNLOCK(fdvp);
   1629  1.239.2.1    bouyer 	if (tdvp != fdvp) {
   1630  1.239.2.1    bouyer 		VOP_UNLOCK(tdvp);
   1631  1.239.2.1    bouyer 	}
   1632  1.239.2.1    bouyer 	VOP_UNLOCK(fvp);
   1633  1.239.2.1    bouyer 	if (tvp && tvp != fvp) {
   1634  1.239.2.1    bouyer 		VOP_UNLOCK(tvp);
   1635  1.239.2.1    bouyer 	}
   1636  1.239.2.1    bouyer 
   1637  1.239.2.1    bouyer 	vrele(fdvp);
   1638  1.239.2.1    bouyer 	vrele(tdvp);
   1639  1.239.2.1    bouyer 	vrele(fvp);
   1640  1.239.2.1    bouyer 	if (tvp) {
   1641  1.239.2.1    bouyer 		vrele(tvp);
   1642  1.239.2.1    bouyer 	}
   1643  1.239.2.1    bouyer 
   1644  1.239.2.1    bouyer 	fstrans_done(mp);
   1645  1.239.2.1    bouyer 	if (marked) {
   1646       1.37  perseant 	UNMARK_VNODE(fdvp);
   1647       1.71      yamt 	UNMARK_VNODE(fvp);
   1648      1.138  perseant 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1649  1.239.2.1    bouyer 	}
   1650       1.34  perseant 	return (error);
   1651       1.34  perseant 
   1652  1.239.2.1    bouyer  abort_withlocks:
   1653  1.239.2.1    bouyer 	VOP_UNLOCK(fdvp);
   1654  1.239.2.1    bouyer 	if (tdvp != fdvp) {
   1655  1.239.2.1    bouyer 		VOP_UNLOCK(tdvp);
   1656  1.239.2.1    bouyer 	}
   1657  1.239.2.1    bouyer 	VOP_UNLOCK(fvp);
   1658  1.239.2.1    bouyer 	if (tvp && tvp != fvp) {
   1659  1.239.2.1    bouyer 		VOP_UNLOCK(tvp);
   1660  1.239.2.1    bouyer 	}
   1661  1.239.2.1    bouyer 
   1662  1.239.2.1    bouyer  abort:
   1663  1.239.2.1    bouyer 	VOP_ABORTOP(fdvp, fcnp); /* XXX, why not in NFS? */
   1664  1.239.2.1    bouyer 	VOP_ABORTOP(tdvp, tcnp); /* XXX, why not in NFS? */
   1665       1.34  perseant 		vrele(tdvp);
   1666  1.239.2.1    bouyer 	if (tvp) {
   1667  1.239.2.1    bouyer 		vrele(tvp);
   1668  1.239.2.1    bouyer 	}
   1669       1.34  perseant 	vrele(fdvp);
   1670  1.239.2.1    bouyer 	if (fvp) {
   1671       1.34  perseant 	vrele(fvp);
   1672  1.239.2.1    bouyer 	}
   1673  1.239.2.1    bouyer 	if (marked) {
   1674  1.239.2.1    bouyer 		UNMARK_VNODE(fdvp);
   1675  1.239.2.1    bouyer 		UNMARK_VNODE(fvp);
   1676  1.239.2.1    bouyer 		SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1677  1.239.2.1    bouyer 	}
   1678       1.30  perseant 	return (error);
   1679        1.1   mycroft }
   1680       1.22  perseant 
   1681        1.1   mycroft /* XXX hack to avoid calling ITIMES in getattr */
   1682        1.1   mycroft int
   1683       1.51  perseant lfs_getattr(void *v)
   1684       1.10  christos {
   1685        1.1   mycroft 	struct vop_getattr_args /* {
   1686        1.1   mycroft 		struct vnode *a_vp;
   1687        1.1   mycroft 		struct vattr *a_vap;
   1688      1.176      elad 		kauth_cred_t a_cred;
   1689       1.10  christos 	} */ *ap = v;
   1690       1.35  augustss 	struct vnode *vp = ap->a_vp;
   1691       1.35  augustss 	struct inode *ip = VTOI(vp);
   1692       1.35  augustss 	struct vattr *vap = ap->a_vap;
   1693       1.51  perseant 	struct lfs *fs = ip->i_lfs;
   1694        1.1   mycroft 	/*
   1695        1.1   mycroft 	 * Copy from inode table
   1696        1.1   mycroft 	 */
   1697        1.1   mycroft 	vap->va_fsid = ip->i_dev;
   1698        1.1   mycroft 	vap->va_fileid = ip->i_number;
   1699      1.102      fvdl 	vap->va_mode = ip->i_mode & ~IFMT;
   1700      1.102      fvdl 	vap->va_nlink = ip->i_nlink;
   1701      1.102      fvdl 	vap->va_uid = ip->i_uid;
   1702      1.102      fvdl 	vap->va_gid = ip->i_gid;
   1703      1.102      fvdl 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
   1704       1.55       chs 	vap->va_size = vp->v_size;
   1705      1.102      fvdl 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
   1706      1.102      fvdl 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
   1707      1.102      fvdl 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
   1708      1.102      fvdl 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
   1709      1.102      fvdl 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
   1710      1.102      fvdl 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
   1711      1.102      fvdl 	vap->va_flags = ip->i_flags;
   1712      1.102      fvdl 	vap->va_gen = ip->i_gen;
   1713        1.1   mycroft 	/* this doesn't belong here */
   1714        1.1   mycroft 	if (vp->v_type == VBLK)
   1715        1.1   mycroft 		vap->va_blocksize = BLKDEV_IOSIZE;
   1716        1.1   mycroft 	else if (vp->v_type == VCHR)
   1717        1.1   mycroft 		vap->va_blocksize = MAXBSIZE;
   1718        1.1   mycroft 	else
   1719        1.1   mycroft 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
   1720       1.84  perseant 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
   1721        1.1   mycroft 	vap->va_type = vp->v_type;
   1722        1.1   mycroft 	vap->va_filerev = ip->i_modrev;
   1723        1.1   mycroft 	return (0);
   1724       1.61  perseant }
   1725       1.61  perseant 
   1726       1.61  perseant /*
   1727       1.61  perseant  * Check to make sure the inode blocks won't choke the buffer
   1728       1.61  perseant  * cache, then call ufs_setattr as usual.
   1729       1.61  perseant  */
   1730       1.61  perseant int
   1731       1.61  perseant lfs_setattr(void *v)
   1732       1.61  perseant {
   1733      1.149     skrll 	struct vop_setattr_args /* {
   1734       1.61  perseant 		struct vnode *a_vp;
   1735       1.61  perseant 		struct vattr *a_vap;
   1736      1.176      elad 		kauth_cred_t a_cred;
   1737       1.61  perseant 	} */ *ap = v;
   1738       1.61  perseant 	struct vnode *vp = ap->a_vp;
   1739       1.61  perseant 
   1740       1.61  perseant 	lfs_check(vp, LFS_UNUSED_LBN, 0);
   1741       1.61  perseant 	return ufs_setattr(v);
   1742        1.1   mycroft }
   1743       1.22  perseant 
   1744        1.1   mycroft /*
   1745      1.179  perseant  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
   1746      1.188  perseant  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
   1747      1.179  perseant  */
   1748      1.179  perseant static int
   1749      1.193  christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
   1750      1.179  perseant {
   1751      1.214        ad 	if (fs->lfs_stoplwp != curlwp)
   1752      1.179  perseant 		return EBUSY;
   1753      1.179  perseant 
   1754      1.214        ad 	fs->lfs_stoplwp = NULL;
   1755      1.214        ad 	cv_signal(&fs->lfs_stopcv);
   1756      1.179  perseant 
   1757      1.179  perseant 	KASSERT(fs->lfs_nowrap > 0);
   1758      1.179  perseant 	if (fs->lfs_nowrap <= 0) {
   1759      1.179  perseant 		return 0;
   1760      1.179  perseant 	}
   1761      1.179  perseant 
   1762      1.179  perseant 	if (--fs->lfs_nowrap == 0) {
   1763      1.179  perseant 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
   1764      1.188  perseant 		wakeup(&fs->lfs_wrappass);
   1765      1.180  perseant 		lfs_wakeup_cleaner(fs);
   1766      1.179  perseant 	}
   1767      1.179  perseant 	if (waitfor) {
   1768      1.214        ad 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1769      1.214        ad 		    0, &lfs_lock);
   1770      1.179  perseant 	}
   1771      1.179  perseant 
   1772      1.179  perseant 	return 0;
   1773      1.179  perseant }
   1774      1.179  perseant 
   1775      1.179  perseant /*
   1776        1.1   mycroft  * Close called
   1777        1.1   mycroft  */
   1778        1.1   mycroft /* ARGSUSED */
   1779        1.1   mycroft int
   1780       1.51  perseant lfs_close(void *v)
   1781       1.10  christos {
   1782        1.1   mycroft 	struct vop_close_args /* {
   1783        1.1   mycroft 		struct vnode *a_vp;
   1784        1.1   mycroft 		int  a_fflag;
   1785      1.176      elad 		kauth_cred_t a_cred;
   1786       1.10  christos 	} */ *ap = v;
   1787       1.35  augustss 	struct vnode *vp = ap->a_vp;
   1788       1.35  augustss 	struct inode *ip = VTOI(vp);
   1789      1.180  perseant 	struct lfs *fs = ip->i_lfs;
   1790        1.1   mycroft 
   1791      1.190  perseant 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1792      1.214        ad 	    fs->lfs_stoplwp == curlwp) {
   1793      1.214        ad 		mutex_enter(&lfs_lock);
   1794      1.188  perseant 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1795      1.180  perseant 		lfs_wrapgo(fs, ip, 0);
   1796      1.214        ad 		mutex_exit(&lfs_lock);
   1797      1.179  perseant 	}
   1798      1.179  perseant 
   1799       1.97  perseant 	if (vp == ip->i_lfs->lfs_ivnode &&
   1800      1.119       dbj 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1801       1.97  perseant 		return 0;
   1802       1.97  perseant 
   1803       1.97  perseant 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1804      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1805        1.1   mycroft 	}
   1806        1.1   mycroft 	return (0);
   1807       1.65  perseant }
   1808       1.65  perseant 
   1809       1.65  perseant /*
   1810       1.65  perseant  * Close wrapper for special devices.
   1811       1.65  perseant  *
   1812       1.65  perseant  * Update the times on the inode then do device close.
   1813       1.65  perseant  */
   1814       1.65  perseant int
   1815       1.65  perseant lfsspec_close(void *v)
   1816       1.65  perseant {
   1817       1.65  perseant 	struct vop_close_args /* {
   1818       1.65  perseant 		struct vnode	*a_vp;
   1819       1.65  perseant 		int		a_fflag;
   1820      1.176      elad 		kauth_cred_t	a_cred;
   1821       1.65  perseant 	} */ *ap = v;
   1822       1.65  perseant 	struct vnode	*vp;
   1823       1.65  perseant 	struct inode	*ip;
   1824       1.65  perseant 
   1825       1.65  perseant 	vp = ap->a_vp;
   1826       1.65  perseant 	ip = VTOI(vp);
   1827       1.65  perseant 	if (vp->v_usecount > 1) {
   1828      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1829       1.65  perseant 	}
   1830       1.65  perseant 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1831       1.65  perseant }
   1832       1.65  perseant 
   1833       1.65  perseant /*
   1834       1.65  perseant  * Close wrapper for fifo's.
   1835       1.65  perseant  *
   1836       1.65  perseant  * Update the times on the inode then do device close.
   1837       1.65  perseant  */
   1838       1.65  perseant int
   1839       1.65  perseant lfsfifo_close(void *v)
   1840       1.65  perseant {
   1841       1.65  perseant 	struct vop_close_args /* {
   1842       1.65  perseant 		struct vnode	*a_vp;
   1843       1.65  perseant 		int		a_fflag;
   1844      1.176      elad 		kauth_cred_	a_cred;
   1845       1.65  perseant 	} */ *ap = v;
   1846       1.65  perseant 	struct vnode	*vp;
   1847       1.65  perseant 	struct inode	*ip;
   1848       1.65  perseant 
   1849       1.65  perseant 	vp = ap->a_vp;
   1850       1.65  perseant 	ip = VTOI(vp);
   1851       1.65  perseant 	if (ap->a_vp->v_usecount > 1) {
   1852      1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1853       1.65  perseant 	}
   1854       1.65  perseant 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1855        1.1   mycroft }
   1856        1.1   mycroft 
   1857        1.1   mycroft /*
   1858       1.15      fvdl  * Reclaim an inode so that it can be used for other purposes.
   1859        1.1   mycroft  */
   1860        1.1   mycroft 
   1861        1.1   mycroft int
   1862       1.51  perseant lfs_reclaim(void *v)
   1863       1.10  christos {
   1864        1.1   mycroft 	struct vop_reclaim_args /* {
   1865        1.1   mycroft 		struct vnode *a_vp;
   1866       1.10  christos 	} */ *ap = v;
   1867       1.15      fvdl 	struct vnode *vp = ap->a_vp;
   1868       1.84  perseant 	struct inode *ip = VTOI(vp);
   1869      1.203  perseant 	struct lfs *fs = ip->i_lfs;
   1870        1.1   mycroft 	int error;
   1871       1.77      yamt 
   1872      1.231   hannken 	/*
   1873      1.231   hannken 	 * The inode must be freed and updated before being removed
   1874      1.231   hannken 	 * from its hash chain.  Other threads trying to gain a hold
   1875      1.231   hannken 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1876      1.231   hannken 	 */
   1877      1.231   hannken 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1878      1.231   hannken 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1879      1.231   hannken 
   1880      1.214        ad 	mutex_enter(&lfs_lock);
   1881       1.84  perseant 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1882      1.214        ad 	mutex_exit(&lfs_lock);
   1883      1.213     pooka 	if ((error = ufs_reclaim(vp)))
   1884        1.1   mycroft 		return (error);
   1885      1.203  perseant 
   1886      1.203  perseant 	/*
   1887      1.203  perseant 	 * Take us off the paging and/or dirop queues if we were on them.
   1888      1.203  perseant 	 * We shouldn't be on them.
   1889      1.203  perseant 	 */
   1890      1.214        ad 	mutex_enter(&lfs_lock);
   1891      1.203  perseant 	if (ip->i_flags & IN_PAGING) {
   1892      1.203  perseant 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1893      1.203  perseant 		    fs->lfs_fsmnt);
   1894      1.203  perseant 		ip->i_flags &= ~IN_PAGING;
   1895      1.203  perseant 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1896      1.203  perseant 	}
   1897      1.212        ad 	if (vp->v_uflag & VU_DIROP) {
   1898      1.212        ad 		panic("reclaimed vnode is VU_DIROP");
   1899      1.212        ad 		vp->v_uflag &= ~VU_DIROP;
   1900      1.203  perseant 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1901      1.203  perseant 	}
   1902      1.214        ad 	mutex_exit(&lfs_lock);
   1903      1.203  perseant 
   1904      1.142  perseant 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1905      1.145  perseant 	lfs_deregister_all(vp);
   1906       1.84  perseant 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1907       1.84  perseant 	ip->inode_ext.lfs = NULL;
   1908      1.199        ad 	genfs_node_destroy(vp);
   1909       1.19   thorpej 	pool_put(&lfs_inode_pool, vp->v_data);
   1910        1.1   mycroft 	vp->v_data = NULL;
   1911       1.94  perseant 	return (0);
   1912       1.94  perseant }
   1913       1.94  perseant 
   1914       1.94  perseant /*
   1915      1.101      yamt  * Read a block from a storage device.
   1916       1.94  perseant  * In order to avoid reading blocks that are in the process of being
   1917       1.94  perseant  * written by the cleaner---and hence are not mutexed by the normal
   1918       1.94  perseant  * buffer cache / page cache mechanisms---check for collisions before
   1919       1.94  perseant  * reading.
   1920       1.94  perseant  *
   1921       1.94  perseant  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1922       1.94  perseant  * the active cleaner test.
   1923       1.94  perseant  *
   1924       1.94  perseant  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1925       1.94  perseant  */
   1926       1.94  perseant int
   1927       1.94  perseant lfs_strategy(void *v)
   1928       1.94  perseant {
   1929       1.94  perseant 	struct vop_strategy_args /* {
   1930      1.128   hannken 		struct vnode *a_vp;
   1931       1.94  perseant 		struct buf *a_bp;
   1932       1.94  perseant 	} */ *ap = v;
   1933       1.94  perseant 	struct buf	*bp;
   1934       1.94  perseant 	struct lfs	*fs;
   1935       1.94  perseant 	struct vnode	*vp;
   1936       1.94  perseant 	struct inode	*ip;
   1937       1.94  perseant 	daddr_t		tbn;
   1938      1.239  perseant #define MAXLOOP 25
   1939      1.239  perseant 	int		i, sn, error, slept, loopcount;
   1940       1.94  perseant 
   1941       1.94  perseant 	bp = ap->a_bp;
   1942      1.128   hannken 	vp = ap->a_vp;
   1943       1.94  perseant 	ip = VTOI(vp);
   1944       1.94  perseant 	fs = ip->i_lfs;
   1945       1.94  perseant 
   1946      1.101      yamt 	/* lfs uses its strategy routine only for read */
   1947      1.101      yamt 	KASSERT(bp->b_flags & B_READ);
   1948      1.101      yamt 
   1949       1.94  perseant 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1950       1.94  perseant 		panic("lfs_strategy: spec");
   1951       1.94  perseant 	KASSERT(bp->b_bcount != 0);
   1952       1.94  perseant 	if (bp->b_blkno == bp->b_lblkno) {
   1953       1.94  perseant 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1954       1.94  perseant 				 NULL);
   1955       1.94  perseant 		if (error) {
   1956       1.94  perseant 			bp->b_error = error;
   1957      1.214        ad 			bp->b_resid = bp->b_bcount;
   1958       1.94  perseant 			biodone(bp);
   1959       1.94  perseant 			return (error);
   1960       1.94  perseant 		}
   1961       1.94  perseant 		if ((long)bp->b_blkno == -1) /* no valid data */
   1962       1.94  perseant 			clrbuf(bp);
   1963       1.94  perseant 	}
   1964       1.94  perseant 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1965      1.214        ad 		bp->b_resid = bp->b_bcount;
   1966       1.94  perseant 		biodone(bp);
   1967       1.94  perseant 		return (0);
   1968       1.94  perseant 	}
   1969       1.94  perseant 
   1970       1.94  perseant 	slept = 1;
   1971      1.239  perseant 	loopcount = 0;
   1972      1.214        ad 	mutex_enter(&lfs_lock);
   1973      1.101      yamt 	while (slept && fs->lfs_seglock) {
   1974      1.214        ad 		mutex_exit(&lfs_lock);
   1975       1.94  perseant 		/*
   1976       1.94  perseant 		 * Look through list of intervals.
   1977       1.94  perseant 		 * There will only be intervals to look through
   1978       1.94  perseant 		 * if the cleaner holds the seglock.
   1979       1.94  perseant 		 * Since the cleaner is synchronous, we can trust
   1980       1.94  perseant 		 * the list of intervals to be current.
   1981       1.94  perseant 		 */
   1982       1.94  perseant 		tbn = dbtofsb(fs, bp->b_blkno);
   1983       1.94  perseant 		sn = dtosn(fs, tbn);
   1984       1.94  perseant 		slept = 0;
   1985       1.94  perseant 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1986       1.94  perseant 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1987       1.94  perseant 			    tbn >= fs->lfs_cleanint[i]) {
   1988      1.136  perseant 				DLOG((DLOG_CLEAN,
   1989      1.136  perseant 				      "lfs_strategy: ino %d lbn %" PRId64
   1990      1.203  perseant 				      " ind %d sn %d fsb %" PRIx32
   1991      1.203  perseant 				      " given sn %d fsb %" PRIx64 "\n",
   1992      1.203  perseant 				      ip->i_number, bp->b_lblkno, i,
   1993      1.203  perseant 				      dtosn(fs, fs->lfs_cleanint[i]),
   1994      1.203  perseant 				      fs->lfs_cleanint[i], sn, tbn));
   1995      1.136  perseant 				DLOG((DLOG_CLEAN,
   1996      1.136  perseant 				      "lfs_strategy: sleeping on ino %d lbn %"
   1997      1.136  perseant 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1998      1.214        ad 				mutex_enter(&lfs_lock);
   1999      1.170  perseant 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   2000      1.239  perseant 					/*
   2001      1.239  perseant 					 * Cleaner can't wait for itself.
   2002      1.239  perseant 					 * Instead, wait for the blocks
   2003      1.239  perseant 					 * to be written to disk.
   2004      1.239  perseant 					 * XXX we need pribio in the test
   2005      1.239  perseant 					 * XXX here.
   2006      1.239  perseant 					 */
   2007      1.239  perseant  					mtsleep(&fs->lfs_iocount,
   2008      1.239  perseant  						(PRIBIO + 1) | PNORELOCK,
   2009      1.239  perseant 						"clean2", hz/10 + 1,
   2010      1.239  perseant  						&lfs_lock);
   2011      1.170  perseant 					slept = 1;
   2012      1.239  perseant 					++loopcount;
   2013      1.170  perseant 					break;
   2014      1.170  perseant 				} else if (fs->lfs_seglock) {
   2015      1.214        ad 					mtsleep(&fs->lfs_seglock,
   2016      1.141  perseant 						(PRIBIO + 1) | PNORELOCK,
   2017      1.170  perseant 						"clean1", 0,
   2018      1.214        ad 						&lfs_lock);
   2019      1.167  perseant 					slept = 1;
   2020      1.167  perseant 					break;
   2021      1.167  perseant 				}
   2022      1.214        ad 				mutex_exit(&lfs_lock);
   2023       1.94  perseant 			}
   2024       1.94  perseant 		}
   2025      1.214        ad 		mutex_enter(&lfs_lock);
   2026      1.239  perseant 		if (loopcount > MAXLOOP) {
   2027      1.239  perseant 			printf("lfs_strategy: breaking out of clean2 loop\n");
   2028      1.239  perseant 			break;
   2029      1.239  perseant 		}
   2030       1.94  perseant 	}
   2031      1.214        ad 	mutex_exit(&lfs_lock);
   2032       1.94  perseant 
   2033       1.94  perseant 	vp = ip->i_devvp;
   2034      1.127   hannken 	VOP_STRATEGY(vp, bp);
   2035        1.1   mycroft 	return (0);
   2036       1.89  perseant }
   2037       1.89  perseant 
   2038      1.239  perseant /*
   2039      1.239  perseant  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   2040      1.239  perseant  * Technically this is a checkpoint (the on-disk state is valid)
   2041      1.239  perseant  * even though we are leaving out all the file data.
   2042      1.239  perseant  */
   2043      1.239  perseant int
   2044       1.92  perseant lfs_flush_dirops(struct lfs *fs)
   2045       1.92  perseant {
   2046       1.92  perseant 	struct inode *ip, *nip;
   2047       1.92  perseant 	struct vnode *vp;
   2048       1.92  perseant 	extern int lfs_dostats;
   2049       1.92  perseant 	struct segment *sp;
   2050      1.239  perseant 	int flags = 0;
   2051      1.239  perseant 	int error = 0;
   2052       1.92  perseant 
   2053      1.163  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   2054      1.171  perseant 	KASSERT(fs->lfs_nadirop == 0);
   2055      1.141  perseant 
   2056       1.92  perseant 	if (fs->lfs_ronly)
   2057      1.239  perseant 		return EROFS;
   2058       1.92  perseant 
   2059      1.214        ad 	mutex_enter(&lfs_lock);
   2060      1.141  perseant 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   2061      1.214        ad 		mutex_exit(&lfs_lock);
   2062      1.239  perseant 		return 0;
   2063      1.141  perseant 	} else
   2064      1.214        ad 		mutex_exit(&lfs_lock);
   2065       1.92  perseant 
   2066       1.92  perseant 	if (lfs_dostats)
   2067       1.92  perseant 		++lfs_stats.flush_invoked;
   2068       1.92  perseant 
   2069       1.92  perseant 	lfs_imtime(fs);
   2070      1.239  perseant 	lfs_seglock(fs, flags);
   2071       1.92  perseant 	sp = fs->lfs_sp;
   2072       1.92  perseant 
   2073       1.92  perseant 	/*
   2074       1.92  perseant 	 * lfs_writevnodes, optimized to get dirops out of the way.
   2075       1.92  perseant 	 * Only write dirops, and don't flush files' pages, only
   2076       1.92  perseant 	 * blocks from the directories.
   2077       1.92  perseant 	 *
   2078       1.92  perseant 	 * We don't need to vref these files because they are
   2079       1.92  perseant 	 * dirops and so hold an extra reference until the
   2080       1.92  perseant 	 * segunlock clears them of that status.
   2081       1.92  perseant 	 *
   2082       1.92  perseant 	 * We don't need to check for IN_ADIROP because we know that
   2083       1.92  perseant 	 * no dirops are active.
   2084       1.92  perseant 	 *
   2085       1.92  perseant 	 */
   2086      1.214        ad 	mutex_enter(&lfs_lock);
   2087       1.92  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   2088       1.92  perseant 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   2089      1.214        ad 		mutex_exit(&lfs_lock);
   2090       1.92  perseant 		vp = ITOV(ip);
   2091       1.92  perseant 
   2092      1.171  perseant 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   2093      1.239  perseant 		KASSERT(vp->v_uflag & VU_DIROP);
   2094      1.239  perseant 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   2095      1.171  perseant 
   2096       1.92  perseant 		/*
   2097       1.92  perseant 		 * All writes to directories come from dirops; all
   2098       1.92  perseant 		 * writes to files' direct blocks go through the page
   2099       1.92  perseant 		 * cache, which we're not touching.  Reads to files
   2100       1.92  perseant 		 * and/or directories will not be affected by writing
   2101       1.92  perseant 		 * directory blocks inodes and file inodes.  So we don't
   2102      1.239  perseant 		 * really need to lock.
   2103       1.92  perseant 		 */
   2104      1.214        ad 		if (vp->v_iflag & VI_XLOCK) {
   2105      1.214        ad 			mutex_enter(&lfs_lock);
   2106       1.92  perseant 			continue;
   2107      1.167  perseant 		}
   2108      1.228   hannken 		/* XXX see below
   2109      1.228   hannken 		 * waslocked = VOP_ISLOCKED(vp);
   2110      1.228   hannken 		 */
   2111       1.92  perseant 		if (vp->v_type != VREG &&
   2112       1.92  perseant 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   2113      1.239  perseant 			error = lfs_writefile(fs, sp, vp);
   2114       1.92  perseant 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2115       1.92  perseant 			    !(ip->i_flag & IN_ALLMOD)) {
   2116      1.214        ad 			    	mutex_enter(&lfs_lock);
   2117       1.92  perseant 				LFS_SET_UINO(ip, IN_MODIFIED);
   2118      1.214        ad 			    	mutex_exit(&lfs_lock);
   2119       1.92  perseant 			}
   2120      1.239  perseant 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2121      1.239  perseant 				mutex_enter(&lfs_lock);
   2122      1.239  perseant 				error = EAGAIN;
   2123      1.239  perseant 				break;
   2124      1.239  perseant 			}
   2125       1.92  perseant 		}
   2126      1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2127      1.239  perseant 		error = lfs_writeinode(fs, sp, ip);
   2128      1.214        ad 		mutex_enter(&lfs_lock);
   2129      1.239  perseant 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2130      1.239  perseant 			error = EAGAIN;
   2131      1.239  perseant 			break;
   2132      1.239  perseant 		}
   2133      1.239  perseant 
   2134      1.228   hannken 		/*
   2135      1.239  perseant 		 * We might need to update these inodes again,
   2136      1.239  perseant 		 * for example, if they have data blocks to write.
   2137      1.239  perseant 		 * Make sure that after this flush, they are still
   2138      1.239  perseant 		 * marked IN_MODIFIED so that we don't forget to
   2139      1.239  perseant 		 * write them.
   2140      1.228   hannken 		 */
   2141      1.239  perseant 		/* XXX only for non-directories? --KS */
   2142      1.239  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
   2143       1.92  perseant 	}
   2144      1.214        ad 	mutex_exit(&lfs_lock);
   2145       1.92  perseant 	/* We've written all the dirops there are */
   2146       1.92  perseant 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   2147      1.170  perseant 	lfs_finalize_fs_seguse(fs);
   2148       1.92  perseant 	(void) lfs_writeseg(fs, sp);
   2149       1.92  perseant 	lfs_segunlock(fs);
   2150      1.239  perseant 
   2151      1.239  perseant 	return error;
   2152       1.92  perseant }
   2153       1.92  perseant 
   2154       1.89  perseant /*
   2155      1.164  perseant  * Flush all vnodes for which the pagedaemon has requested pageouts.
   2156      1.212        ad  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   2157      1.164  perseant  * has just run, this would be an error).  If we have to skip a vnode
   2158      1.164  perseant  * for any reason, just skip it; if we have to wait for the cleaner,
   2159      1.164  perseant  * abort.  The writer daemon will call us again later.
   2160      1.164  perseant  */
   2161      1.239  perseant int
   2162      1.164  perseant lfs_flush_pchain(struct lfs *fs)
   2163      1.164  perseant {
   2164      1.164  perseant 	struct inode *ip, *nip;
   2165      1.164  perseant 	struct vnode *vp;
   2166      1.164  perseant 	extern int lfs_dostats;
   2167      1.164  perseant 	struct segment *sp;
   2168      1.239  perseant 	int error, error2;
   2169      1.164  perseant 
   2170      1.164  perseant 	ASSERT_NO_SEGLOCK(fs);
   2171      1.164  perseant 
   2172      1.164  perseant 	if (fs->lfs_ronly)
   2173      1.239  perseant 		return EROFS;
   2174      1.164  perseant 
   2175      1.214        ad 	mutex_enter(&lfs_lock);
   2176      1.164  perseant 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   2177      1.214        ad 		mutex_exit(&lfs_lock);
   2178      1.239  perseant 		return 0;
   2179      1.164  perseant 	} else
   2180      1.214        ad 		mutex_exit(&lfs_lock);
   2181      1.164  perseant 
   2182      1.164  perseant 	/* Get dirops out of the way */
   2183      1.239  perseant 	if ((error = lfs_flush_dirops(fs)) != 0)
   2184      1.239  perseant 		return error;
   2185      1.164  perseant 
   2186      1.164  perseant 	if (lfs_dostats)
   2187      1.164  perseant 		++lfs_stats.flush_invoked;
   2188      1.164  perseant 
   2189      1.164  perseant 	/*
   2190      1.164  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   2191      1.164  perseant 	 */
   2192      1.164  perseant 	lfs_imtime(fs);
   2193      1.164  perseant 	lfs_seglock(fs, 0);
   2194      1.164  perseant 	sp = fs->lfs_sp;
   2195      1.164  perseant 
   2196      1.164  perseant 	/*
   2197      1.164  perseant 	 * lfs_writevnodes, optimized to clear pageout requests.
   2198      1.164  perseant 	 * Only write non-dirop files that are in the pageout queue.
   2199      1.164  perseant 	 * We're very conservative about what we write; we want to be
   2200      1.164  perseant 	 * fast and async.
   2201      1.164  perseant 	 */
   2202      1.214        ad 	mutex_enter(&lfs_lock);
   2203      1.214        ad     top:
   2204      1.164  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   2205      1.164  perseant 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   2206      1.164  perseant 		vp = ITOV(ip);
   2207      1.164  perseant 
   2208      1.164  perseant 		if (!(ip->i_flags & IN_PAGING))
   2209      1.164  perseant 			goto top;
   2210      1.164  perseant 
   2211      1.235     rmind 		mutex_enter(vp->v_interlock);
   2212      1.214        ad 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   2213      1.235     rmind 			mutex_exit(vp->v_interlock);
   2214      1.164  perseant 			continue;
   2215      1.214        ad 		}
   2216      1.214        ad 		if (vp->v_type != VREG) {
   2217      1.235     rmind 			mutex_exit(vp->v_interlock);
   2218      1.164  perseant 			continue;
   2219      1.214        ad 		}
   2220      1.164  perseant 		if (lfs_vref(vp))
   2221      1.164  perseant 			continue;
   2222      1.214        ad 		mutex_exit(&lfs_lock);
   2223      1.169  perseant 
   2224      1.228   hannken 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   2225      1.165  perseant 			lfs_vunref(vp);
   2226      1.214        ad 			mutex_enter(&lfs_lock);
   2227      1.164  perseant 			continue;
   2228      1.165  perseant 		}
   2229      1.164  perseant 
   2230      1.164  perseant 		error = lfs_writefile(fs, sp, vp);
   2231      1.164  perseant 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2232      1.164  perseant 		    !(ip->i_flag & IN_ALLMOD)) {
   2233      1.214        ad 		    	mutex_enter(&lfs_lock);
   2234      1.164  perseant 			LFS_SET_UINO(ip, IN_MODIFIED);
   2235      1.214        ad 		    	mutex_exit(&lfs_lock);
   2236      1.164  perseant 		}
   2237      1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2238      1.239  perseant 		error2 = lfs_writeinode(fs, sp, ip);
   2239      1.164  perseant 
   2240      1.229   hannken 		VOP_UNLOCK(vp);
   2241      1.164  perseant 		lfs_vunref(vp);
   2242      1.164  perseant 
   2243      1.239  perseant 		if (error == EAGAIN || error2 == EAGAIN) {
   2244      1.164  perseant 			lfs_writeseg(fs, sp);
   2245      1.214        ad 			mutex_enter(&lfs_lock);
   2246      1.164  perseant 			break;
   2247      1.164  perseant 		}
   2248      1.214        ad 		mutex_enter(&lfs_lock);
   2249      1.164  perseant 	}
   2250      1.214        ad 	mutex_exit(&lfs_lock);
   2251      1.164  perseant 	(void) lfs_writeseg(fs, sp);
   2252      1.164  perseant 	lfs_segunlock(fs);
   2253      1.239  perseant 
   2254      1.239  perseant 	return 0;
   2255      1.164  perseant }
   2256      1.164  perseant 
   2257      1.164  perseant /*
   2258       1.90  perseant  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   2259       1.89  perseant  */
   2260       1.89  perseant int
   2261       1.90  perseant lfs_fcntl(void *v)
   2262       1.89  perseant {
   2263      1.137    simonb 	struct vop_fcntl_args /* {
   2264      1.137    simonb 		struct vnode *a_vp;
   2265      1.218  gmcgarry 		u_int a_command;
   2266      1.201  christos 		void * a_data;
   2267      1.137    simonb 		int  a_fflag;
   2268      1.176      elad 		kauth_cred_t a_cred;
   2269      1.137    simonb 	} */ *ap = v;
   2270      1.222  christos 	struct timeval tv;
   2271       1.89  perseant 	struct timeval *tvp;
   2272       1.89  perseant 	BLOCK_INFO *blkiov;
   2273       1.92  perseant 	CLEANERINFO *cip;
   2274      1.148  perseant 	SEGUSE *sup;
   2275       1.92  perseant 	int blkcnt, error, oclean;
   2276      1.181    martin 	size_t fh_size;
   2277       1.90  perseant 	struct lfs_fcntl_markv blkvp;
   2278      1.185        ad 	struct lwp *l;
   2279       1.89  perseant 	fsid_t *fsidp;
   2280       1.92  perseant 	struct lfs *fs;
   2281       1.92  perseant 	struct buf *bp;
   2282      1.134  perseant 	fhandle_t *fhp;
   2283       1.92  perseant 	daddr_t off;
   2284       1.89  perseant 
   2285       1.90  perseant 	/* Only respect LFS fcntls on fs root or Ifile */
   2286       1.89  perseant 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   2287       1.89  perseant 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   2288       1.90  perseant 		return ufs_fcntl(v);
   2289       1.89  perseant 	}
   2290       1.89  perseant 
   2291      1.100  perseant 	/* Avoid locking a draining lock */
   2292      1.119       dbj 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   2293      1.100  perseant 		return ESHUTDOWN;
   2294      1.100  perseant 	}
   2295      1.100  perseant 
   2296      1.184  perseant 	/* LFS control and monitoring fcntls are available only to root */
   2297      1.213     pooka 	l = curlwp;
   2298      1.184  perseant 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   2299      1.185        ad 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2300      1.203  perseant 					     NULL)) != 0)
   2301      1.184  perseant 		return (error);
   2302      1.184  perseant 
   2303      1.100  perseant 	fs = VTOI(ap->a_vp)->i_lfs;
   2304      1.131  christos 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   2305       1.89  perseant 
   2306      1.188  perseant 	error = 0;
   2307      1.218  gmcgarry 	switch ((int)ap->a_command) {
   2308      1.222  christos 	    case LFCNSEGWAITALL_COMPAT_50:
   2309      1.222  christos 	    case LFCNSEGWAITALL_COMPAT:
   2310      1.222  christos 		fsidp = NULL;
   2311      1.222  christos 		/* FALLSTHROUGH */
   2312      1.222  christos 	    case LFCNSEGWAIT_COMPAT_50:
   2313      1.222  christos 	    case LFCNSEGWAIT_COMPAT:
   2314      1.222  christos 		{
   2315      1.222  christos 			struct timeval50 *tvp50
   2316      1.222  christos 				= (struct timeval50 *)ap->a_data;
   2317      1.222  christos 			timeval50_to_timeval(tvp50, &tv);
   2318      1.222  christos 			tvp = &tv;
   2319      1.222  christos 		}
   2320      1.222  christos 		goto segwait_common;
   2321       1.90  perseant 	    case LFCNSEGWAITALL:
   2322      1.214        ad 		fsidp = NULL;
   2323      1.214        ad 		/* FALLSTHROUGH */
   2324       1.90  perseant 	    case LFCNSEGWAIT:
   2325      1.214        ad 		tvp = (struct timeval *)ap->a_data;
   2326      1.222  christos segwait_common:
   2327      1.214        ad 		mutex_enter(&lfs_lock);
   2328      1.214        ad 		++fs->lfs_sleepers;
   2329      1.214        ad 		mutex_exit(&lfs_lock);
   2330      1.214        ad 
   2331      1.214        ad 		error = lfs_segwait(fsidp, tvp);
   2332      1.214        ad 
   2333      1.214        ad 		mutex_enter(&lfs_lock);
   2334      1.214        ad 		if (--fs->lfs_sleepers == 0)
   2335      1.214        ad 			wakeup(&fs->lfs_sleepers);
   2336      1.214        ad 		mutex_exit(&lfs_lock);
   2337      1.214        ad 		return error;
   2338       1.89  perseant 
   2339       1.90  perseant 	    case LFCNBMAPV:
   2340       1.90  perseant 	    case LFCNMARKV:
   2341      1.214        ad 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   2342       1.89  perseant 
   2343      1.214        ad 		blkcnt = blkvp.blkcnt;
   2344      1.214        ad 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   2345      1.214        ad 			return (EINVAL);
   2346      1.214        ad 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   2347      1.214        ad 		if ((error = copyin(blkvp.blkiov, blkiov,
   2348      1.214        ad 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   2349      1.214        ad 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2350      1.214        ad 			return error;
   2351      1.214        ad 		}
   2352      1.214        ad 
   2353      1.214        ad 		mutex_enter(&lfs_lock);
   2354      1.214        ad 		++fs->lfs_sleepers;
   2355      1.214        ad 		mutex_exit(&lfs_lock);
   2356      1.214        ad 		if (ap->a_command == LFCNBMAPV)
   2357      1.214        ad 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   2358      1.214        ad 		else /* LFCNMARKV */
   2359      1.214        ad 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   2360      1.214        ad 		if (error == 0)
   2361      1.214        ad 			error = copyout(blkiov, blkvp.blkiov,
   2362      1.214        ad 					blkcnt * sizeof(BLOCK_INFO));
   2363      1.214        ad 		mutex_enter(&lfs_lock);
   2364      1.214        ad 		if (--fs->lfs_sleepers == 0)
   2365      1.214        ad 			wakeup(&fs->lfs_sleepers);
   2366      1.214        ad 		mutex_exit(&lfs_lock);
   2367      1.214        ad 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2368      1.214        ad 		return error;
   2369       1.92  perseant 
   2370       1.92  perseant 	    case LFCNRECLAIM:
   2371      1.214        ad 		/*
   2372      1.214        ad 		 * Flush dirops and write Ifile, allowing empty segments
   2373      1.214        ad 		 * to be immediately reclaimed.
   2374      1.214        ad 		 */
   2375      1.214        ad 		lfs_writer_enter(fs, "pndirop");
   2376      1.214        ad 		off = fs->lfs_offset;
   2377      1.214        ad 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   2378      1.214        ad 		lfs_flush_dirops(fs);
   2379      1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   2380      1.214        ad 		oclean = cip->clean;
   2381      1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   2382      1.214        ad 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   2383      1.214        ad 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   2384      1.214        ad 		lfs_segunlock(fs);
   2385      1.214        ad 		lfs_writer_leave(fs);
   2386       1.92  perseant 
   2387      1.136  perseant #ifdef DEBUG
   2388      1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   2389      1.214        ad 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   2390      1.214        ad 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   2391      1.214        ad 		      fs->lfs_offset - off, cip->clean - oclean,
   2392      1.214        ad 		      fs->lfs_activesb));
   2393      1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   2394       1.92  perseant #endif
   2395       1.92  perseant 
   2396      1.214        ad 		return 0;
   2397       1.89  perseant 
   2398      1.182    martin 	    case LFCNIFILEFH_COMPAT:
   2399      1.214        ad 		/* Return the filehandle of the Ifile */
   2400      1.221      elad 		if ((error = kauth_authorize_system(l->l_cred,
   2401      1.221      elad 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   2402      1.214        ad 			return (error);
   2403      1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   2404      1.214        ad 		fhp->fh_fsid = *fsidp;
   2405      1.214        ad 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   2406      1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2407      1.182    martin 
   2408      1.187    martin 	    case LFCNIFILEFH_COMPAT2:
   2409      1.134  perseant 	    case LFCNIFILEFH:
   2410      1.214        ad 		/* Return the filehandle of the Ifile */
   2411      1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   2412      1.214        ad 		fhp->fh_fsid = *fsidp;
   2413      1.214        ad 		fh_size = sizeof(struct lfs_fhandle) -
   2414      1.214        ad 		    offsetof(fhandle_t, fh_fid);
   2415      1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2416      1.134  perseant 
   2417      1.148  perseant 	    case LFCNREWIND:
   2418      1.214        ad 		/* Move lfs_offset to the lowest-numbered segment */
   2419      1.214        ad 		return lfs_rewind(fs, *(int *)ap->a_data);
   2420      1.148  perseant 
   2421      1.148  perseant 	    case LFCNINVAL:
   2422      1.214        ad 		/* Mark a segment SEGUSE_INVAL */
   2423      1.214        ad 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   2424      1.214        ad 		if (sup->su_nbytes > 0) {
   2425      1.214        ad 			brelse(bp, 0);
   2426      1.214        ad 			lfs_unset_inval_all(fs);
   2427      1.214        ad 			return EBUSY;
   2428      1.214        ad 		}
   2429      1.214        ad 		sup->su_flags |= SEGUSE_INVAL;
   2430      1.236   hannken 		VOP_BWRITE(bp->b_vp, bp);
   2431      1.214        ad 		return 0;
   2432      1.148  perseant 
   2433      1.148  perseant 	    case LFCNRESIZE:
   2434      1.214        ad 		/* Resize the filesystem */
   2435      1.214        ad 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   2436      1.148  perseant 
   2437      1.168  perseant 	    case LFCNWRAPSTOP:
   2438      1.179  perseant 	    case LFCNWRAPSTOP_COMPAT:
   2439      1.214        ad 		/*
   2440      1.214        ad 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   2441      1.214        ad 		 * the filesystem wraps around.  To support external agents
   2442      1.214        ad 		 * (dump, fsck-based regression test) that need to look at
   2443      1.214        ad 		 * a snapshot of the filesystem, without necessarily
   2444      1.214        ad 		 * requiring that all fs activity stops.
   2445      1.214        ad 		 */
   2446      1.214        ad 		if (fs->lfs_stoplwp == curlwp)
   2447      1.214        ad 			return EALREADY;
   2448      1.214        ad 
   2449      1.214        ad 		mutex_enter(&lfs_lock);
   2450      1.214        ad 		while (fs->lfs_stoplwp != NULL)
   2451      1.214        ad 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   2452      1.214        ad 		fs->lfs_stoplwp = curlwp;
   2453      1.214        ad 		if (fs->lfs_nowrap == 0)
   2454      1.214        ad 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   2455      1.214        ad 		++fs->lfs_nowrap;
   2456      1.222  christos 		if (*(int *)ap->a_data == 1
   2457      1.224     pooka 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   2458      1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   2459      1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2460      1.214        ad 				"segwrap", 0, &lfs_lock);
   2461      1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   2462      1.214        ad 			if (error) {
   2463      1.214        ad 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   2464      1.214        ad 			}
   2465      1.214        ad 		}
   2466      1.214        ad 		mutex_exit(&lfs_lock);
   2467      1.214        ad 		return 0;
   2468      1.168  perseant 
   2469      1.168  perseant 	    case LFCNWRAPGO:
   2470      1.179  perseant 	    case LFCNWRAPGO_COMPAT:
   2471      1.214        ad 		/*
   2472      1.214        ad 		 * Having done its work, the agent wakes up the writer.
   2473      1.214        ad 		 * If the argument is 1, it sleeps until a new segment
   2474      1.214        ad 		 * is selected.
   2475      1.214        ad 		 */
   2476      1.214        ad 		mutex_enter(&lfs_lock);
   2477      1.214        ad 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   2478      1.222  christos 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   2479      1.222  christos 				    *((int *)ap->a_data));
   2480      1.214        ad 		mutex_exit(&lfs_lock);
   2481      1.214        ad 		return error;
   2482      1.168  perseant 
   2483      1.188  perseant 	    case LFCNWRAPPASS:
   2484      1.214        ad 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   2485      1.214        ad 			return EALREADY;
   2486      1.214        ad 		mutex_enter(&lfs_lock);
   2487      1.214        ad 		if (fs->lfs_stoplwp != curlwp) {
   2488      1.214        ad 			mutex_exit(&lfs_lock);
   2489      1.214        ad 			return EALREADY;
   2490      1.214        ad 		}
   2491      1.214        ad 		if (fs->lfs_nowrap == 0) {
   2492      1.214        ad 			mutex_exit(&lfs_lock);
   2493      1.214        ad 			return EBUSY;
   2494      1.214        ad 		}
   2495      1.214        ad 		fs->lfs_wrappass = 1;
   2496      1.214        ad 		wakeup(&fs->lfs_wrappass);
   2497      1.214        ad 		/* Wait for the log to wrap, if asked */
   2498      1.214        ad 		if (*(int *)ap->a_data) {
   2499      1.235     rmind 			mutex_enter(ap->a_vp->v_interlock);
   2500      1.239  perseant 			if (lfs_vref(ap->a_vp) != 0)
   2501      1.239  perseant 				panic("LFCNWRAPPASS: lfs_vref failed");
   2502      1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   2503      1.214        ad 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   2504      1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2505      1.214        ad 				"segwrap", 0, &lfs_lock);
   2506      1.214        ad 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   2507      1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   2508      1.214        ad 			lfs_vunref(ap->a_vp);
   2509      1.214        ad 		}
   2510      1.214        ad 		mutex_exit(&lfs_lock);
   2511      1.214        ad 		return error;
   2512      1.188  perseant 
   2513      1.188  perseant 	    case LFCNWRAPSTATUS:
   2514      1.214        ad 		mutex_enter(&lfs_lock);
   2515      1.214        ad 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   2516      1.214        ad 		mutex_exit(&lfs_lock);
   2517      1.214        ad 		return 0;
   2518      1.188  perseant 
   2519       1.89  perseant 	    default:
   2520      1.214        ad 		return ufs_fcntl(v);
   2521       1.89  perseant 	}
   2522       1.89  perseant 	return 0;
   2523       1.60       chs }
   2524       1.60       chs 
   2525       1.60       chs int
   2526       1.60       chs lfs_getpages(void *v)
   2527       1.60       chs {
   2528       1.60       chs 	struct vop_getpages_args /* {
   2529       1.60       chs 		struct vnode *a_vp;
   2530       1.60       chs 		voff_t a_offset;
   2531       1.60       chs 		struct vm_page **a_m;
   2532       1.60       chs 		int *a_count;
   2533       1.60       chs 		int a_centeridx;
   2534       1.60       chs 		vm_prot_t a_access_type;
   2535       1.60       chs 		int a_advice;
   2536       1.60       chs 		int a_flags;
   2537       1.60       chs 	} */ *ap = v;
   2538       1.60       chs 
   2539       1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   2540       1.97  perseant 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   2541       1.97  perseant 		return EPERM;
   2542       1.97  perseant 	}
   2543       1.60       chs 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   2544      1.214        ad 		mutex_enter(&lfs_lock);
   2545       1.60       chs 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   2546      1.214        ad 		mutex_exit(&lfs_lock);
   2547       1.60       chs 	}
   2548      1.115      yamt 
   2549      1.115      yamt 	/*
   2550      1.115      yamt 	 * we're relying on the fact that genfs_getpages() always read in
   2551      1.115      yamt 	 * entire filesystem blocks.
   2552      1.115      yamt 	 */
   2553       1.95  perseant 	return genfs_getpages(v);
   2554        1.1   mycroft }
   2555       1.84  perseant 
   2556      1.204  perseant /*
   2557      1.204  perseant  * Wait for a page to become unbusy, possibly printing diagnostic messages
   2558      1.204  perseant  * as well.
   2559      1.204  perseant  *
   2560      1.204  perseant  * Called with vp->v_interlock held; return with it held.
   2561      1.204  perseant  */
   2562      1.203  perseant static void
   2563      1.203  perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   2564      1.203  perseant {
   2565      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2566      1.203  perseant 	if ((pg->flags & PG_BUSY) == 0)
   2567      1.203  perseant 		return;		/* Nothing to wait for! */
   2568      1.203  perseant 
   2569      1.204  perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   2570      1.203  perseant 	static struct vm_page *lastpg;
   2571      1.203  perseant 
   2572      1.203  perseant 	if (label != NULL && pg != lastpg) {
   2573      1.203  perseant 		if (pg->owner_tag) {
   2574      1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   2575      1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label,
   2576      1.203  perseant 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   2577      1.203  perseant 		} else {
   2578      1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   2579      1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label, pg);
   2580      1.203  perseant 		}
   2581      1.203  perseant 	}
   2582      1.203  perseant 	lastpg = pg;
   2583      1.203  perseant #endif
   2584      1.203  perseant 
   2585      1.203  perseant 	pg->flags |= PG_WANTED;
   2586      1.235     rmind 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   2587      1.235     rmind 	mutex_enter(vp->v_interlock);
   2588      1.203  perseant }
   2589      1.203  perseant 
   2590      1.203  perseant /*
   2591      1.203  perseant  * This routine is called by lfs_putpages() when it can't complete the
   2592      1.203  perseant  * write because a page is busy.  This means that either (1) someone,
   2593      1.203  perseant  * possibly the pagedaemon, is looking at this page, and will give it up
   2594      1.203  perseant  * presently; or (2) we ourselves are holding the page busy in the
   2595      1.203  perseant  * process of being written (either gathered or actually on its way to
   2596      1.203  perseant  * disk).  We don't need to give up the segment lock, but we might need
   2597      1.203  perseant  * to call lfs_writeseg() to expedite the page's journey to disk.
   2598      1.204  perseant  *
   2599      1.204  perseant  * Called with vp->v_interlock held; return with it held.
   2600      1.203  perseant  */
   2601      1.203  perseant /* #define BUSYWAIT */
   2602      1.203  perseant static void
   2603      1.203  perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   2604      1.203  perseant 	       int seglocked, const char *label)
   2605      1.203  perseant {
   2606      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2607      1.203  perseant #ifndef BUSYWAIT
   2608      1.203  perseant 	struct inode *ip = VTOI(vp);
   2609      1.203  perseant 	struct segment *sp = fs->lfs_sp;
   2610      1.203  perseant 	int count = 0;
   2611      1.203  perseant 
   2612      1.203  perseant 	if (pg == NULL)
   2613      1.203  perseant 		return;
   2614      1.203  perseant 
   2615      1.226       eeh 	while (pg->flags & PG_BUSY &&
   2616      1.226       eeh 	    pg->uobject == &vp->v_uobj) {
   2617      1.235     rmind 		mutex_exit(vp->v_interlock);
   2618      1.203  perseant 		if (sp->cbpp - sp->bpp > 1) {
   2619      1.203  perseant 			/* Write gathered pages */
   2620      1.203  perseant 			lfs_updatemeta(sp);
   2621      1.203  perseant 			lfs_release_finfo(fs);
   2622      1.203  perseant 			(void) lfs_writeseg(fs, sp);
   2623      1.203  perseant 
   2624      1.203  perseant 			/*
   2625      1.203  perseant 			 * Reinitialize FIP
   2626      1.203  perseant 			 */
   2627      1.203  perseant 			KASSERT(sp->vp == vp);
   2628      1.203  perseant 			lfs_acquire_finfo(fs, ip->i_number,
   2629      1.203  perseant 					  ip->i_gen);
   2630      1.203  perseant 		}
   2631      1.204  perseant 		++count;
   2632      1.235     rmind 		mutex_enter(vp->v_interlock);
   2633      1.203  perseant 		wait_for_page(vp, pg, label);
   2634      1.203  perseant 	}
   2635      1.239  perseant 	if (label != NULL && count > 1) {
   2636      1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   2637      1.239  perseant 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   2638      1.239  perseant 		      count));
   2639      1.239  perseant 	}
   2640      1.203  perseant #else
   2641      1.203  perseant 	preempt(1);
   2642      1.203  perseant #endif
   2643      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2644      1.203  perseant }
   2645      1.203  perseant 
   2646       1.84  perseant /*
   2647       1.84  perseant  * Make sure that for all pages in every block in the given range,
   2648       1.84  perseant  * either all are dirty or all are clean.  If any of the pages
   2649       1.84  perseant  * we've seen so far are dirty, put the vnode on the paging chain,
   2650       1.84  perseant  * and mark it IN_PAGING.
   2651      1.105  perseant  *
   2652      1.105  perseant  * If checkfirst != 0, don't check all the pages but return at the
   2653      1.105  perseant  * first dirty page.
   2654       1.84  perseant  */
   2655       1.84  perseant static int
   2656       1.84  perseant check_dirty(struct lfs *fs, struct vnode *vp,
   2657       1.84  perseant 	    off_t startoffset, off_t endoffset, off_t blkeof,
   2658      1.203  perseant 	    int flags, int checkfirst, struct vm_page **pgp)
   2659       1.84  perseant {
   2660       1.86  perseant 	int by_list;
   2661      1.122  christos 	struct vm_page *curpg = NULL; /* XXX: gcc */
   2662      1.122  christos 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   2663      1.122  christos 	off_t soff = 0; /* XXX: gcc */
   2664       1.84  perseant 	voff_t off;
   2665      1.115      yamt 	int i;
   2666      1.115      yamt 	int nonexistent;
   2667      1.115      yamt 	int any_dirty;	/* number of dirty pages */
   2668      1.115      yamt 	int dirty;	/* number of dirty pages in a block */
   2669      1.115      yamt 	int tdirty;
   2670       1.84  perseant 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   2671      1.207        ad 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2672       1.84  perseant 
   2673      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2674      1.141  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   2675       1.84  perseant   top:
   2676       1.84  perseant 	by_list = (vp->v_uobj.uo_npages <=
   2677       1.84  perseant 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   2678      1.219      yamt 		   UVM_PAGE_TREE_PENALTY);
   2679       1.84  perseant 	any_dirty = 0;
   2680       1.84  perseant 
   2681       1.84  perseant 	if (by_list) {
   2682       1.84  perseant 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   2683       1.84  perseant 	} else {
   2684       1.84  perseant 		soff = startoffset;
   2685       1.84  perseant 	}
   2686       1.84  perseant 	while (by_list || soff < MIN(blkeof, endoffset)) {
   2687       1.84  perseant 		if (by_list) {
   2688      1.115      yamt 			/*
   2689      1.138  perseant 			 * Find the first page in a block.  Skip
   2690      1.138  perseant 			 * blocks outside our area of interest or beyond
   2691      1.138  perseant 			 * the end of file.
   2692      1.115      yamt 			 */
   2693      1.234    martin 			KASSERT(curpg == NULL
   2694      1.234    martin 			    || (curpg->flags & PG_MARKER) == 0);
   2695       1.84  perseant 			if (pages_per_block > 1) {
   2696      1.138  perseant 				while (curpg &&
   2697      1.230   hannken 				    ((curpg->offset & fs->lfs_bmask) ||
   2698      1.230   hannken 				    curpg->offset >= vp->v_size ||
   2699      1.230   hannken 				    curpg->offset >= endoffset)) {
   2700      1.217        ad 					curpg = TAILQ_NEXT(curpg, listq.queue);
   2701      1.230   hannken 					KASSERT(curpg == NULL ||
   2702      1.230   hannken 					    (curpg->flags & PG_MARKER) == 0);
   2703      1.230   hannken 				}
   2704       1.84  perseant 			}
   2705       1.84  perseant 			if (curpg == NULL)
   2706       1.84  perseant 				break;
   2707       1.84  perseant 			soff = curpg->offset;
   2708       1.84  perseant 		}
   2709       1.84  perseant 
   2710       1.84  perseant 		/*
   2711       1.84  perseant 		 * Mark all pages in extended range busy; find out if any
   2712       1.84  perseant 		 * of them are dirty.
   2713       1.84  perseant 		 */
   2714       1.84  perseant 		nonexistent = dirty = 0;
   2715       1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2716      1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   2717       1.84  perseant 			if (by_list && pages_per_block <= 1) {
   2718       1.84  perseant 				pgs[i] = pg = curpg;
   2719       1.84  perseant 			} else {
   2720       1.84  perseant 				off = soff + (i << PAGE_SHIFT);
   2721       1.84  perseant 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   2722       1.84  perseant 				if (pg == NULL) {
   2723       1.84  perseant 					++nonexistent;
   2724       1.84  perseant 					continue;
   2725       1.84  perseant 				}
   2726       1.84  perseant 			}
   2727       1.84  perseant 			KASSERT(pg != NULL);
   2728      1.158  perseant 
   2729      1.158  perseant 			/*
   2730      1.177  perseant 			 * If we're holding the segment lock, we can deadlock
   2731      1.158  perseant 			 * against a process that has our page and is waiting
   2732      1.158  perseant 			 * for the cleaner, while the cleaner waits for the
   2733      1.158  perseant 			 * segment lock.  Just bail in that case.
   2734      1.158  perseant 			 */
   2735      1.159  perseant 			if ((pg->flags & PG_BUSY) &&
   2736      1.159  perseant 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   2737      1.203  perseant 				if (i > 0)
   2738      1.159  perseant 					uvm_page_unbusy(pgs, i);
   2739      1.159  perseant 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   2740      1.203  perseant 				if (pgp)
   2741      1.203  perseant 					*pgp = pg;
   2742      1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2743      1.159  perseant 				return -1;
   2744      1.158  perseant 			}
   2745      1.158  perseant 
   2746       1.84  perseant 			while (pg->flags & PG_BUSY) {
   2747      1.203  perseant 				wait_for_page(vp, pg, NULL);
   2748      1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2749      1.203  perseant 				if (i > 0)
   2750      1.203  perseant 					uvm_page_unbusy(pgs, i);
   2751      1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2752      1.203  perseant 				goto top;
   2753       1.84  perseant 			}
   2754       1.84  perseant 			pg->flags |= PG_BUSY;
   2755       1.84  perseant 			UVM_PAGE_OWN(pg, "lfs_putpages");
   2756       1.84  perseant 
   2757       1.84  perseant 			pmap_page_protect(pg, VM_PROT_NONE);
   2758       1.84  perseant 			tdirty = (pmap_clear_modify(pg) ||
   2759       1.84  perseant 				  (pg->flags & PG_CLEAN) == 0);
   2760       1.84  perseant 			dirty += tdirty;
   2761       1.84  perseant 		}
   2762       1.84  perseant 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   2763       1.84  perseant 			if (by_list) {
   2764      1.217        ad 				curpg = TAILQ_NEXT(curpg, listq.queue);
   2765       1.84  perseant 			} else {
   2766       1.84  perseant 				soff += fs->lfs_bsize;
   2767       1.84  perseant 			}
   2768       1.84  perseant 			continue;
   2769       1.84  perseant 		}
   2770       1.84  perseant 
   2771       1.84  perseant 		any_dirty += dirty;
   2772       1.84  perseant 		KASSERT(nonexistent == 0);
   2773      1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2774       1.84  perseant 
   2775       1.84  perseant 		/*
   2776       1.84  perseant 		 * If any are dirty make all dirty; unbusy them,
   2777       1.88  perseant 		 * but if we were asked to clean, wire them so that
   2778       1.88  perseant 		 * the pagedaemon doesn't bother us about them while
   2779       1.88  perseant 		 * they're on their way to disk.
   2780       1.84  perseant 		 */
   2781       1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2782      1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   2783       1.84  perseant 			pg = pgs[i];
   2784       1.84  perseant 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2785      1.239  perseant 			KASSERT(pg->flags & PG_BUSY);
   2786       1.84  perseant 			if (dirty) {
   2787       1.84  perseant 				pg->flags &= ~PG_CLEAN;
   2788       1.84  perseant 				if (flags & PGO_FREE) {
   2789       1.85      yamt 					/*
   2790       1.96  perseant 					 * Wire the page so that
   2791       1.96  perseant 					 * pdaemon doesn't see it again.
   2792       1.85      yamt 					 */
   2793      1.214        ad 					mutex_enter(&uvm_pageqlock);
   2794       1.85      yamt 					uvm_pagewire(pg);
   2795      1.214        ad 					mutex_exit(&uvm_pageqlock);
   2796       1.88  perseant 
   2797       1.84  perseant 					/* Suspended write flag */
   2798       1.84  perseant 					pg->flags |= PG_DELWRI;
   2799       1.84  perseant 				}
   2800       1.84  perseant 			}
   2801       1.84  perseant 			if (pg->flags & PG_WANTED)
   2802       1.84  perseant 				wakeup(pg);
   2803       1.84  perseant 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2804       1.85      yamt 			UVM_PAGE_OWN(pg, NULL);
   2805       1.84  perseant 		}
   2806       1.84  perseant 
   2807      1.103  perseant 		if (checkfirst && any_dirty)
   2808      1.130      yamt 			break;
   2809      1.103  perseant 
   2810       1.84  perseant 		if (by_list) {
   2811      1.217        ad 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2812       1.84  perseant 		} else {
   2813       1.84  perseant 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2814       1.84  perseant 		}
   2815       1.84  perseant 	}
   2816       1.84  perseant 
   2817      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2818       1.84  perseant 	return any_dirty;
   2819       1.84  perseant }
   2820       1.84  perseant 
   2821       1.84  perseant /*
   2822       1.84  perseant  * lfs_putpages functions like genfs_putpages except that
   2823      1.135     perry  *
   2824       1.84  perseant  * (1) It needs to bounds-check the incoming requests to ensure that
   2825       1.84  perseant  *     they are block-aligned; if they are not, expand the range and
   2826       1.84  perseant  *     do the right thing in case, e.g., the requested range is clean
   2827       1.84  perseant  *     but the expanded range is dirty.
   2828      1.178  perseant  *
   2829       1.84  perseant  * (2) It needs to explicitly send blocks to be written when it is done.
   2830      1.202  perseant  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2831      1.202  perseant  *     the seglock and let lfs_segunlock wait for us.
   2832      1.202  perseant  *     XXX There might be a bad situation if we have to flush a vnode while
   2833      1.202  perseant  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2834      1.202  perseant  *     XXX case.
   2835       1.84  perseant  *
   2836       1.84  perseant  * Assumptions:
   2837       1.84  perseant  *
   2838       1.84  perseant  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2839       1.84  perseant  *     there is a danger that when we expand the page range and busy the
   2840       1.84  perseant  *     pages we will deadlock.
   2841      1.178  perseant  *
   2842       1.84  perseant  * (2) We are called with vp->v_interlock held; we must return with it
   2843       1.84  perseant  *     released.
   2844      1.178  perseant  *
   2845       1.84  perseant  * (3) We don't absolutely have to free pages right away, provided that
   2846       1.84  perseant  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2847       1.84  perseant  *     us a request with PGO_FREE, we take the pages out of the paging
   2848       1.84  perseant  *     queue and wake up the writer, which will handle freeing them for us.
   2849       1.84  perseant  *
   2850       1.84  perseant  *     We ensure that for any filesystem block, all pages for that
   2851       1.84  perseant  *     block are either resident or not, even if those pages are higher
   2852       1.84  perseant  *     than EOF; that means that we will be getting requests to free
   2853       1.84  perseant  *     "unused" pages above EOF all the time, and should ignore them.
   2854      1.115      yamt  *
   2855      1.178  perseant  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2856      1.178  perseant  *     into has been set up for us by lfs_writefile.  If not, we will
   2857      1.178  perseant  *     have to handle allocating and/or freeing an finfo entry.
   2858      1.178  perseant  *
   2859      1.115      yamt  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2860       1.84  perseant  */
   2861       1.84  perseant 
   2862      1.203  perseant /* How many times to loop before we should start to worry */
   2863      1.203  perseant #define TOOMANY 4
   2864      1.203  perseant 
   2865       1.84  perseant int
   2866       1.84  perseant lfs_putpages(void *v)
   2867       1.84  perseant {
   2868       1.84  perseant 	int error;
   2869       1.84  perseant 	struct vop_putpages_args /* {
   2870       1.84  perseant 		struct vnode *a_vp;
   2871       1.84  perseant 		voff_t a_offlo;
   2872       1.84  perseant 		voff_t a_offhi;
   2873       1.84  perseant 		int a_flags;
   2874       1.84  perseant 	} */ *ap = v;
   2875       1.84  perseant 	struct vnode *vp;
   2876       1.84  perseant 	struct inode *ip;
   2877       1.84  perseant 	struct lfs *fs;
   2878       1.84  perseant 	struct segment *sp;
   2879       1.84  perseant 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2880       1.95  perseant 	off_t off, max_endoffset;
   2881      1.239  perseant 	bool seglocked, sync, pagedaemon, reclaim;
   2882      1.203  perseant 	struct vm_page *pg, *busypg;
   2883       1.84  perseant 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2884      1.239  perseant 	int oreclaim = 0;
   2885      1.239  perseant 	int donewriting = 0;
   2886      1.203  perseant #ifdef DEBUG
   2887      1.203  perseant 	int debug_n_again, debug_n_dirtyclean;
   2888      1.203  perseant #endif
   2889       1.84  perseant 
   2890       1.84  perseant 	vp = ap->a_vp;
   2891       1.84  perseant 	ip = VTOI(vp);
   2892       1.84  perseant 	fs = ip->i_lfs;
   2893      1.126      yamt 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2894      1.239  perseant 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2895      1.207        ad 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2896       1.84  perseant 
   2897      1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2898      1.239  perseant 
   2899       1.84  perseant 	/* Putpages does nothing for metadata. */
   2900       1.84  perseant 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2901      1.235     rmind 		mutex_exit(vp->v_interlock);
   2902       1.84  perseant 		return 0;
   2903       1.84  perseant 	}
   2904       1.84  perseant 
   2905       1.84  perseant 	/*
   2906       1.84  perseant 	 * If there are no pages, don't do anything.
   2907       1.84  perseant 	 */
   2908       1.84  perseant 	if (vp->v_uobj.uo_npages == 0) {
   2909      1.195  perseant 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2910      1.212        ad 		    (vp->v_iflag & VI_ONWORKLST) &&
   2911      1.195  perseant 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2912      1.212        ad 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2913      1.192   reinoud 			vn_syncer_remove_from_worklist(vp);
   2914      1.195  perseant 		}
   2915      1.235     rmind 		mutex_exit(vp->v_interlock);
   2916      1.164  perseant 
   2917      1.164  perseant 		/* Remove us from paging queue, if we were on it */
   2918      1.214        ad 		mutex_enter(&lfs_lock);
   2919      1.164  perseant 		if (ip->i_flags & IN_PAGING) {
   2920      1.164  perseant 			ip->i_flags &= ~IN_PAGING;
   2921      1.164  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2922      1.164  perseant 		}
   2923      1.214        ad 		mutex_exit(&lfs_lock);
   2924      1.239  perseant 
   2925      1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2926       1.84  perseant 		return 0;
   2927       1.84  perseant 	}
   2928       1.84  perseant 
   2929      1.102      fvdl 	blkeof = blkroundup(fs, ip->i_size);
   2930       1.84  perseant 
   2931       1.84  perseant 	/*
   2932       1.84  perseant 	 * Ignore requests to free pages past EOF but in the same block
   2933      1.239  perseant 	 * as EOF, unless the vnode is being reclaimed or the request
   2934      1.239  perseant 	 * is synchronous.  (If the request is sync, it comes from
   2935      1.239  perseant 	 * lfs_truncate.)
   2936      1.239  perseant 	 *
   2937      1.239  perseant 	 * To avoid being flooded with this request, make these pages
   2938      1.239  perseant 	 * look "active".
   2939       1.84  perseant 	 */
   2940      1.239  perseant 	if (!sync && !reclaim &&
   2941      1.239  perseant 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2942       1.84  perseant 		origoffset = ap->a_offlo;
   2943       1.95  perseant 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2944       1.95  perseant 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2945       1.95  perseant 			KASSERT(pg != NULL);
   2946       1.95  perseant 			while (pg->flags & PG_BUSY) {
   2947       1.95  perseant 				pg->flags |= PG_WANTED;
   2948      1.235     rmind 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2949       1.95  perseant 						    "lfsput2", 0);
   2950      1.235     rmind 				mutex_enter(vp->v_interlock);
   2951       1.95  perseant 			}
   2952      1.214        ad 			mutex_enter(&uvm_pageqlock);
   2953       1.95  perseant 			uvm_pageactivate(pg);
   2954      1.214        ad 			mutex_exit(&uvm_pageqlock);
   2955       1.95  perseant 		}
   2956       1.84  perseant 		ap->a_offlo = blkeof;
   2957       1.84  perseant 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2958      1.235     rmind 			mutex_exit(vp->v_interlock);
   2959       1.84  perseant 			return 0;
   2960       1.84  perseant 		}
   2961       1.84  perseant 	}
   2962       1.84  perseant 
   2963       1.84  perseant 	/*
   2964       1.84  perseant 	 * Extend page range to start and end at block boundaries.
   2965       1.84  perseant 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2966       1.84  perseant 	 */
   2967       1.86  perseant 	origoffset = ap->a_offlo;
   2968       1.84  perseant 	origendoffset = ap->a_offhi;
   2969       1.86  perseant 	startoffset = origoffset & ~(fs->lfs_bmask);
   2970       1.84  perseant 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2971       1.84  perseant 					       << fs->lfs_bshift;
   2972       1.84  perseant 
   2973       1.84  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2974       1.86  perseant 		endoffset = max_endoffset;
   2975       1.84  perseant 		origendoffset = endoffset;
   2976       1.86  perseant 	} else {
   2977       1.84  perseant 		origendoffset = round_page(ap->a_offhi);
   2978       1.84  perseant 		endoffset = round_page(blkroundup(fs, origendoffset));
   2979       1.84  perseant 	}
   2980       1.84  perseant 
   2981       1.84  perseant 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2982       1.84  perseant 	if (startoffset == endoffset) {
   2983       1.84  perseant 		/* Nothing to do, why were we called? */
   2984      1.235     rmind 		mutex_exit(vp->v_interlock);
   2985      1.136  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2986      1.136  perseant 		      PRId64 "\n", startoffset));
   2987       1.84  perseant 		return 0;
   2988       1.84  perseant 	}
   2989       1.84  perseant 
   2990       1.84  perseant 	ap->a_offlo = startoffset;
   2991       1.84  perseant 	ap->a_offhi = endoffset;
   2992       1.84  perseant 
   2993      1.203  perseant 	/*
   2994      1.203  perseant 	 * If not cleaning, just send the pages through genfs_putpages
   2995      1.203  perseant 	 * to be returned to the pool.
   2996      1.203  perseant 	 */
   2997      1.239  perseant 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2998      1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2999      1.239  perseant 		      vp, (int)ip->i_number, ap->a_flags));
   3000      1.239  perseant 		int r = genfs_putpages(v);
   3001      1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   3002      1.239  perseant 		return r;
   3003      1.239  perseant 	}
   3004       1.84  perseant 
   3005      1.203  perseant 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   3006      1.203  perseant 	ap->a_flags |= PGO_BUSYFAIL;
   3007      1.203  perseant 
   3008       1.84  perseant 	/*
   3009      1.203  perseant 	 * Likewise, if we are asked to clean but the pages are not
   3010      1.203  perseant 	 * dirty, we can just free them using genfs_putpages.
   3011       1.84  perseant 	 */
   3012      1.203  perseant #ifdef DEBUG
   3013      1.203  perseant 	debug_n_dirtyclean = 0;
   3014      1.203  perseant #endif
   3015      1.103  perseant 	do {
   3016      1.103  perseant 		int r;
   3017      1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   3018      1.103  perseant 
   3019      1.203  perseant 		/* Count the number of dirty pages */
   3020      1.158  perseant 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3021      1.203  perseant 				ap->a_flags, 1, NULL);
   3022      1.158  perseant 		if (r < 0) {
   3023      1.203  perseant 			/* Pages are busy with another process */
   3024      1.235     rmind 			mutex_exit(vp->v_interlock);
   3025      1.158  perseant 			return EDEADLK;
   3026      1.158  perseant 		}
   3027      1.203  perseant 		if (r > 0) /* Some pages are dirty */
   3028      1.103  perseant 			break;
   3029      1.103  perseant 
   3030      1.134  perseant 		/*
   3031      1.134  perseant 		 * Sometimes pages are dirtied between the time that
   3032      1.134  perseant 		 * we check and the time we try to clean them.
   3033      1.134  perseant 		 * Instruct lfs_gop_write to return EDEADLK in this case
   3034      1.134  perseant 		 * so we can write them properly.
   3035      1.134  perseant 		 */
   3036      1.134  perseant 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   3037      1.206  perseant 		r = genfs_do_putpages(vp, startoffset, endoffset,
   3038      1.226       eeh 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   3039      1.134  perseant 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   3040      1.239  perseant 		if (r != EDEADLK) {
   3041      1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   3042      1.239  perseant  			return r;
   3043      1.239  perseant 		}
   3044      1.103  perseant 
   3045      1.203  perseant 		/* One of the pages was busy.  Start over. */
   3046      1.235     rmind 		mutex_enter(vp->v_interlock);
   3047      1.203  perseant 		wait_for_page(vp, busypg, "dirtyclean");
   3048      1.203  perseant #ifdef DEBUG
   3049      1.203  perseant 		++debug_n_dirtyclean;
   3050      1.203  perseant #endif
   3051      1.103  perseant 	} while(1);
   3052      1.135     perry 
   3053      1.203  perseant #ifdef DEBUG
   3054      1.203  perseant 	if (debug_n_dirtyclean > TOOMANY)
   3055      1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   3056      1.239  perseant 		      debug_n_dirtyclean));
   3057      1.203  perseant #endif
   3058      1.203  perseant 
   3059       1.84  perseant 	/*
   3060       1.84  perseant 	 * Dirty and asked to clean.
   3061       1.84  perseant 	 *
   3062       1.84  perseant 	 * Pagedaemon can't actually write LFS pages; wake up
   3063       1.84  perseant 	 * the writer to take care of that.  The writer will
   3064       1.84  perseant 	 * notice the pager inode queue and act on that.
   3065      1.232       eeh 	 *
   3066      1.232       eeh 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   3067      1.232       eeh 	 * get a nasty deadlock with lfs_flush_pchain().
   3068       1.84  perseant 	 */
   3069       1.84  perseant 	if (pagedaemon) {
   3070      1.235     rmind 		mutex_exit(vp->v_interlock);
   3071      1.214        ad 		mutex_enter(&lfs_lock);
   3072      1.164  perseant 		if (!(ip->i_flags & IN_PAGING)) {
   3073      1.164  perseant 			ip->i_flags |= IN_PAGING;
   3074      1.164  perseant 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3075      1.232       eeh 		}
   3076      1.164  perseant 		wakeup(&lfs_writer_daemon);
   3077      1.214        ad 		mutex_exit(&lfs_lock);
   3078      1.198        ad 		preempt();
   3079      1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   3080       1.84  perseant 		return EWOULDBLOCK;
   3081       1.84  perseant 	}
   3082       1.84  perseant 
   3083       1.84  perseant 	/*
   3084       1.84  perseant 	 * If this is a file created in a recent dirop, we can't flush its
   3085       1.84  perseant 	 * inode until the dirop is complete.  Drain dirops, then flush the
   3086       1.84  perseant 	 * filesystem (taking care of any other pending dirops while we're
   3087       1.84  perseant 	 * at it).
   3088       1.84  perseant 	 */
   3089       1.84  perseant 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   3090      1.212        ad 	    (vp->v_uflag & VU_DIROP)) {
   3091      1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   3092      1.239  perseant 
   3093      1.239  perseant  		lfs_writer_enter(fs, "ppdirop");
   3094       1.84  perseant 
   3095      1.239  perseant 		/* Note if we hold the vnode locked */
   3096      1.239  perseant 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   3097      1.239  perseant 		{
   3098      1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   3099      1.239  perseant 		} else {
   3100      1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   3101      1.239  perseant 		}
   3102      1.235     rmind 		mutex_exit(vp->v_interlock);
   3103      1.135     perry 
   3104      1.214        ad 		mutex_enter(&lfs_lock);
   3105       1.84  perseant 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   3106      1.214        ad 		mutex_exit(&lfs_lock);
   3107      1.135     perry 
   3108      1.235     rmind 		mutex_enter(vp->v_interlock);
   3109      1.111      yamt 		lfs_writer_leave(fs);
   3110       1.84  perseant 
   3111      1.239  perseant 		/* The flush will have cleaned out this vnode as well,
   3112      1.239  perseant 		   no need to do more to it. */
   3113       1.84  perseant 	}
   3114       1.84  perseant 
   3115       1.84  perseant 	/*
   3116       1.86  perseant 	 * This is it.	We are going to write some pages.  From here on
   3117       1.84  perseant 	 * down it's all just mechanics.
   3118       1.84  perseant 	 *
   3119      1.103  perseant 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   3120       1.84  perseant 	 */
   3121       1.84  perseant 	ap->a_flags &= ~PGO_SYNCIO;
   3122       1.84  perseant 
   3123       1.84  perseant 	/*
   3124       1.84  perseant 	 * If we've already got the seglock, flush the node and return.
   3125       1.84  perseant 	 * The FIP has already been set up for us by lfs_writefile,
   3126       1.84  perseant 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   3127       1.84  perseant 	 * unless genfs_putpages returns EDEADLK; then we must flush
   3128       1.84  perseant 	 * what we have, and correct FIP and segment header accounting.
   3129       1.84  perseant 	 */
   3130      1.203  perseant   get_seglock:
   3131      1.203  perseant 	/*
   3132      1.203  perseant 	 * If we are not called with the segment locked, lock it.
   3133      1.203  perseant 	 * Account for a new FIP in the segment header, and set sp->vp.
   3134      1.203  perseant 	 * (This should duplicate the setup at the top of lfs_writefile().)
   3135      1.203  perseant 	 */
   3136      1.126      yamt 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   3137      1.126      yamt 	if (!seglocked) {
   3138      1.235     rmind 		mutex_exit(vp->v_interlock);
   3139      1.126      yamt 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   3140      1.239  perseant 		if (error != 0) {
   3141      1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   3142      1.239  perseant  			return error;
   3143      1.239  perseant 		}
   3144      1.235     rmind 		mutex_enter(vp->v_interlock);
   3145      1.203  perseant 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   3146       1.84  perseant 	}
   3147       1.84  perseant 	sp = fs->lfs_sp;
   3148      1.120      yamt 	KASSERT(sp->vp == NULL);
   3149       1.84  perseant 	sp->vp = vp;
   3150      1.135     perry 
   3151      1.239  perseant 	/* Note segments written by reclaim; only for debugging */
   3152      1.239  perseant 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   3153      1.239  perseant 		sp->seg_flags |= SEGM_RECLAIM;
   3154      1.239  perseant 		fs->lfs_reclino = ip->i_number;
   3155      1.239  perseant 	}
   3156      1.239  perseant 
   3157      1.203  perseant 	/*
   3158      1.203  perseant 	 * Ensure that the partial segment is marked SS_DIROP if this
   3159      1.203  perseant 	 * vnode is a DIROP.
   3160      1.203  perseant 	 */
   3161      1.212        ad 	if (!seglocked && vp->v_uflag & VU_DIROP)
   3162      1.203  perseant 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   3163      1.135     perry 
   3164       1.84  perseant 	/*
   3165      1.203  perseant 	 * Loop over genfs_putpages until all pages are gathered.
   3166       1.88  perseant 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   3167      1.103  perseant 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   3168      1.203  perseant 	 * well, since more pages might have been dirtied in our absence.
   3169       1.84  perseant 	 */
   3170      1.203  perseant #ifdef DEBUG
   3171      1.203  perseant 	debug_n_again = 0;
   3172      1.203  perseant #endif
   3173      1.203  perseant 	do {
   3174      1.203  perseant 		busypg = NULL;
   3175      1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   3176      1.203  perseant 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3177      1.203  perseant 				ap->a_flags, 0, &busypg) < 0) {
   3178      1.235     rmind 			mutex_exit(vp->v_interlock);
   3179      1.239  perseant 			/* XXX why? --ks */
   3180      1.235     rmind 			mutex_enter(vp->v_interlock);
   3181      1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   3182      1.203  perseant 			if (!seglocked) {
   3183      1.235     rmind 				mutex_exit(vp->v_interlock);
   3184      1.203  perseant 				lfs_release_finfo(fs);
   3185      1.203  perseant 				lfs_segunlock(fs);
   3186      1.235     rmind 				mutex_enter(vp->v_interlock);
   3187      1.203  perseant 			}
   3188      1.208  perseant 			sp->vp = NULL;
   3189      1.203  perseant 			goto get_seglock;
   3190       1.88  perseant 		}
   3191      1.203  perseant 
   3192      1.203  perseant 		busypg = NULL;
   3193      1.239  perseant 		KASSERT(!mutex_owned(&uvm_pageqlock));
   3194      1.239  perseant 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   3195      1.239  perseant 		ap->a_flags &= ~PGO_RECLAIM;
   3196      1.206  perseant 		error = genfs_do_putpages(vp, startoffset, endoffset,
   3197      1.203  perseant 					   ap->a_flags, &busypg);
   3198      1.239  perseant 		ap->a_flags |= oreclaim;
   3199      1.203  perseant 
   3200      1.203  perseant 		if (error == EDEADLK || error == EAGAIN) {
   3201      1.203  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3202      1.203  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   3203      1.203  perseant 			      ip->i_number, fs->lfs_offset,
   3204      1.203  perseant 			      dtosn(fs, fs->lfs_offset)));
   3205       1.84  perseant 
   3206      1.239  perseant 			if (oreclaim) {
   3207      1.239  perseant 				mutex_enter(vp->v_interlock);
   3208      1.239  perseant 				write_and_wait(fs, vp, busypg, seglocked, "again");
   3209      1.239  perseant 				mutex_exit(vp->v_interlock);
   3210      1.239  perseant 			} else {
   3211      1.239  perseant 				if ((sp->seg_flags & SEGM_SINGLE) &&
   3212      1.239  perseant 				    fs->lfs_curseg != fs->lfs_startseg)
   3213      1.239  perseant 					donewriting = 1;
   3214      1.239  perseant 			}
   3215      1.239  perseant 		} else if (error) {
   3216      1.239  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3217      1.239  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   3218      1.239  perseant 			      (int)ip->i_number, fs->lfs_offset,
   3219      1.239  perseant 			      dtosn(fs, fs->lfs_offset)));
   3220      1.167  perseant 		}
   3221      1.239  perseant 		/* genfs_do_putpages loses the interlock */
   3222      1.203  perseant #ifdef DEBUG
   3223      1.203  perseant 		++debug_n_again;
   3224      1.203  perseant #endif
   3225      1.239  perseant 		if (oreclaim && error == EAGAIN) {
   3226      1.239  perseant 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   3227      1.239  perseant 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   3228      1.239  perseant 			mutex_enter(vp->v_interlock);
   3229      1.239  perseant 		}
   3230      1.239  perseant 		if (error == EDEADLK)
   3231      1.239  perseant 			mutex_enter(vp->v_interlock);
   3232      1.239  perseant 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   3233      1.203  perseant #ifdef DEBUG
   3234      1.203  perseant 	if (debug_n_again > TOOMANY)
   3235      1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   3236      1.203  perseant #endif
   3237      1.103  perseant 
   3238      1.203  perseant 	KASSERT(sp != NULL && sp->vp == vp);
   3239      1.239  perseant 	if (!seglocked && !donewriting) {
   3240      1.178  perseant 		sp->vp = NULL;
   3241      1.126      yamt 
   3242      1.126      yamt 		/* Write indirect blocks as well */
   3243      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   3244      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   3245      1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   3246      1.120      yamt 
   3247      1.126      yamt 		KASSERT(sp->vp == NULL);
   3248      1.126      yamt 		sp->vp = vp;
   3249      1.126      yamt 	}
   3250       1.84  perseant 
   3251       1.84  perseant 	/*
   3252       1.84  perseant 	 * Blocks are now gathered into a segment waiting to be written.
   3253       1.84  perseant 	 * All that's left to do is update metadata, and write them.
   3254       1.84  perseant 	 */
   3255      1.120      yamt 	lfs_updatemeta(sp);
   3256      1.120      yamt 	KASSERT(sp->vp == vp);
   3257      1.120      yamt 	sp->vp = NULL;
   3258      1.126      yamt 
   3259      1.203  perseant 	/*
   3260      1.203  perseant 	 * If we were called from lfs_writefile, we don't need to clean up
   3261      1.203  perseant 	 * the FIP or unlock the segment lock.	We're done.
   3262      1.203  perseant 	 */
   3263      1.239  perseant 	if (seglocked) {
   3264      1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   3265      1.126      yamt 		return error;
   3266      1.239  perseant 	}
   3267      1.120      yamt 
   3268      1.178  perseant 	/* Clean up FIP and send it to disk. */
   3269      1.178  perseant 	lfs_release_finfo(fs);
   3270       1.88  perseant 	lfs_writeseg(fs, fs->lfs_sp);
   3271       1.88  perseant 
   3272       1.84  perseant 	/*
   3273      1.203  perseant 	 * Remove us from paging queue if we wrote all our pages.
   3274      1.164  perseant 	 */
   3275      1.203  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   3276      1.214        ad 		mutex_enter(&lfs_lock);
   3277      1.203  perseant 		if (ip->i_flags & IN_PAGING) {
   3278      1.203  perseant 			ip->i_flags &= ~IN_PAGING;
   3279      1.203  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3280      1.203  perseant 		}
   3281      1.214        ad 		mutex_exit(&lfs_lock);
   3282      1.164  perseant 	}
   3283      1.164  perseant 
   3284      1.164  perseant 	/*
   3285       1.84  perseant 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   3286       1.84  perseant 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   3287       1.84  perseant 	 * will not be true if we stop using malloc/copy.
   3288       1.84  perseant 	 */
   3289       1.84  perseant 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   3290       1.84  perseant 	lfs_segunlock(fs);
   3291       1.84  perseant 
   3292       1.84  perseant 	/*
   3293       1.84  perseant 	 * Wait for v_numoutput to drop to zero.  The seglock should
   3294       1.84  perseant 	 * take care of this, but there is a slight possibility that
   3295       1.84  perseant 	 * aiodoned might not have got around to our buffers yet.
   3296       1.84  perseant 	 */
   3297       1.84  perseant 	if (sync) {
   3298      1.235     rmind 		mutex_enter(vp->v_interlock);
   3299       1.98  perseant 		while (vp->v_numoutput > 0) {
   3300      1.136  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   3301      1.136  perseant 			      " num %d\n", ip->i_number, vp->v_numoutput));
   3302      1.235     rmind 			cv_wait(&vp->v_cv, vp->v_interlock);
   3303       1.84  perseant 		}
   3304      1.235     rmind 		mutex_exit(vp->v_interlock);
   3305       1.84  perseant 	}
   3306      1.239  perseant 	KASSERT(!mutex_owned(vp->v_interlock));
   3307       1.84  perseant 	return error;
   3308       1.84  perseant }
   3309       1.84  perseant 
   3310       1.84  perseant /*
   3311       1.84  perseant  * Return the last logical file offset that should be written for this file
   3312       1.86  perseant  * if we're doing a write that ends at "size".	If writing, we need to know
   3313       1.84  perseant  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   3314       1.84  perseant  * to know about entire blocks.
   3315       1.84  perseant  */
   3316       1.84  perseant void
   3317       1.84  perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   3318       1.84  perseant {
   3319       1.84  perseant 	struct inode *ip = VTOI(vp);
   3320      1.135     perry 	struct lfs *fs = ip->i_lfs;
   3321       1.84  perseant 	daddr_t olbn, nlbn;
   3322       1.84  perseant 
   3323      1.102      fvdl 	olbn = lblkno(fs, ip->i_size);
   3324       1.84  perseant 	nlbn = lblkno(fs, size);
   3325      1.118      yamt 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   3326       1.86  perseant 		*eobp = fragroundup(fs, size);
   3327       1.86  perseant 	} else {
   3328       1.86  perseant 		*eobp = blkroundup(fs, size);
   3329       1.86  perseant 	}
   3330       1.84  perseant }
   3331       1.84  perseant 
   3332       1.84  perseant #ifdef DEBUG
   3333       1.84  perseant void lfs_dump_vop(void *);
   3334       1.84  perseant 
   3335       1.84  perseant void
   3336       1.84  perseant lfs_dump_vop(void *v)
   3337       1.84  perseant {
   3338       1.86  perseant 	struct vop_putpages_args /* {
   3339       1.86  perseant 		struct vnode *a_vp;
   3340       1.86  perseant 		voff_t a_offlo;
   3341       1.86  perseant 		voff_t a_offhi;
   3342       1.86  perseant 		int a_flags;
   3343       1.86  perseant 	} */ *ap = v;
   3344       1.84  perseant 
   3345      1.106     ragge #ifdef DDB
   3346       1.84  perseant 	vfs_vnode_print(ap->a_vp, 0, printf);
   3347      1.106     ragge #endif
   3348      1.102      fvdl 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   3349       1.84  perseant }
   3350       1.84  perseant #endif
   3351       1.84  perseant 
   3352       1.84  perseant int
   3353       1.84  perseant lfs_mmap(void *v)
   3354       1.84  perseant {
   3355       1.84  perseant 	struct vop_mmap_args /* {
   3356       1.86  perseant 		const struct vnodeop_desc *a_desc;
   3357       1.86  perseant 		struct vnode *a_vp;
   3358      1.209     pooka 		vm_prot_t a_prot;
   3359      1.176      elad 		kauth_cred_t a_cred;
   3360       1.84  perseant 	} */ *ap = v;
   3361       1.84  perseant 
   3362       1.84  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   3363       1.84  perseant 		return EOPNOTSUPP;
   3364       1.84  perseant 	return ufs_mmap(v);
   3365       1.84  perseant }
   3366