Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.245
      1  1.245  dholland /*	$NetBSD: lfs_vnops.c,v 1.245 2013/06/06 00:48:04 dholland Exp $	*/
      2    1.2       cgd 
      3   1.22  perseant /*-
      4   1.84  perseant  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5   1.22  perseant  * All rights reserved.
      6   1.22  perseant  *
      7   1.22  perseant  * This code is derived from software contributed to The NetBSD Foundation
      8   1.22  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9   1.22  perseant  *
     10   1.22  perseant  * Redistribution and use in source and binary forms, with or without
     11   1.22  perseant  * modification, are permitted provided that the following conditions
     12   1.22  perseant  * are met:
     13   1.22  perseant  * 1. Redistributions of source code must retain the above copyright
     14   1.22  perseant  *    notice, this list of conditions and the following disclaimer.
     15   1.22  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.22  perseant  *    notice, this list of conditions and the following disclaimer in the
     17   1.22  perseant  *    documentation and/or other materials provided with the distribution.
     18   1.22  perseant  *
     19   1.22  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.22  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.22  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.22  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.22  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.22  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.22  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.22  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.22  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.22  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.22  perseant  * POSSIBILITY OF SUCH DAMAGE.
     30   1.22  perseant  */
     31    1.1   mycroft /*
     32   1.15      fvdl  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     34    1.1   mycroft  *
     35    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     36    1.1   mycroft  * modification, are permitted provided that the following conditions
     37    1.1   mycroft  * are met:
     38    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     39    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     40    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     42    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     43  1.114       agc  * 3. Neither the name of the University nor the names of its contributors
     44    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     45    1.1   mycroft  *    without specific prior written permission.
     46    1.1   mycroft  *
     47    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57    1.1   mycroft  * SUCH DAMAGE.
     58    1.1   mycroft  *
     59   1.15      fvdl  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60    1.1   mycroft  */
     61   1.58     lukem 
     62   1.58     lukem #include <sys/cdefs.h>
     63  1.245  dholland __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.245 2013/06/06 00:48:04 dholland Exp $");
     64  1.182    martin 
     65  1.183    martin #ifdef _KERNEL_OPT
     66  1.182    martin #include "opt_compat_netbsd.h"
     67  1.238       chs #include "opt_uvm_page_trkown.h"
     68  1.183    martin #endif
     69   1.17  sommerfe 
     70    1.1   mycroft #include <sys/param.h>
     71    1.1   mycroft #include <sys/systm.h>
     72    1.1   mycroft #include <sys/namei.h>
     73    1.1   mycroft #include <sys/resourcevar.h>
     74    1.1   mycroft #include <sys/kernel.h>
     75    1.1   mycroft #include <sys/file.h>
     76    1.1   mycroft #include <sys/stat.h>
     77    1.1   mycroft #include <sys/buf.h>
     78    1.1   mycroft #include <sys/proc.h>
     79    1.1   mycroft #include <sys/mount.h>
     80    1.1   mycroft #include <sys/vnode.h>
     81   1.19   thorpej #include <sys/pool.h>
     82   1.10  christos #include <sys/signalvar.h>
     83  1.176      elad #include <sys/kauth.h>
     84  1.179  perseant #include <sys/syslog.h>
     85  1.197   hannken #include <sys/fstrans.h>
     86    1.1   mycroft 
     87   1.12   mycroft #include <miscfs/fifofs/fifo.h>
     88   1.12   mycroft #include <miscfs/genfs/genfs.h>
     89    1.1   mycroft #include <miscfs/specfs/specdev.h>
     90    1.1   mycroft 
     91  1.244  dholland #include <ufs/lfs/ulfs_inode.h>
     92  1.244  dholland #include <ufs/lfs/ulfs_dir.h>
     93  1.244  dholland #include <ufs/lfs/ulfsmount.h>
     94  1.244  dholland #include <ufs/lfs/ulfs_bswap.h>
     95  1.244  dholland #include <ufs/lfs/ulfs_extern.h>
     96    1.1   mycroft 
     97   1.84  perseant #include <uvm/uvm.h>
     98   1.95  perseant #include <uvm/uvm_pmap.h>
     99   1.95  perseant #include <uvm/uvm_stat.h>
    100   1.95  perseant #include <uvm/uvm_pager.h>
    101   1.84  perseant 
    102    1.1   mycroft #include <ufs/lfs/lfs.h>
    103    1.1   mycroft #include <ufs/lfs/lfs_extern.h>
    104    1.1   mycroft 
    105   1.91      yamt extern pid_t lfs_writer_daemon;
    106  1.203  perseant int lfs_ignore_lazy_sync = 1;
    107  1.203  perseant 
    108    1.1   mycroft /* Global vfs data structures for lfs. */
    109   1.51  perseant int (**lfs_vnodeop_p)(void *);
    110   1.50  jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    111    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    112  1.245  dholland 	{ &vop_lookup_desc, ulfs_lookup },		/* lookup */
    113   1.22  perseant 	{ &vop_create_desc, lfs_create },		/* create */
    114  1.245  dholland 	{ &vop_whiteout_desc, ulfs_whiteout },		/* whiteout */
    115   1.22  perseant 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    116  1.245  dholland 	{ &vop_open_desc, ulfs_open },			/* open */
    117    1.1   mycroft 	{ &vop_close_desc, lfs_close },			/* close */
    118  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    119    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    120   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    121    1.1   mycroft 	{ &vop_read_desc, lfs_read },			/* read */
    122    1.1   mycroft 	{ &vop_write_desc, lfs_write },			/* write */
    123  1.245  dholland 	{ &vop_ioctl_desc, ulfs_ioctl },		/* ioctl */
    124   1.90  perseant 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    125  1.245  dholland 	{ &vop_poll_desc, ulfs_poll },			/* poll */
    126   1.68  jdolecek 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    127  1.245  dholland 	{ &vop_revoke_desc, ulfs_revoke },		/* revoke */
    128   1.84  perseant 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    129    1.1   mycroft 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    130  1.245  dholland 	{ &vop_seek_desc, ulfs_seek },			/* seek */
    131   1.22  perseant 	{ &vop_remove_desc, lfs_remove },		/* remove */
    132   1.22  perseant 	{ &vop_link_desc, lfs_link },			/* link */
    133   1.22  perseant 	{ &vop_rename_desc, lfs_rename },		/* rename */
    134   1.22  perseant 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    135   1.22  perseant 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    136   1.22  perseant 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    137  1.245  dholland 	{ &vop_readdir_desc, ulfs_readdir },		/* readdir */
    138  1.245  dholland 	{ &vop_readlink_desc, ulfs_readlink },		/* readlink */
    139  1.245  dholland 	{ &vop_abortop_desc, ulfs_abortop },		/* abortop */
    140   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    141    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    142  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    143  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    144  1.245  dholland 	{ &vop_bmap_desc, ulfs_bmap },			/* bmap */
    145   1.94  perseant 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    146  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    147  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    148  1.245  dholland 	{ &vop_pathconf_desc, ulfs_pathconf },		/* pathconf */
    149  1.245  dholland 	{ &vop_advlock_desc, ulfs_advlock },		/* advlock */
    150    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    151   1.60       chs 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    152   1.60       chs 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    153   1.53       chs 	{ NULL, NULL }
    154    1.1   mycroft };
    155   1.50  jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    156    1.1   mycroft 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    157    1.1   mycroft 
    158   1.51  perseant int (**lfs_specop_p)(void *);
    159   1.50  jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    160    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    161    1.1   mycroft 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    162    1.1   mycroft 	{ &vop_create_desc, spec_create },		/* create */
    163    1.1   mycroft 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    164    1.1   mycroft 	{ &vop_open_desc, spec_open },			/* open */
    165   1.65  perseant 	{ &vop_close_desc, lfsspec_close },		/* close */
    166  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    167    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    168   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    169  1.245  dholland 	{ &vop_read_desc, ulfsspec_read },		/* read */
    170  1.245  dholland 	{ &vop_write_desc, ulfsspec_write },		/* write */
    171    1.1   mycroft 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172  1.245  dholland 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    173   1.13   mycroft 	{ &vop_poll_desc, spec_poll },			/* poll */
    174   1.68  jdolecek 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175   1.15      fvdl 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176    1.1   mycroft 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177    1.1   mycroft 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178    1.1   mycroft 	{ &vop_seek_desc, spec_seek },			/* seek */
    179    1.1   mycroft 	{ &vop_remove_desc, spec_remove },		/* remove */
    180    1.1   mycroft 	{ &vop_link_desc, spec_link },			/* link */
    181    1.1   mycroft 	{ &vop_rename_desc, spec_rename },		/* rename */
    182    1.1   mycroft 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183    1.1   mycroft 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184    1.1   mycroft 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185    1.1   mycroft 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186    1.1   mycroft 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187    1.1   mycroft 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    191  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    192    1.1   mycroft 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193    1.1   mycroft 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    195  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    196    1.1   mycroft 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197    1.1   mycroft 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198   1.28  perseant 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199   1.53       chs 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200   1.53       chs 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201   1.53       chs 	{ NULL, NULL }
    202    1.1   mycroft };
    203   1.50  jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
    204    1.1   mycroft 	{ &lfs_specop_p, lfs_specop_entries };
    205    1.1   mycroft 
    206   1.51  perseant int (**lfs_fifoop_p)(void *);
    207   1.50  jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    209  1.227     pooka 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    210  1.227     pooka 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    211  1.227     pooka 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    212  1.227     pooka 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    213   1.65  perseant 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    215    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217  1.245  dholland 	{ &vop_read_desc, ulfsfifo_read },		/* read */
    218  1.245  dholland 	{ &vop_write_desc, ulfsfifo_write },		/* write */
    219  1.227     pooka 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    220  1.245  dholland 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    221  1.227     pooka 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    222  1.227     pooka 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    223  1.227     pooka 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    224  1.227     pooka 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    225  1.227     pooka 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    226  1.227     pooka 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    227  1.227     pooka 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    228  1.227     pooka 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    229  1.227     pooka 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    230  1.227     pooka 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    231  1.227     pooka 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    232  1.227     pooka 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    233  1.227     pooka 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    234  1.227     pooka 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    235  1.227     pooka 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    236   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    239  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    240  1.227     pooka 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    241  1.227     pooka 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    242  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    243  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    244  1.227     pooka 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    245  1.227     pooka 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    246    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247  1.227     pooka 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    248   1.53       chs 	{ NULL, NULL }
    249    1.1   mycroft };
    250   1.50  jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251    1.1   mycroft 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252    1.1   mycroft 
    253  1.203  perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    254  1.134  perseant 
    255    1.1   mycroft #define	LFS_READWRITE
    256  1.244  dholland #include <ufs/lfs/ulfs_readwrite.c>
    257    1.1   mycroft #undef	LFS_READWRITE
    258    1.1   mycroft 
    259    1.1   mycroft /*
    260    1.1   mycroft  * Synch an open file.
    261    1.1   mycroft  */
    262    1.1   mycroft /* ARGSUSED */
    263   1.10  christos int
    264   1.51  perseant lfs_fsync(void *v)
    265   1.10  christos {
    266    1.1   mycroft 	struct vop_fsync_args /* {
    267    1.1   mycroft 		struct vnode *a_vp;
    268  1.176      elad 		kauth_cred_t a_cred;
    269   1.22  perseant 		int a_flags;
    270   1.49    toshii 		off_t offlo;
    271   1.49    toshii 		off_t offhi;
    272   1.10  christos 	} */ *ap = v;
    273   1.60       chs 	struct vnode *vp = ap->a_vp;
    274   1.84  perseant 	int error, wait;
    275  1.203  perseant 	struct inode *ip = VTOI(vp);
    276  1.203  perseant 	struct lfs *fs = ip->i_lfs;
    277   1.84  perseant 
    278  1.161  perseant 	/* If we're mounted read-only, don't try to sync. */
    279  1.203  perseant 	if (fs->lfs_ronly)
    280  1.161  perseant 		return 0;
    281  1.161  perseant 
    282  1.231   hannken 	/* If a removed vnode is being cleaned, no need to sync here. */
    283  1.231   hannken 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    284  1.231   hannken 		return 0;
    285  1.231   hannken 
    286   1.86  perseant 	/*
    287  1.203  perseant 	 * Trickle sync simply adds this vnode to the pager list, as if
    288  1.203  perseant 	 * the pagedaemon had requested a pageout.
    289   1.86  perseant 	 */
    290   1.84  perseant 	if (ap->a_flags & FSYNC_LAZY) {
    291  1.203  perseant 		if (lfs_ignore_lazy_sync == 0) {
    292  1.214        ad 			mutex_enter(&lfs_lock);
    293  1.203  perseant 			if (!(ip->i_flags & IN_PAGING)) {
    294  1.203  perseant 				ip->i_flags |= IN_PAGING;
    295  1.203  perseant 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    296  1.203  perseant 						  i_lfs_pchain);
    297  1.203  perseant 			}
    298  1.203  perseant 			wakeup(&lfs_writer_daemon);
    299  1.214        ad 			mutex_exit(&lfs_lock);
    300  1.203  perseant 		}
    301   1.47  perseant 		return 0;
    302   1.84  perseant 	}
    303   1.47  perseant 
    304  1.175  perseant 	/*
    305  1.188  perseant 	 * If a vnode is bring cleaned, flush it out before we try to
    306  1.188  perseant 	 * reuse it.  This prevents the cleaner from writing files twice
    307  1.188  perseant 	 * in the same partial segment, causing an accounting underflow.
    308  1.188  perseant 	 */
    309  1.203  perseant 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    310  1.188  perseant 		lfs_vflush(vp);
    311  1.175  perseant 	}
    312  1.175  perseant 
    313   1.84  perseant 	wait = (ap->a_flags & FSYNC_WAIT);
    314  1.203  perseant 	do {
    315  1.235     rmind 		mutex_enter(vp->v_interlock);
    316  1.203  perseant 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    317  1.203  perseant 				     round_page(ap->a_offhi),
    318  1.203  perseant 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    319  1.205  perseant 		if (error == EAGAIN) {
    320  1.214        ad 			mutex_enter(&lfs_lock);
    321  1.214        ad 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    322  1.214        ad 				hz / 100 + 1, &lfs_lock);
    323  1.214        ad 			mutex_exit(&lfs_lock);
    324  1.205  perseant 		}
    325  1.203  perseant 	} while (error == EAGAIN);
    326  1.103  perseant 	if (error)
    327  1.103  perseant 		return error;
    328  1.203  perseant 
    329  1.203  perseant 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    330  1.203  perseant 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    331  1.203  perseant 
    332  1.133  wrstuden 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    333  1.133  wrstuden 		int l = 0;
    334  1.203  perseant 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    335  1.213     pooka 				  curlwp->l_cred);
    336  1.133  wrstuden 	}
    337  1.103  perseant 	if (wait && !VPISEMPTY(vp))
    338  1.203  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
    339   1.84  perseant 
    340   1.63  perseant 	return error;
    341    1.1   mycroft }
    342    1.1   mycroft 
    343    1.1   mycroft /*
    344  1.245  dholland  * Take IN_ADIROP off, then call ulfs_inactive.
    345   1.40  perseant  */
    346   1.40  perseant int
    347   1.51  perseant lfs_inactive(void *v)
    348   1.40  perseant {
    349   1.40  perseant 	struct vop_inactive_args /* {
    350   1.40  perseant 		struct vnode *a_vp;
    351   1.40  perseant 	} */ *ap = v;
    352   1.72      yamt 
    353   1.76      yamt 	lfs_unmark_vnode(ap->a_vp);
    354   1.76      yamt 
    355   1.97  perseant 	/*
    356   1.97  perseant 	 * The Ifile is only ever inactivated on unmount.
    357   1.97  perseant 	 * Streamline this process by not giving it more dirty blocks.
    358   1.97  perseant 	 */
    359   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    360  1.214        ad 		mutex_enter(&lfs_lock);
    361   1.97  perseant 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    362  1.214        ad 		mutex_exit(&lfs_lock);
    363  1.229   hannken 		VOP_UNLOCK(ap->a_vp);
    364   1.97  perseant 		return 0;
    365   1.97  perseant 	}
    366   1.97  perseant 
    367  1.239  perseant #ifdef DEBUG
    368  1.239  perseant 	/*
    369  1.239  perseant 	 * This might happen on unmount.
    370  1.239  perseant 	 * XXX If it happens at any other time, it should be a panic.
    371  1.239  perseant 	 */
    372  1.239  perseant 	if (ap->a_vp->v_uflag & VU_DIROP) {
    373  1.239  perseant 		struct inode *ip = VTOI(ap->a_vp);
    374  1.239  perseant 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    375  1.239  perseant 	}
    376  1.239  perseant #endif /* DIAGNOSTIC */
    377  1.239  perseant 
    378  1.245  dholland 	return ulfs_inactive(v);
    379   1.40  perseant }
    380   1.40  perseant 
    381   1.40  perseant /*
    382  1.245  dholland  * These macros are used to bracket ULFS directory ops, so that we can
    383    1.1   mycroft  * identify all the pages touched during directory ops which need to
    384    1.1   mycroft  * be ordered and flushed atomically, so that they may be recovered.
    385  1.138  perseant  *
    386  1.212        ad  * Because we have to mark nodes VU_DIROP in order to prevent
    387   1.22  perseant  * the cache from reclaiming them while a dirop is in progress, we must
    388   1.22  perseant  * also manage the number of nodes so marked (otherwise we can run out).
    389   1.22  perseant  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    390  1.212        ad  * is decremented during segment write, when VU_DIROP is taken off.
    391   1.22  perseant  */
    392  1.138  perseant #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    393  1.138  perseant #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    394  1.138  perseant #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    395  1.138  perseant #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    396  1.138  perseant static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    397   1.71      yamt static int lfs_set_dirop(struct vnode *, struct vnode *);
    398   1.24  perseant 
    399   1.46  perseant static int
    400  1.138  perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    401   1.40  perseant {
    402   1.24  perseant 	struct lfs *fs;
    403   1.24  perseant 	int error;
    404   1.24  perseant 
    405  1.138  perseant 	KASSERT(VOP_ISLOCKED(dvp));
    406  1.138  perseant 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    407   1.71      yamt 
    408  1.138  perseant 	fs = VTOI(dvp)->i_lfs;
    409  1.141  perseant 
    410  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    411   1.44  perseant 	/*
    412  1.134  perseant 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    413  1.134  perseant 	 * as an inode block; an overestimate in most cases.
    414   1.44  perseant 	 */
    415  1.138  perseant 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    416   1.44  perseant 		return (error);
    417   1.70      yamt 
    418  1.214        ad     restart:
    419  1.214        ad 	mutex_enter(&lfs_lock);
    420  1.141  perseant 	if (fs->lfs_dirops == 0) {
    421  1.214        ad 		mutex_exit(&lfs_lock);
    422  1.138  perseant 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    423  1.214        ad 		mutex_enter(&lfs_lock);
    424  1.113      yamt 	}
    425  1.190  perseant 	while (fs->lfs_writer) {
    426  1.214        ad 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    427  1.214        ad 		    "lfs_sdirop", 0, &lfs_lock);
    428  1.190  perseant 		if (error == EINTR) {
    429  1.214        ad 			mutex_exit(&lfs_lock);
    430  1.190  perseant 			goto unreserve;
    431  1.190  perseant 		}
    432  1.190  perseant 	}
    433  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    434  1.113      yamt 		wakeup(&lfs_writer_daemon);
    435  1.214        ad 		mutex_exit(&lfs_lock);
    436  1.198        ad 		preempt();
    437  1.113      yamt 		goto restart;
    438  1.113      yamt 	}
    439   1.33  perseant 
    440  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    441  1.136  perseant 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    442  1.136  perseant 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    443  1.214        ad 		if ((error = mtsleep(&lfs_dirvcount,
    444  1.214        ad 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    445  1.214        ad 		    &lfs_lock)) != 0) {
    446  1.113      yamt 			goto unreserve;
    447  1.113      yamt 		}
    448  1.113      yamt 		goto restart;
    449  1.135     perry 	}
    450  1.113      yamt 
    451  1.135     perry 	++fs->lfs_dirops;
    452  1.239  perseant 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    453  1.214        ad 	mutex_exit(&lfs_lock);
    454   1.24  perseant 
    455   1.46  perseant 	/* Hold a reference so SET_ENDOP will be happy */
    456  1.138  perseant 	vref(dvp);
    457  1.138  perseant 	if (vp) {
    458  1.138  perseant 		vref(vp);
    459  1.138  perseant 		MARK_VNODE(vp);
    460  1.138  perseant 	}
    461   1.46  perseant 
    462  1.138  perseant 	MARK_VNODE(dvp);
    463   1.24  perseant 	return 0;
    464   1.70      yamt 
    465  1.203  perseant   unreserve:
    466  1.138  perseant 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    467   1.70      yamt 	return error;
    468    1.1   mycroft }
    469    1.1   mycroft 
    470  1.138  perseant /*
    471  1.138  perseant  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    472  1.138  perseant  * in getnewvnode(), if we have a stacked filesystem mounted on top
    473  1.138  perseant  * of us.
    474  1.138  perseant  *
    475  1.138  perseant  * NB: this means we have to clear the new vnodes on error.  Fortunately
    476  1.138  perseant  * SET_ENDOP is there to do that for us.
    477  1.138  perseant  */
    478  1.138  perseant static int
    479  1.138  perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    480  1.138  perseant {
    481  1.138  perseant 	int error;
    482  1.138  perseant 	struct lfs *fs;
    483  1.138  perseant 
    484  1.245  dholland 	fs = VFSTOULFS(dvp->v_mount)->um_lfs;
    485  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    486  1.138  perseant 	if (fs->lfs_ronly)
    487  1.138  perseant 		return EROFS;
    488  1.235     rmind 	if (vpp == NULL) {
    489  1.235     rmind 		return lfs_set_dirop(dvp, NULL);
    490  1.235     rmind 	}
    491  1.235     rmind 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    492  1.235     rmind 	if (error) {
    493  1.138  perseant 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    494  1.138  perseant 		      dvp, error));
    495  1.138  perseant 		return error;
    496  1.138  perseant 	}
    497  1.138  perseant 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    498  1.235     rmind 		ungetnewvnode(*vpp);
    499  1.235     rmind 		*vpp = NULL;
    500  1.138  perseant 		return error;
    501  1.138  perseant 	}
    502  1.138  perseant 	return 0;
    503    1.1   mycroft }
    504    1.1   mycroft 
    505  1.138  perseant #define	SET_ENDOP_BASE(fs, dvp, str)					\
    506  1.138  perseant 	do {								\
    507  1.214        ad 		mutex_enter(&lfs_lock);				\
    508  1.138  perseant 		--(fs)->lfs_dirops;					\
    509  1.138  perseant 		if (!(fs)->lfs_dirops) {				\
    510  1.138  perseant 			if ((fs)->lfs_nadirop) {			\
    511  1.138  perseant 				panic("SET_ENDOP: %s: no dirops but "	\
    512  1.138  perseant 					" nadirop=%d", (str),		\
    513  1.138  perseant 					(fs)->lfs_nadirop);		\
    514  1.138  perseant 			}						\
    515  1.138  perseant 			wakeup(&(fs)->lfs_writer);			\
    516  1.214        ad 			mutex_exit(&lfs_lock);				\
    517  1.138  perseant 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    518  1.138  perseant 		} else							\
    519  1.214        ad 			mutex_exit(&lfs_lock);				\
    520  1.138  perseant 	} while(0)
    521  1.138  perseant #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    522  1.138  perseant 	do {								\
    523  1.138  perseant 		UNMARK_VNODE(dvp);					\
    524  1.138  perseant 		if (nvpp && *nvpp)					\
    525  1.138  perseant 			UNMARK_VNODE(*nvpp);				\
    526  1.138  perseant 		/* Check for error return to stem vnode leakage */	\
    527  1.212        ad 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    528  1.138  perseant 			ungetnewvnode(*(nvpp));				\
    529  1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    530  1.138  perseant 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    531  1.138  perseant 		vrele(dvp);						\
    532  1.138  perseant 	} while(0)
    533  1.138  perseant #define SET_ENDOP_CREATE_AP(ap, str)					\
    534  1.138  perseant 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    535  1.138  perseant 			 (ap)->a_vpp, (str))
    536  1.138  perseant #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    537  1.138  perseant 	do {								\
    538  1.138  perseant 		UNMARK_VNODE(dvp);					\
    539  1.138  perseant 		if (ovp)						\
    540  1.138  perseant 			UNMARK_VNODE(ovp);				\
    541  1.138  perseant 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    542  1.138  perseant 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    543  1.138  perseant 		vrele(dvp);						\
    544  1.138  perseant 		if (ovp)						\
    545  1.138  perseant 			vrele(ovp);					\
    546  1.138  perseant 	} while(0)
    547  1.117      yamt 
    548  1.117      yamt void
    549  1.117      yamt lfs_mark_vnode(struct vnode *vp)
    550  1.117      yamt {
    551  1.117      yamt 	struct inode *ip = VTOI(vp);
    552  1.117      yamt 	struct lfs *fs = ip->i_lfs;
    553   1.37  perseant 
    554  1.214        ad 	mutex_enter(&lfs_lock);
    555  1.117      yamt 	if (!(ip->i_flag & IN_ADIROP)) {
    556  1.212        ad 		if (!(vp->v_uflag & VU_DIROP)) {
    557  1.240  perseant 			mutex_exit(&lfs_lock);
    558  1.235     rmind 			mutex_enter(vp->v_interlock);
    559  1.239  perseant 			if (lfs_vref(vp) != 0)
    560  1.239  perseant 				panic("lfs_mark_vnode: could not vref");
    561  1.240  perseant 			mutex_enter(&lfs_lock);
    562  1.117      yamt 			++lfs_dirvcount;
    563  1.173  perseant 			++fs->lfs_dirvcount;
    564  1.117      yamt 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    565  1.212        ad 			vp->v_uflag |= VU_DIROP;
    566  1.117      yamt 		}
    567  1.117      yamt 		++fs->lfs_nadirop;
    568  1.239  perseant 		ip->i_flag &= ~IN_CDIROP;
    569  1.117      yamt 		ip->i_flag |= IN_ADIROP;
    570  1.117      yamt 	} else
    571  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    572  1.214        ad 	mutex_exit(&lfs_lock);
    573  1.117      yamt }
    574   1.40  perseant 
    575  1.117      yamt void
    576  1.117      yamt lfs_unmark_vnode(struct vnode *vp)
    577   1.40  perseant {
    578  1.117      yamt 	struct inode *ip = VTOI(vp);
    579   1.40  perseant 
    580  1.240  perseant 	mutex_enter(&lfs_lock);
    581  1.146  perseant 	if (ip && (ip->i_flag & IN_ADIROP)) {
    582  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    583   1.40  perseant 		--ip->i_lfs->lfs_nadirop;
    584  1.117      yamt 		ip->i_flag &= ~IN_ADIROP;
    585  1.117      yamt 	}
    586  1.240  perseant 	mutex_exit(&lfs_lock);
    587   1.40  perseant }
    588   1.15      fvdl 
    589    1.1   mycroft int
    590   1.51  perseant lfs_symlink(void *v)
    591   1.10  christos {
    592    1.1   mycroft 	struct vop_symlink_args /* {
    593    1.1   mycroft 		struct vnode *a_dvp;
    594    1.1   mycroft 		struct vnode **a_vpp;
    595    1.1   mycroft 		struct componentname *a_cnp;
    596    1.1   mycroft 		struct vattr *a_vap;
    597    1.1   mycroft 		char *a_target;
    598   1.10  christos 	} */ *ap = v;
    599   1.37  perseant 	int error;
    600    1.1   mycroft 
    601  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    602   1.34  perseant 		vput(ap->a_dvp);
    603   1.37  perseant 		return error;
    604   1.34  perseant 	}
    605  1.245  dholland 	error = ulfs_symlink(ap);
    606  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "symlink");
    607   1.37  perseant 	return (error);
    608    1.1   mycroft }
    609    1.1   mycroft 
    610    1.1   mycroft int
    611   1.51  perseant lfs_mknod(void *v)
    612   1.10  christos {
    613   1.22  perseant 	struct vop_mknod_args	/* {
    614    1.1   mycroft 		struct vnode *a_dvp;
    615    1.1   mycroft 		struct vnode **a_vpp;
    616    1.1   mycroft 		struct componentname *a_cnp;
    617    1.1   mycroft 		struct vattr *a_vap;
    618  1.203  perseant 	} */ *ap = v;
    619   1.86  perseant 	struct vattr *vap = ap->a_vap;
    620   1.86  perseant 	struct vnode **vpp = ap->a_vpp;
    621   1.86  perseant 	struct inode *ip;
    622   1.86  perseant 	int error;
    623  1.135     perry 	struct mount	*mp;
    624   1.52     assar 	ino_t		ino;
    625  1.245  dholland 	struct ulfs_lookup_results *ulr;
    626  1.237  dholland 
    627  1.237  dholland 	/* XXX should handle this material another way */
    628  1.237  dholland 	ulr = &VTOI(ap->a_dvp)->i_crap;
    629  1.245  dholland 	ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    630    1.1   mycroft 
    631  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    632   1.34  perseant 		vput(ap->a_dvp);
    633   1.28  perseant 		return error;
    634   1.34  perseant 	}
    635  1.245  dholland 	error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    636  1.237  dholland 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    637   1.28  perseant 
    638   1.28  perseant 	/* Either way we're done with the dirop at this point */
    639  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mknod");
    640   1.28  perseant 
    641   1.86  perseant 	if (error)
    642   1.28  perseant 		return (error);
    643   1.28  perseant 
    644   1.86  perseant 	ip = VTOI(*vpp);
    645   1.52     assar 	mp  = (*vpp)->v_mount;
    646   1.52     assar 	ino = ip->i_number;
    647   1.86  perseant 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    648   1.86  perseant 	if (vap->va_rdev != VNOVAL) {
    649   1.86  perseant 		/*
    650   1.86  perseant 		 * Want to be able to use this to make badblock
    651   1.86  perseant 		 * inodes, so don't truncate the dev number.
    652   1.86  perseant 		 */
    653   1.28  perseant #if 0
    654  1.245  dholland 		ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
    655  1.245  dholland 					   ULFS_MPNEEDSWAP((*vpp)->v_mount));
    656   1.28  perseant #else
    657  1.102      fvdl 		ip->i_ffs1_rdev = vap->va_rdev;
    658   1.28  perseant #endif
    659   1.86  perseant 	}
    660  1.134  perseant 
    661   1.28  perseant 	/*
    662   1.28  perseant 	 * Call fsync to write the vnode so that we don't have to deal with
    663  1.212        ad 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    664   1.28  perseant 	 *
    665   1.28  perseant 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    666   1.28  perseant 	 * return.  But, that leaves this vnode in limbo, also not good.
    667   1.28  perseant 	 * Can this ever happen (barring hardware failure)?
    668   1.28  perseant 	 */
    669  1.213     pooka 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    670  1.153  christos 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    671  1.203  perseant 		      (unsigned long long)ino);
    672  1.136  perseant 		/* return (error); */
    673   1.40  perseant 	}
    674   1.86  perseant 	/*
    675   1.86  perseant 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    676   1.86  perseant 	 * checked to see if it is an alias of an existing entry in
    677   1.86  perseant 	 * the inode cache.
    678   1.86  perseant 	 */
    679   1.28  perseant 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    680  1.134  perseant 
    681  1.229   hannken 	VOP_UNLOCK(*vpp);
    682   1.86  perseant 	(*vpp)->v_type = VNON;
    683   1.86  perseant 	vgone(*vpp);
    684  1.108   thorpej 	error = VFS_VGET(mp, ino, vpp);
    685  1.134  perseant 
    686   1.52     assar 	if (error != 0) {
    687   1.52     assar 		*vpp = NULL;
    688   1.52     assar 		return (error);
    689   1.52     assar 	}
    690   1.86  perseant 	return (0);
    691    1.1   mycroft }
    692    1.1   mycroft 
    693    1.1   mycroft int
    694   1.51  perseant lfs_create(void *v)
    695   1.10  christos {
    696   1.22  perseant 	struct vop_create_args	/* {
    697    1.1   mycroft 		struct vnode *a_dvp;
    698    1.1   mycroft 		struct vnode **a_vpp;
    699    1.1   mycroft 		struct componentname *a_cnp;
    700    1.1   mycroft 		struct vattr *a_vap;
    701   1.10  christos 	} */ *ap = v;
    702   1.37  perseant 	int error;
    703    1.1   mycroft 
    704  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    705   1.34  perseant 		vput(ap->a_dvp);
    706   1.37  perseant 		return error;
    707   1.34  perseant 	}
    708  1.245  dholland 	error = ulfs_create(ap);
    709  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "create");
    710   1.37  perseant 	return (error);
    711   1.22  perseant }
    712   1.22  perseant 
    713   1.22  perseant int
    714   1.51  perseant lfs_mkdir(void *v)
    715   1.10  christos {
    716   1.22  perseant 	struct vop_mkdir_args	/* {
    717    1.1   mycroft 		struct vnode *a_dvp;
    718    1.1   mycroft 		struct vnode **a_vpp;
    719    1.1   mycroft 		struct componentname *a_cnp;
    720    1.1   mycroft 		struct vattr *a_vap;
    721   1.10  christos 	} */ *ap = v;
    722   1.37  perseant 	int error;
    723    1.1   mycroft 
    724  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    725   1.34  perseant 		vput(ap->a_dvp);
    726   1.37  perseant 		return error;
    727   1.34  perseant 	}
    728  1.245  dholland 	error = ulfs_mkdir(ap);
    729  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    730   1.37  perseant 	return (error);
    731    1.1   mycroft }
    732    1.1   mycroft 
    733    1.1   mycroft int
    734   1.51  perseant lfs_remove(void *v)
    735   1.10  christos {
    736   1.22  perseant 	struct vop_remove_args	/* {
    737    1.1   mycroft 		struct vnode *a_dvp;
    738    1.1   mycroft 		struct vnode *a_vp;
    739    1.1   mycroft 		struct componentname *a_cnp;
    740   1.10  christos 	} */ *ap = v;
    741   1.34  perseant 	struct vnode *dvp, *vp;
    742  1.188  perseant 	struct inode *ip;
    743   1.37  perseant 	int error;
    744   1.34  perseant 
    745   1.34  perseant 	dvp = ap->a_dvp;
    746   1.34  perseant 	vp = ap->a_vp;
    747  1.188  perseant 	ip = VTOI(vp);
    748  1.138  perseant 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    749   1.34  perseant 		if (dvp == vp)
    750   1.34  perseant 			vrele(vp);
    751   1.34  perseant 		else
    752   1.34  perseant 			vput(vp);
    753   1.34  perseant 		vput(dvp);
    754   1.37  perseant 		return error;
    755   1.34  perseant 	}
    756  1.245  dholland 	error = ulfs_remove(ap);
    757  1.188  perseant 	if (ip->i_nlink == 0)
    758  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    759  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    760   1.37  perseant 	return (error);
    761    1.1   mycroft }
    762    1.1   mycroft 
    763    1.1   mycroft int
    764   1.51  perseant lfs_rmdir(void *v)
    765   1.10  christos {
    766   1.22  perseant 	struct vop_rmdir_args	/* {
    767    1.1   mycroft 		struct vnodeop_desc *a_desc;
    768    1.1   mycroft 		struct vnode *a_dvp;
    769    1.1   mycroft 		struct vnode *a_vp;
    770    1.1   mycroft 		struct componentname *a_cnp;
    771   1.10  christos 	} */ *ap = v;
    772   1.84  perseant 	struct vnode *vp;
    773  1.188  perseant 	struct inode *ip;
    774   1.37  perseant 	int error;
    775    1.1   mycroft 
    776   1.84  perseant 	vp = ap->a_vp;
    777  1.188  perseant 	ip = VTOI(vp);
    778  1.138  perseant 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    779  1.194       chs 		if (ap->a_dvp == vp)
    780  1.194       chs 			vrele(ap->a_dvp);
    781  1.194       chs 		else
    782  1.194       chs 			vput(ap->a_dvp);
    783   1.84  perseant 		vput(vp);
    784   1.37  perseant 		return error;
    785   1.34  perseant 	}
    786  1.245  dholland 	error = ulfs_rmdir(ap);
    787  1.188  perseant 	if (ip->i_nlink == 0)
    788  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    789  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    790   1.37  perseant 	return (error);
    791    1.1   mycroft }
    792    1.1   mycroft 
    793    1.1   mycroft int
    794   1.51  perseant lfs_link(void *v)
    795   1.10  christos {
    796   1.22  perseant 	struct vop_link_args	/* {
    797    1.9   mycroft 		struct vnode *a_dvp;
    798    1.1   mycroft 		struct vnode *a_vp;
    799    1.1   mycroft 		struct componentname *a_cnp;
    800   1.10  christos 	} */ *ap = v;
    801   1.37  perseant 	int error;
    802  1.138  perseant 	struct vnode **vpp = NULL;
    803    1.1   mycroft 
    804  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    805   1.34  perseant 		vput(ap->a_dvp);
    806   1.37  perseant 		return error;
    807   1.34  perseant 	}
    808  1.245  dholland 	error = ulfs_link(ap);
    809  1.138  perseant 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    810   1.37  perseant 	return (error);
    811    1.1   mycroft }
    812   1.22  perseant 
    813  1.242  riastrad static const struct genfs_rename_ops lfs_genfs_rename_ops;
    814  1.240  perseant 
    815  1.240  perseant /*
    816  1.242  riastrad  * lfs_sane_rename: The hairiest vop, with the saner API.
    817  1.242  riastrad  *
    818  1.242  riastrad  * Arguments:
    819  1.242  riastrad  *
    820  1.242  riastrad  * . fdvp (from directory vnode),
    821  1.242  riastrad  * . fcnp (from component name),
    822  1.242  riastrad  * . tdvp (to directory vnode),
    823  1.242  riastrad  * . tcnp (to component name),
    824  1.242  riastrad  * . cred (credentials structure), and
    825  1.242  riastrad  * . posixly_correct (flag for behaviour if target & source link same file).
    826  1.242  riastrad  *
    827  1.242  riastrad  * fdvp and tdvp may be the same, and must be referenced and unlocked.
    828  1.240  perseant  */
    829  1.240  perseant static int
    830  1.242  riastrad lfs_sane_rename(
    831  1.242  riastrad     struct vnode *fdvp, struct componentname *fcnp,
    832  1.242  riastrad     struct vnode *tdvp, struct componentname *tcnp,
    833  1.242  riastrad     kauth_cred_t cred, bool posixly_correct)
    834  1.240  perseant {
    835  1.245  dholland 	struct ulfs_lookup_results fulr, tulr;
    836  1.240  perseant 
    837  1.240  perseant 	/*
    838  1.245  dholland 	 * XXX Provisional kludge -- ulfs_lookup does not reject rename
    839  1.242  riastrad 	 * of . or .. (from or to), so we hack it here.  This is not
    840  1.242  riastrad 	 * the right place: it should be caller's responsibility to
    841  1.242  riastrad 	 * reject this case.
    842  1.240  perseant 	 */
    843  1.242  riastrad 	KASSERT(fcnp != NULL);
    844  1.242  riastrad 	KASSERT(tcnp != NULL);
    845  1.242  riastrad 	KASSERT(fcnp != tcnp);
    846  1.242  riastrad 	KASSERT(fcnp->cn_nameptr != NULL);
    847  1.242  riastrad 	KASSERT(tcnp->cn_nameptr != NULL);
    848  1.240  perseant 
    849  1.242  riastrad 	if ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT)
    850  1.242  riastrad 		return EINVAL;	/* XXX EISDIR?  */
    851  1.242  riastrad 	if ((fcnp->cn_namelen == 1) && (fcnp->cn_nameptr[0] == '.'))
    852  1.242  riastrad 		return EINVAL;
    853  1.242  riastrad 	if ((tcnp->cn_namelen == 1) && (tcnp->cn_nameptr[0] == '.'))
    854  1.242  riastrad 		return EINVAL;
    855  1.240  perseant 
    856  1.242  riastrad 	return genfs_sane_rename(&lfs_genfs_rename_ops,
    857  1.242  riastrad 	    fdvp, fcnp, &fulr, tdvp, tcnp, &tulr,
    858  1.242  riastrad 	    cred, posixly_correct);
    859  1.240  perseant }
    860  1.240  perseant 
    861  1.240  perseant /*
    862  1.242  riastrad  * lfs_rename: The hairiest vop, with the insanest API.  Defer to
    863  1.242  riastrad  * genfs_insane_rename immediately.
    864  1.240  perseant  */
    865  1.242  riastrad int
    866  1.242  riastrad lfs_rename(void *v)
    867  1.240  perseant {
    868  1.240  perseant 
    869  1.242  riastrad 	return genfs_insane_rename(v, &lfs_sane_rename);
    870  1.240  perseant }
    871  1.240  perseant 
    872  1.240  perseant /*
    873  1.242  riastrad  * lfs_gro_rename: Actually perform the rename operation.  Do a little
    874  1.245  dholland  * LFS bookkeeping and then defer to ulfs_gro_rename.
    875  1.240  perseant  */
    876  1.240  perseant static int
    877  1.242  riastrad lfs_gro_rename(struct mount *mp, kauth_cred_t cred,
    878  1.242  riastrad     struct vnode *fdvp, struct componentname *fcnp,
    879  1.242  riastrad     void *fde, struct vnode *fvp,
    880  1.242  riastrad     struct vnode *tdvp, struct componentname *tcnp,
    881  1.242  riastrad     void *tde, struct vnode *tvp)
    882  1.240  perseant {
    883  1.240  perseant 	int error;
    884  1.240  perseant 
    885  1.242  riastrad 	KASSERT(mp != NULL);
    886  1.242  riastrad 	KASSERT(fdvp != NULL);
    887  1.242  riastrad 	KASSERT(fcnp != NULL);
    888  1.242  riastrad 	KASSERT(fde != NULL);
    889  1.242  riastrad 	KASSERT(fvp != NULL);
    890  1.242  riastrad 	KASSERT(tdvp != NULL);
    891  1.242  riastrad 	KASSERT(tcnp != NULL);
    892  1.242  riastrad 	KASSERT(tde != NULL);
    893  1.242  riastrad 	KASSERT(fdvp != fvp);
    894  1.242  riastrad 	KASSERT(fdvp != tvp);
    895  1.242  riastrad 	KASSERT(tdvp != fvp);
    896  1.242  riastrad 	KASSERT(tdvp != tvp);
    897  1.242  riastrad 	KASSERT(fvp != tvp);
    898  1.242  riastrad 	KASSERT(fdvp->v_mount == mp);
    899  1.242  riastrad 	KASSERT(fvp->v_mount == mp);
    900  1.242  riastrad 	KASSERT(tdvp->v_mount == mp);
    901  1.242  riastrad 	KASSERT((tvp == NULL) || (tvp->v_mount == mp));
    902  1.242  riastrad 	KASSERT(VOP_ISLOCKED(fdvp) == LK_EXCLUSIVE);
    903  1.242  riastrad 	KASSERT(VOP_ISLOCKED(fvp) == LK_EXCLUSIVE);
    904  1.242  riastrad 	KASSERT(VOP_ISLOCKED(tdvp) == LK_EXCLUSIVE);
    905  1.242  riastrad 	KASSERT((tvp == NULL) || (VOP_ISLOCKED(tvp) == LK_EXCLUSIVE));
    906  1.240  perseant 
    907  1.242  riastrad 	error = SET_DIROP_REMOVE(tdvp, tvp);
    908  1.242  riastrad 	if (error != 0)
    909  1.240  perseant 		return error;
    910  1.240  perseant 
    911   1.30  perseant 	MARK_VNODE(fdvp);
    912   1.71      yamt 	MARK_VNODE(fvp);
    913  1.240  perseant 
    914  1.245  dholland 	error = ulfs_gro_rename(mp, cred,
    915  1.242  riastrad 	    fdvp, fcnp, fde, fvp,
    916  1.242  riastrad 	    tdvp, tcnp, tde, tvp);
    917  1.240  perseant 
    918   1.37  perseant 	UNMARK_VNODE(fdvp);
    919   1.71      yamt 	UNMARK_VNODE(fvp);
    920  1.245  dholland 	SET_ENDOP_REMOVE(VFSTOULFS(mp)->um_lfs, tdvp, tvp, "rename");
    921   1.34  perseant 
    922  1.242  riastrad 	return error;
    923    1.1   mycroft }
    924   1.22  perseant 
    925  1.242  riastrad static const struct genfs_rename_ops lfs_genfs_rename_ops = {
    926  1.245  dholland 	.gro_directory_empty_p		= ulfs_gro_directory_empty_p,
    927  1.245  dholland 	.gro_rename_check_possible	= ulfs_gro_rename_check_possible,
    928  1.245  dholland 	.gro_rename_check_permitted	= ulfs_gro_rename_check_permitted,
    929  1.245  dholland 	.gro_remove_check_possible	= ulfs_gro_remove_check_possible,
    930  1.245  dholland 	.gro_remove_check_permitted	= ulfs_gro_remove_check_permitted,
    931  1.242  riastrad 	.gro_rename			= lfs_gro_rename,
    932  1.245  dholland 	.gro_remove			= ulfs_gro_remove,
    933  1.245  dholland 	.gro_lookup			= ulfs_gro_lookup,
    934  1.245  dholland 	.gro_genealogy			= ulfs_gro_genealogy,
    935  1.245  dholland 	.gro_lock_directory		= ulfs_gro_lock_directory,
    936  1.242  riastrad };
    937  1.242  riastrad 
    938    1.1   mycroft /* XXX hack to avoid calling ITIMES in getattr */
    939    1.1   mycroft int
    940   1.51  perseant lfs_getattr(void *v)
    941   1.10  christos {
    942    1.1   mycroft 	struct vop_getattr_args /* {
    943    1.1   mycroft 		struct vnode *a_vp;
    944    1.1   mycroft 		struct vattr *a_vap;
    945  1.176      elad 		kauth_cred_t a_cred;
    946   1.10  christos 	} */ *ap = v;
    947   1.35  augustss 	struct vnode *vp = ap->a_vp;
    948   1.35  augustss 	struct inode *ip = VTOI(vp);
    949   1.35  augustss 	struct vattr *vap = ap->a_vap;
    950   1.51  perseant 	struct lfs *fs = ip->i_lfs;
    951    1.1   mycroft 	/*
    952    1.1   mycroft 	 * Copy from inode table
    953    1.1   mycroft 	 */
    954    1.1   mycroft 	vap->va_fsid = ip->i_dev;
    955    1.1   mycroft 	vap->va_fileid = ip->i_number;
    956  1.102      fvdl 	vap->va_mode = ip->i_mode & ~IFMT;
    957  1.102      fvdl 	vap->va_nlink = ip->i_nlink;
    958  1.102      fvdl 	vap->va_uid = ip->i_uid;
    959  1.102      fvdl 	vap->va_gid = ip->i_gid;
    960  1.102      fvdl 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    961   1.55       chs 	vap->va_size = vp->v_size;
    962  1.102      fvdl 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    963  1.102      fvdl 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    964  1.102      fvdl 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    965  1.102      fvdl 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    966  1.102      fvdl 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    967  1.102      fvdl 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    968  1.102      fvdl 	vap->va_flags = ip->i_flags;
    969  1.102      fvdl 	vap->va_gen = ip->i_gen;
    970    1.1   mycroft 	/* this doesn't belong here */
    971    1.1   mycroft 	if (vp->v_type == VBLK)
    972    1.1   mycroft 		vap->va_blocksize = BLKDEV_IOSIZE;
    973    1.1   mycroft 	else if (vp->v_type == VCHR)
    974    1.1   mycroft 		vap->va_blocksize = MAXBSIZE;
    975    1.1   mycroft 	else
    976    1.1   mycroft 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    977   1.84  perseant 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    978    1.1   mycroft 	vap->va_type = vp->v_type;
    979    1.1   mycroft 	vap->va_filerev = ip->i_modrev;
    980    1.1   mycroft 	return (0);
    981   1.61  perseant }
    982   1.61  perseant 
    983   1.61  perseant /*
    984   1.61  perseant  * Check to make sure the inode blocks won't choke the buffer
    985  1.245  dholland  * cache, then call ulfs_setattr as usual.
    986   1.61  perseant  */
    987   1.61  perseant int
    988   1.61  perseant lfs_setattr(void *v)
    989   1.61  perseant {
    990  1.149     skrll 	struct vop_setattr_args /* {
    991   1.61  perseant 		struct vnode *a_vp;
    992   1.61  perseant 		struct vattr *a_vap;
    993  1.176      elad 		kauth_cred_t a_cred;
    994   1.61  perseant 	} */ *ap = v;
    995   1.61  perseant 	struct vnode *vp = ap->a_vp;
    996   1.61  perseant 
    997   1.61  perseant 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    998  1.245  dholland 	return ulfs_setattr(v);
    999    1.1   mycroft }
   1000   1.22  perseant 
   1001    1.1   mycroft /*
   1002  1.179  perseant  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
   1003  1.188  perseant  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
   1004  1.179  perseant  */
   1005  1.179  perseant static int
   1006  1.193  christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
   1007  1.179  perseant {
   1008  1.214        ad 	if (fs->lfs_stoplwp != curlwp)
   1009  1.179  perseant 		return EBUSY;
   1010  1.179  perseant 
   1011  1.214        ad 	fs->lfs_stoplwp = NULL;
   1012  1.214        ad 	cv_signal(&fs->lfs_stopcv);
   1013  1.179  perseant 
   1014  1.179  perseant 	KASSERT(fs->lfs_nowrap > 0);
   1015  1.179  perseant 	if (fs->lfs_nowrap <= 0) {
   1016  1.179  perseant 		return 0;
   1017  1.179  perseant 	}
   1018  1.179  perseant 
   1019  1.179  perseant 	if (--fs->lfs_nowrap == 0) {
   1020  1.179  perseant 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
   1021  1.188  perseant 		wakeup(&fs->lfs_wrappass);
   1022  1.180  perseant 		lfs_wakeup_cleaner(fs);
   1023  1.179  perseant 	}
   1024  1.179  perseant 	if (waitfor) {
   1025  1.214        ad 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1026  1.214        ad 		    0, &lfs_lock);
   1027  1.179  perseant 	}
   1028  1.179  perseant 
   1029  1.179  perseant 	return 0;
   1030  1.179  perseant }
   1031  1.179  perseant 
   1032  1.179  perseant /*
   1033    1.1   mycroft  * Close called
   1034    1.1   mycroft  */
   1035    1.1   mycroft /* ARGSUSED */
   1036    1.1   mycroft int
   1037   1.51  perseant lfs_close(void *v)
   1038   1.10  christos {
   1039    1.1   mycroft 	struct vop_close_args /* {
   1040    1.1   mycroft 		struct vnode *a_vp;
   1041    1.1   mycroft 		int  a_fflag;
   1042  1.176      elad 		kauth_cred_t a_cred;
   1043   1.10  christos 	} */ *ap = v;
   1044   1.35  augustss 	struct vnode *vp = ap->a_vp;
   1045   1.35  augustss 	struct inode *ip = VTOI(vp);
   1046  1.180  perseant 	struct lfs *fs = ip->i_lfs;
   1047    1.1   mycroft 
   1048  1.245  dholland 	if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1049  1.214        ad 	    fs->lfs_stoplwp == curlwp) {
   1050  1.214        ad 		mutex_enter(&lfs_lock);
   1051  1.188  perseant 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1052  1.180  perseant 		lfs_wrapgo(fs, ip, 0);
   1053  1.214        ad 		mutex_exit(&lfs_lock);
   1054  1.179  perseant 	}
   1055  1.179  perseant 
   1056   1.97  perseant 	if (vp == ip->i_lfs->lfs_ivnode &&
   1057  1.119       dbj 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1058   1.97  perseant 		return 0;
   1059   1.97  perseant 
   1060   1.97  perseant 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1061  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1062    1.1   mycroft 	}
   1063    1.1   mycroft 	return (0);
   1064   1.65  perseant }
   1065   1.65  perseant 
   1066   1.65  perseant /*
   1067   1.65  perseant  * Close wrapper for special devices.
   1068   1.65  perseant  *
   1069   1.65  perseant  * Update the times on the inode then do device close.
   1070   1.65  perseant  */
   1071   1.65  perseant int
   1072   1.65  perseant lfsspec_close(void *v)
   1073   1.65  perseant {
   1074   1.65  perseant 	struct vop_close_args /* {
   1075   1.65  perseant 		struct vnode	*a_vp;
   1076   1.65  perseant 		int		a_fflag;
   1077  1.176      elad 		kauth_cred_t	a_cred;
   1078   1.65  perseant 	} */ *ap = v;
   1079   1.65  perseant 	struct vnode	*vp;
   1080   1.65  perseant 	struct inode	*ip;
   1081   1.65  perseant 
   1082   1.65  perseant 	vp = ap->a_vp;
   1083   1.65  perseant 	ip = VTOI(vp);
   1084   1.65  perseant 	if (vp->v_usecount > 1) {
   1085  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1086   1.65  perseant 	}
   1087   1.65  perseant 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1088   1.65  perseant }
   1089   1.65  perseant 
   1090   1.65  perseant /*
   1091   1.65  perseant  * Close wrapper for fifo's.
   1092   1.65  perseant  *
   1093   1.65  perseant  * Update the times on the inode then do device close.
   1094   1.65  perseant  */
   1095   1.65  perseant int
   1096   1.65  perseant lfsfifo_close(void *v)
   1097   1.65  perseant {
   1098   1.65  perseant 	struct vop_close_args /* {
   1099   1.65  perseant 		struct vnode	*a_vp;
   1100   1.65  perseant 		int		a_fflag;
   1101  1.176      elad 		kauth_cred_	a_cred;
   1102   1.65  perseant 	} */ *ap = v;
   1103   1.65  perseant 	struct vnode	*vp;
   1104   1.65  perseant 	struct inode	*ip;
   1105   1.65  perseant 
   1106   1.65  perseant 	vp = ap->a_vp;
   1107   1.65  perseant 	ip = VTOI(vp);
   1108   1.65  perseant 	if (ap->a_vp->v_usecount > 1) {
   1109  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1110   1.65  perseant 	}
   1111   1.65  perseant 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1112    1.1   mycroft }
   1113    1.1   mycroft 
   1114    1.1   mycroft /*
   1115   1.15      fvdl  * Reclaim an inode so that it can be used for other purposes.
   1116    1.1   mycroft  */
   1117    1.1   mycroft 
   1118    1.1   mycroft int
   1119   1.51  perseant lfs_reclaim(void *v)
   1120   1.10  christos {
   1121    1.1   mycroft 	struct vop_reclaim_args /* {
   1122    1.1   mycroft 		struct vnode *a_vp;
   1123   1.10  christos 	} */ *ap = v;
   1124   1.15      fvdl 	struct vnode *vp = ap->a_vp;
   1125   1.84  perseant 	struct inode *ip = VTOI(vp);
   1126  1.203  perseant 	struct lfs *fs = ip->i_lfs;
   1127    1.1   mycroft 	int error;
   1128   1.77      yamt 
   1129  1.231   hannken 	/*
   1130  1.231   hannken 	 * The inode must be freed and updated before being removed
   1131  1.231   hannken 	 * from its hash chain.  Other threads trying to gain a hold
   1132  1.231   hannken 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1133  1.231   hannken 	 */
   1134  1.231   hannken 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1135  1.231   hannken 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1136  1.231   hannken 
   1137  1.214        ad 	mutex_enter(&lfs_lock);
   1138   1.84  perseant 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1139  1.214        ad 	mutex_exit(&lfs_lock);
   1140  1.245  dholland 	if ((error = ulfs_reclaim(vp)))
   1141    1.1   mycroft 		return (error);
   1142  1.203  perseant 
   1143  1.203  perseant 	/*
   1144  1.203  perseant 	 * Take us off the paging and/or dirop queues if we were on them.
   1145  1.203  perseant 	 * We shouldn't be on them.
   1146  1.203  perseant 	 */
   1147  1.214        ad 	mutex_enter(&lfs_lock);
   1148  1.203  perseant 	if (ip->i_flags & IN_PAGING) {
   1149  1.203  perseant 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1150  1.203  perseant 		    fs->lfs_fsmnt);
   1151  1.203  perseant 		ip->i_flags &= ~IN_PAGING;
   1152  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1153  1.203  perseant 	}
   1154  1.212        ad 	if (vp->v_uflag & VU_DIROP) {
   1155  1.212        ad 		panic("reclaimed vnode is VU_DIROP");
   1156  1.212        ad 		vp->v_uflag &= ~VU_DIROP;
   1157  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1158  1.203  perseant 	}
   1159  1.214        ad 	mutex_exit(&lfs_lock);
   1160  1.203  perseant 
   1161  1.142  perseant 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1162  1.145  perseant 	lfs_deregister_all(vp);
   1163   1.84  perseant 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1164   1.84  perseant 	ip->inode_ext.lfs = NULL;
   1165  1.199        ad 	genfs_node_destroy(vp);
   1166   1.19   thorpej 	pool_put(&lfs_inode_pool, vp->v_data);
   1167    1.1   mycroft 	vp->v_data = NULL;
   1168   1.94  perseant 	return (0);
   1169   1.94  perseant }
   1170   1.94  perseant 
   1171   1.94  perseant /*
   1172  1.101      yamt  * Read a block from a storage device.
   1173   1.94  perseant  * In order to avoid reading blocks that are in the process of being
   1174   1.94  perseant  * written by the cleaner---and hence are not mutexed by the normal
   1175   1.94  perseant  * buffer cache / page cache mechanisms---check for collisions before
   1176   1.94  perseant  * reading.
   1177   1.94  perseant  *
   1178  1.245  dholland  * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
   1179   1.94  perseant  * the active cleaner test.
   1180   1.94  perseant  *
   1181   1.94  perseant  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1182   1.94  perseant  */
   1183   1.94  perseant int
   1184   1.94  perseant lfs_strategy(void *v)
   1185   1.94  perseant {
   1186   1.94  perseant 	struct vop_strategy_args /* {
   1187  1.128   hannken 		struct vnode *a_vp;
   1188   1.94  perseant 		struct buf *a_bp;
   1189   1.94  perseant 	} */ *ap = v;
   1190   1.94  perseant 	struct buf	*bp;
   1191   1.94  perseant 	struct lfs	*fs;
   1192   1.94  perseant 	struct vnode	*vp;
   1193   1.94  perseant 	struct inode	*ip;
   1194   1.94  perseant 	daddr_t		tbn;
   1195  1.239  perseant #define MAXLOOP 25
   1196  1.239  perseant 	int		i, sn, error, slept, loopcount;
   1197   1.94  perseant 
   1198   1.94  perseant 	bp = ap->a_bp;
   1199  1.128   hannken 	vp = ap->a_vp;
   1200   1.94  perseant 	ip = VTOI(vp);
   1201   1.94  perseant 	fs = ip->i_lfs;
   1202   1.94  perseant 
   1203  1.101      yamt 	/* lfs uses its strategy routine only for read */
   1204  1.101      yamt 	KASSERT(bp->b_flags & B_READ);
   1205  1.101      yamt 
   1206   1.94  perseant 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1207   1.94  perseant 		panic("lfs_strategy: spec");
   1208   1.94  perseant 	KASSERT(bp->b_bcount != 0);
   1209   1.94  perseant 	if (bp->b_blkno == bp->b_lblkno) {
   1210   1.94  perseant 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1211   1.94  perseant 				 NULL);
   1212   1.94  perseant 		if (error) {
   1213   1.94  perseant 			bp->b_error = error;
   1214  1.214        ad 			bp->b_resid = bp->b_bcount;
   1215   1.94  perseant 			biodone(bp);
   1216   1.94  perseant 			return (error);
   1217   1.94  perseant 		}
   1218   1.94  perseant 		if ((long)bp->b_blkno == -1) /* no valid data */
   1219   1.94  perseant 			clrbuf(bp);
   1220   1.94  perseant 	}
   1221   1.94  perseant 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1222  1.214        ad 		bp->b_resid = bp->b_bcount;
   1223   1.94  perseant 		biodone(bp);
   1224   1.94  perseant 		return (0);
   1225   1.94  perseant 	}
   1226   1.94  perseant 
   1227   1.94  perseant 	slept = 1;
   1228  1.239  perseant 	loopcount = 0;
   1229  1.214        ad 	mutex_enter(&lfs_lock);
   1230  1.101      yamt 	while (slept && fs->lfs_seglock) {
   1231  1.214        ad 		mutex_exit(&lfs_lock);
   1232   1.94  perseant 		/*
   1233   1.94  perseant 		 * Look through list of intervals.
   1234   1.94  perseant 		 * There will only be intervals to look through
   1235   1.94  perseant 		 * if the cleaner holds the seglock.
   1236   1.94  perseant 		 * Since the cleaner is synchronous, we can trust
   1237   1.94  perseant 		 * the list of intervals to be current.
   1238   1.94  perseant 		 */
   1239   1.94  perseant 		tbn = dbtofsb(fs, bp->b_blkno);
   1240   1.94  perseant 		sn = dtosn(fs, tbn);
   1241   1.94  perseant 		slept = 0;
   1242   1.94  perseant 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1243   1.94  perseant 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1244   1.94  perseant 			    tbn >= fs->lfs_cleanint[i]) {
   1245  1.136  perseant 				DLOG((DLOG_CLEAN,
   1246  1.136  perseant 				      "lfs_strategy: ino %d lbn %" PRId64
   1247  1.203  perseant 				      " ind %d sn %d fsb %" PRIx32
   1248  1.203  perseant 				      " given sn %d fsb %" PRIx64 "\n",
   1249  1.203  perseant 				      ip->i_number, bp->b_lblkno, i,
   1250  1.203  perseant 				      dtosn(fs, fs->lfs_cleanint[i]),
   1251  1.203  perseant 				      fs->lfs_cleanint[i], sn, tbn));
   1252  1.136  perseant 				DLOG((DLOG_CLEAN,
   1253  1.136  perseant 				      "lfs_strategy: sleeping on ino %d lbn %"
   1254  1.136  perseant 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1255  1.214        ad 				mutex_enter(&lfs_lock);
   1256  1.170  perseant 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1257  1.239  perseant 					/*
   1258  1.239  perseant 					 * Cleaner can't wait for itself.
   1259  1.239  perseant 					 * Instead, wait for the blocks
   1260  1.239  perseant 					 * to be written to disk.
   1261  1.239  perseant 					 * XXX we need pribio in the test
   1262  1.239  perseant 					 * XXX here.
   1263  1.239  perseant 					 */
   1264  1.239  perseant  					mtsleep(&fs->lfs_iocount,
   1265  1.239  perseant  						(PRIBIO + 1) | PNORELOCK,
   1266  1.239  perseant 						"clean2", hz/10 + 1,
   1267  1.239  perseant  						&lfs_lock);
   1268  1.170  perseant 					slept = 1;
   1269  1.239  perseant 					++loopcount;
   1270  1.170  perseant 					break;
   1271  1.170  perseant 				} else if (fs->lfs_seglock) {
   1272  1.214        ad 					mtsleep(&fs->lfs_seglock,
   1273  1.141  perseant 						(PRIBIO + 1) | PNORELOCK,
   1274  1.170  perseant 						"clean1", 0,
   1275  1.214        ad 						&lfs_lock);
   1276  1.167  perseant 					slept = 1;
   1277  1.167  perseant 					break;
   1278  1.167  perseant 				}
   1279  1.214        ad 				mutex_exit(&lfs_lock);
   1280   1.94  perseant 			}
   1281   1.94  perseant 		}
   1282  1.214        ad 		mutex_enter(&lfs_lock);
   1283  1.239  perseant 		if (loopcount > MAXLOOP) {
   1284  1.239  perseant 			printf("lfs_strategy: breaking out of clean2 loop\n");
   1285  1.239  perseant 			break;
   1286  1.239  perseant 		}
   1287   1.94  perseant 	}
   1288  1.214        ad 	mutex_exit(&lfs_lock);
   1289   1.94  perseant 
   1290   1.94  perseant 	vp = ip->i_devvp;
   1291  1.127   hannken 	VOP_STRATEGY(vp, bp);
   1292    1.1   mycroft 	return (0);
   1293   1.89  perseant }
   1294   1.89  perseant 
   1295  1.239  perseant /*
   1296  1.239  perseant  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1297  1.239  perseant  * Technically this is a checkpoint (the on-disk state is valid)
   1298  1.239  perseant  * even though we are leaving out all the file data.
   1299  1.239  perseant  */
   1300  1.239  perseant int
   1301   1.92  perseant lfs_flush_dirops(struct lfs *fs)
   1302   1.92  perseant {
   1303   1.92  perseant 	struct inode *ip, *nip;
   1304   1.92  perseant 	struct vnode *vp;
   1305   1.92  perseant 	extern int lfs_dostats;
   1306   1.92  perseant 	struct segment *sp;
   1307  1.239  perseant 	int flags = 0;
   1308  1.239  perseant 	int error = 0;
   1309   1.92  perseant 
   1310  1.163  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1311  1.171  perseant 	KASSERT(fs->lfs_nadirop == 0);
   1312  1.141  perseant 
   1313   1.92  perseant 	if (fs->lfs_ronly)
   1314  1.239  perseant 		return EROFS;
   1315   1.92  perseant 
   1316  1.214        ad 	mutex_enter(&lfs_lock);
   1317  1.141  perseant 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1318  1.214        ad 		mutex_exit(&lfs_lock);
   1319  1.239  perseant 		return 0;
   1320  1.141  perseant 	} else
   1321  1.214        ad 		mutex_exit(&lfs_lock);
   1322   1.92  perseant 
   1323   1.92  perseant 	if (lfs_dostats)
   1324   1.92  perseant 		++lfs_stats.flush_invoked;
   1325   1.92  perseant 
   1326   1.92  perseant 	lfs_imtime(fs);
   1327  1.239  perseant 	lfs_seglock(fs, flags);
   1328   1.92  perseant 	sp = fs->lfs_sp;
   1329   1.92  perseant 
   1330   1.92  perseant 	/*
   1331   1.92  perseant 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1332   1.92  perseant 	 * Only write dirops, and don't flush files' pages, only
   1333   1.92  perseant 	 * blocks from the directories.
   1334   1.92  perseant 	 *
   1335   1.92  perseant 	 * We don't need to vref these files because they are
   1336   1.92  perseant 	 * dirops and so hold an extra reference until the
   1337   1.92  perseant 	 * segunlock clears them of that status.
   1338   1.92  perseant 	 *
   1339   1.92  perseant 	 * We don't need to check for IN_ADIROP because we know that
   1340   1.92  perseant 	 * no dirops are active.
   1341   1.92  perseant 	 *
   1342   1.92  perseant 	 */
   1343  1.214        ad 	mutex_enter(&lfs_lock);
   1344   1.92  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1345   1.92  perseant 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1346  1.214        ad 		mutex_exit(&lfs_lock);
   1347   1.92  perseant 		vp = ITOV(ip);
   1348   1.92  perseant 
   1349  1.171  perseant 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1350  1.239  perseant 		KASSERT(vp->v_uflag & VU_DIROP);
   1351  1.239  perseant 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   1352  1.171  perseant 
   1353   1.92  perseant 		/*
   1354   1.92  perseant 		 * All writes to directories come from dirops; all
   1355   1.92  perseant 		 * writes to files' direct blocks go through the page
   1356   1.92  perseant 		 * cache, which we're not touching.  Reads to files
   1357   1.92  perseant 		 * and/or directories will not be affected by writing
   1358   1.92  perseant 		 * directory blocks inodes and file inodes.  So we don't
   1359  1.239  perseant 		 * really need to lock.
   1360   1.92  perseant 		 */
   1361  1.214        ad 		if (vp->v_iflag & VI_XLOCK) {
   1362  1.214        ad 			mutex_enter(&lfs_lock);
   1363   1.92  perseant 			continue;
   1364  1.167  perseant 		}
   1365  1.228   hannken 		/* XXX see below
   1366  1.228   hannken 		 * waslocked = VOP_ISLOCKED(vp);
   1367  1.228   hannken 		 */
   1368   1.92  perseant 		if (vp->v_type != VREG &&
   1369   1.92  perseant 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1370  1.239  perseant 			error = lfs_writefile(fs, sp, vp);
   1371   1.92  perseant 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1372   1.92  perseant 			    !(ip->i_flag & IN_ALLMOD)) {
   1373  1.214        ad 			    	mutex_enter(&lfs_lock);
   1374   1.92  perseant 				LFS_SET_UINO(ip, IN_MODIFIED);
   1375  1.214        ad 			    	mutex_exit(&lfs_lock);
   1376   1.92  perseant 			}
   1377  1.239  perseant 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1378  1.239  perseant 				mutex_enter(&lfs_lock);
   1379  1.239  perseant 				error = EAGAIN;
   1380  1.239  perseant 				break;
   1381  1.239  perseant 			}
   1382   1.92  perseant 		}
   1383  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1384  1.239  perseant 		error = lfs_writeinode(fs, sp, ip);
   1385  1.214        ad 		mutex_enter(&lfs_lock);
   1386  1.239  perseant 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1387  1.239  perseant 			error = EAGAIN;
   1388  1.239  perseant 			break;
   1389  1.239  perseant 		}
   1390  1.239  perseant 
   1391  1.228   hannken 		/*
   1392  1.239  perseant 		 * We might need to update these inodes again,
   1393  1.239  perseant 		 * for example, if they have data blocks to write.
   1394  1.239  perseant 		 * Make sure that after this flush, they are still
   1395  1.239  perseant 		 * marked IN_MODIFIED so that we don't forget to
   1396  1.239  perseant 		 * write them.
   1397  1.228   hannken 		 */
   1398  1.239  perseant 		/* XXX only for non-directories? --KS */
   1399  1.239  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
   1400   1.92  perseant 	}
   1401  1.214        ad 	mutex_exit(&lfs_lock);
   1402   1.92  perseant 	/* We've written all the dirops there are */
   1403   1.92  perseant 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1404  1.170  perseant 	lfs_finalize_fs_seguse(fs);
   1405   1.92  perseant 	(void) lfs_writeseg(fs, sp);
   1406   1.92  perseant 	lfs_segunlock(fs);
   1407  1.239  perseant 
   1408  1.239  perseant 	return error;
   1409   1.92  perseant }
   1410   1.92  perseant 
   1411   1.89  perseant /*
   1412  1.164  perseant  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1413  1.212        ad  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   1414  1.164  perseant  * has just run, this would be an error).  If we have to skip a vnode
   1415  1.164  perseant  * for any reason, just skip it; if we have to wait for the cleaner,
   1416  1.164  perseant  * abort.  The writer daemon will call us again later.
   1417  1.164  perseant  */
   1418  1.239  perseant int
   1419  1.164  perseant lfs_flush_pchain(struct lfs *fs)
   1420  1.164  perseant {
   1421  1.164  perseant 	struct inode *ip, *nip;
   1422  1.164  perseant 	struct vnode *vp;
   1423  1.164  perseant 	extern int lfs_dostats;
   1424  1.164  perseant 	struct segment *sp;
   1425  1.239  perseant 	int error, error2;
   1426  1.164  perseant 
   1427  1.164  perseant 	ASSERT_NO_SEGLOCK(fs);
   1428  1.164  perseant 
   1429  1.164  perseant 	if (fs->lfs_ronly)
   1430  1.239  perseant 		return EROFS;
   1431  1.164  perseant 
   1432  1.214        ad 	mutex_enter(&lfs_lock);
   1433  1.164  perseant 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1434  1.214        ad 		mutex_exit(&lfs_lock);
   1435  1.239  perseant 		return 0;
   1436  1.164  perseant 	} else
   1437  1.214        ad 		mutex_exit(&lfs_lock);
   1438  1.164  perseant 
   1439  1.164  perseant 	/* Get dirops out of the way */
   1440  1.239  perseant 	if ((error = lfs_flush_dirops(fs)) != 0)
   1441  1.239  perseant 		return error;
   1442  1.164  perseant 
   1443  1.164  perseant 	if (lfs_dostats)
   1444  1.164  perseant 		++lfs_stats.flush_invoked;
   1445  1.164  perseant 
   1446  1.164  perseant 	/*
   1447  1.164  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1448  1.164  perseant 	 */
   1449  1.164  perseant 	lfs_imtime(fs);
   1450  1.164  perseant 	lfs_seglock(fs, 0);
   1451  1.164  perseant 	sp = fs->lfs_sp;
   1452  1.164  perseant 
   1453  1.164  perseant 	/*
   1454  1.164  perseant 	 * lfs_writevnodes, optimized to clear pageout requests.
   1455  1.164  perseant 	 * Only write non-dirop files that are in the pageout queue.
   1456  1.164  perseant 	 * We're very conservative about what we write; we want to be
   1457  1.164  perseant 	 * fast and async.
   1458  1.164  perseant 	 */
   1459  1.214        ad 	mutex_enter(&lfs_lock);
   1460  1.214        ad     top:
   1461  1.164  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1462  1.164  perseant 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1463  1.164  perseant 		vp = ITOV(ip);
   1464  1.164  perseant 
   1465  1.164  perseant 		if (!(ip->i_flags & IN_PAGING))
   1466  1.164  perseant 			goto top;
   1467  1.164  perseant 
   1468  1.235     rmind 		mutex_enter(vp->v_interlock);
   1469  1.214        ad 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   1470  1.235     rmind 			mutex_exit(vp->v_interlock);
   1471  1.164  perseant 			continue;
   1472  1.214        ad 		}
   1473  1.214        ad 		if (vp->v_type != VREG) {
   1474  1.235     rmind 			mutex_exit(vp->v_interlock);
   1475  1.164  perseant 			continue;
   1476  1.214        ad 		}
   1477  1.164  perseant 		if (lfs_vref(vp))
   1478  1.164  perseant 			continue;
   1479  1.214        ad 		mutex_exit(&lfs_lock);
   1480  1.169  perseant 
   1481  1.228   hannken 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   1482  1.165  perseant 			lfs_vunref(vp);
   1483  1.214        ad 			mutex_enter(&lfs_lock);
   1484  1.164  perseant 			continue;
   1485  1.165  perseant 		}
   1486  1.164  perseant 
   1487  1.164  perseant 		error = lfs_writefile(fs, sp, vp);
   1488  1.164  perseant 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1489  1.164  perseant 		    !(ip->i_flag & IN_ALLMOD)) {
   1490  1.214        ad 		    	mutex_enter(&lfs_lock);
   1491  1.164  perseant 			LFS_SET_UINO(ip, IN_MODIFIED);
   1492  1.214        ad 		    	mutex_exit(&lfs_lock);
   1493  1.164  perseant 		}
   1494  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1495  1.239  perseant 		error2 = lfs_writeinode(fs, sp, ip);
   1496  1.164  perseant 
   1497  1.229   hannken 		VOP_UNLOCK(vp);
   1498  1.164  perseant 		lfs_vunref(vp);
   1499  1.164  perseant 
   1500  1.239  perseant 		if (error == EAGAIN || error2 == EAGAIN) {
   1501  1.164  perseant 			lfs_writeseg(fs, sp);
   1502  1.214        ad 			mutex_enter(&lfs_lock);
   1503  1.164  perseant 			break;
   1504  1.164  perseant 		}
   1505  1.214        ad 		mutex_enter(&lfs_lock);
   1506  1.164  perseant 	}
   1507  1.214        ad 	mutex_exit(&lfs_lock);
   1508  1.164  perseant 	(void) lfs_writeseg(fs, sp);
   1509  1.164  perseant 	lfs_segunlock(fs);
   1510  1.239  perseant 
   1511  1.239  perseant 	return 0;
   1512  1.164  perseant }
   1513  1.164  perseant 
   1514  1.164  perseant /*
   1515   1.90  perseant  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1516   1.89  perseant  */
   1517   1.89  perseant int
   1518   1.90  perseant lfs_fcntl(void *v)
   1519   1.89  perseant {
   1520  1.137    simonb 	struct vop_fcntl_args /* {
   1521  1.137    simonb 		struct vnode *a_vp;
   1522  1.218  gmcgarry 		u_int a_command;
   1523  1.201  christos 		void * a_data;
   1524  1.137    simonb 		int  a_fflag;
   1525  1.176      elad 		kauth_cred_t a_cred;
   1526  1.137    simonb 	} */ *ap = v;
   1527  1.222  christos 	struct timeval tv;
   1528   1.89  perseant 	struct timeval *tvp;
   1529   1.89  perseant 	BLOCK_INFO *blkiov;
   1530   1.92  perseant 	CLEANERINFO *cip;
   1531  1.148  perseant 	SEGUSE *sup;
   1532   1.92  perseant 	int blkcnt, error, oclean;
   1533  1.181    martin 	size_t fh_size;
   1534   1.90  perseant 	struct lfs_fcntl_markv blkvp;
   1535  1.185        ad 	struct lwp *l;
   1536   1.89  perseant 	fsid_t *fsidp;
   1537   1.92  perseant 	struct lfs *fs;
   1538   1.92  perseant 	struct buf *bp;
   1539  1.134  perseant 	fhandle_t *fhp;
   1540   1.92  perseant 	daddr_t off;
   1541   1.89  perseant 
   1542   1.90  perseant 	/* Only respect LFS fcntls on fs root or Ifile */
   1543  1.245  dholland 	if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
   1544   1.89  perseant 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1545  1.245  dholland 		return ulfs_fcntl(v);
   1546   1.89  perseant 	}
   1547   1.89  perseant 
   1548  1.100  perseant 	/* Avoid locking a draining lock */
   1549  1.119       dbj 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1550  1.100  perseant 		return ESHUTDOWN;
   1551  1.100  perseant 	}
   1552  1.100  perseant 
   1553  1.184  perseant 	/* LFS control and monitoring fcntls are available only to root */
   1554  1.213     pooka 	l = curlwp;
   1555  1.184  perseant 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1556  1.241      elad 	    (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
   1557  1.241      elad 	     KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
   1558  1.184  perseant 		return (error);
   1559  1.184  perseant 
   1560  1.100  perseant 	fs = VTOI(ap->a_vp)->i_lfs;
   1561  1.131  christos 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1562   1.89  perseant 
   1563  1.188  perseant 	error = 0;
   1564  1.218  gmcgarry 	switch ((int)ap->a_command) {
   1565  1.222  christos 	    case LFCNSEGWAITALL_COMPAT_50:
   1566  1.222  christos 	    case LFCNSEGWAITALL_COMPAT:
   1567  1.222  christos 		fsidp = NULL;
   1568  1.222  christos 		/* FALLSTHROUGH */
   1569  1.222  christos 	    case LFCNSEGWAIT_COMPAT_50:
   1570  1.222  christos 	    case LFCNSEGWAIT_COMPAT:
   1571  1.222  christos 		{
   1572  1.222  christos 			struct timeval50 *tvp50
   1573  1.222  christos 				= (struct timeval50 *)ap->a_data;
   1574  1.222  christos 			timeval50_to_timeval(tvp50, &tv);
   1575  1.222  christos 			tvp = &tv;
   1576  1.222  christos 		}
   1577  1.222  christos 		goto segwait_common;
   1578   1.90  perseant 	    case LFCNSEGWAITALL:
   1579  1.214        ad 		fsidp = NULL;
   1580  1.214        ad 		/* FALLSTHROUGH */
   1581   1.90  perseant 	    case LFCNSEGWAIT:
   1582  1.214        ad 		tvp = (struct timeval *)ap->a_data;
   1583  1.222  christos segwait_common:
   1584  1.214        ad 		mutex_enter(&lfs_lock);
   1585  1.214        ad 		++fs->lfs_sleepers;
   1586  1.214        ad 		mutex_exit(&lfs_lock);
   1587  1.214        ad 
   1588  1.214        ad 		error = lfs_segwait(fsidp, tvp);
   1589  1.214        ad 
   1590  1.214        ad 		mutex_enter(&lfs_lock);
   1591  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1592  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1593  1.214        ad 		mutex_exit(&lfs_lock);
   1594  1.214        ad 		return error;
   1595   1.89  perseant 
   1596   1.90  perseant 	    case LFCNBMAPV:
   1597   1.90  perseant 	    case LFCNMARKV:
   1598  1.214        ad 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1599   1.89  perseant 
   1600  1.214        ad 		blkcnt = blkvp.blkcnt;
   1601  1.214        ad 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1602  1.214        ad 			return (EINVAL);
   1603  1.214        ad 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1604  1.214        ad 		if ((error = copyin(blkvp.blkiov, blkiov,
   1605  1.214        ad 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1606  1.214        ad 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1607  1.214        ad 			return error;
   1608  1.214        ad 		}
   1609  1.214        ad 
   1610  1.214        ad 		mutex_enter(&lfs_lock);
   1611  1.214        ad 		++fs->lfs_sleepers;
   1612  1.214        ad 		mutex_exit(&lfs_lock);
   1613  1.214        ad 		if (ap->a_command == LFCNBMAPV)
   1614  1.214        ad 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1615  1.214        ad 		else /* LFCNMARKV */
   1616  1.214        ad 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1617  1.214        ad 		if (error == 0)
   1618  1.214        ad 			error = copyout(blkiov, blkvp.blkiov,
   1619  1.214        ad 					blkcnt * sizeof(BLOCK_INFO));
   1620  1.214        ad 		mutex_enter(&lfs_lock);
   1621  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1622  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1623  1.214        ad 		mutex_exit(&lfs_lock);
   1624  1.214        ad 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1625  1.214        ad 		return error;
   1626   1.92  perseant 
   1627   1.92  perseant 	    case LFCNRECLAIM:
   1628  1.214        ad 		/*
   1629  1.214        ad 		 * Flush dirops and write Ifile, allowing empty segments
   1630  1.214        ad 		 * to be immediately reclaimed.
   1631  1.214        ad 		 */
   1632  1.214        ad 		lfs_writer_enter(fs, "pndirop");
   1633  1.214        ad 		off = fs->lfs_offset;
   1634  1.214        ad 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1635  1.214        ad 		lfs_flush_dirops(fs);
   1636  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1637  1.214        ad 		oclean = cip->clean;
   1638  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1639  1.214        ad 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1640  1.214        ad 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1641  1.214        ad 		lfs_segunlock(fs);
   1642  1.214        ad 		lfs_writer_leave(fs);
   1643   1.92  perseant 
   1644  1.136  perseant #ifdef DEBUG
   1645  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1646  1.214        ad 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1647  1.214        ad 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1648  1.214        ad 		      fs->lfs_offset - off, cip->clean - oclean,
   1649  1.214        ad 		      fs->lfs_activesb));
   1650  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1651   1.92  perseant #endif
   1652   1.92  perseant 
   1653  1.214        ad 		return 0;
   1654   1.89  perseant 
   1655  1.182    martin 	    case LFCNIFILEFH_COMPAT:
   1656  1.214        ad 		/* Return the filehandle of the Ifile */
   1657  1.221      elad 		if ((error = kauth_authorize_system(l->l_cred,
   1658  1.221      elad 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   1659  1.214        ad 			return (error);
   1660  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1661  1.214        ad 		fhp->fh_fsid = *fsidp;
   1662  1.214        ad 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1663  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1664  1.182    martin 
   1665  1.187    martin 	    case LFCNIFILEFH_COMPAT2:
   1666  1.134  perseant 	    case LFCNIFILEFH:
   1667  1.214        ad 		/* Return the filehandle of the Ifile */
   1668  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1669  1.214        ad 		fhp->fh_fsid = *fsidp;
   1670  1.214        ad 		fh_size = sizeof(struct lfs_fhandle) -
   1671  1.214        ad 		    offsetof(fhandle_t, fh_fid);
   1672  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1673  1.134  perseant 
   1674  1.148  perseant 	    case LFCNREWIND:
   1675  1.214        ad 		/* Move lfs_offset to the lowest-numbered segment */
   1676  1.214        ad 		return lfs_rewind(fs, *(int *)ap->a_data);
   1677  1.148  perseant 
   1678  1.148  perseant 	    case LFCNINVAL:
   1679  1.214        ad 		/* Mark a segment SEGUSE_INVAL */
   1680  1.214        ad 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1681  1.214        ad 		if (sup->su_nbytes > 0) {
   1682  1.214        ad 			brelse(bp, 0);
   1683  1.214        ad 			lfs_unset_inval_all(fs);
   1684  1.214        ad 			return EBUSY;
   1685  1.214        ad 		}
   1686  1.214        ad 		sup->su_flags |= SEGUSE_INVAL;
   1687  1.236   hannken 		VOP_BWRITE(bp->b_vp, bp);
   1688  1.214        ad 		return 0;
   1689  1.148  perseant 
   1690  1.148  perseant 	    case LFCNRESIZE:
   1691  1.214        ad 		/* Resize the filesystem */
   1692  1.214        ad 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1693  1.148  perseant 
   1694  1.168  perseant 	    case LFCNWRAPSTOP:
   1695  1.179  perseant 	    case LFCNWRAPSTOP_COMPAT:
   1696  1.214        ad 		/*
   1697  1.214        ad 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1698  1.214        ad 		 * the filesystem wraps around.  To support external agents
   1699  1.214        ad 		 * (dump, fsck-based regression test) that need to look at
   1700  1.214        ad 		 * a snapshot of the filesystem, without necessarily
   1701  1.214        ad 		 * requiring that all fs activity stops.
   1702  1.214        ad 		 */
   1703  1.214        ad 		if (fs->lfs_stoplwp == curlwp)
   1704  1.214        ad 			return EALREADY;
   1705  1.214        ad 
   1706  1.214        ad 		mutex_enter(&lfs_lock);
   1707  1.214        ad 		while (fs->lfs_stoplwp != NULL)
   1708  1.214        ad 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   1709  1.214        ad 		fs->lfs_stoplwp = curlwp;
   1710  1.214        ad 		if (fs->lfs_nowrap == 0)
   1711  1.214        ad 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1712  1.214        ad 		++fs->lfs_nowrap;
   1713  1.222  christos 		if (*(int *)ap->a_data == 1
   1714  1.224     pooka 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1715  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1716  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1717  1.214        ad 				"segwrap", 0, &lfs_lock);
   1718  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1719  1.214        ad 			if (error) {
   1720  1.214        ad 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1721  1.214        ad 			}
   1722  1.214        ad 		}
   1723  1.214        ad 		mutex_exit(&lfs_lock);
   1724  1.214        ad 		return 0;
   1725  1.168  perseant 
   1726  1.168  perseant 	    case LFCNWRAPGO:
   1727  1.179  perseant 	    case LFCNWRAPGO_COMPAT:
   1728  1.214        ad 		/*
   1729  1.214        ad 		 * Having done its work, the agent wakes up the writer.
   1730  1.214        ad 		 * If the argument is 1, it sleeps until a new segment
   1731  1.214        ad 		 * is selected.
   1732  1.214        ad 		 */
   1733  1.214        ad 		mutex_enter(&lfs_lock);
   1734  1.214        ad 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1735  1.222  christos 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1736  1.222  christos 				    *((int *)ap->a_data));
   1737  1.214        ad 		mutex_exit(&lfs_lock);
   1738  1.214        ad 		return error;
   1739  1.168  perseant 
   1740  1.188  perseant 	    case LFCNWRAPPASS:
   1741  1.214        ad 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1742  1.214        ad 			return EALREADY;
   1743  1.214        ad 		mutex_enter(&lfs_lock);
   1744  1.214        ad 		if (fs->lfs_stoplwp != curlwp) {
   1745  1.214        ad 			mutex_exit(&lfs_lock);
   1746  1.214        ad 			return EALREADY;
   1747  1.214        ad 		}
   1748  1.214        ad 		if (fs->lfs_nowrap == 0) {
   1749  1.214        ad 			mutex_exit(&lfs_lock);
   1750  1.214        ad 			return EBUSY;
   1751  1.214        ad 		}
   1752  1.214        ad 		fs->lfs_wrappass = 1;
   1753  1.214        ad 		wakeup(&fs->lfs_wrappass);
   1754  1.214        ad 		/* Wait for the log to wrap, if asked */
   1755  1.214        ad 		if (*(int *)ap->a_data) {
   1756  1.235     rmind 			mutex_enter(ap->a_vp->v_interlock);
   1757  1.239  perseant 			if (lfs_vref(ap->a_vp) != 0)
   1758  1.239  perseant 				panic("LFCNWRAPPASS: lfs_vref failed");
   1759  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1760  1.214        ad 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1761  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1762  1.214        ad 				"segwrap", 0, &lfs_lock);
   1763  1.214        ad 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1764  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1765  1.214        ad 			lfs_vunref(ap->a_vp);
   1766  1.214        ad 		}
   1767  1.214        ad 		mutex_exit(&lfs_lock);
   1768  1.214        ad 		return error;
   1769  1.188  perseant 
   1770  1.188  perseant 	    case LFCNWRAPSTATUS:
   1771  1.214        ad 		mutex_enter(&lfs_lock);
   1772  1.214        ad 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1773  1.214        ad 		mutex_exit(&lfs_lock);
   1774  1.214        ad 		return 0;
   1775  1.188  perseant 
   1776   1.89  perseant 	    default:
   1777  1.245  dholland 		return ulfs_fcntl(v);
   1778   1.89  perseant 	}
   1779   1.89  perseant 	return 0;
   1780   1.60       chs }
   1781   1.60       chs 
   1782   1.60       chs int
   1783   1.60       chs lfs_getpages(void *v)
   1784   1.60       chs {
   1785   1.60       chs 	struct vop_getpages_args /* {
   1786   1.60       chs 		struct vnode *a_vp;
   1787   1.60       chs 		voff_t a_offset;
   1788   1.60       chs 		struct vm_page **a_m;
   1789   1.60       chs 		int *a_count;
   1790   1.60       chs 		int a_centeridx;
   1791   1.60       chs 		vm_prot_t a_access_type;
   1792   1.60       chs 		int a_advice;
   1793   1.60       chs 		int a_flags;
   1794   1.60       chs 	} */ *ap = v;
   1795   1.60       chs 
   1796   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1797   1.97  perseant 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1798   1.97  perseant 		return EPERM;
   1799   1.97  perseant 	}
   1800   1.60       chs 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1801  1.214        ad 		mutex_enter(&lfs_lock);
   1802   1.60       chs 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1803  1.214        ad 		mutex_exit(&lfs_lock);
   1804   1.60       chs 	}
   1805  1.115      yamt 
   1806  1.115      yamt 	/*
   1807  1.115      yamt 	 * we're relying on the fact that genfs_getpages() always read in
   1808  1.115      yamt 	 * entire filesystem blocks.
   1809  1.115      yamt 	 */
   1810   1.95  perseant 	return genfs_getpages(v);
   1811    1.1   mycroft }
   1812   1.84  perseant 
   1813  1.204  perseant /*
   1814  1.204  perseant  * Wait for a page to become unbusy, possibly printing diagnostic messages
   1815  1.204  perseant  * as well.
   1816  1.204  perseant  *
   1817  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1818  1.204  perseant  */
   1819  1.203  perseant static void
   1820  1.203  perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   1821  1.203  perseant {
   1822  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1823  1.203  perseant 	if ((pg->flags & PG_BUSY) == 0)
   1824  1.203  perseant 		return;		/* Nothing to wait for! */
   1825  1.203  perseant 
   1826  1.204  perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   1827  1.203  perseant 	static struct vm_page *lastpg;
   1828  1.203  perseant 
   1829  1.203  perseant 	if (label != NULL && pg != lastpg) {
   1830  1.203  perseant 		if (pg->owner_tag) {
   1831  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   1832  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label,
   1833  1.203  perseant 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   1834  1.203  perseant 		} else {
   1835  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   1836  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label, pg);
   1837  1.203  perseant 		}
   1838  1.203  perseant 	}
   1839  1.203  perseant 	lastpg = pg;
   1840  1.203  perseant #endif
   1841  1.203  perseant 
   1842  1.203  perseant 	pg->flags |= PG_WANTED;
   1843  1.235     rmind 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   1844  1.235     rmind 	mutex_enter(vp->v_interlock);
   1845  1.203  perseant }
   1846  1.203  perseant 
   1847  1.203  perseant /*
   1848  1.203  perseant  * This routine is called by lfs_putpages() when it can't complete the
   1849  1.203  perseant  * write because a page is busy.  This means that either (1) someone,
   1850  1.203  perseant  * possibly the pagedaemon, is looking at this page, and will give it up
   1851  1.203  perseant  * presently; or (2) we ourselves are holding the page busy in the
   1852  1.203  perseant  * process of being written (either gathered or actually on its way to
   1853  1.203  perseant  * disk).  We don't need to give up the segment lock, but we might need
   1854  1.203  perseant  * to call lfs_writeseg() to expedite the page's journey to disk.
   1855  1.204  perseant  *
   1856  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1857  1.203  perseant  */
   1858  1.203  perseant /* #define BUSYWAIT */
   1859  1.203  perseant static void
   1860  1.203  perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   1861  1.203  perseant 	       int seglocked, const char *label)
   1862  1.203  perseant {
   1863  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1864  1.203  perseant #ifndef BUSYWAIT
   1865  1.203  perseant 	struct inode *ip = VTOI(vp);
   1866  1.203  perseant 	struct segment *sp = fs->lfs_sp;
   1867  1.203  perseant 	int count = 0;
   1868  1.203  perseant 
   1869  1.203  perseant 	if (pg == NULL)
   1870  1.203  perseant 		return;
   1871  1.203  perseant 
   1872  1.226       eeh 	while (pg->flags & PG_BUSY &&
   1873  1.226       eeh 	    pg->uobject == &vp->v_uobj) {
   1874  1.235     rmind 		mutex_exit(vp->v_interlock);
   1875  1.203  perseant 		if (sp->cbpp - sp->bpp > 1) {
   1876  1.203  perseant 			/* Write gathered pages */
   1877  1.203  perseant 			lfs_updatemeta(sp);
   1878  1.203  perseant 			lfs_release_finfo(fs);
   1879  1.203  perseant 			(void) lfs_writeseg(fs, sp);
   1880  1.203  perseant 
   1881  1.203  perseant 			/*
   1882  1.203  perseant 			 * Reinitialize FIP
   1883  1.203  perseant 			 */
   1884  1.203  perseant 			KASSERT(sp->vp == vp);
   1885  1.203  perseant 			lfs_acquire_finfo(fs, ip->i_number,
   1886  1.203  perseant 					  ip->i_gen);
   1887  1.203  perseant 		}
   1888  1.204  perseant 		++count;
   1889  1.235     rmind 		mutex_enter(vp->v_interlock);
   1890  1.203  perseant 		wait_for_page(vp, pg, label);
   1891  1.203  perseant 	}
   1892  1.239  perseant 	if (label != NULL && count > 1) {
   1893  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   1894  1.239  perseant 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   1895  1.239  perseant 		      count));
   1896  1.239  perseant 	}
   1897  1.203  perseant #else
   1898  1.203  perseant 	preempt(1);
   1899  1.203  perseant #endif
   1900  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1901  1.203  perseant }
   1902  1.203  perseant 
   1903   1.84  perseant /*
   1904   1.84  perseant  * Make sure that for all pages in every block in the given range,
   1905   1.84  perseant  * either all are dirty or all are clean.  If any of the pages
   1906   1.84  perseant  * we've seen so far are dirty, put the vnode on the paging chain,
   1907   1.84  perseant  * and mark it IN_PAGING.
   1908  1.105  perseant  *
   1909  1.105  perseant  * If checkfirst != 0, don't check all the pages but return at the
   1910  1.105  perseant  * first dirty page.
   1911   1.84  perseant  */
   1912   1.84  perseant static int
   1913   1.84  perseant check_dirty(struct lfs *fs, struct vnode *vp,
   1914   1.84  perseant 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1915  1.203  perseant 	    int flags, int checkfirst, struct vm_page **pgp)
   1916   1.84  perseant {
   1917   1.86  perseant 	int by_list;
   1918  1.122  christos 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1919  1.122  christos 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1920  1.122  christos 	off_t soff = 0; /* XXX: gcc */
   1921   1.84  perseant 	voff_t off;
   1922  1.115      yamt 	int i;
   1923  1.115      yamt 	int nonexistent;
   1924  1.115      yamt 	int any_dirty;	/* number of dirty pages */
   1925  1.115      yamt 	int dirty;	/* number of dirty pages in a block */
   1926  1.115      yamt 	int tdirty;
   1927   1.84  perseant 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1928  1.207        ad 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1929   1.84  perseant 
   1930  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1931  1.141  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1932   1.84  perseant   top:
   1933   1.84  perseant 	by_list = (vp->v_uobj.uo_npages <=
   1934   1.84  perseant 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1935  1.219      yamt 		   UVM_PAGE_TREE_PENALTY);
   1936   1.84  perseant 	any_dirty = 0;
   1937   1.84  perseant 
   1938   1.84  perseant 	if (by_list) {
   1939   1.84  perseant 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1940   1.84  perseant 	} else {
   1941   1.84  perseant 		soff = startoffset;
   1942   1.84  perseant 	}
   1943   1.84  perseant 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1944   1.84  perseant 		if (by_list) {
   1945  1.115      yamt 			/*
   1946  1.138  perseant 			 * Find the first page in a block.  Skip
   1947  1.138  perseant 			 * blocks outside our area of interest or beyond
   1948  1.138  perseant 			 * the end of file.
   1949  1.115      yamt 			 */
   1950  1.234    martin 			KASSERT(curpg == NULL
   1951  1.234    martin 			    || (curpg->flags & PG_MARKER) == 0);
   1952   1.84  perseant 			if (pages_per_block > 1) {
   1953  1.138  perseant 				while (curpg &&
   1954  1.230   hannken 				    ((curpg->offset & fs->lfs_bmask) ||
   1955  1.230   hannken 				    curpg->offset >= vp->v_size ||
   1956  1.230   hannken 				    curpg->offset >= endoffset)) {
   1957  1.217        ad 					curpg = TAILQ_NEXT(curpg, listq.queue);
   1958  1.230   hannken 					KASSERT(curpg == NULL ||
   1959  1.230   hannken 					    (curpg->flags & PG_MARKER) == 0);
   1960  1.230   hannken 				}
   1961   1.84  perseant 			}
   1962   1.84  perseant 			if (curpg == NULL)
   1963   1.84  perseant 				break;
   1964   1.84  perseant 			soff = curpg->offset;
   1965   1.84  perseant 		}
   1966   1.84  perseant 
   1967   1.84  perseant 		/*
   1968   1.84  perseant 		 * Mark all pages in extended range busy; find out if any
   1969   1.84  perseant 		 * of them are dirty.
   1970   1.84  perseant 		 */
   1971   1.84  perseant 		nonexistent = dirty = 0;
   1972   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1973  1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   1974   1.84  perseant 			if (by_list && pages_per_block <= 1) {
   1975   1.84  perseant 				pgs[i] = pg = curpg;
   1976   1.84  perseant 			} else {
   1977   1.84  perseant 				off = soff + (i << PAGE_SHIFT);
   1978   1.84  perseant 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1979   1.84  perseant 				if (pg == NULL) {
   1980   1.84  perseant 					++nonexistent;
   1981   1.84  perseant 					continue;
   1982   1.84  perseant 				}
   1983   1.84  perseant 			}
   1984   1.84  perseant 			KASSERT(pg != NULL);
   1985  1.158  perseant 
   1986  1.158  perseant 			/*
   1987  1.177  perseant 			 * If we're holding the segment lock, we can deadlock
   1988  1.158  perseant 			 * against a process that has our page and is waiting
   1989  1.158  perseant 			 * for the cleaner, while the cleaner waits for the
   1990  1.158  perseant 			 * segment lock.  Just bail in that case.
   1991  1.158  perseant 			 */
   1992  1.159  perseant 			if ((pg->flags & PG_BUSY) &&
   1993  1.159  perseant 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1994  1.203  perseant 				if (i > 0)
   1995  1.159  perseant 					uvm_page_unbusy(pgs, i);
   1996  1.159  perseant 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1997  1.203  perseant 				if (pgp)
   1998  1.203  perseant 					*pgp = pg;
   1999  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2000  1.159  perseant 				return -1;
   2001  1.158  perseant 			}
   2002  1.158  perseant 
   2003   1.84  perseant 			while (pg->flags & PG_BUSY) {
   2004  1.203  perseant 				wait_for_page(vp, pg, NULL);
   2005  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2006  1.203  perseant 				if (i > 0)
   2007  1.203  perseant 					uvm_page_unbusy(pgs, i);
   2008  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   2009  1.203  perseant 				goto top;
   2010   1.84  perseant 			}
   2011   1.84  perseant 			pg->flags |= PG_BUSY;
   2012   1.84  perseant 			UVM_PAGE_OWN(pg, "lfs_putpages");
   2013   1.84  perseant 
   2014   1.84  perseant 			pmap_page_protect(pg, VM_PROT_NONE);
   2015   1.84  perseant 			tdirty = (pmap_clear_modify(pg) ||
   2016   1.84  perseant 				  (pg->flags & PG_CLEAN) == 0);
   2017   1.84  perseant 			dirty += tdirty;
   2018   1.84  perseant 		}
   2019   1.84  perseant 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   2020   1.84  perseant 			if (by_list) {
   2021  1.217        ad 				curpg = TAILQ_NEXT(curpg, listq.queue);
   2022   1.84  perseant 			} else {
   2023   1.84  perseant 				soff += fs->lfs_bsize;
   2024   1.84  perseant 			}
   2025   1.84  perseant 			continue;
   2026   1.84  perseant 		}
   2027   1.84  perseant 
   2028   1.84  perseant 		any_dirty += dirty;
   2029   1.84  perseant 		KASSERT(nonexistent == 0);
   2030  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2031   1.84  perseant 
   2032   1.84  perseant 		/*
   2033   1.84  perseant 		 * If any are dirty make all dirty; unbusy them,
   2034   1.88  perseant 		 * but if we were asked to clean, wire them so that
   2035   1.88  perseant 		 * the pagedaemon doesn't bother us about them while
   2036   1.88  perseant 		 * they're on their way to disk.
   2037   1.84  perseant 		 */
   2038   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2039  1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   2040   1.84  perseant 			pg = pgs[i];
   2041   1.84  perseant 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2042  1.239  perseant 			KASSERT(pg->flags & PG_BUSY);
   2043   1.84  perseant 			if (dirty) {
   2044   1.84  perseant 				pg->flags &= ~PG_CLEAN;
   2045   1.84  perseant 				if (flags & PGO_FREE) {
   2046   1.85      yamt 					/*
   2047   1.96  perseant 					 * Wire the page so that
   2048   1.96  perseant 					 * pdaemon doesn't see it again.
   2049   1.85      yamt 					 */
   2050  1.214        ad 					mutex_enter(&uvm_pageqlock);
   2051   1.85      yamt 					uvm_pagewire(pg);
   2052  1.214        ad 					mutex_exit(&uvm_pageqlock);
   2053   1.88  perseant 
   2054   1.84  perseant 					/* Suspended write flag */
   2055   1.84  perseant 					pg->flags |= PG_DELWRI;
   2056   1.84  perseant 				}
   2057   1.84  perseant 			}
   2058   1.84  perseant 			if (pg->flags & PG_WANTED)
   2059   1.84  perseant 				wakeup(pg);
   2060   1.84  perseant 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2061   1.85      yamt 			UVM_PAGE_OWN(pg, NULL);
   2062   1.84  perseant 		}
   2063   1.84  perseant 
   2064  1.103  perseant 		if (checkfirst && any_dirty)
   2065  1.130      yamt 			break;
   2066  1.103  perseant 
   2067   1.84  perseant 		if (by_list) {
   2068  1.217        ad 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2069   1.84  perseant 		} else {
   2070   1.84  perseant 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2071   1.84  perseant 		}
   2072   1.84  perseant 	}
   2073   1.84  perseant 
   2074  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2075   1.84  perseant 	return any_dirty;
   2076   1.84  perseant }
   2077   1.84  perseant 
   2078   1.84  perseant /*
   2079   1.84  perseant  * lfs_putpages functions like genfs_putpages except that
   2080  1.135     perry  *
   2081   1.84  perseant  * (1) It needs to bounds-check the incoming requests to ensure that
   2082   1.84  perseant  *     they are block-aligned; if they are not, expand the range and
   2083   1.84  perseant  *     do the right thing in case, e.g., the requested range is clean
   2084   1.84  perseant  *     but the expanded range is dirty.
   2085  1.178  perseant  *
   2086   1.84  perseant  * (2) It needs to explicitly send blocks to be written when it is done.
   2087  1.202  perseant  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2088  1.202  perseant  *     the seglock and let lfs_segunlock wait for us.
   2089  1.202  perseant  *     XXX There might be a bad situation if we have to flush a vnode while
   2090  1.202  perseant  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2091  1.202  perseant  *     XXX case.
   2092   1.84  perseant  *
   2093   1.84  perseant  * Assumptions:
   2094   1.84  perseant  *
   2095   1.84  perseant  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2096   1.84  perseant  *     there is a danger that when we expand the page range and busy the
   2097   1.84  perseant  *     pages we will deadlock.
   2098  1.178  perseant  *
   2099   1.84  perseant  * (2) We are called with vp->v_interlock held; we must return with it
   2100   1.84  perseant  *     released.
   2101  1.178  perseant  *
   2102   1.84  perseant  * (3) We don't absolutely have to free pages right away, provided that
   2103   1.84  perseant  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2104   1.84  perseant  *     us a request with PGO_FREE, we take the pages out of the paging
   2105   1.84  perseant  *     queue and wake up the writer, which will handle freeing them for us.
   2106   1.84  perseant  *
   2107   1.84  perseant  *     We ensure that for any filesystem block, all pages for that
   2108   1.84  perseant  *     block are either resident or not, even if those pages are higher
   2109   1.84  perseant  *     than EOF; that means that we will be getting requests to free
   2110   1.84  perseant  *     "unused" pages above EOF all the time, and should ignore them.
   2111  1.115      yamt  *
   2112  1.178  perseant  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2113  1.178  perseant  *     into has been set up for us by lfs_writefile.  If not, we will
   2114  1.178  perseant  *     have to handle allocating and/or freeing an finfo entry.
   2115  1.178  perseant  *
   2116  1.115      yamt  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2117   1.84  perseant  */
   2118   1.84  perseant 
   2119  1.203  perseant /* How many times to loop before we should start to worry */
   2120  1.203  perseant #define TOOMANY 4
   2121  1.203  perseant 
   2122   1.84  perseant int
   2123   1.84  perseant lfs_putpages(void *v)
   2124   1.84  perseant {
   2125   1.84  perseant 	int error;
   2126   1.84  perseant 	struct vop_putpages_args /* {
   2127   1.84  perseant 		struct vnode *a_vp;
   2128   1.84  perseant 		voff_t a_offlo;
   2129   1.84  perseant 		voff_t a_offhi;
   2130   1.84  perseant 		int a_flags;
   2131   1.84  perseant 	} */ *ap = v;
   2132   1.84  perseant 	struct vnode *vp;
   2133   1.84  perseant 	struct inode *ip;
   2134   1.84  perseant 	struct lfs *fs;
   2135   1.84  perseant 	struct segment *sp;
   2136   1.84  perseant 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2137   1.95  perseant 	off_t off, max_endoffset;
   2138  1.239  perseant 	bool seglocked, sync, pagedaemon, reclaim;
   2139  1.203  perseant 	struct vm_page *pg, *busypg;
   2140   1.84  perseant 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2141  1.239  perseant 	int oreclaim = 0;
   2142  1.239  perseant 	int donewriting = 0;
   2143  1.203  perseant #ifdef DEBUG
   2144  1.203  perseant 	int debug_n_again, debug_n_dirtyclean;
   2145  1.203  perseant #endif
   2146   1.84  perseant 
   2147   1.84  perseant 	vp = ap->a_vp;
   2148   1.84  perseant 	ip = VTOI(vp);
   2149   1.84  perseant 	fs = ip->i_lfs;
   2150  1.126      yamt 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2151  1.239  perseant 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2152  1.207        ad 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2153   1.84  perseant 
   2154  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   2155  1.239  perseant 
   2156   1.84  perseant 	/* Putpages does nothing for metadata. */
   2157   1.84  perseant 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2158  1.235     rmind 		mutex_exit(vp->v_interlock);
   2159   1.84  perseant 		return 0;
   2160   1.84  perseant 	}
   2161   1.84  perseant 
   2162   1.84  perseant 	/*
   2163   1.84  perseant 	 * If there are no pages, don't do anything.
   2164   1.84  perseant 	 */
   2165   1.84  perseant 	if (vp->v_uobj.uo_npages == 0) {
   2166  1.195  perseant 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2167  1.212        ad 		    (vp->v_iflag & VI_ONWORKLST) &&
   2168  1.195  perseant 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2169  1.212        ad 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2170  1.192   reinoud 			vn_syncer_remove_from_worklist(vp);
   2171  1.195  perseant 		}
   2172  1.235     rmind 		mutex_exit(vp->v_interlock);
   2173  1.164  perseant 
   2174  1.164  perseant 		/* Remove us from paging queue, if we were on it */
   2175  1.214        ad 		mutex_enter(&lfs_lock);
   2176  1.164  perseant 		if (ip->i_flags & IN_PAGING) {
   2177  1.164  perseant 			ip->i_flags &= ~IN_PAGING;
   2178  1.164  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2179  1.164  perseant 		}
   2180  1.214        ad 		mutex_exit(&lfs_lock);
   2181  1.239  perseant 
   2182  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2183   1.84  perseant 		return 0;
   2184   1.84  perseant 	}
   2185   1.84  perseant 
   2186  1.102      fvdl 	blkeof = blkroundup(fs, ip->i_size);
   2187   1.84  perseant 
   2188   1.84  perseant 	/*
   2189   1.84  perseant 	 * Ignore requests to free pages past EOF but in the same block
   2190  1.239  perseant 	 * as EOF, unless the vnode is being reclaimed or the request
   2191  1.239  perseant 	 * is synchronous.  (If the request is sync, it comes from
   2192  1.239  perseant 	 * lfs_truncate.)
   2193  1.239  perseant 	 *
   2194  1.239  perseant 	 * To avoid being flooded with this request, make these pages
   2195  1.239  perseant 	 * look "active".
   2196   1.84  perseant 	 */
   2197  1.239  perseant 	if (!sync && !reclaim &&
   2198  1.239  perseant 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2199   1.84  perseant 		origoffset = ap->a_offlo;
   2200   1.95  perseant 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2201   1.95  perseant 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2202   1.95  perseant 			KASSERT(pg != NULL);
   2203   1.95  perseant 			while (pg->flags & PG_BUSY) {
   2204   1.95  perseant 				pg->flags |= PG_WANTED;
   2205  1.235     rmind 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2206   1.95  perseant 						    "lfsput2", 0);
   2207  1.235     rmind 				mutex_enter(vp->v_interlock);
   2208   1.95  perseant 			}
   2209  1.214        ad 			mutex_enter(&uvm_pageqlock);
   2210   1.95  perseant 			uvm_pageactivate(pg);
   2211  1.214        ad 			mutex_exit(&uvm_pageqlock);
   2212   1.95  perseant 		}
   2213   1.84  perseant 		ap->a_offlo = blkeof;
   2214   1.84  perseant 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2215  1.235     rmind 			mutex_exit(vp->v_interlock);
   2216   1.84  perseant 			return 0;
   2217   1.84  perseant 		}
   2218   1.84  perseant 	}
   2219   1.84  perseant 
   2220   1.84  perseant 	/*
   2221   1.84  perseant 	 * Extend page range to start and end at block boundaries.
   2222   1.84  perseant 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2223   1.84  perseant 	 */
   2224   1.86  perseant 	origoffset = ap->a_offlo;
   2225   1.84  perseant 	origendoffset = ap->a_offhi;
   2226   1.86  perseant 	startoffset = origoffset & ~(fs->lfs_bmask);
   2227   1.84  perseant 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2228   1.84  perseant 					       << fs->lfs_bshift;
   2229   1.84  perseant 
   2230   1.84  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2231   1.86  perseant 		endoffset = max_endoffset;
   2232   1.84  perseant 		origendoffset = endoffset;
   2233   1.86  perseant 	} else {
   2234   1.84  perseant 		origendoffset = round_page(ap->a_offhi);
   2235   1.84  perseant 		endoffset = round_page(blkroundup(fs, origendoffset));
   2236   1.84  perseant 	}
   2237   1.84  perseant 
   2238   1.84  perseant 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2239   1.84  perseant 	if (startoffset == endoffset) {
   2240   1.84  perseant 		/* Nothing to do, why were we called? */
   2241  1.235     rmind 		mutex_exit(vp->v_interlock);
   2242  1.136  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2243  1.136  perseant 		      PRId64 "\n", startoffset));
   2244   1.84  perseant 		return 0;
   2245   1.84  perseant 	}
   2246   1.84  perseant 
   2247   1.84  perseant 	ap->a_offlo = startoffset;
   2248   1.84  perseant 	ap->a_offhi = endoffset;
   2249   1.84  perseant 
   2250  1.203  perseant 	/*
   2251  1.203  perseant 	 * If not cleaning, just send the pages through genfs_putpages
   2252  1.203  perseant 	 * to be returned to the pool.
   2253  1.203  perseant 	 */
   2254  1.239  perseant 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2255  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2256  1.239  perseant 		      vp, (int)ip->i_number, ap->a_flags));
   2257  1.239  perseant 		int r = genfs_putpages(v);
   2258  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2259  1.239  perseant 		return r;
   2260  1.239  perseant 	}
   2261   1.84  perseant 
   2262  1.203  perseant 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   2263  1.203  perseant 	ap->a_flags |= PGO_BUSYFAIL;
   2264  1.203  perseant 
   2265   1.84  perseant 	/*
   2266  1.203  perseant 	 * Likewise, if we are asked to clean but the pages are not
   2267  1.203  perseant 	 * dirty, we can just free them using genfs_putpages.
   2268   1.84  perseant 	 */
   2269  1.203  perseant #ifdef DEBUG
   2270  1.203  perseant 	debug_n_dirtyclean = 0;
   2271  1.203  perseant #endif
   2272  1.103  perseant 	do {
   2273  1.103  perseant 		int r;
   2274  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2275  1.103  perseant 
   2276  1.203  perseant 		/* Count the number of dirty pages */
   2277  1.158  perseant 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2278  1.203  perseant 				ap->a_flags, 1, NULL);
   2279  1.158  perseant 		if (r < 0) {
   2280  1.203  perseant 			/* Pages are busy with another process */
   2281  1.235     rmind 			mutex_exit(vp->v_interlock);
   2282  1.158  perseant 			return EDEADLK;
   2283  1.158  perseant 		}
   2284  1.203  perseant 		if (r > 0) /* Some pages are dirty */
   2285  1.103  perseant 			break;
   2286  1.103  perseant 
   2287  1.134  perseant 		/*
   2288  1.134  perseant 		 * Sometimes pages are dirtied between the time that
   2289  1.134  perseant 		 * we check and the time we try to clean them.
   2290  1.134  perseant 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2291  1.134  perseant 		 * so we can write them properly.
   2292  1.134  perseant 		 */
   2293  1.134  perseant 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2294  1.206  perseant 		r = genfs_do_putpages(vp, startoffset, endoffset,
   2295  1.226       eeh 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   2296  1.134  perseant 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2297  1.239  perseant 		if (r != EDEADLK) {
   2298  1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   2299  1.239  perseant  			return r;
   2300  1.239  perseant 		}
   2301  1.103  perseant 
   2302  1.203  perseant 		/* One of the pages was busy.  Start over. */
   2303  1.235     rmind 		mutex_enter(vp->v_interlock);
   2304  1.203  perseant 		wait_for_page(vp, busypg, "dirtyclean");
   2305  1.203  perseant #ifdef DEBUG
   2306  1.203  perseant 		++debug_n_dirtyclean;
   2307  1.203  perseant #endif
   2308  1.103  perseant 	} while(1);
   2309  1.135     perry 
   2310  1.203  perseant #ifdef DEBUG
   2311  1.203  perseant 	if (debug_n_dirtyclean > TOOMANY)
   2312  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   2313  1.239  perseant 		      debug_n_dirtyclean));
   2314  1.203  perseant #endif
   2315  1.203  perseant 
   2316   1.84  perseant 	/*
   2317   1.84  perseant 	 * Dirty and asked to clean.
   2318   1.84  perseant 	 *
   2319   1.84  perseant 	 * Pagedaemon can't actually write LFS pages; wake up
   2320   1.84  perseant 	 * the writer to take care of that.  The writer will
   2321   1.84  perseant 	 * notice the pager inode queue and act on that.
   2322  1.232       eeh 	 *
   2323  1.232       eeh 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   2324  1.232       eeh 	 * get a nasty deadlock with lfs_flush_pchain().
   2325   1.84  perseant 	 */
   2326   1.84  perseant 	if (pagedaemon) {
   2327  1.235     rmind 		mutex_exit(vp->v_interlock);
   2328  1.214        ad 		mutex_enter(&lfs_lock);
   2329  1.164  perseant 		if (!(ip->i_flags & IN_PAGING)) {
   2330  1.164  perseant 			ip->i_flags |= IN_PAGING;
   2331  1.164  perseant 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2332  1.232       eeh 		}
   2333  1.164  perseant 		wakeup(&lfs_writer_daemon);
   2334  1.214        ad 		mutex_exit(&lfs_lock);
   2335  1.198        ad 		preempt();
   2336  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2337   1.84  perseant 		return EWOULDBLOCK;
   2338   1.84  perseant 	}
   2339   1.84  perseant 
   2340   1.84  perseant 	/*
   2341   1.84  perseant 	 * If this is a file created in a recent dirop, we can't flush its
   2342   1.84  perseant 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2343   1.84  perseant 	 * filesystem (taking care of any other pending dirops while we're
   2344   1.84  perseant 	 * at it).
   2345   1.84  perseant 	 */
   2346   1.84  perseant 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2347  1.212        ad 	    (vp->v_uflag & VU_DIROP)) {
   2348  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   2349  1.239  perseant 
   2350  1.239  perseant  		lfs_writer_enter(fs, "ppdirop");
   2351   1.84  perseant 
   2352  1.239  perseant 		/* Note if we hold the vnode locked */
   2353  1.239  perseant 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   2354  1.239  perseant 		{
   2355  1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   2356  1.239  perseant 		} else {
   2357  1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   2358  1.239  perseant 		}
   2359  1.235     rmind 		mutex_exit(vp->v_interlock);
   2360  1.135     perry 
   2361  1.214        ad 		mutex_enter(&lfs_lock);
   2362   1.84  perseant 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2363  1.214        ad 		mutex_exit(&lfs_lock);
   2364  1.135     perry 
   2365  1.235     rmind 		mutex_enter(vp->v_interlock);
   2366  1.111      yamt 		lfs_writer_leave(fs);
   2367   1.84  perseant 
   2368  1.239  perseant 		/* The flush will have cleaned out this vnode as well,
   2369  1.239  perseant 		   no need to do more to it. */
   2370   1.84  perseant 	}
   2371   1.84  perseant 
   2372   1.84  perseant 	/*
   2373   1.86  perseant 	 * This is it.	We are going to write some pages.  From here on
   2374   1.84  perseant 	 * down it's all just mechanics.
   2375   1.84  perseant 	 *
   2376  1.103  perseant 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2377   1.84  perseant 	 */
   2378   1.84  perseant 	ap->a_flags &= ~PGO_SYNCIO;
   2379   1.84  perseant 
   2380   1.84  perseant 	/*
   2381   1.84  perseant 	 * If we've already got the seglock, flush the node and return.
   2382   1.84  perseant 	 * The FIP has already been set up for us by lfs_writefile,
   2383   1.84  perseant 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2384   1.84  perseant 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2385   1.84  perseant 	 * what we have, and correct FIP and segment header accounting.
   2386   1.84  perseant 	 */
   2387  1.203  perseant   get_seglock:
   2388  1.203  perseant 	/*
   2389  1.203  perseant 	 * If we are not called with the segment locked, lock it.
   2390  1.203  perseant 	 * Account for a new FIP in the segment header, and set sp->vp.
   2391  1.203  perseant 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2392  1.203  perseant 	 */
   2393  1.126      yamt 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2394  1.126      yamt 	if (!seglocked) {
   2395  1.235     rmind 		mutex_exit(vp->v_interlock);
   2396  1.126      yamt 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2397  1.239  perseant 		if (error != 0) {
   2398  1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   2399  1.239  perseant  			return error;
   2400  1.239  perseant 		}
   2401  1.235     rmind 		mutex_enter(vp->v_interlock);
   2402  1.203  perseant 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2403   1.84  perseant 	}
   2404   1.84  perseant 	sp = fs->lfs_sp;
   2405  1.120      yamt 	KASSERT(sp->vp == NULL);
   2406   1.84  perseant 	sp->vp = vp;
   2407  1.135     perry 
   2408  1.239  perseant 	/* Note segments written by reclaim; only for debugging */
   2409  1.239  perseant 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   2410  1.239  perseant 		sp->seg_flags |= SEGM_RECLAIM;
   2411  1.239  perseant 		fs->lfs_reclino = ip->i_number;
   2412  1.239  perseant 	}
   2413  1.239  perseant 
   2414  1.203  perseant 	/*
   2415  1.203  perseant 	 * Ensure that the partial segment is marked SS_DIROP if this
   2416  1.203  perseant 	 * vnode is a DIROP.
   2417  1.203  perseant 	 */
   2418  1.212        ad 	if (!seglocked && vp->v_uflag & VU_DIROP)
   2419  1.203  perseant 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2420  1.135     perry 
   2421   1.84  perseant 	/*
   2422  1.203  perseant 	 * Loop over genfs_putpages until all pages are gathered.
   2423   1.88  perseant 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2424  1.103  perseant 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2425  1.203  perseant 	 * well, since more pages might have been dirtied in our absence.
   2426   1.84  perseant 	 */
   2427  1.203  perseant #ifdef DEBUG
   2428  1.203  perseant 	debug_n_again = 0;
   2429  1.203  perseant #endif
   2430  1.203  perseant 	do {
   2431  1.203  perseant 		busypg = NULL;
   2432  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2433  1.203  perseant 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2434  1.203  perseant 				ap->a_flags, 0, &busypg) < 0) {
   2435  1.235     rmind 			mutex_exit(vp->v_interlock);
   2436  1.239  perseant 			/* XXX why? --ks */
   2437  1.235     rmind 			mutex_enter(vp->v_interlock);
   2438  1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   2439  1.203  perseant 			if (!seglocked) {
   2440  1.235     rmind 				mutex_exit(vp->v_interlock);
   2441  1.203  perseant 				lfs_release_finfo(fs);
   2442  1.203  perseant 				lfs_segunlock(fs);
   2443  1.235     rmind 				mutex_enter(vp->v_interlock);
   2444  1.203  perseant 			}
   2445  1.208  perseant 			sp->vp = NULL;
   2446  1.203  perseant 			goto get_seglock;
   2447   1.88  perseant 		}
   2448  1.203  perseant 
   2449  1.203  perseant 		busypg = NULL;
   2450  1.239  perseant 		KASSERT(!mutex_owned(&uvm_pageqlock));
   2451  1.239  perseant 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   2452  1.239  perseant 		ap->a_flags &= ~PGO_RECLAIM;
   2453  1.206  perseant 		error = genfs_do_putpages(vp, startoffset, endoffset,
   2454  1.203  perseant 					   ap->a_flags, &busypg);
   2455  1.239  perseant 		ap->a_flags |= oreclaim;
   2456  1.203  perseant 
   2457  1.203  perseant 		if (error == EDEADLK || error == EAGAIN) {
   2458  1.203  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2459  1.203  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   2460  1.203  perseant 			      ip->i_number, fs->lfs_offset,
   2461  1.203  perseant 			      dtosn(fs, fs->lfs_offset)));
   2462   1.84  perseant 
   2463  1.239  perseant 			if (oreclaim) {
   2464  1.239  perseant 				mutex_enter(vp->v_interlock);
   2465  1.239  perseant 				write_and_wait(fs, vp, busypg, seglocked, "again");
   2466  1.239  perseant 				mutex_exit(vp->v_interlock);
   2467  1.239  perseant 			} else {
   2468  1.239  perseant 				if ((sp->seg_flags & SEGM_SINGLE) &&
   2469  1.239  perseant 				    fs->lfs_curseg != fs->lfs_startseg)
   2470  1.239  perseant 					donewriting = 1;
   2471  1.239  perseant 			}
   2472  1.239  perseant 		} else if (error) {
   2473  1.239  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2474  1.239  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   2475  1.239  perseant 			      (int)ip->i_number, fs->lfs_offset,
   2476  1.239  perseant 			      dtosn(fs, fs->lfs_offset)));
   2477  1.167  perseant 		}
   2478  1.239  perseant 		/* genfs_do_putpages loses the interlock */
   2479  1.203  perseant #ifdef DEBUG
   2480  1.203  perseant 		++debug_n_again;
   2481  1.203  perseant #endif
   2482  1.239  perseant 		if (oreclaim && error == EAGAIN) {
   2483  1.239  perseant 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   2484  1.239  perseant 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   2485  1.239  perseant 			mutex_enter(vp->v_interlock);
   2486  1.239  perseant 		}
   2487  1.239  perseant 		if (error == EDEADLK)
   2488  1.239  perseant 			mutex_enter(vp->v_interlock);
   2489  1.239  perseant 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   2490  1.203  perseant #ifdef DEBUG
   2491  1.203  perseant 	if (debug_n_again > TOOMANY)
   2492  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   2493  1.203  perseant #endif
   2494  1.103  perseant 
   2495  1.203  perseant 	KASSERT(sp != NULL && sp->vp == vp);
   2496  1.239  perseant 	if (!seglocked && !donewriting) {
   2497  1.178  perseant 		sp->vp = NULL;
   2498  1.126      yamt 
   2499  1.126      yamt 		/* Write indirect blocks as well */
   2500  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2501  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2502  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2503  1.120      yamt 
   2504  1.126      yamt 		KASSERT(sp->vp == NULL);
   2505  1.126      yamt 		sp->vp = vp;
   2506  1.126      yamt 	}
   2507   1.84  perseant 
   2508   1.84  perseant 	/*
   2509   1.84  perseant 	 * Blocks are now gathered into a segment waiting to be written.
   2510   1.84  perseant 	 * All that's left to do is update metadata, and write them.
   2511   1.84  perseant 	 */
   2512  1.120      yamt 	lfs_updatemeta(sp);
   2513  1.120      yamt 	KASSERT(sp->vp == vp);
   2514  1.120      yamt 	sp->vp = NULL;
   2515  1.126      yamt 
   2516  1.203  perseant 	/*
   2517  1.203  perseant 	 * If we were called from lfs_writefile, we don't need to clean up
   2518  1.203  perseant 	 * the FIP or unlock the segment lock.	We're done.
   2519  1.203  perseant 	 */
   2520  1.239  perseant 	if (seglocked) {
   2521  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2522  1.126      yamt 		return error;
   2523  1.239  perseant 	}
   2524  1.120      yamt 
   2525  1.178  perseant 	/* Clean up FIP and send it to disk. */
   2526  1.178  perseant 	lfs_release_finfo(fs);
   2527   1.88  perseant 	lfs_writeseg(fs, fs->lfs_sp);
   2528   1.88  perseant 
   2529   1.84  perseant 	/*
   2530  1.203  perseant 	 * Remove us from paging queue if we wrote all our pages.
   2531  1.164  perseant 	 */
   2532  1.203  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2533  1.214        ad 		mutex_enter(&lfs_lock);
   2534  1.203  perseant 		if (ip->i_flags & IN_PAGING) {
   2535  1.203  perseant 			ip->i_flags &= ~IN_PAGING;
   2536  1.203  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2537  1.203  perseant 		}
   2538  1.214        ad 		mutex_exit(&lfs_lock);
   2539  1.164  perseant 	}
   2540  1.164  perseant 
   2541  1.164  perseant 	/*
   2542   1.84  perseant 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2543   1.84  perseant 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2544   1.84  perseant 	 * will not be true if we stop using malloc/copy.
   2545   1.84  perseant 	 */
   2546   1.84  perseant 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2547   1.84  perseant 	lfs_segunlock(fs);
   2548   1.84  perseant 
   2549   1.84  perseant 	/*
   2550   1.84  perseant 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2551   1.84  perseant 	 * take care of this, but there is a slight possibility that
   2552   1.84  perseant 	 * aiodoned might not have got around to our buffers yet.
   2553   1.84  perseant 	 */
   2554   1.84  perseant 	if (sync) {
   2555  1.235     rmind 		mutex_enter(vp->v_interlock);
   2556   1.98  perseant 		while (vp->v_numoutput > 0) {
   2557  1.136  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2558  1.136  perseant 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2559  1.235     rmind 			cv_wait(&vp->v_cv, vp->v_interlock);
   2560   1.84  perseant 		}
   2561  1.235     rmind 		mutex_exit(vp->v_interlock);
   2562   1.84  perseant 	}
   2563  1.239  perseant 	KASSERT(!mutex_owned(vp->v_interlock));
   2564   1.84  perseant 	return error;
   2565   1.84  perseant }
   2566   1.84  perseant 
   2567   1.84  perseant /*
   2568   1.84  perseant  * Return the last logical file offset that should be written for this file
   2569   1.86  perseant  * if we're doing a write that ends at "size".	If writing, we need to know
   2570   1.84  perseant  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2571   1.84  perseant  * to know about entire blocks.
   2572   1.84  perseant  */
   2573   1.84  perseant void
   2574   1.84  perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2575   1.84  perseant {
   2576   1.84  perseant 	struct inode *ip = VTOI(vp);
   2577  1.135     perry 	struct lfs *fs = ip->i_lfs;
   2578   1.84  perseant 	daddr_t olbn, nlbn;
   2579   1.84  perseant 
   2580  1.102      fvdl 	olbn = lblkno(fs, ip->i_size);
   2581   1.84  perseant 	nlbn = lblkno(fs, size);
   2582  1.245  dholland 	if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
   2583   1.86  perseant 		*eobp = fragroundup(fs, size);
   2584   1.86  perseant 	} else {
   2585   1.86  perseant 		*eobp = blkroundup(fs, size);
   2586   1.86  perseant 	}
   2587   1.84  perseant }
   2588   1.84  perseant 
   2589   1.84  perseant #ifdef DEBUG
   2590   1.84  perseant void lfs_dump_vop(void *);
   2591   1.84  perseant 
   2592   1.84  perseant void
   2593   1.84  perseant lfs_dump_vop(void *v)
   2594   1.84  perseant {
   2595   1.86  perseant 	struct vop_putpages_args /* {
   2596   1.86  perseant 		struct vnode *a_vp;
   2597   1.86  perseant 		voff_t a_offlo;
   2598   1.86  perseant 		voff_t a_offhi;
   2599   1.86  perseant 		int a_flags;
   2600   1.86  perseant 	} */ *ap = v;
   2601   1.84  perseant 
   2602  1.106     ragge #ifdef DDB
   2603   1.84  perseant 	vfs_vnode_print(ap->a_vp, 0, printf);
   2604  1.106     ragge #endif
   2605  1.102      fvdl 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2606   1.84  perseant }
   2607   1.84  perseant #endif
   2608   1.84  perseant 
   2609   1.84  perseant int
   2610   1.84  perseant lfs_mmap(void *v)
   2611   1.84  perseant {
   2612   1.84  perseant 	struct vop_mmap_args /* {
   2613   1.86  perseant 		const struct vnodeop_desc *a_desc;
   2614   1.86  perseant 		struct vnode *a_vp;
   2615  1.209     pooka 		vm_prot_t a_prot;
   2616  1.176      elad 		kauth_cred_t a_cred;
   2617   1.84  perseant 	} */ *ap = v;
   2618   1.84  perseant 
   2619   1.84  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2620   1.84  perseant 		return EOPNOTSUPP;
   2621  1.245  dholland 	return ulfs_mmap(v);
   2622   1.84  perseant }
   2623