lfs_vnops.c revision 1.249 1 1.249 dholland /* $NetBSD: lfs_vnops.c,v 1.249 2013/07/20 19:59:31 dholland Exp $ */
2 1.2 cgd
3 1.22 perseant /*-
4 1.84 perseant * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 1.22 perseant * All rights reserved.
6 1.22 perseant *
7 1.22 perseant * This code is derived from software contributed to The NetBSD Foundation
8 1.22 perseant * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 1.22 perseant *
10 1.22 perseant * Redistribution and use in source and binary forms, with or without
11 1.22 perseant * modification, are permitted provided that the following conditions
12 1.22 perseant * are met:
13 1.22 perseant * 1. Redistributions of source code must retain the above copyright
14 1.22 perseant * notice, this list of conditions and the following disclaimer.
15 1.22 perseant * 2. Redistributions in binary form must reproduce the above copyright
16 1.22 perseant * notice, this list of conditions and the following disclaimer in the
17 1.22 perseant * documentation and/or other materials provided with the distribution.
18 1.22 perseant *
19 1.22 perseant * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.22 perseant * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.22 perseant * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.22 perseant * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.22 perseant * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.22 perseant * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.22 perseant * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.22 perseant * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.22 perseant * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.22 perseant * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.22 perseant * POSSIBILITY OF SUCH DAMAGE.
30 1.22 perseant */
31 1.1 mycroft /*
32 1.15 fvdl * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 1.1 mycroft * The Regents of the University of California. All rights reserved.
34 1.1 mycroft *
35 1.1 mycroft * Redistribution and use in source and binary forms, with or without
36 1.1 mycroft * modification, are permitted provided that the following conditions
37 1.1 mycroft * are met:
38 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
39 1.1 mycroft * notice, this list of conditions and the following disclaimer.
40 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
41 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
42 1.1 mycroft * documentation and/or other materials provided with the distribution.
43 1.114 agc * 3. Neither the name of the University nor the names of its contributors
44 1.1 mycroft * may be used to endorse or promote products derived from this software
45 1.1 mycroft * without specific prior written permission.
46 1.1 mycroft *
47 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 1.1 mycroft * SUCH DAMAGE.
58 1.1 mycroft *
59 1.15 fvdl * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 1.1 mycroft */
61 1.58 lukem
62 1.58 lukem #include <sys/cdefs.h>
63 1.249 dholland __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.249 2013/07/20 19:59:31 dholland Exp $");
64 1.182 martin
65 1.183 martin #ifdef _KERNEL_OPT
66 1.182 martin #include "opt_compat_netbsd.h"
67 1.238 chs #include "opt_uvm_page_trkown.h"
68 1.183 martin #endif
69 1.17 sommerfe
70 1.1 mycroft #include <sys/param.h>
71 1.1 mycroft #include <sys/systm.h>
72 1.1 mycroft #include <sys/namei.h>
73 1.1 mycroft #include <sys/resourcevar.h>
74 1.1 mycroft #include <sys/kernel.h>
75 1.1 mycroft #include <sys/file.h>
76 1.1 mycroft #include <sys/stat.h>
77 1.1 mycroft #include <sys/buf.h>
78 1.1 mycroft #include <sys/proc.h>
79 1.1 mycroft #include <sys/mount.h>
80 1.1 mycroft #include <sys/vnode.h>
81 1.19 thorpej #include <sys/pool.h>
82 1.10 christos #include <sys/signalvar.h>
83 1.176 elad #include <sys/kauth.h>
84 1.179 perseant #include <sys/syslog.h>
85 1.197 hannken #include <sys/fstrans.h>
86 1.1 mycroft
87 1.12 mycroft #include <miscfs/fifofs/fifo.h>
88 1.12 mycroft #include <miscfs/genfs/genfs.h>
89 1.1 mycroft #include <miscfs/specfs/specdev.h>
90 1.1 mycroft
91 1.244 dholland #include <ufs/lfs/ulfs_inode.h>
92 1.244 dholland #include <ufs/lfs/ulfsmount.h>
93 1.244 dholland #include <ufs/lfs/ulfs_bswap.h>
94 1.244 dholland #include <ufs/lfs/ulfs_extern.h>
95 1.1 mycroft
96 1.84 perseant #include <uvm/uvm.h>
97 1.95 perseant #include <uvm/uvm_pmap.h>
98 1.95 perseant #include <uvm/uvm_stat.h>
99 1.95 perseant #include <uvm/uvm_pager.h>
100 1.84 perseant
101 1.1 mycroft #include <ufs/lfs/lfs.h>
102 1.1 mycroft #include <ufs/lfs/lfs_extern.h>
103 1.1 mycroft
104 1.91 yamt extern pid_t lfs_writer_daemon;
105 1.203 perseant int lfs_ignore_lazy_sync = 1;
106 1.203 perseant
107 1.1 mycroft /* Global vfs data structures for lfs. */
108 1.51 perseant int (**lfs_vnodeop_p)(void *);
109 1.50 jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
110 1.1 mycroft { &vop_default_desc, vn_default_error },
111 1.245 dholland { &vop_lookup_desc, ulfs_lookup }, /* lookup */
112 1.22 perseant { &vop_create_desc, lfs_create }, /* create */
113 1.245 dholland { &vop_whiteout_desc, ulfs_whiteout }, /* whiteout */
114 1.22 perseant { &vop_mknod_desc, lfs_mknod }, /* mknod */
115 1.245 dholland { &vop_open_desc, ulfs_open }, /* open */
116 1.1 mycroft { &vop_close_desc, lfs_close }, /* close */
117 1.245 dholland { &vop_access_desc, ulfs_access }, /* access */
118 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
119 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
120 1.1 mycroft { &vop_read_desc, lfs_read }, /* read */
121 1.1 mycroft { &vop_write_desc, lfs_write }, /* write */
122 1.245 dholland { &vop_ioctl_desc, ulfs_ioctl }, /* ioctl */
123 1.90 perseant { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 1.245 dholland { &vop_poll_desc, ulfs_poll }, /* poll */
125 1.68 jdolecek { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 1.245 dholland { &vop_revoke_desc, ulfs_revoke }, /* revoke */
127 1.84 perseant { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 1.1 mycroft { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 1.245 dholland { &vop_seek_desc, ulfs_seek }, /* seek */
130 1.22 perseant { &vop_remove_desc, lfs_remove }, /* remove */
131 1.22 perseant { &vop_link_desc, lfs_link }, /* link */
132 1.22 perseant { &vop_rename_desc, lfs_rename }, /* rename */
133 1.22 perseant { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 1.22 perseant { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 1.22 perseant { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 1.245 dholland { &vop_readdir_desc, ulfs_readdir }, /* readdir */
137 1.245 dholland { &vop_readlink_desc, ulfs_readlink }, /* readlink */
138 1.245 dholland { &vop_abortop_desc, ulfs_abortop }, /* abortop */
139 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 1.245 dholland { &vop_lock_desc, ulfs_lock }, /* lock */
142 1.245 dholland { &vop_unlock_desc, ulfs_unlock }, /* unlock */
143 1.245 dholland { &vop_bmap_desc, ulfs_bmap }, /* bmap */
144 1.94 perseant { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 1.245 dholland { &vop_print_desc, ulfs_print }, /* print */
146 1.245 dholland { &vop_islocked_desc, ulfs_islocked }, /* islocked */
147 1.245 dholland { &vop_pathconf_desc, ulfs_pathconf }, /* pathconf */
148 1.245 dholland { &vop_advlock_desc, ulfs_advlock }, /* advlock */
149 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
150 1.60 chs { &vop_getpages_desc, lfs_getpages }, /* getpages */
151 1.60 chs { &vop_putpages_desc, lfs_putpages }, /* putpages */
152 1.53 chs { NULL, NULL }
153 1.1 mycroft };
154 1.50 jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
155 1.1 mycroft { &lfs_vnodeop_p, lfs_vnodeop_entries };
156 1.1 mycroft
157 1.51 perseant int (**lfs_specop_p)(void *);
158 1.50 jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
159 1.1 mycroft { &vop_default_desc, vn_default_error },
160 1.1 mycroft { &vop_lookup_desc, spec_lookup }, /* lookup */
161 1.1 mycroft { &vop_create_desc, spec_create }, /* create */
162 1.1 mycroft { &vop_mknod_desc, spec_mknod }, /* mknod */
163 1.1 mycroft { &vop_open_desc, spec_open }, /* open */
164 1.65 perseant { &vop_close_desc, lfsspec_close }, /* close */
165 1.245 dholland { &vop_access_desc, ulfs_access }, /* access */
166 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
167 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
168 1.245 dholland { &vop_read_desc, ulfsspec_read }, /* read */
169 1.245 dholland { &vop_write_desc, ulfsspec_write }, /* write */
170 1.1 mycroft { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 1.245 dholland { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
172 1.13 mycroft { &vop_poll_desc, spec_poll }, /* poll */
173 1.68 jdolecek { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 1.15 fvdl { &vop_revoke_desc, spec_revoke }, /* revoke */
175 1.1 mycroft { &vop_mmap_desc, spec_mmap }, /* mmap */
176 1.1 mycroft { &vop_fsync_desc, spec_fsync }, /* fsync */
177 1.1 mycroft { &vop_seek_desc, spec_seek }, /* seek */
178 1.1 mycroft { &vop_remove_desc, spec_remove }, /* remove */
179 1.1 mycroft { &vop_link_desc, spec_link }, /* link */
180 1.1 mycroft { &vop_rename_desc, spec_rename }, /* rename */
181 1.1 mycroft { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 1.1 mycroft { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 1.1 mycroft { &vop_symlink_desc, spec_symlink }, /* symlink */
184 1.1 mycroft { &vop_readdir_desc, spec_readdir }, /* readdir */
185 1.1 mycroft { &vop_readlink_desc, spec_readlink }, /* readlink */
186 1.1 mycroft { &vop_abortop_desc, spec_abortop }, /* abortop */
187 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 1.245 dholland { &vop_lock_desc, ulfs_lock }, /* lock */
190 1.245 dholland { &vop_unlock_desc, ulfs_unlock }, /* unlock */
191 1.1 mycroft { &vop_bmap_desc, spec_bmap }, /* bmap */
192 1.1 mycroft { &vop_strategy_desc, spec_strategy }, /* strategy */
193 1.245 dholland { &vop_print_desc, ulfs_print }, /* print */
194 1.245 dholland { &vop_islocked_desc, ulfs_islocked }, /* islocked */
195 1.1 mycroft { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 1.1 mycroft { &vop_advlock_desc, spec_advlock }, /* advlock */
197 1.28 perseant { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 1.53 chs { &vop_getpages_desc, spec_getpages }, /* getpages */
199 1.53 chs { &vop_putpages_desc, spec_putpages }, /* putpages */
200 1.53 chs { NULL, NULL }
201 1.1 mycroft };
202 1.50 jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
203 1.1 mycroft { &lfs_specop_p, lfs_specop_entries };
204 1.1 mycroft
205 1.51 perseant int (**lfs_fifoop_p)(void *);
206 1.50 jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 1.1 mycroft { &vop_default_desc, vn_default_error },
208 1.227 pooka { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
209 1.227 pooka { &vop_create_desc, vn_fifo_bypass }, /* create */
210 1.227 pooka { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
211 1.227 pooka { &vop_open_desc, vn_fifo_bypass }, /* open */
212 1.65 perseant { &vop_close_desc, lfsfifo_close }, /* close */
213 1.245 dholland { &vop_access_desc, ulfs_access }, /* access */
214 1.1 mycroft { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 1.61 perseant { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 1.245 dholland { &vop_read_desc, ulfsfifo_read }, /* read */
217 1.245 dholland { &vop_write_desc, ulfsfifo_write }, /* write */
218 1.227 pooka { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
219 1.245 dholland { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
220 1.227 pooka { &vop_poll_desc, vn_fifo_bypass }, /* poll */
221 1.227 pooka { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
222 1.227 pooka { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
223 1.227 pooka { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
224 1.227 pooka { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
225 1.227 pooka { &vop_seek_desc, vn_fifo_bypass }, /* seek */
226 1.227 pooka { &vop_remove_desc, vn_fifo_bypass }, /* remove */
227 1.227 pooka { &vop_link_desc, vn_fifo_bypass }, /* link */
228 1.227 pooka { &vop_rename_desc, vn_fifo_bypass }, /* rename */
229 1.227 pooka { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
230 1.227 pooka { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
231 1.227 pooka { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
232 1.227 pooka { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
233 1.227 pooka { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
234 1.227 pooka { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
235 1.40 perseant { &vop_inactive_desc, lfs_inactive }, /* inactive */
236 1.1 mycroft { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
237 1.245 dholland { &vop_lock_desc, ulfs_lock }, /* lock */
238 1.245 dholland { &vop_unlock_desc, ulfs_unlock }, /* unlock */
239 1.227 pooka { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
240 1.227 pooka { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
241 1.245 dholland { &vop_print_desc, ulfs_print }, /* print */
242 1.245 dholland { &vop_islocked_desc, ulfs_islocked }, /* islocked */
243 1.227 pooka { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
244 1.227 pooka { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
245 1.1 mycroft { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
246 1.227 pooka { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
247 1.53 chs { NULL, NULL }
248 1.1 mycroft };
249 1.50 jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
250 1.1 mycroft { &lfs_fifoop_p, lfs_fifoop_entries };
251 1.1 mycroft
252 1.203 perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
253 1.134 perseant
254 1.1 mycroft #define LFS_READWRITE
255 1.244 dholland #include <ufs/lfs/ulfs_readwrite.c>
256 1.1 mycroft #undef LFS_READWRITE
257 1.1 mycroft
258 1.1 mycroft /*
259 1.1 mycroft * Synch an open file.
260 1.1 mycroft */
261 1.1 mycroft /* ARGSUSED */
262 1.10 christos int
263 1.51 perseant lfs_fsync(void *v)
264 1.10 christos {
265 1.1 mycroft struct vop_fsync_args /* {
266 1.1 mycroft struct vnode *a_vp;
267 1.176 elad kauth_cred_t a_cred;
268 1.22 perseant int a_flags;
269 1.49 toshii off_t offlo;
270 1.49 toshii off_t offhi;
271 1.10 christos } */ *ap = v;
272 1.60 chs struct vnode *vp = ap->a_vp;
273 1.84 perseant int error, wait;
274 1.203 perseant struct inode *ip = VTOI(vp);
275 1.203 perseant struct lfs *fs = ip->i_lfs;
276 1.84 perseant
277 1.161 perseant /* If we're mounted read-only, don't try to sync. */
278 1.203 perseant if (fs->lfs_ronly)
279 1.161 perseant return 0;
280 1.161 perseant
281 1.231 hannken /* If a removed vnode is being cleaned, no need to sync here. */
282 1.231 hannken if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
283 1.231 hannken return 0;
284 1.231 hannken
285 1.86 perseant /*
286 1.203 perseant * Trickle sync simply adds this vnode to the pager list, as if
287 1.203 perseant * the pagedaemon had requested a pageout.
288 1.86 perseant */
289 1.84 perseant if (ap->a_flags & FSYNC_LAZY) {
290 1.203 perseant if (lfs_ignore_lazy_sync == 0) {
291 1.214 ad mutex_enter(&lfs_lock);
292 1.203 perseant if (!(ip->i_flags & IN_PAGING)) {
293 1.203 perseant ip->i_flags |= IN_PAGING;
294 1.203 perseant TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
295 1.203 perseant i_lfs_pchain);
296 1.203 perseant }
297 1.203 perseant wakeup(&lfs_writer_daemon);
298 1.214 ad mutex_exit(&lfs_lock);
299 1.203 perseant }
300 1.47 perseant return 0;
301 1.84 perseant }
302 1.47 perseant
303 1.175 perseant /*
304 1.188 perseant * If a vnode is bring cleaned, flush it out before we try to
305 1.188 perseant * reuse it. This prevents the cleaner from writing files twice
306 1.188 perseant * in the same partial segment, causing an accounting underflow.
307 1.188 perseant */
308 1.203 perseant if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
309 1.188 perseant lfs_vflush(vp);
310 1.175 perseant }
311 1.175 perseant
312 1.84 perseant wait = (ap->a_flags & FSYNC_WAIT);
313 1.203 perseant do {
314 1.235 rmind mutex_enter(vp->v_interlock);
315 1.203 perseant error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
316 1.203 perseant round_page(ap->a_offhi),
317 1.203 perseant PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
318 1.205 perseant if (error == EAGAIN) {
319 1.214 ad mutex_enter(&lfs_lock);
320 1.214 ad mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
321 1.214 ad hz / 100 + 1, &lfs_lock);
322 1.214 ad mutex_exit(&lfs_lock);
323 1.205 perseant }
324 1.203 perseant } while (error == EAGAIN);
325 1.103 perseant if (error)
326 1.103 perseant return error;
327 1.203 perseant
328 1.203 perseant if ((ap->a_flags & FSYNC_DATAONLY) == 0)
329 1.203 perseant error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
330 1.203 perseant
331 1.133 wrstuden if (error == 0 && ap->a_flags & FSYNC_CACHE) {
332 1.133 wrstuden int l = 0;
333 1.203 perseant error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
334 1.213 pooka curlwp->l_cred);
335 1.133 wrstuden }
336 1.103 perseant if (wait && !VPISEMPTY(vp))
337 1.203 perseant LFS_SET_UINO(ip, IN_MODIFIED);
338 1.84 perseant
339 1.63 perseant return error;
340 1.1 mycroft }
341 1.1 mycroft
342 1.1 mycroft /*
343 1.245 dholland * Take IN_ADIROP off, then call ulfs_inactive.
344 1.40 perseant */
345 1.40 perseant int
346 1.51 perseant lfs_inactive(void *v)
347 1.40 perseant {
348 1.40 perseant struct vop_inactive_args /* {
349 1.40 perseant struct vnode *a_vp;
350 1.40 perseant } */ *ap = v;
351 1.72 yamt
352 1.76 yamt lfs_unmark_vnode(ap->a_vp);
353 1.76 yamt
354 1.97 perseant /*
355 1.97 perseant * The Ifile is only ever inactivated on unmount.
356 1.97 perseant * Streamline this process by not giving it more dirty blocks.
357 1.97 perseant */
358 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
359 1.214 ad mutex_enter(&lfs_lock);
360 1.97 perseant LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
361 1.214 ad mutex_exit(&lfs_lock);
362 1.229 hannken VOP_UNLOCK(ap->a_vp);
363 1.97 perseant return 0;
364 1.97 perseant }
365 1.97 perseant
366 1.239 perseant #ifdef DEBUG
367 1.239 perseant /*
368 1.239 perseant * This might happen on unmount.
369 1.239 perseant * XXX If it happens at any other time, it should be a panic.
370 1.239 perseant */
371 1.239 perseant if (ap->a_vp->v_uflag & VU_DIROP) {
372 1.239 perseant struct inode *ip = VTOI(ap->a_vp);
373 1.239 perseant printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
374 1.239 perseant }
375 1.239 perseant #endif /* DIAGNOSTIC */
376 1.239 perseant
377 1.245 dholland return ulfs_inactive(v);
378 1.40 perseant }
379 1.40 perseant
380 1.249 dholland int
381 1.138 perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
382 1.40 perseant {
383 1.24 perseant struct lfs *fs;
384 1.24 perseant int error;
385 1.24 perseant
386 1.138 perseant KASSERT(VOP_ISLOCKED(dvp));
387 1.138 perseant KASSERT(vp == NULL || VOP_ISLOCKED(vp));
388 1.71 yamt
389 1.138 perseant fs = VTOI(dvp)->i_lfs;
390 1.141 perseant
391 1.141 perseant ASSERT_NO_SEGLOCK(fs);
392 1.44 perseant /*
393 1.134 perseant * LFS_NRESERVE calculates direct and indirect blocks as well
394 1.134 perseant * as an inode block; an overestimate in most cases.
395 1.44 perseant */
396 1.138 perseant if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
397 1.44 perseant return (error);
398 1.70 yamt
399 1.214 ad restart:
400 1.214 ad mutex_enter(&lfs_lock);
401 1.141 perseant if (fs->lfs_dirops == 0) {
402 1.214 ad mutex_exit(&lfs_lock);
403 1.138 perseant lfs_check(dvp, LFS_UNUSED_LBN, 0);
404 1.214 ad mutex_enter(&lfs_lock);
405 1.113 yamt }
406 1.190 perseant while (fs->lfs_writer) {
407 1.214 ad error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
408 1.214 ad "lfs_sdirop", 0, &lfs_lock);
409 1.190 perseant if (error == EINTR) {
410 1.214 ad mutex_exit(&lfs_lock);
411 1.190 perseant goto unreserve;
412 1.190 perseant }
413 1.190 perseant }
414 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
415 1.113 yamt wakeup(&lfs_writer_daemon);
416 1.214 ad mutex_exit(&lfs_lock);
417 1.198 ad preempt();
418 1.113 yamt goto restart;
419 1.113 yamt }
420 1.33 perseant
421 1.113 yamt if (lfs_dirvcount > LFS_MAX_DIROP) {
422 1.136 perseant DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
423 1.136 perseant "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
424 1.214 ad if ((error = mtsleep(&lfs_dirvcount,
425 1.214 ad PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
426 1.214 ad &lfs_lock)) != 0) {
427 1.113 yamt goto unreserve;
428 1.113 yamt }
429 1.113 yamt goto restart;
430 1.135 perry }
431 1.113 yamt
432 1.135 perry ++fs->lfs_dirops;
433 1.239 perseant /* fs->lfs_doifile = 1; */ /* XXX why? --ks */
434 1.214 ad mutex_exit(&lfs_lock);
435 1.24 perseant
436 1.46 perseant /* Hold a reference so SET_ENDOP will be happy */
437 1.138 perseant vref(dvp);
438 1.138 perseant if (vp) {
439 1.138 perseant vref(vp);
440 1.138 perseant MARK_VNODE(vp);
441 1.138 perseant }
442 1.46 perseant
443 1.138 perseant MARK_VNODE(dvp);
444 1.24 perseant return 0;
445 1.70 yamt
446 1.203 perseant unreserve:
447 1.138 perseant lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
448 1.70 yamt return error;
449 1.1 mycroft }
450 1.1 mycroft
451 1.138 perseant /*
452 1.138 perseant * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
453 1.138 perseant * in getnewvnode(), if we have a stacked filesystem mounted on top
454 1.138 perseant * of us.
455 1.138 perseant *
456 1.138 perseant * NB: this means we have to clear the new vnodes on error. Fortunately
457 1.138 perseant * SET_ENDOP is there to do that for us.
458 1.138 perseant */
459 1.249 dholland int
460 1.138 perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
461 1.138 perseant {
462 1.138 perseant int error;
463 1.138 perseant struct lfs *fs;
464 1.138 perseant
465 1.245 dholland fs = VFSTOULFS(dvp->v_mount)->um_lfs;
466 1.141 perseant ASSERT_NO_SEGLOCK(fs);
467 1.138 perseant if (fs->lfs_ronly)
468 1.138 perseant return EROFS;
469 1.235 rmind if (vpp == NULL) {
470 1.235 rmind return lfs_set_dirop(dvp, NULL);
471 1.235 rmind }
472 1.235 rmind error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
473 1.235 rmind if (error) {
474 1.138 perseant DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
475 1.138 perseant dvp, error));
476 1.138 perseant return error;
477 1.138 perseant }
478 1.138 perseant if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
479 1.235 rmind ungetnewvnode(*vpp);
480 1.235 rmind *vpp = NULL;
481 1.138 perseant return error;
482 1.138 perseant }
483 1.138 perseant return 0;
484 1.1 mycroft }
485 1.1 mycroft
486 1.117 yamt void
487 1.117 yamt lfs_mark_vnode(struct vnode *vp)
488 1.117 yamt {
489 1.117 yamt struct inode *ip = VTOI(vp);
490 1.117 yamt struct lfs *fs = ip->i_lfs;
491 1.37 perseant
492 1.214 ad mutex_enter(&lfs_lock);
493 1.117 yamt if (!(ip->i_flag & IN_ADIROP)) {
494 1.212 ad if (!(vp->v_uflag & VU_DIROP)) {
495 1.240 perseant mutex_exit(&lfs_lock);
496 1.235 rmind mutex_enter(vp->v_interlock);
497 1.239 perseant if (lfs_vref(vp) != 0)
498 1.239 perseant panic("lfs_mark_vnode: could not vref");
499 1.240 perseant mutex_enter(&lfs_lock);
500 1.117 yamt ++lfs_dirvcount;
501 1.173 perseant ++fs->lfs_dirvcount;
502 1.117 yamt TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
503 1.212 ad vp->v_uflag |= VU_DIROP;
504 1.117 yamt }
505 1.117 yamt ++fs->lfs_nadirop;
506 1.239 perseant ip->i_flag &= ~IN_CDIROP;
507 1.117 yamt ip->i_flag |= IN_ADIROP;
508 1.117 yamt } else
509 1.212 ad KASSERT(vp->v_uflag & VU_DIROP);
510 1.214 ad mutex_exit(&lfs_lock);
511 1.117 yamt }
512 1.40 perseant
513 1.117 yamt void
514 1.117 yamt lfs_unmark_vnode(struct vnode *vp)
515 1.40 perseant {
516 1.117 yamt struct inode *ip = VTOI(vp);
517 1.40 perseant
518 1.240 perseant mutex_enter(&lfs_lock);
519 1.146 perseant if (ip && (ip->i_flag & IN_ADIROP)) {
520 1.212 ad KASSERT(vp->v_uflag & VU_DIROP);
521 1.40 perseant --ip->i_lfs->lfs_nadirop;
522 1.117 yamt ip->i_flag &= ~IN_ADIROP;
523 1.117 yamt }
524 1.240 perseant mutex_exit(&lfs_lock);
525 1.40 perseant }
526 1.15 fvdl
527 1.1 mycroft int
528 1.51 perseant lfs_symlink(void *v)
529 1.10 christos {
530 1.1 mycroft struct vop_symlink_args /* {
531 1.1 mycroft struct vnode *a_dvp;
532 1.1 mycroft struct vnode **a_vpp;
533 1.1 mycroft struct componentname *a_cnp;
534 1.1 mycroft struct vattr *a_vap;
535 1.1 mycroft char *a_target;
536 1.10 christos } */ *ap = v;
537 1.37 perseant int error;
538 1.1 mycroft
539 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
540 1.34 perseant vput(ap->a_dvp);
541 1.37 perseant return error;
542 1.34 perseant }
543 1.245 dholland error = ulfs_symlink(ap);
544 1.138 perseant SET_ENDOP_CREATE_AP(ap, "symlink");
545 1.37 perseant return (error);
546 1.1 mycroft }
547 1.1 mycroft
548 1.1 mycroft int
549 1.51 perseant lfs_mknod(void *v)
550 1.10 christos {
551 1.22 perseant struct vop_mknod_args /* {
552 1.1 mycroft struct vnode *a_dvp;
553 1.1 mycroft struct vnode **a_vpp;
554 1.1 mycroft struct componentname *a_cnp;
555 1.1 mycroft struct vattr *a_vap;
556 1.203 perseant } */ *ap = v;
557 1.86 perseant struct vattr *vap = ap->a_vap;
558 1.86 perseant struct vnode **vpp = ap->a_vpp;
559 1.86 perseant struct inode *ip;
560 1.86 perseant int error;
561 1.135 perry struct mount *mp;
562 1.52 assar ino_t ino;
563 1.245 dholland struct ulfs_lookup_results *ulr;
564 1.237 dholland
565 1.237 dholland /* XXX should handle this material another way */
566 1.237 dholland ulr = &VTOI(ap->a_dvp)->i_crap;
567 1.245 dholland ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
568 1.1 mycroft
569 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
570 1.34 perseant vput(ap->a_dvp);
571 1.28 perseant return error;
572 1.34 perseant }
573 1.245 dholland error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
574 1.237 dholland ap->a_dvp, ulr, vpp, ap->a_cnp);
575 1.28 perseant
576 1.28 perseant /* Either way we're done with the dirop at this point */
577 1.138 perseant SET_ENDOP_CREATE_AP(ap, "mknod");
578 1.28 perseant
579 1.86 perseant if (error)
580 1.28 perseant return (error);
581 1.28 perseant
582 1.86 perseant ip = VTOI(*vpp);
583 1.52 assar mp = (*vpp)->v_mount;
584 1.52 assar ino = ip->i_number;
585 1.86 perseant ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
586 1.86 perseant if (vap->va_rdev != VNOVAL) {
587 1.86 perseant /*
588 1.86 perseant * Want to be able to use this to make badblock
589 1.86 perseant * inodes, so don't truncate the dev number.
590 1.86 perseant */
591 1.28 perseant #if 0
592 1.245 dholland ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
593 1.245 dholland ULFS_MPNEEDSWAP((*vpp)->v_mount));
594 1.28 perseant #else
595 1.102 fvdl ip->i_ffs1_rdev = vap->va_rdev;
596 1.28 perseant #endif
597 1.86 perseant }
598 1.134 perseant
599 1.28 perseant /*
600 1.28 perseant * Call fsync to write the vnode so that we don't have to deal with
601 1.212 ad * flushing it when it's marked VU_DIROP|VI_XLOCK.
602 1.28 perseant *
603 1.28 perseant * XXX KS - If we can't flush we also can't call vgone(), so must
604 1.28 perseant * return. But, that leaves this vnode in limbo, also not good.
605 1.28 perseant * Can this ever happen (barring hardware failure)?
606 1.28 perseant */
607 1.213 pooka if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
608 1.153 christos panic("lfs_mknod: couldn't fsync (ino %llu)",
609 1.203 perseant (unsigned long long)ino);
610 1.136 perseant /* return (error); */
611 1.40 perseant }
612 1.86 perseant /*
613 1.86 perseant * Remove vnode so that it will be reloaded by VFS_VGET and
614 1.86 perseant * checked to see if it is an alias of an existing entry in
615 1.86 perseant * the inode cache.
616 1.86 perseant */
617 1.28 perseant /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
618 1.134 perseant
619 1.229 hannken VOP_UNLOCK(*vpp);
620 1.86 perseant (*vpp)->v_type = VNON;
621 1.86 perseant vgone(*vpp);
622 1.108 thorpej error = VFS_VGET(mp, ino, vpp);
623 1.134 perseant
624 1.52 assar if (error != 0) {
625 1.52 assar *vpp = NULL;
626 1.52 assar return (error);
627 1.52 assar }
628 1.86 perseant return (0);
629 1.1 mycroft }
630 1.1 mycroft
631 1.1 mycroft int
632 1.51 perseant lfs_create(void *v)
633 1.10 christos {
634 1.22 perseant struct vop_create_args /* {
635 1.1 mycroft struct vnode *a_dvp;
636 1.1 mycroft struct vnode **a_vpp;
637 1.1 mycroft struct componentname *a_cnp;
638 1.1 mycroft struct vattr *a_vap;
639 1.10 christos } */ *ap = v;
640 1.37 perseant int error;
641 1.1 mycroft
642 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
643 1.34 perseant vput(ap->a_dvp);
644 1.37 perseant return error;
645 1.34 perseant }
646 1.245 dholland error = ulfs_create(ap);
647 1.138 perseant SET_ENDOP_CREATE_AP(ap, "create");
648 1.37 perseant return (error);
649 1.22 perseant }
650 1.22 perseant
651 1.22 perseant int
652 1.51 perseant lfs_mkdir(void *v)
653 1.10 christos {
654 1.22 perseant struct vop_mkdir_args /* {
655 1.1 mycroft struct vnode *a_dvp;
656 1.1 mycroft struct vnode **a_vpp;
657 1.1 mycroft struct componentname *a_cnp;
658 1.1 mycroft struct vattr *a_vap;
659 1.10 christos } */ *ap = v;
660 1.37 perseant int error;
661 1.1 mycroft
662 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
663 1.34 perseant vput(ap->a_dvp);
664 1.37 perseant return error;
665 1.34 perseant }
666 1.245 dholland error = ulfs_mkdir(ap);
667 1.138 perseant SET_ENDOP_CREATE_AP(ap, "mkdir");
668 1.37 perseant return (error);
669 1.1 mycroft }
670 1.1 mycroft
671 1.1 mycroft int
672 1.51 perseant lfs_remove(void *v)
673 1.10 christos {
674 1.22 perseant struct vop_remove_args /* {
675 1.1 mycroft struct vnode *a_dvp;
676 1.1 mycroft struct vnode *a_vp;
677 1.1 mycroft struct componentname *a_cnp;
678 1.10 christos } */ *ap = v;
679 1.34 perseant struct vnode *dvp, *vp;
680 1.188 perseant struct inode *ip;
681 1.37 perseant int error;
682 1.34 perseant
683 1.34 perseant dvp = ap->a_dvp;
684 1.34 perseant vp = ap->a_vp;
685 1.188 perseant ip = VTOI(vp);
686 1.138 perseant if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
687 1.34 perseant if (dvp == vp)
688 1.34 perseant vrele(vp);
689 1.34 perseant else
690 1.34 perseant vput(vp);
691 1.34 perseant vput(dvp);
692 1.37 perseant return error;
693 1.34 perseant }
694 1.245 dholland error = ulfs_remove(ap);
695 1.188 perseant if (ip->i_nlink == 0)
696 1.188 perseant lfs_orphan(ip->i_lfs, ip->i_number);
697 1.188 perseant SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
698 1.37 perseant return (error);
699 1.1 mycroft }
700 1.1 mycroft
701 1.1 mycroft int
702 1.51 perseant lfs_rmdir(void *v)
703 1.10 christos {
704 1.22 perseant struct vop_rmdir_args /* {
705 1.1 mycroft struct vnodeop_desc *a_desc;
706 1.1 mycroft struct vnode *a_dvp;
707 1.1 mycroft struct vnode *a_vp;
708 1.1 mycroft struct componentname *a_cnp;
709 1.10 christos } */ *ap = v;
710 1.84 perseant struct vnode *vp;
711 1.188 perseant struct inode *ip;
712 1.37 perseant int error;
713 1.1 mycroft
714 1.84 perseant vp = ap->a_vp;
715 1.188 perseant ip = VTOI(vp);
716 1.138 perseant if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
717 1.194 chs if (ap->a_dvp == vp)
718 1.194 chs vrele(ap->a_dvp);
719 1.194 chs else
720 1.194 chs vput(ap->a_dvp);
721 1.84 perseant vput(vp);
722 1.37 perseant return error;
723 1.34 perseant }
724 1.245 dholland error = ulfs_rmdir(ap);
725 1.188 perseant if (ip->i_nlink == 0)
726 1.188 perseant lfs_orphan(ip->i_lfs, ip->i_number);
727 1.188 perseant SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
728 1.37 perseant return (error);
729 1.1 mycroft }
730 1.1 mycroft
731 1.1 mycroft int
732 1.51 perseant lfs_link(void *v)
733 1.10 christos {
734 1.22 perseant struct vop_link_args /* {
735 1.9 mycroft struct vnode *a_dvp;
736 1.1 mycroft struct vnode *a_vp;
737 1.1 mycroft struct componentname *a_cnp;
738 1.10 christos } */ *ap = v;
739 1.37 perseant int error;
740 1.138 perseant struct vnode **vpp = NULL;
741 1.1 mycroft
742 1.138 perseant if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
743 1.34 perseant vput(ap->a_dvp);
744 1.37 perseant return error;
745 1.34 perseant }
746 1.245 dholland error = ulfs_link(ap);
747 1.138 perseant SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
748 1.37 perseant return (error);
749 1.1 mycroft }
750 1.22 perseant
751 1.1 mycroft /* XXX hack to avoid calling ITIMES in getattr */
752 1.1 mycroft int
753 1.51 perseant lfs_getattr(void *v)
754 1.10 christos {
755 1.1 mycroft struct vop_getattr_args /* {
756 1.1 mycroft struct vnode *a_vp;
757 1.1 mycroft struct vattr *a_vap;
758 1.176 elad kauth_cred_t a_cred;
759 1.10 christos } */ *ap = v;
760 1.35 augustss struct vnode *vp = ap->a_vp;
761 1.35 augustss struct inode *ip = VTOI(vp);
762 1.35 augustss struct vattr *vap = ap->a_vap;
763 1.51 perseant struct lfs *fs = ip->i_lfs;
764 1.1 mycroft /*
765 1.1 mycroft * Copy from inode table
766 1.1 mycroft */
767 1.1 mycroft vap->va_fsid = ip->i_dev;
768 1.1 mycroft vap->va_fileid = ip->i_number;
769 1.246 dholland vap->va_mode = ip->i_mode & ~LFS_IFMT;
770 1.102 fvdl vap->va_nlink = ip->i_nlink;
771 1.102 fvdl vap->va_uid = ip->i_uid;
772 1.102 fvdl vap->va_gid = ip->i_gid;
773 1.102 fvdl vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
774 1.55 chs vap->va_size = vp->v_size;
775 1.102 fvdl vap->va_atime.tv_sec = ip->i_ffs1_atime;
776 1.102 fvdl vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
777 1.102 fvdl vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
778 1.102 fvdl vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
779 1.102 fvdl vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
780 1.102 fvdl vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
781 1.102 fvdl vap->va_flags = ip->i_flags;
782 1.102 fvdl vap->va_gen = ip->i_gen;
783 1.1 mycroft /* this doesn't belong here */
784 1.1 mycroft if (vp->v_type == VBLK)
785 1.1 mycroft vap->va_blocksize = BLKDEV_IOSIZE;
786 1.1 mycroft else if (vp->v_type == VCHR)
787 1.1 mycroft vap->va_blocksize = MAXBSIZE;
788 1.1 mycroft else
789 1.1 mycroft vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
790 1.248 christos vap->va_bytes = lfs_fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
791 1.1 mycroft vap->va_type = vp->v_type;
792 1.1 mycroft vap->va_filerev = ip->i_modrev;
793 1.1 mycroft return (0);
794 1.61 perseant }
795 1.61 perseant
796 1.61 perseant /*
797 1.61 perseant * Check to make sure the inode blocks won't choke the buffer
798 1.245 dholland * cache, then call ulfs_setattr as usual.
799 1.61 perseant */
800 1.61 perseant int
801 1.61 perseant lfs_setattr(void *v)
802 1.61 perseant {
803 1.149 skrll struct vop_setattr_args /* {
804 1.61 perseant struct vnode *a_vp;
805 1.61 perseant struct vattr *a_vap;
806 1.176 elad kauth_cred_t a_cred;
807 1.61 perseant } */ *ap = v;
808 1.61 perseant struct vnode *vp = ap->a_vp;
809 1.61 perseant
810 1.61 perseant lfs_check(vp, LFS_UNUSED_LBN, 0);
811 1.245 dholland return ulfs_setattr(v);
812 1.1 mycroft }
813 1.22 perseant
814 1.1 mycroft /*
815 1.179 perseant * Release the block we hold on lfs_newseg wrapping. Called on file close,
816 1.188 perseant * or explicitly from LFCNWRAPGO. Called with the interlock held.
817 1.179 perseant */
818 1.179 perseant static int
819 1.193 christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
820 1.179 perseant {
821 1.214 ad if (fs->lfs_stoplwp != curlwp)
822 1.179 perseant return EBUSY;
823 1.179 perseant
824 1.214 ad fs->lfs_stoplwp = NULL;
825 1.214 ad cv_signal(&fs->lfs_stopcv);
826 1.179 perseant
827 1.179 perseant KASSERT(fs->lfs_nowrap > 0);
828 1.179 perseant if (fs->lfs_nowrap <= 0) {
829 1.179 perseant return 0;
830 1.179 perseant }
831 1.179 perseant
832 1.179 perseant if (--fs->lfs_nowrap == 0) {
833 1.179 perseant log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
834 1.188 perseant wakeup(&fs->lfs_wrappass);
835 1.180 perseant lfs_wakeup_cleaner(fs);
836 1.179 perseant }
837 1.179 perseant if (waitfor) {
838 1.214 ad mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
839 1.214 ad 0, &lfs_lock);
840 1.179 perseant }
841 1.179 perseant
842 1.179 perseant return 0;
843 1.179 perseant }
844 1.179 perseant
845 1.179 perseant /*
846 1.1 mycroft * Close called
847 1.1 mycroft */
848 1.1 mycroft /* ARGSUSED */
849 1.1 mycroft int
850 1.51 perseant lfs_close(void *v)
851 1.10 christos {
852 1.1 mycroft struct vop_close_args /* {
853 1.1 mycroft struct vnode *a_vp;
854 1.1 mycroft int a_fflag;
855 1.176 elad kauth_cred_t a_cred;
856 1.10 christos } */ *ap = v;
857 1.35 augustss struct vnode *vp = ap->a_vp;
858 1.35 augustss struct inode *ip = VTOI(vp);
859 1.180 perseant struct lfs *fs = ip->i_lfs;
860 1.1 mycroft
861 1.245 dholland if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
862 1.214 ad fs->lfs_stoplwp == curlwp) {
863 1.214 ad mutex_enter(&lfs_lock);
864 1.188 perseant log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
865 1.180 perseant lfs_wrapgo(fs, ip, 0);
866 1.214 ad mutex_exit(&lfs_lock);
867 1.179 perseant }
868 1.179 perseant
869 1.97 perseant if (vp == ip->i_lfs->lfs_ivnode &&
870 1.119 dbj vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
871 1.97 perseant return 0;
872 1.97 perseant
873 1.97 perseant if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
874 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
875 1.1 mycroft }
876 1.1 mycroft return (0);
877 1.65 perseant }
878 1.65 perseant
879 1.65 perseant /*
880 1.65 perseant * Close wrapper for special devices.
881 1.65 perseant *
882 1.65 perseant * Update the times on the inode then do device close.
883 1.65 perseant */
884 1.65 perseant int
885 1.65 perseant lfsspec_close(void *v)
886 1.65 perseant {
887 1.65 perseant struct vop_close_args /* {
888 1.65 perseant struct vnode *a_vp;
889 1.65 perseant int a_fflag;
890 1.176 elad kauth_cred_t a_cred;
891 1.65 perseant } */ *ap = v;
892 1.65 perseant struct vnode *vp;
893 1.65 perseant struct inode *ip;
894 1.65 perseant
895 1.65 perseant vp = ap->a_vp;
896 1.65 perseant ip = VTOI(vp);
897 1.65 perseant if (vp->v_usecount > 1) {
898 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
899 1.65 perseant }
900 1.65 perseant return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
901 1.65 perseant }
902 1.65 perseant
903 1.65 perseant /*
904 1.65 perseant * Close wrapper for fifo's.
905 1.65 perseant *
906 1.65 perseant * Update the times on the inode then do device close.
907 1.65 perseant */
908 1.65 perseant int
909 1.65 perseant lfsfifo_close(void *v)
910 1.65 perseant {
911 1.65 perseant struct vop_close_args /* {
912 1.65 perseant struct vnode *a_vp;
913 1.65 perseant int a_fflag;
914 1.176 elad kauth_cred_ a_cred;
915 1.65 perseant } */ *ap = v;
916 1.65 perseant struct vnode *vp;
917 1.65 perseant struct inode *ip;
918 1.65 perseant
919 1.65 perseant vp = ap->a_vp;
920 1.65 perseant ip = VTOI(vp);
921 1.65 perseant if (ap->a_vp->v_usecount > 1) {
922 1.154 christos LFS_ITIMES(ip, NULL, NULL, NULL);
923 1.65 perseant }
924 1.65 perseant return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
925 1.1 mycroft }
926 1.1 mycroft
927 1.1 mycroft /*
928 1.15 fvdl * Reclaim an inode so that it can be used for other purposes.
929 1.1 mycroft */
930 1.1 mycroft
931 1.1 mycroft int
932 1.51 perseant lfs_reclaim(void *v)
933 1.10 christos {
934 1.1 mycroft struct vop_reclaim_args /* {
935 1.1 mycroft struct vnode *a_vp;
936 1.10 christos } */ *ap = v;
937 1.15 fvdl struct vnode *vp = ap->a_vp;
938 1.84 perseant struct inode *ip = VTOI(vp);
939 1.203 perseant struct lfs *fs = ip->i_lfs;
940 1.1 mycroft int error;
941 1.77 yamt
942 1.231 hannken /*
943 1.231 hannken * The inode must be freed and updated before being removed
944 1.231 hannken * from its hash chain. Other threads trying to gain a hold
945 1.231 hannken * on the inode will be stalled because it is locked (VI_XLOCK).
946 1.231 hannken */
947 1.231 hannken if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
948 1.231 hannken lfs_vfree(vp, ip->i_number, ip->i_omode);
949 1.231 hannken
950 1.214 ad mutex_enter(&lfs_lock);
951 1.84 perseant LFS_CLR_UINO(ip, IN_ALLMOD);
952 1.214 ad mutex_exit(&lfs_lock);
953 1.245 dholland if ((error = ulfs_reclaim(vp)))
954 1.1 mycroft return (error);
955 1.203 perseant
956 1.203 perseant /*
957 1.203 perseant * Take us off the paging and/or dirop queues if we were on them.
958 1.203 perseant * We shouldn't be on them.
959 1.203 perseant */
960 1.214 ad mutex_enter(&lfs_lock);
961 1.203 perseant if (ip->i_flags & IN_PAGING) {
962 1.203 perseant log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
963 1.203 perseant fs->lfs_fsmnt);
964 1.203 perseant ip->i_flags &= ~IN_PAGING;
965 1.203 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
966 1.203 perseant }
967 1.212 ad if (vp->v_uflag & VU_DIROP) {
968 1.212 ad panic("reclaimed vnode is VU_DIROP");
969 1.212 ad vp->v_uflag &= ~VU_DIROP;
970 1.203 perseant TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
971 1.203 perseant }
972 1.214 ad mutex_exit(&lfs_lock);
973 1.203 perseant
974 1.142 perseant pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
975 1.145 perseant lfs_deregister_all(vp);
976 1.84 perseant pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
977 1.84 perseant ip->inode_ext.lfs = NULL;
978 1.199 ad genfs_node_destroy(vp);
979 1.19 thorpej pool_put(&lfs_inode_pool, vp->v_data);
980 1.1 mycroft vp->v_data = NULL;
981 1.94 perseant return (0);
982 1.94 perseant }
983 1.94 perseant
984 1.94 perseant /*
985 1.101 yamt * Read a block from a storage device.
986 1.94 perseant * In order to avoid reading blocks that are in the process of being
987 1.94 perseant * written by the cleaner---and hence are not mutexed by the normal
988 1.94 perseant * buffer cache / page cache mechanisms---check for collisions before
989 1.94 perseant * reading.
990 1.94 perseant *
991 1.245 dholland * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
992 1.94 perseant * the active cleaner test.
993 1.94 perseant *
994 1.94 perseant * XXX This code assumes that lfs_markv makes synchronous checkpoints.
995 1.94 perseant */
996 1.94 perseant int
997 1.94 perseant lfs_strategy(void *v)
998 1.94 perseant {
999 1.94 perseant struct vop_strategy_args /* {
1000 1.128 hannken struct vnode *a_vp;
1001 1.94 perseant struct buf *a_bp;
1002 1.94 perseant } */ *ap = v;
1003 1.94 perseant struct buf *bp;
1004 1.94 perseant struct lfs *fs;
1005 1.94 perseant struct vnode *vp;
1006 1.94 perseant struct inode *ip;
1007 1.94 perseant daddr_t tbn;
1008 1.239 perseant #define MAXLOOP 25
1009 1.239 perseant int i, sn, error, slept, loopcount;
1010 1.94 perseant
1011 1.94 perseant bp = ap->a_bp;
1012 1.128 hannken vp = ap->a_vp;
1013 1.94 perseant ip = VTOI(vp);
1014 1.94 perseant fs = ip->i_lfs;
1015 1.94 perseant
1016 1.101 yamt /* lfs uses its strategy routine only for read */
1017 1.101 yamt KASSERT(bp->b_flags & B_READ);
1018 1.101 yamt
1019 1.94 perseant if (vp->v_type == VBLK || vp->v_type == VCHR)
1020 1.94 perseant panic("lfs_strategy: spec");
1021 1.94 perseant KASSERT(bp->b_bcount != 0);
1022 1.94 perseant if (bp->b_blkno == bp->b_lblkno) {
1023 1.94 perseant error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1024 1.94 perseant NULL);
1025 1.94 perseant if (error) {
1026 1.94 perseant bp->b_error = error;
1027 1.214 ad bp->b_resid = bp->b_bcount;
1028 1.94 perseant biodone(bp);
1029 1.94 perseant return (error);
1030 1.94 perseant }
1031 1.94 perseant if ((long)bp->b_blkno == -1) /* no valid data */
1032 1.94 perseant clrbuf(bp);
1033 1.94 perseant }
1034 1.94 perseant if ((long)bp->b_blkno < 0) { /* block is not on disk */
1035 1.214 ad bp->b_resid = bp->b_bcount;
1036 1.94 perseant biodone(bp);
1037 1.94 perseant return (0);
1038 1.94 perseant }
1039 1.94 perseant
1040 1.94 perseant slept = 1;
1041 1.239 perseant loopcount = 0;
1042 1.214 ad mutex_enter(&lfs_lock);
1043 1.101 yamt while (slept && fs->lfs_seglock) {
1044 1.214 ad mutex_exit(&lfs_lock);
1045 1.94 perseant /*
1046 1.94 perseant * Look through list of intervals.
1047 1.94 perseant * There will only be intervals to look through
1048 1.94 perseant * if the cleaner holds the seglock.
1049 1.94 perseant * Since the cleaner is synchronous, we can trust
1050 1.94 perseant * the list of intervals to be current.
1051 1.94 perseant */
1052 1.248 christos tbn = LFS_DBTOFSB(fs, bp->b_blkno);
1053 1.248 christos sn = lfs_dtosn(fs, tbn);
1054 1.94 perseant slept = 0;
1055 1.94 perseant for (i = 0; i < fs->lfs_cleanind; i++) {
1056 1.248 christos if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) &&
1057 1.94 perseant tbn >= fs->lfs_cleanint[i]) {
1058 1.136 perseant DLOG((DLOG_CLEAN,
1059 1.136 perseant "lfs_strategy: ino %d lbn %" PRId64
1060 1.203 perseant " ind %d sn %d fsb %" PRIx32
1061 1.203 perseant " given sn %d fsb %" PRIx64 "\n",
1062 1.203 perseant ip->i_number, bp->b_lblkno, i,
1063 1.248 christos lfs_dtosn(fs, fs->lfs_cleanint[i]),
1064 1.203 perseant fs->lfs_cleanint[i], sn, tbn));
1065 1.136 perseant DLOG((DLOG_CLEAN,
1066 1.136 perseant "lfs_strategy: sleeping on ino %d lbn %"
1067 1.136 perseant PRId64 "\n", ip->i_number, bp->b_lblkno));
1068 1.214 ad mutex_enter(&lfs_lock);
1069 1.170 perseant if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1070 1.239 perseant /*
1071 1.239 perseant * Cleaner can't wait for itself.
1072 1.239 perseant * Instead, wait for the blocks
1073 1.239 perseant * to be written to disk.
1074 1.239 perseant * XXX we need pribio in the test
1075 1.239 perseant * XXX here.
1076 1.239 perseant */
1077 1.239 perseant mtsleep(&fs->lfs_iocount,
1078 1.239 perseant (PRIBIO + 1) | PNORELOCK,
1079 1.239 perseant "clean2", hz/10 + 1,
1080 1.239 perseant &lfs_lock);
1081 1.170 perseant slept = 1;
1082 1.239 perseant ++loopcount;
1083 1.170 perseant break;
1084 1.170 perseant } else if (fs->lfs_seglock) {
1085 1.214 ad mtsleep(&fs->lfs_seglock,
1086 1.141 perseant (PRIBIO + 1) | PNORELOCK,
1087 1.170 perseant "clean1", 0,
1088 1.214 ad &lfs_lock);
1089 1.167 perseant slept = 1;
1090 1.167 perseant break;
1091 1.167 perseant }
1092 1.214 ad mutex_exit(&lfs_lock);
1093 1.94 perseant }
1094 1.94 perseant }
1095 1.214 ad mutex_enter(&lfs_lock);
1096 1.239 perseant if (loopcount > MAXLOOP) {
1097 1.239 perseant printf("lfs_strategy: breaking out of clean2 loop\n");
1098 1.239 perseant break;
1099 1.239 perseant }
1100 1.94 perseant }
1101 1.214 ad mutex_exit(&lfs_lock);
1102 1.94 perseant
1103 1.94 perseant vp = ip->i_devvp;
1104 1.127 hannken VOP_STRATEGY(vp, bp);
1105 1.1 mycroft return (0);
1106 1.89 perseant }
1107 1.89 perseant
1108 1.239 perseant /*
1109 1.239 perseant * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1110 1.239 perseant * Technically this is a checkpoint (the on-disk state is valid)
1111 1.239 perseant * even though we are leaving out all the file data.
1112 1.239 perseant */
1113 1.239 perseant int
1114 1.92 perseant lfs_flush_dirops(struct lfs *fs)
1115 1.92 perseant {
1116 1.92 perseant struct inode *ip, *nip;
1117 1.92 perseant struct vnode *vp;
1118 1.92 perseant extern int lfs_dostats;
1119 1.92 perseant struct segment *sp;
1120 1.239 perseant int flags = 0;
1121 1.239 perseant int error = 0;
1122 1.92 perseant
1123 1.163 perseant ASSERT_MAYBE_SEGLOCK(fs);
1124 1.171 perseant KASSERT(fs->lfs_nadirop == 0);
1125 1.141 perseant
1126 1.92 perseant if (fs->lfs_ronly)
1127 1.239 perseant return EROFS;
1128 1.92 perseant
1129 1.214 ad mutex_enter(&lfs_lock);
1130 1.141 perseant if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1131 1.214 ad mutex_exit(&lfs_lock);
1132 1.239 perseant return 0;
1133 1.141 perseant } else
1134 1.214 ad mutex_exit(&lfs_lock);
1135 1.92 perseant
1136 1.92 perseant if (lfs_dostats)
1137 1.92 perseant ++lfs_stats.flush_invoked;
1138 1.92 perseant
1139 1.92 perseant lfs_imtime(fs);
1140 1.239 perseant lfs_seglock(fs, flags);
1141 1.92 perseant sp = fs->lfs_sp;
1142 1.92 perseant
1143 1.92 perseant /*
1144 1.92 perseant * lfs_writevnodes, optimized to get dirops out of the way.
1145 1.92 perseant * Only write dirops, and don't flush files' pages, only
1146 1.92 perseant * blocks from the directories.
1147 1.92 perseant *
1148 1.92 perseant * We don't need to vref these files because they are
1149 1.92 perseant * dirops and so hold an extra reference until the
1150 1.92 perseant * segunlock clears them of that status.
1151 1.92 perseant *
1152 1.92 perseant * We don't need to check for IN_ADIROP because we know that
1153 1.92 perseant * no dirops are active.
1154 1.92 perseant *
1155 1.92 perseant */
1156 1.214 ad mutex_enter(&lfs_lock);
1157 1.92 perseant for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1158 1.92 perseant nip = TAILQ_NEXT(ip, i_lfs_dchain);
1159 1.214 ad mutex_exit(&lfs_lock);
1160 1.92 perseant vp = ITOV(ip);
1161 1.92 perseant
1162 1.171 perseant KASSERT((ip->i_flag & IN_ADIROP) == 0);
1163 1.239 perseant KASSERT(vp->v_uflag & VU_DIROP);
1164 1.239 perseant KASSERT(!(vp->v_iflag & VI_XLOCK));
1165 1.171 perseant
1166 1.92 perseant /*
1167 1.92 perseant * All writes to directories come from dirops; all
1168 1.92 perseant * writes to files' direct blocks go through the page
1169 1.92 perseant * cache, which we're not touching. Reads to files
1170 1.92 perseant * and/or directories will not be affected by writing
1171 1.92 perseant * directory blocks inodes and file inodes. So we don't
1172 1.239 perseant * really need to lock.
1173 1.92 perseant */
1174 1.214 ad if (vp->v_iflag & VI_XLOCK) {
1175 1.214 ad mutex_enter(&lfs_lock);
1176 1.92 perseant continue;
1177 1.167 perseant }
1178 1.228 hannken /* XXX see below
1179 1.228 hannken * waslocked = VOP_ISLOCKED(vp);
1180 1.228 hannken */
1181 1.92 perseant if (vp->v_type != VREG &&
1182 1.92 perseant ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1183 1.239 perseant error = lfs_writefile(fs, sp, vp);
1184 1.92 perseant if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1185 1.92 perseant !(ip->i_flag & IN_ALLMOD)) {
1186 1.214 ad mutex_enter(&lfs_lock);
1187 1.92 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1188 1.214 ad mutex_exit(&lfs_lock);
1189 1.92 perseant }
1190 1.239 perseant if (error && (sp->seg_flags & SEGM_SINGLE)) {
1191 1.239 perseant mutex_enter(&lfs_lock);
1192 1.239 perseant error = EAGAIN;
1193 1.239 perseant break;
1194 1.239 perseant }
1195 1.92 perseant }
1196 1.188 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
1197 1.239 perseant error = lfs_writeinode(fs, sp, ip);
1198 1.214 ad mutex_enter(&lfs_lock);
1199 1.239 perseant if (error && (sp->seg_flags & SEGM_SINGLE)) {
1200 1.239 perseant error = EAGAIN;
1201 1.239 perseant break;
1202 1.239 perseant }
1203 1.239 perseant
1204 1.228 hannken /*
1205 1.239 perseant * We might need to update these inodes again,
1206 1.239 perseant * for example, if they have data blocks to write.
1207 1.239 perseant * Make sure that after this flush, they are still
1208 1.239 perseant * marked IN_MODIFIED so that we don't forget to
1209 1.239 perseant * write them.
1210 1.228 hannken */
1211 1.239 perseant /* XXX only for non-directories? --KS */
1212 1.239 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1213 1.92 perseant }
1214 1.214 ad mutex_exit(&lfs_lock);
1215 1.92 perseant /* We've written all the dirops there are */
1216 1.92 perseant ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1217 1.170 perseant lfs_finalize_fs_seguse(fs);
1218 1.92 perseant (void) lfs_writeseg(fs, sp);
1219 1.92 perseant lfs_segunlock(fs);
1220 1.239 perseant
1221 1.239 perseant return error;
1222 1.92 perseant }
1223 1.92 perseant
1224 1.89 perseant /*
1225 1.164 perseant * Flush all vnodes for which the pagedaemon has requested pageouts.
1226 1.212 ad * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1227 1.164 perseant * has just run, this would be an error). If we have to skip a vnode
1228 1.164 perseant * for any reason, just skip it; if we have to wait for the cleaner,
1229 1.164 perseant * abort. The writer daemon will call us again later.
1230 1.164 perseant */
1231 1.239 perseant int
1232 1.164 perseant lfs_flush_pchain(struct lfs *fs)
1233 1.164 perseant {
1234 1.164 perseant struct inode *ip, *nip;
1235 1.164 perseant struct vnode *vp;
1236 1.164 perseant extern int lfs_dostats;
1237 1.164 perseant struct segment *sp;
1238 1.239 perseant int error, error2;
1239 1.164 perseant
1240 1.164 perseant ASSERT_NO_SEGLOCK(fs);
1241 1.164 perseant
1242 1.164 perseant if (fs->lfs_ronly)
1243 1.239 perseant return EROFS;
1244 1.164 perseant
1245 1.214 ad mutex_enter(&lfs_lock);
1246 1.164 perseant if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1247 1.214 ad mutex_exit(&lfs_lock);
1248 1.239 perseant return 0;
1249 1.164 perseant } else
1250 1.214 ad mutex_exit(&lfs_lock);
1251 1.164 perseant
1252 1.164 perseant /* Get dirops out of the way */
1253 1.239 perseant if ((error = lfs_flush_dirops(fs)) != 0)
1254 1.239 perseant return error;
1255 1.164 perseant
1256 1.164 perseant if (lfs_dostats)
1257 1.164 perseant ++lfs_stats.flush_invoked;
1258 1.164 perseant
1259 1.164 perseant /*
1260 1.164 perseant * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1261 1.164 perseant */
1262 1.164 perseant lfs_imtime(fs);
1263 1.164 perseant lfs_seglock(fs, 0);
1264 1.164 perseant sp = fs->lfs_sp;
1265 1.164 perseant
1266 1.164 perseant /*
1267 1.164 perseant * lfs_writevnodes, optimized to clear pageout requests.
1268 1.164 perseant * Only write non-dirop files that are in the pageout queue.
1269 1.164 perseant * We're very conservative about what we write; we want to be
1270 1.164 perseant * fast and async.
1271 1.164 perseant */
1272 1.214 ad mutex_enter(&lfs_lock);
1273 1.214 ad top:
1274 1.164 perseant for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1275 1.164 perseant nip = TAILQ_NEXT(ip, i_lfs_pchain);
1276 1.164 perseant vp = ITOV(ip);
1277 1.164 perseant
1278 1.164 perseant if (!(ip->i_flags & IN_PAGING))
1279 1.164 perseant goto top;
1280 1.164 perseant
1281 1.235 rmind mutex_enter(vp->v_interlock);
1282 1.214 ad if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1283 1.235 rmind mutex_exit(vp->v_interlock);
1284 1.164 perseant continue;
1285 1.214 ad }
1286 1.214 ad if (vp->v_type != VREG) {
1287 1.235 rmind mutex_exit(vp->v_interlock);
1288 1.164 perseant continue;
1289 1.214 ad }
1290 1.164 perseant if (lfs_vref(vp))
1291 1.164 perseant continue;
1292 1.214 ad mutex_exit(&lfs_lock);
1293 1.169 perseant
1294 1.228 hannken if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1295 1.165 perseant lfs_vunref(vp);
1296 1.214 ad mutex_enter(&lfs_lock);
1297 1.164 perseant continue;
1298 1.165 perseant }
1299 1.164 perseant
1300 1.164 perseant error = lfs_writefile(fs, sp, vp);
1301 1.164 perseant if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1302 1.164 perseant !(ip->i_flag & IN_ALLMOD)) {
1303 1.214 ad mutex_enter(&lfs_lock);
1304 1.164 perseant LFS_SET_UINO(ip, IN_MODIFIED);
1305 1.214 ad mutex_exit(&lfs_lock);
1306 1.164 perseant }
1307 1.188 perseant KDASSERT(ip->i_number != LFS_IFILE_INUM);
1308 1.239 perseant error2 = lfs_writeinode(fs, sp, ip);
1309 1.164 perseant
1310 1.229 hannken VOP_UNLOCK(vp);
1311 1.164 perseant lfs_vunref(vp);
1312 1.164 perseant
1313 1.239 perseant if (error == EAGAIN || error2 == EAGAIN) {
1314 1.164 perseant lfs_writeseg(fs, sp);
1315 1.214 ad mutex_enter(&lfs_lock);
1316 1.164 perseant break;
1317 1.164 perseant }
1318 1.214 ad mutex_enter(&lfs_lock);
1319 1.164 perseant }
1320 1.214 ad mutex_exit(&lfs_lock);
1321 1.164 perseant (void) lfs_writeseg(fs, sp);
1322 1.164 perseant lfs_segunlock(fs);
1323 1.239 perseant
1324 1.239 perseant return 0;
1325 1.164 perseant }
1326 1.164 perseant
1327 1.164 perseant /*
1328 1.90 perseant * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1329 1.89 perseant */
1330 1.89 perseant int
1331 1.90 perseant lfs_fcntl(void *v)
1332 1.89 perseant {
1333 1.137 simonb struct vop_fcntl_args /* {
1334 1.137 simonb struct vnode *a_vp;
1335 1.218 gmcgarry u_int a_command;
1336 1.201 christos void * a_data;
1337 1.137 simonb int a_fflag;
1338 1.176 elad kauth_cred_t a_cred;
1339 1.137 simonb } */ *ap = v;
1340 1.222 christos struct timeval tv;
1341 1.89 perseant struct timeval *tvp;
1342 1.89 perseant BLOCK_INFO *blkiov;
1343 1.92 perseant CLEANERINFO *cip;
1344 1.148 perseant SEGUSE *sup;
1345 1.92 perseant int blkcnt, error, oclean;
1346 1.181 martin size_t fh_size;
1347 1.90 perseant struct lfs_fcntl_markv blkvp;
1348 1.185 ad struct lwp *l;
1349 1.89 perseant fsid_t *fsidp;
1350 1.92 perseant struct lfs *fs;
1351 1.92 perseant struct buf *bp;
1352 1.134 perseant fhandle_t *fhp;
1353 1.92 perseant daddr_t off;
1354 1.89 perseant
1355 1.90 perseant /* Only respect LFS fcntls on fs root or Ifile */
1356 1.245 dholland if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
1357 1.89 perseant VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1358 1.245 dholland return ulfs_fcntl(v);
1359 1.89 perseant }
1360 1.89 perseant
1361 1.100 perseant /* Avoid locking a draining lock */
1362 1.119 dbj if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1363 1.100 perseant return ESHUTDOWN;
1364 1.100 perseant }
1365 1.100 perseant
1366 1.184 perseant /* LFS control and monitoring fcntls are available only to root */
1367 1.213 pooka l = curlwp;
1368 1.184 perseant if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1369 1.241 elad (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
1370 1.241 elad KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
1371 1.184 perseant return (error);
1372 1.184 perseant
1373 1.100 perseant fs = VTOI(ap->a_vp)->i_lfs;
1374 1.131 christos fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1375 1.89 perseant
1376 1.188 perseant error = 0;
1377 1.218 gmcgarry switch ((int)ap->a_command) {
1378 1.222 christos case LFCNSEGWAITALL_COMPAT_50:
1379 1.222 christos case LFCNSEGWAITALL_COMPAT:
1380 1.222 christos fsidp = NULL;
1381 1.222 christos /* FALLSTHROUGH */
1382 1.222 christos case LFCNSEGWAIT_COMPAT_50:
1383 1.222 christos case LFCNSEGWAIT_COMPAT:
1384 1.222 christos {
1385 1.222 christos struct timeval50 *tvp50
1386 1.222 christos = (struct timeval50 *)ap->a_data;
1387 1.222 christos timeval50_to_timeval(tvp50, &tv);
1388 1.222 christos tvp = &tv;
1389 1.222 christos }
1390 1.222 christos goto segwait_common;
1391 1.90 perseant case LFCNSEGWAITALL:
1392 1.214 ad fsidp = NULL;
1393 1.214 ad /* FALLSTHROUGH */
1394 1.90 perseant case LFCNSEGWAIT:
1395 1.214 ad tvp = (struct timeval *)ap->a_data;
1396 1.222 christos segwait_common:
1397 1.214 ad mutex_enter(&lfs_lock);
1398 1.214 ad ++fs->lfs_sleepers;
1399 1.214 ad mutex_exit(&lfs_lock);
1400 1.214 ad
1401 1.214 ad error = lfs_segwait(fsidp, tvp);
1402 1.214 ad
1403 1.214 ad mutex_enter(&lfs_lock);
1404 1.214 ad if (--fs->lfs_sleepers == 0)
1405 1.214 ad wakeup(&fs->lfs_sleepers);
1406 1.214 ad mutex_exit(&lfs_lock);
1407 1.214 ad return error;
1408 1.89 perseant
1409 1.90 perseant case LFCNBMAPV:
1410 1.90 perseant case LFCNMARKV:
1411 1.214 ad blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1412 1.89 perseant
1413 1.214 ad blkcnt = blkvp.blkcnt;
1414 1.214 ad if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1415 1.214 ad return (EINVAL);
1416 1.214 ad blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1417 1.214 ad if ((error = copyin(blkvp.blkiov, blkiov,
1418 1.214 ad blkcnt * sizeof(BLOCK_INFO))) != 0) {
1419 1.214 ad lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1420 1.214 ad return error;
1421 1.214 ad }
1422 1.214 ad
1423 1.214 ad mutex_enter(&lfs_lock);
1424 1.214 ad ++fs->lfs_sleepers;
1425 1.214 ad mutex_exit(&lfs_lock);
1426 1.214 ad if (ap->a_command == LFCNBMAPV)
1427 1.214 ad error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1428 1.214 ad else /* LFCNMARKV */
1429 1.214 ad error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1430 1.214 ad if (error == 0)
1431 1.214 ad error = copyout(blkiov, blkvp.blkiov,
1432 1.214 ad blkcnt * sizeof(BLOCK_INFO));
1433 1.214 ad mutex_enter(&lfs_lock);
1434 1.214 ad if (--fs->lfs_sleepers == 0)
1435 1.214 ad wakeup(&fs->lfs_sleepers);
1436 1.214 ad mutex_exit(&lfs_lock);
1437 1.214 ad lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1438 1.214 ad return error;
1439 1.92 perseant
1440 1.92 perseant case LFCNRECLAIM:
1441 1.214 ad /*
1442 1.214 ad * Flush dirops and write Ifile, allowing empty segments
1443 1.214 ad * to be immediately reclaimed.
1444 1.214 ad */
1445 1.214 ad lfs_writer_enter(fs, "pndirop");
1446 1.214 ad off = fs->lfs_offset;
1447 1.214 ad lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1448 1.214 ad lfs_flush_dirops(fs);
1449 1.214 ad LFS_CLEANERINFO(cip, fs, bp);
1450 1.214 ad oclean = cip->clean;
1451 1.214 ad LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1452 1.214 ad lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1453 1.214 ad fs->lfs_sp->seg_flags |= SEGM_PROT;
1454 1.214 ad lfs_segunlock(fs);
1455 1.214 ad lfs_writer_leave(fs);
1456 1.92 perseant
1457 1.136 perseant #ifdef DEBUG
1458 1.214 ad LFS_CLEANERINFO(cip, fs, bp);
1459 1.214 ad DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1460 1.214 ad " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1461 1.214 ad fs->lfs_offset - off, cip->clean - oclean,
1462 1.214 ad fs->lfs_activesb));
1463 1.214 ad LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1464 1.92 perseant #endif
1465 1.92 perseant
1466 1.214 ad return 0;
1467 1.89 perseant
1468 1.182 martin case LFCNIFILEFH_COMPAT:
1469 1.214 ad /* Return the filehandle of the Ifile */
1470 1.221 elad if ((error = kauth_authorize_system(l->l_cred,
1471 1.221 elad KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1472 1.214 ad return (error);
1473 1.214 ad fhp = (struct fhandle *)ap->a_data;
1474 1.214 ad fhp->fh_fsid = *fsidp;
1475 1.214 ad fh_size = 16; /* former VFS_MAXFIDSIZ */
1476 1.214 ad return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1477 1.182 martin
1478 1.187 martin case LFCNIFILEFH_COMPAT2:
1479 1.134 perseant case LFCNIFILEFH:
1480 1.214 ad /* Return the filehandle of the Ifile */
1481 1.214 ad fhp = (struct fhandle *)ap->a_data;
1482 1.214 ad fhp->fh_fsid = *fsidp;
1483 1.214 ad fh_size = sizeof(struct lfs_fhandle) -
1484 1.214 ad offsetof(fhandle_t, fh_fid);
1485 1.214 ad return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1486 1.134 perseant
1487 1.148 perseant case LFCNREWIND:
1488 1.214 ad /* Move lfs_offset to the lowest-numbered segment */
1489 1.214 ad return lfs_rewind(fs, *(int *)ap->a_data);
1490 1.148 perseant
1491 1.148 perseant case LFCNINVAL:
1492 1.214 ad /* Mark a segment SEGUSE_INVAL */
1493 1.214 ad LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1494 1.214 ad if (sup->su_nbytes > 0) {
1495 1.214 ad brelse(bp, 0);
1496 1.214 ad lfs_unset_inval_all(fs);
1497 1.214 ad return EBUSY;
1498 1.214 ad }
1499 1.214 ad sup->su_flags |= SEGUSE_INVAL;
1500 1.236 hannken VOP_BWRITE(bp->b_vp, bp);
1501 1.214 ad return 0;
1502 1.148 perseant
1503 1.148 perseant case LFCNRESIZE:
1504 1.214 ad /* Resize the filesystem */
1505 1.214 ad return lfs_resize_fs(fs, *(int *)ap->a_data);
1506 1.148 perseant
1507 1.168 perseant case LFCNWRAPSTOP:
1508 1.179 perseant case LFCNWRAPSTOP_COMPAT:
1509 1.214 ad /*
1510 1.214 ad * Hold lfs_newseg at segment 0; if requested, sleep until
1511 1.214 ad * the filesystem wraps around. To support external agents
1512 1.214 ad * (dump, fsck-based regression test) that need to look at
1513 1.214 ad * a snapshot of the filesystem, without necessarily
1514 1.214 ad * requiring that all fs activity stops.
1515 1.214 ad */
1516 1.214 ad if (fs->lfs_stoplwp == curlwp)
1517 1.214 ad return EALREADY;
1518 1.214 ad
1519 1.214 ad mutex_enter(&lfs_lock);
1520 1.214 ad while (fs->lfs_stoplwp != NULL)
1521 1.214 ad cv_wait(&fs->lfs_stopcv, &lfs_lock);
1522 1.214 ad fs->lfs_stoplwp = curlwp;
1523 1.214 ad if (fs->lfs_nowrap == 0)
1524 1.214 ad log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1525 1.214 ad ++fs->lfs_nowrap;
1526 1.222 christos if (*(int *)ap->a_data == 1
1527 1.224 pooka || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1528 1.214 ad log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1529 1.214 ad error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1530 1.214 ad "segwrap", 0, &lfs_lock);
1531 1.214 ad log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1532 1.214 ad if (error) {
1533 1.214 ad lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1534 1.214 ad }
1535 1.214 ad }
1536 1.214 ad mutex_exit(&lfs_lock);
1537 1.214 ad return 0;
1538 1.168 perseant
1539 1.168 perseant case LFCNWRAPGO:
1540 1.179 perseant case LFCNWRAPGO_COMPAT:
1541 1.214 ad /*
1542 1.214 ad * Having done its work, the agent wakes up the writer.
1543 1.214 ad * If the argument is 1, it sleeps until a new segment
1544 1.214 ad * is selected.
1545 1.214 ad */
1546 1.214 ad mutex_enter(&lfs_lock);
1547 1.214 ad error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1548 1.222 christos ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1549 1.222 christos *((int *)ap->a_data));
1550 1.214 ad mutex_exit(&lfs_lock);
1551 1.214 ad return error;
1552 1.168 perseant
1553 1.188 perseant case LFCNWRAPPASS:
1554 1.214 ad if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1555 1.214 ad return EALREADY;
1556 1.214 ad mutex_enter(&lfs_lock);
1557 1.214 ad if (fs->lfs_stoplwp != curlwp) {
1558 1.214 ad mutex_exit(&lfs_lock);
1559 1.214 ad return EALREADY;
1560 1.214 ad }
1561 1.214 ad if (fs->lfs_nowrap == 0) {
1562 1.214 ad mutex_exit(&lfs_lock);
1563 1.214 ad return EBUSY;
1564 1.214 ad }
1565 1.214 ad fs->lfs_wrappass = 1;
1566 1.214 ad wakeup(&fs->lfs_wrappass);
1567 1.214 ad /* Wait for the log to wrap, if asked */
1568 1.214 ad if (*(int *)ap->a_data) {
1569 1.235 rmind mutex_enter(ap->a_vp->v_interlock);
1570 1.239 perseant if (lfs_vref(ap->a_vp) != 0)
1571 1.239 perseant panic("LFCNWRAPPASS: lfs_vref failed");
1572 1.214 ad VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1573 1.214 ad log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1574 1.214 ad error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1575 1.214 ad "segwrap", 0, &lfs_lock);
1576 1.214 ad log(LOG_NOTICE, "LFCNPASS done waiting\n");
1577 1.214 ad VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1578 1.214 ad lfs_vunref(ap->a_vp);
1579 1.214 ad }
1580 1.214 ad mutex_exit(&lfs_lock);
1581 1.214 ad return error;
1582 1.188 perseant
1583 1.188 perseant case LFCNWRAPSTATUS:
1584 1.214 ad mutex_enter(&lfs_lock);
1585 1.214 ad *(int *)ap->a_data = fs->lfs_wrapstatus;
1586 1.214 ad mutex_exit(&lfs_lock);
1587 1.214 ad return 0;
1588 1.188 perseant
1589 1.89 perseant default:
1590 1.245 dholland return ulfs_fcntl(v);
1591 1.89 perseant }
1592 1.89 perseant return 0;
1593 1.60 chs }
1594 1.60 chs
1595 1.60 chs int
1596 1.60 chs lfs_getpages(void *v)
1597 1.60 chs {
1598 1.60 chs struct vop_getpages_args /* {
1599 1.60 chs struct vnode *a_vp;
1600 1.60 chs voff_t a_offset;
1601 1.60 chs struct vm_page **a_m;
1602 1.60 chs int *a_count;
1603 1.60 chs int a_centeridx;
1604 1.60 chs vm_prot_t a_access_type;
1605 1.60 chs int a_advice;
1606 1.60 chs int a_flags;
1607 1.60 chs } */ *ap = v;
1608 1.60 chs
1609 1.97 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1610 1.97 perseant (ap->a_access_type & VM_PROT_WRITE) != 0) {
1611 1.97 perseant return EPERM;
1612 1.97 perseant }
1613 1.60 chs if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1614 1.214 ad mutex_enter(&lfs_lock);
1615 1.60 chs LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1616 1.214 ad mutex_exit(&lfs_lock);
1617 1.60 chs }
1618 1.115 yamt
1619 1.115 yamt /*
1620 1.115 yamt * we're relying on the fact that genfs_getpages() always read in
1621 1.115 yamt * entire filesystem blocks.
1622 1.115 yamt */
1623 1.95 perseant return genfs_getpages(v);
1624 1.1 mycroft }
1625 1.84 perseant
1626 1.204 perseant /*
1627 1.204 perseant * Wait for a page to become unbusy, possibly printing diagnostic messages
1628 1.204 perseant * as well.
1629 1.204 perseant *
1630 1.204 perseant * Called with vp->v_interlock held; return with it held.
1631 1.204 perseant */
1632 1.203 perseant static void
1633 1.203 perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1634 1.203 perseant {
1635 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1636 1.203 perseant if ((pg->flags & PG_BUSY) == 0)
1637 1.203 perseant return; /* Nothing to wait for! */
1638 1.203 perseant
1639 1.204 perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1640 1.203 perseant static struct vm_page *lastpg;
1641 1.203 perseant
1642 1.203 perseant if (label != NULL && pg != lastpg) {
1643 1.203 perseant if (pg->owner_tag) {
1644 1.203 perseant printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1645 1.203 perseant curproc->p_pid, curlwp->l_lid, label,
1646 1.203 perseant pg, pg->owner, pg->lowner, pg->owner_tag);
1647 1.203 perseant } else {
1648 1.203 perseant printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1649 1.203 perseant curproc->p_pid, curlwp->l_lid, label, pg);
1650 1.203 perseant }
1651 1.203 perseant }
1652 1.203 perseant lastpg = pg;
1653 1.203 perseant #endif
1654 1.203 perseant
1655 1.203 perseant pg->flags |= PG_WANTED;
1656 1.235 rmind UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1657 1.235 rmind mutex_enter(vp->v_interlock);
1658 1.203 perseant }
1659 1.203 perseant
1660 1.203 perseant /*
1661 1.203 perseant * This routine is called by lfs_putpages() when it can't complete the
1662 1.203 perseant * write because a page is busy. This means that either (1) someone,
1663 1.203 perseant * possibly the pagedaemon, is looking at this page, and will give it up
1664 1.203 perseant * presently; or (2) we ourselves are holding the page busy in the
1665 1.203 perseant * process of being written (either gathered or actually on its way to
1666 1.203 perseant * disk). We don't need to give up the segment lock, but we might need
1667 1.203 perseant * to call lfs_writeseg() to expedite the page's journey to disk.
1668 1.204 perseant *
1669 1.204 perseant * Called with vp->v_interlock held; return with it held.
1670 1.203 perseant */
1671 1.203 perseant /* #define BUSYWAIT */
1672 1.203 perseant static void
1673 1.203 perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1674 1.203 perseant int seglocked, const char *label)
1675 1.203 perseant {
1676 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1677 1.203 perseant #ifndef BUSYWAIT
1678 1.203 perseant struct inode *ip = VTOI(vp);
1679 1.203 perseant struct segment *sp = fs->lfs_sp;
1680 1.203 perseant int count = 0;
1681 1.203 perseant
1682 1.203 perseant if (pg == NULL)
1683 1.203 perseant return;
1684 1.203 perseant
1685 1.226 eeh while (pg->flags & PG_BUSY &&
1686 1.226 eeh pg->uobject == &vp->v_uobj) {
1687 1.235 rmind mutex_exit(vp->v_interlock);
1688 1.203 perseant if (sp->cbpp - sp->bpp > 1) {
1689 1.203 perseant /* Write gathered pages */
1690 1.203 perseant lfs_updatemeta(sp);
1691 1.203 perseant lfs_release_finfo(fs);
1692 1.203 perseant (void) lfs_writeseg(fs, sp);
1693 1.203 perseant
1694 1.203 perseant /*
1695 1.203 perseant * Reinitialize FIP
1696 1.203 perseant */
1697 1.203 perseant KASSERT(sp->vp == vp);
1698 1.203 perseant lfs_acquire_finfo(fs, ip->i_number,
1699 1.203 perseant ip->i_gen);
1700 1.203 perseant }
1701 1.204 perseant ++count;
1702 1.235 rmind mutex_enter(vp->v_interlock);
1703 1.203 perseant wait_for_page(vp, pg, label);
1704 1.203 perseant }
1705 1.239 perseant if (label != NULL && count > 1) {
1706 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
1707 1.239 perseant curproc->p_pid, label, (count > 0 ? "looping, " : ""),
1708 1.239 perseant count));
1709 1.239 perseant }
1710 1.203 perseant #else
1711 1.203 perseant preempt(1);
1712 1.203 perseant #endif
1713 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1714 1.203 perseant }
1715 1.203 perseant
1716 1.84 perseant /*
1717 1.84 perseant * Make sure that for all pages in every block in the given range,
1718 1.84 perseant * either all are dirty or all are clean. If any of the pages
1719 1.84 perseant * we've seen so far are dirty, put the vnode on the paging chain,
1720 1.84 perseant * and mark it IN_PAGING.
1721 1.105 perseant *
1722 1.105 perseant * If checkfirst != 0, don't check all the pages but return at the
1723 1.105 perseant * first dirty page.
1724 1.84 perseant */
1725 1.84 perseant static int
1726 1.84 perseant check_dirty(struct lfs *fs, struct vnode *vp,
1727 1.84 perseant off_t startoffset, off_t endoffset, off_t blkeof,
1728 1.203 perseant int flags, int checkfirst, struct vm_page **pgp)
1729 1.84 perseant {
1730 1.86 perseant int by_list;
1731 1.122 christos struct vm_page *curpg = NULL; /* XXX: gcc */
1732 1.122 christos struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1733 1.122 christos off_t soff = 0; /* XXX: gcc */
1734 1.84 perseant voff_t off;
1735 1.115 yamt int i;
1736 1.115 yamt int nonexistent;
1737 1.115 yamt int any_dirty; /* number of dirty pages */
1738 1.115 yamt int dirty; /* number of dirty pages in a block */
1739 1.115 yamt int tdirty;
1740 1.84 perseant int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1741 1.207 ad int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1742 1.84 perseant
1743 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1744 1.141 perseant ASSERT_MAYBE_SEGLOCK(fs);
1745 1.84 perseant top:
1746 1.84 perseant by_list = (vp->v_uobj.uo_npages <=
1747 1.84 perseant ((endoffset - startoffset) >> PAGE_SHIFT) *
1748 1.219 yamt UVM_PAGE_TREE_PENALTY);
1749 1.84 perseant any_dirty = 0;
1750 1.84 perseant
1751 1.84 perseant if (by_list) {
1752 1.84 perseant curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1753 1.84 perseant } else {
1754 1.84 perseant soff = startoffset;
1755 1.84 perseant }
1756 1.84 perseant while (by_list || soff < MIN(blkeof, endoffset)) {
1757 1.84 perseant if (by_list) {
1758 1.115 yamt /*
1759 1.138 perseant * Find the first page in a block. Skip
1760 1.138 perseant * blocks outside our area of interest or beyond
1761 1.138 perseant * the end of file.
1762 1.115 yamt */
1763 1.234 martin KASSERT(curpg == NULL
1764 1.234 martin || (curpg->flags & PG_MARKER) == 0);
1765 1.84 perseant if (pages_per_block > 1) {
1766 1.138 perseant while (curpg &&
1767 1.230 hannken ((curpg->offset & fs->lfs_bmask) ||
1768 1.230 hannken curpg->offset >= vp->v_size ||
1769 1.230 hannken curpg->offset >= endoffset)) {
1770 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1771 1.230 hannken KASSERT(curpg == NULL ||
1772 1.230 hannken (curpg->flags & PG_MARKER) == 0);
1773 1.230 hannken }
1774 1.84 perseant }
1775 1.84 perseant if (curpg == NULL)
1776 1.84 perseant break;
1777 1.84 perseant soff = curpg->offset;
1778 1.84 perseant }
1779 1.84 perseant
1780 1.84 perseant /*
1781 1.84 perseant * Mark all pages in extended range busy; find out if any
1782 1.84 perseant * of them are dirty.
1783 1.84 perseant */
1784 1.84 perseant nonexistent = dirty = 0;
1785 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1786 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1787 1.84 perseant if (by_list && pages_per_block <= 1) {
1788 1.84 perseant pgs[i] = pg = curpg;
1789 1.84 perseant } else {
1790 1.84 perseant off = soff + (i << PAGE_SHIFT);
1791 1.84 perseant pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1792 1.84 perseant if (pg == NULL) {
1793 1.84 perseant ++nonexistent;
1794 1.84 perseant continue;
1795 1.84 perseant }
1796 1.84 perseant }
1797 1.84 perseant KASSERT(pg != NULL);
1798 1.158 perseant
1799 1.158 perseant /*
1800 1.177 perseant * If we're holding the segment lock, we can deadlock
1801 1.158 perseant * against a process that has our page and is waiting
1802 1.158 perseant * for the cleaner, while the cleaner waits for the
1803 1.158 perseant * segment lock. Just bail in that case.
1804 1.158 perseant */
1805 1.159 perseant if ((pg->flags & PG_BUSY) &&
1806 1.159 perseant (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1807 1.203 perseant if (i > 0)
1808 1.159 perseant uvm_page_unbusy(pgs, i);
1809 1.159 perseant DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1810 1.203 perseant if (pgp)
1811 1.203 perseant *pgp = pg;
1812 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1813 1.159 perseant return -1;
1814 1.158 perseant }
1815 1.158 perseant
1816 1.84 perseant while (pg->flags & PG_BUSY) {
1817 1.203 perseant wait_for_page(vp, pg, NULL);
1818 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1819 1.203 perseant if (i > 0)
1820 1.203 perseant uvm_page_unbusy(pgs, i);
1821 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1822 1.203 perseant goto top;
1823 1.84 perseant }
1824 1.84 perseant pg->flags |= PG_BUSY;
1825 1.84 perseant UVM_PAGE_OWN(pg, "lfs_putpages");
1826 1.84 perseant
1827 1.84 perseant pmap_page_protect(pg, VM_PROT_NONE);
1828 1.84 perseant tdirty = (pmap_clear_modify(pg) ||
1829 1.84 perseant (pg->flags & PG_CLEAN) == 0);
1830 1.84 perseant dirty += tdirty;
1831 1.84 perseant }
1832 1.84 perseant if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1833 1.84 perseant if (by_list) {
1834 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1835 1.84 perseant } else {
1836 1.84 perseant soff += fs->lfs_bsize;
1837 1.84 perseant }
1838 1.84 perseant continue;
1839 1.84 perseant }
1840 1.84 perseant
1841 1.84 perseant any_dirty += dirty;
1842 1.84 perseant KASSERT(nonexistent == 0);
1843 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1844 1.84 perseant
1845 1.84 perseant /*
1846 1.84 perseant * If any are dirty make all dirty; unbusy them,
1847 1.88 perseant * but if we were asked to clean, wire them so that
1848 1.88 perseant * the pagedaemon doesn't bother us about them while
1849 1.88 perseant * they're on their way to disk.
1850 1.84 perseant */
1851 1.84 perseant for (i = 0; i == 0 || i < pages_per_block; i++) {
1852 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1853 1.84 perseant pg = pgs[i];
1854 1.84 perseant KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1855 1.239 perseant KASSERT(pg->flags & PG_BUSY);
1856 1.84 perseant if (dirty) {
1857 1.84 perseant pg->flags &= ~PG_CLEAN;
1858 1.84 perseant if (flags & PGO_FREE) {
1859 1.85 yamt /*
1860 1.96 perseant * Wire the page so that
1861 1.96 perseant * pdaemon doesn't see it again.
1862 1.85 yamt */
1863 1.214 ad mutex_enter(&uvm_pageqlock);
1864 1.85 yamt uvm_pagewire(pg);
1865 1.214 ad mutex_exit(&uvm_pageqlock);
1866 1.88 perseant
1867 1.84 perseant /* Suspended write flag */
1868 1.84 perseant pg->flags |= PG_DELWRI;
1869 1.84 perseant }
1870 1.84 perseant }
1871 1.84 perseant if (pg->flags & PG_WANTED)
1872 1.84 perseant wakeup(pg);
1873 1.84 perseant pg->flags &= ~(PG_WANTED|PG_BUSY);
1874 1.85 yamt UVM_PAGE_OWN(pg, NULL);
1875 1.84 perseant }
1876 1.84 perseant
1877 1.103 perseant if (checkfirst && any_dirty)
1878 1.130 yamt break;
1879 1.103 perseant
1880 1.84 perseant if (by_list) {
1881 1.217 ad curpg = TAILQ_NEXT(curpg, listq.queue);
1882 1.84 perseant } else {
1883 1.84 perseant soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1884 1.84 perseant }
1885 1.84 perseant }
1886 1.84 perseant
1887 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1888 1.84 perseant return any_dirty;
1889 1.84 perseant }
1890 1.84 perseant
1891 1.84 perseant /*
1892 1.84 perseant * lfs_putpages functions like genfs_putpages except that
1893 1.135 perry *
1894 1.84 perseant * (1) It needs to bounds-check the incoming requests to ensure that
1895 1.84 perseant * they are block-aligned; if they are not, expand the range and
1896 1.84 perseant * do the right thing in case, e.g., the requested range is clean
1897 1.84 perseant * but the expanded range is dirty.
1898 1.178 perseant *
1899 1.84 perseant * (2) It needs to explicitly send blocks to be written when it is done.
1900 1.202 perseant * If VOP_PUTPAGES is called without the seglock held, we simply take
1901 1.202 perseant * the seglock and let lfs_segunlock wait for us.
1902 1.202 perseant * XXX There might be a bad situation if we have to flush a vnode while
1903 1.202 perseant * XXX lfs_markv is in operation. As of this writing we panic in this
1904 1.202 perseant * XXX case.
1905 1.84 perseant *
1906 1.84 perseant * Assumptions:
1907 1.84 perseant *
1908 1.84 perseant * (1) The caller does not hold any pages in this vnode busy. If it does,
1909 1.84 perseant * there is a danger that when we expand the page range and busy the
1910 1.84 perseant * pages we will deadlock.
1911 1.178 perseant *
1912 1.84 perseant * (2) We are called with vp->v_interlock held; we must return with it
1913 1.84 perseant * released.
1914 1.178 perseant *
1915 1.84 perseant * (3) We don't absolutely have to free pages right away, provided that
1916 1.84 perseant * the request does not have PGO_SYNCIO. When the pagedaemon gives
1917 1.84 perseant * us a request with PGO_FREE, we take the pages out of the paging
1918 1.84 perseant * queue and wake up the writer, which will handle freeing them for us.
1919 1.84 perseant *
1920 1.84 perseant * We ensure that for any filesystem block, all pages for that
1921 1.84 perseant * block are either resident or not, even if those pages are higher
1922 1.84 perseant * than EOF; that means that we will be getting requests to free
1923 1.84 perseant * "unused" pages above EOF all the time, and should ignore them.
1924 1.115 yamt *
1925 1.178 perseant * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1926 1.178 perseant * into has been set up for us by lfs_writefile. If not, we will
1927 1.178 perseant * have to handle allocating and/or freeing an finfo entry.
1928 1.178 perseant *
1929 1.115 yamt * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1930 1.84 perseant */
1931 1.84 perseant
1932 1.203 perseant /* How many times to loop before we should start to worry */
1933 1.203 perseant #define TOOMANY 4
1934 1.203 perseant
1935 1.84 perseant int
1936 1.84 perseant lfs_putpages(void *v)
1937 1.84 perseant {
1938 1.84 perseant int error;
1939 1.84 perseant struct vop_putpages_args /* {
1940 1.84 perseant struct vnode *a_vp;
1941 1.84 perseant voff_t a_offlo;
1942 1.84 perseant voff_t a_offhi;
1943 1.84 perseant int a_flags;
1944 1.84 perseant } */ *ap = v;
1945 1.84 perseant struct vnode *vp;
1946 1.84 perseant struct inode *ip;
1947 1.84 perseant struct lfs *fs;
1948 1.84 perseant struct segment *sp;
1949 1.84 perseant off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1950 1.95 perseant off_t off, max_endoffset;
1951 1.239 perseant bool seglocked, sync, pagedaemon, reclaim;
1952 1.203 perseant struct vm_page *pg, *busypg;
1953 1.84 perseant UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1954 1.239 perseant int oreclaim = 0;
1955 1.239 perseant int donewriting = 0;
1956 1.203 perseant #ifdef DEBUG
1957 1.203 perseant int debug_n_again, debug_n_dirtyclean;
1958 1.203 perseant #endif
1959 1.84 perseant
1960 1.84 perseant vp = ap->a_vp;
1961 1.84 perseant ip = VTOI(vp);
1962 1.84 perseant fs = ip->i_lfs;
1963 1.126 yamt sync = (ap->a_flags & PGO_SYNCIO) != 0;
1964 1.239 perseant reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
1965 1.207 ad pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1966 1.84 perseant
1967 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
1968 1.239 perseant
1969 1.84 perseant /* Putpages does nothing for metadata. */
1970 1.84 perseant if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1971 1.235 rmind mutex_exit(vp->v_interlock);
1972 1.84 perseant return 0;
1973 1.84 perseant }
1974 1.84 perseant
1975 1.84 perseant /*
1976 1.84 perseant * If there are no pages, don't do anything.
1977 1.84 perseant */
1978 1.84 perseant if (vp->v_uobj.uo_npages == 0) {
1979 1.195 perseant if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1980 1.212 ad (vp->v_iflag & VI_ONWORKLST) &&
1981 1.195 perseant LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1982 1.212 ad vp->v_iflag &= ~VI_WRMAPDIRTY;
1983 1.192 reinoud vn_syncer_remove_from_worklist(vp);
1984 1.195 perseant }
1985 1.235 rmind mutex_exit(vp->v_interlock);
1986 1.164 perseant
1987 1.164 perseant /* Remove us from paging queue, if we were on it */
1988 1.214 ad mutex_enter(&lfs_lock);
1989 1.164 perseant if (ip->i_flags & IN_PAGING) {
1990 1.164 perseant ip->i_flags &= ~IN_PAGING;
1991 1.164 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1992 1.164 perseant }
1993 1.214 ad mutex_exit(&lfs_lock);
1994 1.239 perseant
1995 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
1996 1.84 perseant return 0;
1997 1.84 perseant }
1998 1.84 perseant
1999 1.248 christos blkeof = lfs_blkroundup(fs, ip->i_size);
2000 1.84 perseant
2001 1.84 perseant /*
2002 1.84 perseant * Ignore requests to free pages past EOF but in the same block
2003 1.239 perseant * as EOF, unless the vnode is being reclaimed or the request
2004 1.239 perseant * is synchronous. (If the request is sync, it comes from
2005 1.239 perseant * lfs_truncate.)
2006 1.239 perseant *
2007 1.239 perseant * To avoid being flooded with this request, make these pages
2008 1.239 perseant * look "active".
2009 1.84 perseant */
2010 1.239 perseant if (!sync && !reclaim &&
2011 1.239 perseant ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2012 1.84 perseant origoffset = ap->a_offlo;
2013 1.95 perseant for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2014 1.95 perseant pg = uvm_pagelookup(&vp->v_uobj, off);
2015 1.95 perseant KASSERT(pg != NULL);
2016 1.95 perseant while (pg->flags & PG_BUSY) {
2017 1.95 perseant pg->flags |= PG_WANTED;
2018 1.235 rmind UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2019 1.95 perseant "lfsput2", 0);
2020 1.235 rmind mutex_enter(vp->v_interlock);
2021 1.95 perseant }
2022 1.214 ad mutex_enter(&uvm_pageqlock);
2023 1.95 perseant uvm_pageactivate(pg);
2024 1.214 ad mutex_exit(&uvm_pageqlock);
2025 1.95 perseant }
2026 1.84 perseant ap->a_offlo = blkeof;
2027 1.84 perseant if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2028 1.235 rmind mutex_exit(vp->v_interlock);
2029 1.84 perseant return 0;
2030 1.84 perseant }
2031 1.84 perseant }
2032 1.84 perseant
2033 1.84 perseant /*
2034 1.84 perseant * Extend page range to start and end at block boundaries.
2035 1.84 perseant * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2036 1.84 perseant */
2037 1.86 perseant origoffset = ap->a_offlo;
2038 1.84 perseant origendoffset = ap->a_offhi;
2039 1.86 perseant startoffset = origoffset & ~(fs->lfs_bmask);
2040 1.84 perseant max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2041 1.84 perseant << fs->lfs_bshift;
2042 1.84 perseant
2043 1.84 perseant if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2044 1.86 perseant endoffset = max_endoffset;
2045 1.84 perseant origendoffset = endoffset;
2046 1.86 perseant } else {
2047 1.84 perseant origendoffset = round_page(ap->a_offhi);
2048 1.248 christos endoffset = round_page(lfs_blkroundup(fs, origendoffset));
2049 1.84 perseant }
2050 1.84 perseant
2051 1.84 perseant KASSERT(startoffset > 0 || endoffset >= startoffset);
2052 1.84 perseant if (startoffset == endoffset) {
2053 1.84 perseant /* Nothing to do, why were we called? */
2054 1.235 rmind mutex_exit(vp->v_interlock);
2055 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2056 1.136 perseant PRId64 "\n", startoffset));
2057 1.84 perseant return 0;
2058 1.84 perseant }
2059 1.84 perseant
2060 1.84 perseant ap->a_offlo = startoffset;
2061 1.84 perseant ap->a_offhi = endoffset;
2062 1.84 perseant
2063 1.203 perseant /*
2064 1.203 perseant * If not cleaning, just send the pages through genfs_putpages
2065 1.203 perseant * to be returned to the pool.
2066 1.203 perseant */
2067 1.239 perseant if (!(ap->a_flags & PGO_CLEANIT)) {
2068 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
2069 1.239 perseant vp, (int)ip->i_number, ap->a_flags));
2070 1.239 perseant int r = genfs_putpages(v);
2071 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2072 1.239 perseant return r;
2073 1.239 perseant }
2074 1.84 perseant
2075 1.203 perseant /* Set PGO_BUSYFAIL to avoid deadlocks */
2076 1.203 perseant ap->a_flags |= PGO_BUSYFAIL;
2077 1.203 perseant
2078 1.84 perseant /*
2079 1.203 perseant * Likewise, if we are asked to clean but the pages are not
2080 1.203 perseant * dirty, we can just free them using genfs_putpages.
2081 1.84 perseant */
2082 1.203 perseant #ifdef DEBUG
2083 1.203 perseant debug_n_dirtyclean = 0;
2084 1.203 perseant #endif
2085 1.103 perseant do {
2086 1.103 perseant int r;
2087 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
2088 1.103 perseant
2089 1.203 perseant /* Count the number of dirty pages */
2090 1.158 perseant r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2091 1.203 perseant ap->a_flags, 1, NULL);
2092 1.158 perseant if (r < 0) {
2093 1.203 perseant /* Pages are busy with another process */
2094 1.235 rmind mutex_exit(vp->v_interlock);
2095 1.158 perseant return EDEADLK;
2096 1.158 perseant }
2097 1.203 perseant if (r > 0) /* Some pages are dirty */
2098 1.103 perseant break;
2099 1.103 perseant
2100 1.134 perseant /*
2101 1.134 perseant * Sometimes pages are dirtied between the time that
2102 1.134 perseant * we check and the time we try to clean them.
2103 1.134 perseant * Instruct lfs_gop_write to return EDEADLK in this case
2104 1.134 perseant * so we can write them properly.
2105 1.134 perseant */
2106 1.134 perseant ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2107 1.206 perseant r = genfs_do_putpages(vp, startoffset, endoffset,
2108 1.226 eeh ap->a_flags & ~PGO_SYNCIO, &busypg);
2109 1.134 perseant ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2110 1.239 perseant if (r != EDEADLK) {
2111 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2112 1.239 perseant return r;
2113 1.239 perseant }
2114 1.103 perseant
2115 1.203 perseant /* One of the pages was busy. Start over. */
2116 1.235 rmind mutex_enter(vp->v_interlock);
2117 1.203 perseant wait_for_page(vp, busypg, "dirtyclean");
2118 1.203 perseant #ifdef DEBUG
2119 1.203 perseant ++debug_n_dirtyclean;
2120 1.203 perseant #endif
2121 1.103 perseant } while(1);
2122 1.135 perry
2123 1.203 perseant #ifdef DEBUG
2124 1.203 perseant if (debug_n_dirtyclean > TOOMANY)
2125 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
2126 1.239 perseant debug_n_dirtyclean));
2127 1.203 perseant #endif
2128 1.203 perseant
2129 1.84 perseant /*
2130 1.84 perseant * Dirty and asked to clean.
2131 1.84 perseant *
2132 1.84 perseant * Pagedaemon can't actually write LFS pages; wake up
2133 1.84 perseant * the writer to take care of that. The writer will
2134 1.84 perseant * notice the pager inode queue and act on that.
2135 1.232 eeh *
2136 1.232 eeh * XXX We must drop the vp->interlock before taking the lfs_lock or we
2137 1.232 eeh * get a nasty deadlock with lfs_flush_pchain().
2138 1.84 perseant */
2139 1.84 perseant if (pagedaemon) {
2140 1.235 rmind mutex_exit(vp->v_interlock);
2141 1.214 ad mutex_enter(&lfs_lock);
2142 1.164 perseant if (!(ip->i_flags & IN_PAGING)) {
2143 1.164 perseant ip->i_flags |= IN_PAGING;
2144 1.164 perseant TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2145 1.232 eeh }
2146 1.164 perseant wakeup(&lfs_writer_daemon);
2147 1.214 ad mutex_exit(&lfs_lock);
2148 1.198 ad preempt();
2149 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2150 1.84 perseant return EWOULDBLOCK;
2151 1.84 perseant }
2152 1.84 perseant
2153 1.84 perseant /*
2154 1.84 perseant * If this is a file created in a recent dirop, we can't flush its
2155 1.84 perseant * inode until the dirop is complete. Drain dirops, then flush the
2156 1.84 perseant * filesystem (taking care of any other pending dirops while we're
2157 1.84 perseant * at it).
2158 1.84 perseant */
2159 1.84 perseant if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2160 1.212 ad (vp->v_uflag & VU_DIROP)) {
2161 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2162 1.239 perseant
2163 1.239 perseant lfs_writer_enter(fs, "ppdirop");
2164 1.84 perseant
2165 1.239 perseant /* Note if we hold the vnode locked */
2166 1.239 perseant if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
2167 1.239 perseant {
2168 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
2169 1.239 perseant } else {
2170 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
2171 1.239 perseant }
2172 1.235 rmind mutex_exit(vp->v_interlock);
2173 1.135 perry
2174 1.214 ad mutex_enter(&lfs_lock);
2175 1.84 perseant lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2176 1.214 ad mutex_exit(&lfs_lock);
2177 1.135 perry
2178 1.235 rmind mutex_enter(vp->v_interlock);
2179 1.111 yamt lfs_writer_leave(fs);
2180 1.84 perseant
2181 1.239 perseant /* The flush will have cleaned out this vnode as well,
2182 1.239 perseant no need to do more to it. */
2183 1.84 perseant }
2184 1.84 perseant
2185 1.84 perseant /*
2186 1.86 perseant * This is it. We are going to write some pages. From here on
2187 1.84 perseant * down it's all just mechanics.
2188 1.84 perseant *
2189 1.103 perseant * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2190 1.84 perseant */
2191 1.84 perseant ap->a_flags &= ~PGO_SYNCIO;
2192 1.84 perseant
2193 1.84 perseant /*
2194 1.84 perseant * If we've already got the seglock, flush the node and return.
2195 1.84 perseant * The FIP has already been set up for us by lfs_writefile,
2196 1.84 perseant * and FIP cleanup and lfs_updatemeta will also be done there,
2197 1.84 perseant * unless genfs_putpages returns EDEADLK; then we must flush
2198 1.84 perseant * what we have, and correct FIP and segment header accounting.
2199 1.84 perseant */
2200 1.203 perseant get_seglock:
2201 1.203 perseant /*
2202 1.203 perseant * If we are not called with the segment locked, lock it.
2203 1.203 perseant * Account for a new FIP in the segment header, and set sp->vp.
2204 1.203 perseant * (This should duplicate the setup at the top of lfs_writefile().)
2205 1.203 perseant */
2206 1.126 yamt seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2207 1.126 yamt if (!seglocked) {
2208 1.235 rmind mutex_exit(vp->v_interlock);
2209 1.126 yamt error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2210 1.239 perseant if (error != 0) {
2211 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2212 1.239 perseant return error;
2213 1.239 perseant }
2214 1.235 rmind mutex_enter(vp->v_interlock);
2215 1.203 perseant lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2216 1.84 perseant }
2217 1.84 perseant sp = fs->lfs_sp;
2218 1.120 yamt KASSERT(sp->vp == NULL);
2219 1.84 perseant sp->vp = vp;
2220 1.135 perry
2221 1.239 perseant /* Note segments written by reclaim; only for debugging */
2222 1.239 perseant if ((vp->v_iflag & VI_XLOCK) != 0) {
2223 1.239 perseant sp->seg_flags |= SEGM_RECLAIM;
2224 1.239 perseant fs->lfs_reclino = ip->i_number;
2225 1.239 perseant }
2226 1.239 perseant
2227 1.203 perseant /*
2228 1.203 perseant * Ensure that the partial segment is marked SS_DIROP if this
2229 1.203 perseant * vnode is a DIROP.
2230 1.203 perseant */
2231 1.212 ad if (!seglocked && vp->v_uflag & VU_DIROP)
2232 1.203 perseant ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2233 1.135 perry
2234 1.84 perseant /*
2235 1.203 perseant * Loop over genfs_putpages until all pages are gathered.
2236 1.88 perseant * genfs_putpages() drops the interlock, so reacquire it if necessary.
2237 1.103 perseant * Whenever we lose the interlock we have to rerun check_dirty, as
2238 1.203 perseant * well, since more pages might have been dirtied in our absence.
2239 1.84 perseant */
2240 1.203 perseant #ifdef DEBUG
2241 1.203 perseant debug_n_again = 0;
2242 1.203 perseant #endif
2243 1.203 perseant do {
2244 1.203 perseant busypg = NULL;
2245 1.239 perseant KASSERT(mutex_owned(vp->v_interlock));
2246 1.203 perseant if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2247 1.203 perseant ap->a_flags, 0, &busypg) < 0) {
2248 1.235 rmind mutex_exit(vp->v_interlock);
2249 1.239 perseant /* XXX why? --ks */
2250 1.235 rmind mutex_enter(vp->v_interlock);
2251 1.203 perseant write_and_wait(fs, vp, busypg, seglocked, NULL);
2252 1.203 perseant if (!seglocked) {
2253 1.235 rmind mutex_exit(vp->v_interlock);
2254 1.203 perseant lfs_release_finfo(fs);
2255 1.203 perseant lfs_segunlock(fs);
2256 1.235 rmind mutex_enter(vp->v_interlock);
2257 1.203 perseant }
2258 1.208 perseant sp->vp = NULL;
2259 1.203 perseant goto get_seglock;
2260 1.88 perseant }
2261 1.203 perseant
2262 1.203 perseant busypg = NULL;
2263 1.239 perseant KASSERT(!mutex_owned(&uvm_pageqlock));
2264 1.239 perseant oreclaim = (ap->a_flags & PGO_RECLAIM);
2265 1.239 perseant ap->a_flags &= ~PGO_RECLAIM;
2266 1.206 perseant error = genfs_do_putpages(vp, startoffset, endoffset,
2267 1.203 perseant ap->a_flags, &busypg);
2268 1.239 perseant ap->a_flags |= oreclaim;
2269 1.203 perseant
2270 1.203 perseant if (error == EDEADLK || error == EAGAIN) {
2271 1.203 perseant DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2272 1.203 perseant " %d ino %d off %x (seg %d)\n", error,
2273 1.203 perseant ip->i_number, fs->lfs_offset,
2274 1.248 christos lfs_dtosn(fs, fs->lfs_offset)));
2275 1.84 perseant
2276 1.239 perseant if (oreclaim) {
2277 1.239 perseant mutex_enter(vp->v_interlock);
2278 1.239 perseant write_and_wait(fs, vp, busypg, seglocked, "again");
2279 1.239 perseant mutex_exit(vp->v_interlock);
2280 1.239 perseant } else {
2281 1.239 perseant if ((sp->seg_flags & SEGM_SINGLE) &&
2282 1.239 perseant fs->lfs_curseg != fs->lfs_startseg)
2283 1.239 perseant donewriting = 1;
2284 1.239 perseant }
2285 1.239 perseant } else if (error) {
2286 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2287 1.239 perseant " %d ino %d off %x (seg %d)\n", error,
2288 1.239 perseant (int)ip->i_number, fs->lfs_offset,
2289 1.248 christos lfs_dtosn(fs, fs->lfs_offset)));
2290 1.167 perseant }
2291 1.239 perseant /* genfs_do_putpages loses the interlock */
2292 1.203 perseant #ifdef DEBUG
2293 1.203 perseant ++debug_n_again;
2294 1.203 perseant #endif
2295 1.239 perseant if (oreclaim && error == EAGAIN) {
2296 1.239 perseant DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
2297 1.239 perseant vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
2298 1.239 perseant mutex_enter(vp->v_interlock);
2299 1.239 perseant }
2300 1.239 perseant if (error == EDEADLK)
2301 1.239 perseant mutex_enter(vp->v_interlock);
2302 1.239 perseant } while (error == EDEADLK || (oreclaim && error == EAGAIN));
2303 1.203 perseant #ifdef DEBUG
2304 1.203 perseant if (debug_n_again > TOOMANY)
2305 1.239 perseant DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
2306 1.203 perseant #endif
2307 1.103 perseant
2308 1.203 perseant KASSERT(sp != NULL && sp->vp == vp);
2309 1.239 perseant if (!seglocked && !donewriting) {
2310 1.178 perseant sp->vp = NULL;
2311 1.126 yamt
2312 1.126 yamt /* Write indirect blocks as well */
2313 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2314 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2315 1.126 yamt lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2316 1.120 yamt
2317 1.126 yamt KASSERT(sp->vp == NULL);
2318 1.126 yamt sp->vp = vp;
2319 1.126 yamt }
2320 1.84 perseant
2321 1.84 perseant /*
2322 1.84 perseant * Blocks are now gathered into a segment waiting to be written.
2323 1.84 perseant * All that's left to do is update metadata, and write them.
2324 1.84 perseant */
2325 1.120 yamt lfs_updatemeta(sp);
2326 1.120 yamt KASSERT(sp->vp == vp);
2327 1.120 yamt sp->vp = NULL;
2328 1.126 yamt
2329 1.203 perseant /*
2330 1.203 perseant * If we were called from lfs_writefile, we don't need to clean up
2331 1.203 perseant * the FIP or unlock the segment lock. We're done.
2332 1.203 perseant */
2333 1.239 perseant if (seglocked) {
2334 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2335 1.126 yamt return error;
2336 1.239 perseant }
2337 1.120 yamt
2338 1.178 perseant /* Clean up FIP and send it to disk. */
2339 1.178 perseant lfs_release_finfo(fs);
2340 1.88 perseant lfs_writeseg(fs, fs->lfs_sp);
2341 1.88 perseant
2342 1.84 perseant /*
2343 1.203 perseant * Remove us from paging queue if we wrote all our pages.
2344 1.164 perseant */
2345 1.203 perseant if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2346 1.214 ad mutex_enter(&lfs_lock);
2347 1.203 perseant if (ip->i_flags & IN_PAGING) {
2348 1.203 perseant ip->i_flags &= ~IN_PAGING;
2349 1.203 perseant TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2350 1.203 perseant }
2351 1.214 ad mutex_exit(&lfs_lock);
2352 1.164 perseant }
2353 1.164 perseant
2354 1.164 perseant /*
2355 1.84 perseant * XXX - with the malloc/copy writeseg, the pages are freed by now
2356 1.84 perseant * even if we don't wait (e.g. if we hold a nested lock). This
2357 1.84 perseant * will not be true if we stop using malloc/copy.
2358 1.84 perseant */
2359 1.84 perseant KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2360 1.84 perseant lfs_segunlock(fs);
2361 1.84 perseant
2362 1.84 perseant /*
2363 1.84 perseant * Wait for v_numoutput to drop to zero. The seglock should
2364 1.84 perseant * take care of this, but there is a slight possibility that
2365 1.84 perseant * aiodoned might not have got around to our buffers yet.
2366 1.84 perseant */
2367 1.84 perseant if (sync) {
2368 1.235 rmind mutex_enter(vp->v_interlock);
2369 1.98 perseant while (vp->v_numoutput > 0) {
2370 1.136 perseant DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2371 1.136 perseant " num %d\n", ip->i_number, vp->v_numoutput));
2372 1.235 rmind cv_wait(&vp->v_cv, vp->v_interlock);
2373 1.84 perseant }
2374 1.235 rmind mutex_exit(vp->v_interlock);
2375 1.84 perseant }
2376 1.239 perseant KASSERT(!mutex_owned(vp->v_interlock));
2377 1.84 perseant return error;
2378 1.84 perseant }
2379 1.84 perseant
2380 1.84 perseant /*
2381 1.84 perseant * Return the last logical file offset that should be written for this file
2382 1.86 perseant * if we're doing a write that ends at "size". If writing, we need to know
2383 1.84 perseant * about sizes on disk, i.e. fragments if there are any; if reading, we need
2384 1.84 perseant * to know about entire blocks.
2385 1.84 perseant */
2386 1.84 perseant void
2387 1.84 perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2388 1.84 perseant {
2389 1.84 perseant struct inode *ip = VTOI(vp);
2390 1.135 perry struct lfs *fs = ip->i_lfs;
2391 1.84 perseant daddr_t olbn, nlbn;
2392 1.84 perseant
2393 1.248 christos olbn = lfs_lblkno(fs, ip->i_size);
2394 1.248 christos nlbn = lfs_lblkno(fs, size);
2395 1.245 dholland if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
2396 1.248 christos *eobp = lfs_fragroundup(fs, size);
2397 1.86 perseant } else {
2398 1.248 christos *eobp = lfs_blkroundup(fs, size);
2399 1.86 perseant }
2400 1.84 perseant }
2401 1.84 perseant
2402 1.84 perseant #ifdef DEBUG
2403 1.84 perseant void lfs_dump_vop(void *);
2404 1.84 perseant
2405 1.84 perseant void
2406 1.84 perseant lfs_dump_vop(void *v)
2407 1.84 perseant {
2408 1.86 perseant struct vop_putpages_args /* {
2409 1.86 perseant struct vnode *a_vp;
2410 1.86 perseant voff_t a_offlo;
2411 1.86 perseant voff_t a_offhi;
2412 1.86 perseant int a_flags;
2413 1.86 perseant } */ *ap = v;
2414 1.84 perseant
2415 1.106 ragge #ifdef DDB
2416 1.84 perseant vfs_vnode_print(ap->a_vp, 0, printf);
2417 1.106 ragge #endif
2418 1.102 fvdl lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2419 1.84 perseant }
2420 1.84 perseant #endif
2421 1.84 perseant
2422 1.84 perseant int
2423 1.84 perseant lfs_mmap(void *v)
2424 1.84 perseant {
2425 1.84 perseant struct vop_mmap_args /* {
2426 1.86 perseant const struct vnodeop_desc *a_desc;
2427 1.86 perseant struct vnode *a_vp;
2428 1.209 pooka vm_prot_t a_prot;
2429 1.176 elad kauth_cred_t a_cred;
2430 1.84 perseant } */ *ap = v;
2431 1.84 perseant
2432 1.84 perseant if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2433 1.84 perseant return EOPNOTSUPP;
2434 1.245 dholland return ulfs_mmap(v);
2435 1.84 perseant }
2436