Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.250
      1  1.250  dholland /*	$NetBSD: lfs_vnops.c,v 1.250 2013/07/20 22:14:49 dholland Exp $	*/
      2    1.2       cgd 
      3   1.22  perseant /*-
      4   1.84  perseant  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5   1.22  perseant  * All rights reserved.
      6   1.22  perseant  *
      7   1.22  perseant  * This code is derived from software contributed to The NetBSD Foundation
      8   1.22  perseant  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9   1.22  perseant  *
     10   1.22  perseant  * Redistribution and use in source and binary forms, with or without
     11   1.22  perseant  * modification, are permitted provided that the following conditions
     12   1.22  perseant  * are met:
     13   1.22  perseant  * 1. Redistributions of source code must retain the above copyright
     14   1.22  perseant  *    notice, this list of conditions and the following disclaimer.
     15   1.22  perseant  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.22  perseant  *    notice, this list of conditions and the following disclaimer in the
     17   1.22  perseant  *    documentation and/or other materials provided with the distribution.
     18   1.22  perseant  *
     19   1.22  perseant  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.22  perseant  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.22  perseant  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.22  perseant  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.22  perseant  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.22  perseant  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.22  perseant  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.22  perseant  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.22  perseant  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.22  perseant  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.22  perseant  * POSSIBILITY OF SUCH DAMAGE.
     30   1.22  perseant  */
     31    1.1   mycroft /*
     32   1.15      fvdl  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     34    1.1   mycroft  *
     35    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     36    1.1   mycroft  * modification, are permitted provided that the following conditions
     37    1.1   mycroft  * are met:
     38    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     39    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     40    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     41    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     42    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     43  1.114       agc  * 3. Neither the name of the University nor the names of its contributors
     44    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     45    1.1   mycroft  *    without specific prior written permission.
     46    1.1   mycroft  *
     47    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57    1.1   mycroft  * SUCH DAMAGE.
     58    1.1   mycroft  *
     59   1.15      fvdl  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60    1.1   mycroft  */
     61   1.58     lukem 
     62   1.58     lukem #include <sys/cdefs.h>
     63  1.250  dholland __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.250 2013/07/20 22:14:49 dholland Exp $");
     64  1.182    martin 
     65  1.183    martin #ifdef _KERNEL_OPT
     66  1.182    martin #include "opt_compat_netbsd.h"
     67  1.238       chs #include "opt_uvm_page_trkown.h"
     68  1.183    martin #endif
     69   1.17  sommerfe 
     70    1.1   mycroft #include <sys/param.h>
     71    1.1   mycroft #include <sys/systm.h>
     72    1.1   mycroft #include <sys/namei.h>
     73    1.1   mycroft #include <sys/resourcevar.h>
     74    1.1   mycroft #include <sys/kernel.h>
     75    1.1   mycroft #include <sys/file.h>
     76    1.1   mycroft #include <sys/stat.h>
     77    1.1   mycroft #include <sys/buf.h>
     78    1.1   mycroft #include <sys/proc.h>
     79    1.1   mycroft #include <sys/mount.h>
     80    1.1   mycroft #include <sys/vnode.h>
     81   1.19   thorpej #include <sys/pool.h>
     82   1.10  christos #include <sys/signalvar.h>
     83  1.176      elad #include <sys/kauth.h>
     84  1.179  perseant #include <sys/syslog.h>
     85  1.197   hannken #include <sys/fstrans.h>
     86    1.1   mycroft 
     87   1.12   mycroft #include <miscfs/fifofs/fifo.h>
     88   1.12   mycroft #include <miscfs/genfs/genfs.h>
     89    1.1   mycroft #include <miscfs/specfs/specdev.h>
     90    1.1   mycroft 
     91  1.244  dholland #include <ufs/lfs/ulfs_inode.h>
     92  1.244  dholland #include <ufs/lfs/ulfsmount.h>
     93  1.244  dholland #include <ufs/lfs/ulfs_bswap.h>
     94  1.244  dholland #include <ufs/lfs/ulfs_extern.h>
     95    1.1   mycroft 
     96   1.84  perseant #include <uvm/uvm.h>
     97   1.95  perseant #include <uvm/uvm_pmap.h>
     98   1.95  perseant #include <uvm/uvm_stat.h>
     99   1.95  perseant #include <uvm/uvm_pager.h>
    100   1.84  perseant 
    101    1.1   mycroft #include <ufs/lfs/lfs.h>
    102    1.1   mycroft #include <ufs/lfs/lfs_extern.h>
    103    1.1   mycroft 
    104   1.91      yamt extern pid_t lfs_writer_daemon;
    105  1.203  perseant int lfs_ignore_lazy_sync = 1;
    106  1.203  perseant 
    107    1.1   mycroft /* Global vfs data structures for lfs. */
    108   1.51  perseant int (**lfs_vnodeop_p)(void *);
    109   1.50  jdolecek const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    110    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    111  1.245  dholland 	{ &vop_lookup_desc, ulfs_lookup },		/* lookup */
    112   1.22  perseant 	{ &vop_create_desc, lfs_create },		/* create */
    113  1.245  dholland 	{ &vop_whiteout_desc, ulfs_whiteout },		/* whiteout */
    114   1.22  perseant 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    115  1.245  dholland 	{ &vop_open_desc, ulfs_open },			/* open */
    116    1.1   mycroft 	{ &vop_close_desc, lfs_close },			/* close */
    117  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    118    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    119   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    120    1.1   mycroft 	{ &vop_read_desc, lfs_read },			/* read */
    121    1.1   mycroft 	{ &vop_write_desc, lfs_write },			/* write */
    122  1.245  dholland 	{ &vop_ioctl_desc, ulfs_ioctl },		/* ioctl */
    123   1.90  perseant 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    124  1.245  dholland 	{ &vop_poll_desc, ulfs_poll },			/* poll */
    125   1.68  jdolecek 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    126  1.245  dholland 	{ &vop_revoke_desc, ulfs_revoke },		/* revoke */
    127   1.84  perseant 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    128    1.1   mycroft 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    129  1.245  dholland 	{ &vop_seek_desc, ulfs_seek },			/* seek */
    130   1.22  perseant 	{ &vop_remove_desc, lfs_remove },		/* remove */
    131   1.22  perseant 	{ &vop_link_desc, lfs_link },			/* link */
    132   1.22  perseant 	{ &vop_rename_desc, lfs_rename },		/* rename */
    133   1.22  perseant 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    134   1.22  perseant 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    135   1.22  perseant 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    136  1.245  dholland 	{ &vop_readdir_desc, ulfs_readdir },		/* readdir */
    137  1.245  dholland 	{ &vop_readlink_desc, ulfs_readlink },		/* readlink */
    138  1.245  dholland 	{ &vop_abortop_desc, ulfs_abortop },		/* abortop */
    139   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    140    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    141  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    142  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    143  1.245  dholland 	{ &vop_bmap_desc, ulfs_bmap },			/* bmap */
    144   1.94  perseant 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    145  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    146  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    147  1.245  dholland 	{ &vop_pathconf_desc, ulfs_pathconf },		/* pathconf */
    148  1.245  dholland 	{ &vop_advlock_desc, ulfs_advlock },		/* advlock */
    149    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    150   1.60       chs 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    151   1.60       chs 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    152   1.53       chs 	{ NULL, NULL }
    153    1.1   mycroft };
    154   1.50  jdolecek const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    155    1.1   mycroft 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    156    1.1   mycroft 
    157   1.51  perseant int (**lfs_specop_p)(void *);
    158   1.50  jdolecek const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    159    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    160    1.1   mycroft 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    161    1.1   mycroft 	{ &vop_create_desc, spec_create },		/* create */
    162    1.1   mycroft 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    163    1.1   mycroft 	{ &vop_open_desc, spec_open },			/* open */
    164   1.65  perseant 	{ &vop_close_desc, lfsspec_close },		/* close */
    165  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    166    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    167   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    168  1.245  dholland 	{ &vop_read_desc, ulfsspec_read },		/* read */
    169  1.245  dholland 	{ &vop_write_desc, ulfsspec_write },		/* write */
    170    1.1   mycroft 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    171  1.245  dholland 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    172   1.13   mycroft 	{ &vop_poll_desc, spec_poll },			/* poll */
    173   1.68  jdolecek 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    174   1.15      fvdl 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    175    1.1   mycroft 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    176    1.1   mycroft 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    177    1.1   mycroft 	{ &vop_seek_desc, spec_seek },			/* seek */
    178    1.1   mycroft 	{ &vop_remove_desc, spec_remove },		/* remove */
    179    1.1   mycroft 	{ &vop_link_desc, spec_link },			/* link */
    180    1.1   mycroft 	{ &vop_rename_desc, spec_rename },		/* rename */
    181    1.1   mycroft 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    182    1.1   mycroft 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    183    1.1   mycroft 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    184    1.1   mycroft 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    185    1.1   mycroft 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    186    1.1   mycroft 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    187   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    188    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    189  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    190  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    191    1.1   mycroft 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    192    1.1   mycroft 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    193  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    194  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    195    1.1   mycroft 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    196    1.1   mycroft 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    197   1.28  perseant 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    198   1.53       chs 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    199   1.53       chs 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    200   1.53       chs 	{ NULL, NULL }
    201    1.1   mycroft };
    202   1.50  jdolecek const struct vnodeopv_desc lfs_specop_opv_desc =
    203    1.1   mycroft 	{ &lfs_specop_p, lfs_specop_entries };
    204    1.1   mycroft 
    205   1.51  perseant int (**lfs_fifoop_p)(void *);
    206   1.50  jdolecek const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    207    1.1   mycroft 	{ &vop_default_desc, vn_default_error },
    208  1.227     pooka 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    209  1.227     pooka 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    210  1.227     pooka 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    211  1.227     pooka 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    212   1.65  perseant 	{ &vop_close_desc, lfsfifo_close },		/* close */
    213  1.245  dholland 	{ &vop_access_desc, ulfs_access },		/* access */
    214    1.1   mycroft 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    215   1.61  perseant 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    216  1.245  dholland 	{ &vop_read_desc, ulfsfifo_read },		/* read */
    217  1.245  dholland 	{ &vop_write_desc, ulfsfifo_write },		/* write */
    218  1.227     pooka 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    219  1.245  dholland 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    220  1.227     pooka 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    221  1.227     pooka 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    222  1.227     pooka 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    223  1.227     pooka 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    224  1.227     pooka 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    225  1.227     pooka 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    226  1.227     pooka 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    227  1.227     pooka 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    228  1.227     pooka 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    229  1.227     pooka 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    230  1.227     pooka 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    231  1.227     pooka 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    232  1.227     pooka 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    233  1.227     pooka 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    234  1.227     pooka 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    235   1.40  perseant 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    236    1.1   mycroft 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    237  1.245  dholland 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    238  1.245  dholland 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    239  1.227     pooka 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    240  1.227     pooka 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    241  1.245  dholland 	{ &vop_print_desc, ulfs_print },		/* print */
    242  1.245  dholland 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    243  1.227     pooka 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    244  1.227     pooka 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    245    1.1   mycroft 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    246  1.227     pooka 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    247   1.53       chs 	{ NULL, NULL }
    248    1.1   mycroft };
    249   1.50  jdolecek const struct vnodeopv_desc lfs_fifoop_opv_desc =
    250    1.1   mycroft 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    251    1.1   mycroft 
    252  1.203  perseant static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    253  1.134  perseant 
    254    1.1   mycroft #define	LFS_READWRITE
    255  1.244  dholland #include <ufs/lfs/ulfs_readwrite.c>
    256    1.1   mycroft #undef	LFS_READWRITE
    257    1.1   mycroft 
    258    1.1   mycroft /*
    259    1.1   mycroft  * Synch an open file.
    260    1.1   mycroft  */
    261    1.1   mycroft /* ARGSUSED */
    262   1.10  christos int
    263   1.51  perseant lfs_fsync(void *v)
    264   1.10  christos {
    265    1.1   mycroft 	struct vop_fsync_args /* {
    266    1.1   mycroft 		struct vnode *a_vp;
    267  1.176      elad 		kauth_cred_t a_cred;
    268   1.22  perseant 		int a_flags;
    269   1.49    toshii 		off_t offlo;
    270   1.49    toshii 		off_t offhi;
    271   1.10  christos 	} */ *ap = v;
    272   1.60       chs 	struct vnode *vp = ap->a_vp;
    273   1.84  perseant 	int error, wait;
    274  1.203  perseant 	struct inode *ip = VTOI(vp);
    275  1.203  perseant 	struct lfs *fs = ip->i_lfs;
    276   1.84  perseant 
    277  1.161  perseant 	/* If we're mounted read-only, don't try to sync. */
    278  1.203  perseant 	if (fs->lfs_ronly)
    279  1.161  perseant 		return 0;
    280  1.161  perseant 
    281  1.231   hannken 	/* If a removed vnode is being cleaned, no need to sync here. */
    282  1.231   hannken 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    283  1.231   hannken 		return 0;
    284  1.231   hannken 
    285   1.86  perseant 	/*
    286  1.203  perseant 	 * Trickle sync simply adds this vnode to the pager list, as if
    287  1.203  perseant 	 * the pagedaemon had requested a pageout.
    288   1.86  perseant 	 */
    289   1.84  perseant 	if (ap->a_flags & FSYNC_LAZY) {
    290  1.203  perseant 		if (lfs_ignore_lazy_sync == 0) {
    291  1.214        ad 			mutex_enter(&lfs_lock);
    292  1.203  perseant 			if (!(ip->i_flags & IN_PAGING)) {
    293  1.203  perseant 				ip->i_flags |= IN_PAGING;
    294  1.203  perseant 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    295  1.203  perseant 						  i_lfs_pchain);
    296  1.203  perseant 			}
    297  1.203  perseant 			wakeup(&lfs_writer_daemon);
    298  1.214        ad 			mutex_exit(&lfs_lock);
    299  1.203  perseant 		}
    300   1.47  perseant 		return 0;
    301   1.84  perseant 	}
    302   1.47  perseant 
    303  1.175  perseant 	/*
    304  1.188  perseant 	 * If a vnode is bring cleaned, flush it out before we try to
    305  1.188  perseant 	 * reuse it.  This prevents the cleaner from writing files twice
    306  1.188  perseant 	 * in the same partial segment, causing an accounting underflow.
    307  1.188  perseant 	 */
    308  1.203  perseant 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    309  1.188  perseant 		lfs_vflush(vp);
    310  1.175  perseant 	}
    311  1.175  perseant 
    312   1.84  perseant 	wait = (ap->a_flags & FSYNC_WAIT);
    313  1.203  perseant 	do {
    314  1.235     rmind 		mutex_enter(vp->v_interlock);
    315  1.203  perseant 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    316  1.203  perseant 				     round_page(ap->a_offhi),
    317  1.203  perseant 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    318  1.205  perseant 		if (error == EAGAIN) {
    319  1.214        ad 			mutex_enter(&lfs_lock);
    320  1.214        ad 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    321  1.214        ad 				hz / 100 + 1, &lfs_lock);
    322  1.214        ad 			mutex_exit(&lfs_lock);
    323  1.205  perseant 		}
    324  1.203  perseant 	} while (error == EAGAIN);
    325  1.103  perseant 	if (error)
    326  1.103  perseant 		return error;
    327  1.203  perseant 
    328  1.203  perseant 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    329  1.203  perseant 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    330  1.203  perseant 
    331  1.133  wrstuden 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    332  1.133  wrstuden 		int l = 0;
    333  1.203  perseant 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    334  1.213     pooka 				  curlwp->l_cred);
    335  1.133  wrstuden 	}
    336  1.103  perseant 	if (wait && !VPISEMPTY(vp))
    337  1.203  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
    338   1.84  perseant 
    339   1.63  perseant 	return error;
    340    1.1   mycroft }
    341    1.1   mycroft 
    342    1.1   mycroft /*
    343  1.245  dholland  * Take IN_ADIROP off, then call ulfs_inactive.
    344   1.40  perseant  */
    345   1.40  perseant int
    346   1.51  perseant lfs_inactive(void *v)
    347   1.40  perseant {
    348   1.40  perseant 	struct vop_inactive_args /* {
    349   1.40  perseant 		struct vnode *a_vp;
    350   1.40  perseant 	} */ *ap = v;
    351   1.72      yamt 
    352   1.76      yamt 	lfs_unmark_vnode(ap->a_vp);
    353   1.76      yamt 
    354   1.97  perseant 	/*
    355   1.97  perseant 	 * The Ifile is only ever inactivated on unmount.
    356   1.97  perseant 	 * Streamline this process by not giving it more dirty blocks.
    357   1.97  perseant 	 */
    358   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    359  1.214        ad 		mutex_enter(&lfs_lock);
    360   1.97  perseant 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    361  1.214        ad 		mutex_exit(&lfs_lock);
    362  1.229   hannken 		VOP_UNLOCK(ap->a_vp);
    363   1.97  perseant 		return 0;
    364   1.97  perseant 	}
    365   1.97  perseant 
    366  1.239  perseant #ifdef DEBUG
    367  1.239  perseant 	/*
    368  1.239  perseant 	 * This might happen on unmount.
    369  1.239  perseant 	 * XXX If it happens at any other time, it should be a panic.
    370  1.239  perseant 	 */
    371  1.239  perseant 	if (ap->a_vp->v_uflag & VU_DIROP) {
    372  1.239  perseant 		struct inode *ip = VTOI(ap->a_vp);
    373  1.239  perseant 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    374  1.239  perseant 	}
    375  1.239  perseant #endif /* DIAGNOSTIC */
    376  1.239  perseant 
    377  1.245  dholland 	return ulfs_inactive(v);
    378   1.40  perseant }
    379   1.40  perseant 
    380  1.249  dholland int
    381  1.138  perseant lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    382   1.40  perseant {
    383   1.24  perseant 	struct lfs *fs;
    384   1.24  perseant 	int error;
    385   1.24  perseant 
    386  1.138  perseant 	KASSERT(VOP_ISLOCKED(dvp));
    387  1.138  perseant 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    388   1.71      yamt 
    389  1.138  perseant 	fs = VTOI(dvp)->i_lfs;
    390  1.141  perseant 
    391  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    392   1.44  perseant 	/*
    393  1.134  perseant 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    394  1.134  perseant 	 * as an inode block; an overestimate in most cases.
    395   1.44  perseant 	 */
    396  1.138  perseant 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    397   1.44  perseant 		return (error);
    398   1.70      yamt 
    399  1.214        ad     restart:
    400  1.214        ad 	mutex_enter(&lfs_lock);
    401  1.141  perseant 	if (fs->lfs_dirops == 0) {
    402  1.214        ad 		mutex_exit(&lfs_lock);
    403  1.138  perseant 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    404  1.214        ad 		mutex_enter(&lfs_lock);
    405  1.113      yamt 	}
    406  1.190  perseant 	while (fs->lfs_writer) {
    407  1.214        ad 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    408  1.214        ad 		    "lfs_sdirop", 0, &lfs_lock);
    409  1.190  perseant 		if (error == EINTR) {
    410  1.214        ad 			mutex_exit(&lfs_lock);
    411  1.190  perseant 			goto unreserve;
    412  1.190  perseant 		}
    413  1.190  perseant 	}
    414  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    415  1.113      yamt 		wakeup(&lfs_writer_daemon);
    416  1.214        ad 		mutex_exit(&lfs_lock);
    417  1.198        ad 		preempt();
    418  1.113      yamt 		goto restart;
    419  1.113      yamt 	}
    420   1.33  perseant 
    421  1.113      yamt 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    422  1.136  perseant 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    423  1.136  perseant 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    424  1.214        ad 		if ((error = mtsleep(&lfs_dirvcount,
    425  1.214        ad 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    426  1.214        ad 		    &lfs_lock)) != 0) {
    427  1.113      yamt 			goto unreserve;
    428  1.113      yamt 		}
    429  1.113      yamt 		goto restart;
    430  1.135     perry 	}
    431  1.113      yamt 
    432  1.135     perry 	++fs->lfs_dirops;
    433  1.239  perseant 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    434  1.214        ad 	mutex_exit(&lfs_lock);
    435   1.24  perseant 
    436   1.46  perseant 	/* Hold a reference so SET_ENDOP will be happy */
    437  1.138  perseant 	vref(dvp);
    438  1.138  perseant 	if (vp) {
    439  1.138  perseant 		vref(vp);
    440  1.138  perseant 		MARK_VNODE(vp);
    441  1.138  perseant 	}
    442   1.46  perseant 
    443  1.138  perseant 	MARK_VNODE(dvp);
    444   1.24  perseant 	return 0;
    445   1.70      yamt 
    446  1.203  perseant   unreserve:
    447  1.138  perseant 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    448   1.70      yamt 	return error;
    449    1.1   mycroft }
    450    1.1   mycroft 
    451  1.138  perseant /*
    452  1.138  perseant  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    453  1.138  perseant  * in getnewvnode(), if we have a stacked filesystem mounted on top
    454  1.138  perseant  * of us.
    455  1.138  perseant  *
    456  1.138  perseant  * NB: this means we have to clear the new vnodes on error.  Fortunately
    457  1.138  perseant  * SET_ENDOP is there to do that for us.
    458  1.138  perseant  */
    459  1.249  dholland int
    460  1.138  perseant lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    461  1.138  perseant {
    462  1.138  perseant 	int error;
    463  1.138  perseant 	struct lfs *fs;
    464  1.138  perseant 
    465  1.245  dholland 	fs = VFSTOULFS(dvp->v_mount)->um_lfs;
    466  1.141  perseant 	ASSERT_NO_SEGLOCK(fs);
    467  1.138  perseant 	if (fs->lfs_ronly)
    468  1.138  perseant 		return EROFS;
    469  1.235     rmind 	if (vpp == NULL) {
    470  1.235     rmind 		return lfs_set_dirop(dvp, NULL);
    471  1.235     rmind 	}
    472  1.235     rmind 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    473  1.235     rmind 	if (error) {
    474  1.138  perseant 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    475  1.138  perseant 		      dvp, error));
    476  1.138  perseant 		return error;
    477  1.138  perseant 	}
    478  1.138  perseant 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    479  1.235     rmind 		ungetnewvnode(*vpp);
    480  1.235     rmind 		*vpp = NULL;
    481  1.138  perseant 		return error;
    482  1.138  perseant 	}
    483  1.138  perseant 	return 0;
    484    1.1   mycroft }
    485    1.1   mycroft 
    486  1.117      yamt void
    487  1.117      yamt lfs_mark_vnode(struct vnode *vp)
    488  1.117      yamt {
    489  1.117      yamt 	struct inode *ip = VTOI(vp);
    490  1.117      yamt 	struct lfs *fs = ip->i_lfs;
    491   1.37  perseant 
    492  1.214        ad 	mutex_enter(&lfs_lock);
    493  1.117      yamt 	if (!(ip->i_flag & IN_ADIROP)) {
    494  1.212        ad 		if (!(vp->v_uflag & VU_DIROP)) {
    495  1.240  perseant 			mutex_exit(&lfs_lock);
    496  1.235     rmind 			mutex_enter(vp->v_interlock);
    497  1.239  perseant 			if (lfs_vref(vp) != 0)
    498  1.239  perseant 				panic("lfs_mark_vnode: could not vref");
    499  1.240  perseant 			mutex_enter(&lfs_lock);
    500  1.117      yamt 			++lfs_dirvcount;
    501  1.173  perseant 			++fs->lfs_dirvcount;
    502  1.117      yamt 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    503  1.212        ad 			vp->v_uflag |= VU_DIROP;
    504  1.117      yamt 		}
    505  1.117      yamt 		++fs->lfs_nadirop;
    506  1.239  perseant 		ip->i_flag &= ~IN_CDIROP;
    507  1.117      yamt 		ip->i_flag |= IN_ADIROP;
    508  1.117      yamt 	} else
    509  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    510  1.214        ad 	mutex_exit(&lfs_lock);
    511  1.117      yamt }
    512   1.40  perseant 
    513  1.117      yamt void
    514  1.117      yamt lfs_unmark_vnode(struct vnode *vp)
    515   1.40  perseant {
    516  1.117      yamt 	struct inode *ip = VTOI(vp);
    517   1.40  perseant 
    518  1.240  perseant 	mutex_enter(&lfs_lock);
    519  1.146  perseant 	if (ip && (ip->i_flag & IN_ADIROP)) {
    520  1.212        ad 		KASSERT(vp->v_uflag & VU_DIROP);
    521   1.40  perseant 		--ip->i_lfs->lfs_nadirop;
    522  1.117      yamt 		ip->i_flag &= ~IN_ADIROP;
    523  1.117      yamt 	}
    524  1.240  perseant 	mutex_exit(&lfs_lock);
    525   1.40  perseant }
    526   1.15      fvdl 
    527    1.1   mycroft int
    528   1.51  perseant lfs_symlink(void *v)
    529   1.10  christos {
    530    1.1   mycroft 	struct vop_symlink_args /* {
    531    1.1   mycroft 		struct vnode *a_dvp;
    532    1.1   mycroft 		struct vnode **a_vpp;
    533    1.1   mycroft 		struct componentname *a_cnp;
    534    1.1   mycroft 		struct vattr *a_vap;
    535    1.1   mycroft 		char *a_target;
    536   1.10  christos 	} */ *ap = v;
    537   1.37  perseant 	int error;
    538    1.1   mycroft 
    539  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    540   1.34  perseant 		vput(ap->a_dvp);
    541   1.37  perseant 		return error;
    542   1.34  perseant 	}
    543  1.245  dholland 	error = ulfs_symlink(ap);
    544  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "symlink");
    545   1.37  perseant 	return (error);
    546    1.1   mycroft }
    547    1.1   mycroft 
    548    1.1   mycroft int
    549   1.51  perseant lfs_mknod(void *v)
    550   1.10  christos {
    551   1.22  perseant 	struct vop_mknod_args	/* {
    552    1.1   mycroft 		struct vnode *a_dvp;
    553    1.1   mycroft 		struct vnode **a_vpp;
    554    1.1   mycroft 		struct componentname *a_cnp;
    555    1.1   mycroft 		struct vattr *a_vap;
    556  1.203  perseant 	} */ *ap = v;
    557  1.250  dholland 	struct vattr *vap;
    558  1.250  dholland 	struct vnode **vpp;
    559   1.86  perseant 	struct inode *ip;
    560   1.86  perseant 	int error;
    561  1.135     perry 	struct mount	*mp;
    562   1.52     assar 	ino_t		ino;
    563  1.245  dholland 	struct ulfs_lookup_results *ulr;
    564  1.237  dholland 
    565  1.250  dholland 	vap = ap->a_vap;
    566  1.250  dholland 	vpp = ap->a_vpp;
    567  1.250  dholland 
    568  1.237  dholland 	/* XXX should handle this material another way */
    569  1.237  dholland 	ulr = &VTOI(ap->a_dvp)->i_crap;
    570  1.245  dholland 	ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    571    1.1   mycroft 
    572  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    573   1.34  perseant 		vput(ap->a_dvp);
    574   1.28  perseant 		return error;
    575   1.34  perseant 	}
    576  1.250  dholland 
    577  1.250  dholland 	fstrans_start(ap->a_dvp->v_mount, FSTRANS_SHARED);
    578  1.245  dholland 	error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    579  1.237  dholland 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    580   1.28  perseant 
    581   1.28  perseant 	/* Either way we're done with the dirop at this point */
    582  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mknod");
    583   1.28  perseant 
    584  1.250  dholland 	if (error) {
    585  1.250  dholland 		fstrans_done(ap->a_dvp->v_mount);
    586  1.250  dholland 		*vpp = NULL;
    587   1.28  perseant 		return (error);
    588  1.250  dholland 	}
    589   1.28  perseant 
    590  1.250  dholland 	VN_KNOTE(ap->a_dvp, NOTE_WRITE);
    591   1.86  perseant 	ip = VTOI(*vpp);
    592   1.52     assar 	mp  = (*vpp)->v_mount;
    593   1.52     assar 	ino = ip->i_number;
    594   1.86  perseant 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    595   1.86  perseant 	if (vap->va_rdev != VNOVAL) {
    596  1.250  dholland 		struct ulfsmount *ump = ip->i_ump;
    597   1.86  perseant 		/*
    598   1.86  perseant 		 * Want to be able to use this to make badblock
    599   1.86  perseant 		 * inodes, so don't truncate the dev number.
    600   1.86  perseant 		 */
    601  1.250  dholland 		if (ump->um_fstype == ULFS1)
    602  1.250  dholland 			ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
    603  1.250  dholland 			    ULFS_MPNEEDSWAP(ump));
    604  1.250  dholland 		else
    605  1.250  dholland 			ip->i_ffs2_rdev = ulfs_rw64(vap->va_rdev,
    606  1.250  dholland 			    ULFS_MPNEEDSWAP(ump));
    607   1.86  perseant 	}
    608  1.134  perseant 
    609   1.28  perseant 	/*
    610   1.28  perseant 	 * Call fsync to write the vnode so that we don't have to deal with
    611  1.212        ad 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    612   1.28  perseant 	 *
    613   1.28  perseant 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    614   1.28  perseant 	 * return.  But, that leaves this vnode in limbo, also not good.
    615   1.28  perseant 	 * Can this ever happen (barring hardware failure)?
    616   1.28  perseant 	 */
    617  1.213     pooka 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    618  1.153  christos 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    619  1.203  perseant 		      (unsigned long long)ino);
    620  1.136  perseant 		/* return (error); */
    621   1.40  perseant 	}
    622   1.86  perseant 	/*
    623   1.86  perseant 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    624   1.86  perseant 	 * checked to see if it is an alias of an existing entry in
    625   1.86  perseant 	 * the inode cache.
    626   1.86  perseant 	 */
    627   1.28  perseant 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    628  1.134  perseant 
    629  1.250  dholland 	(*vpp)->v_type = VNON;
    630  1.229   hannken 	VOP_UNLOCK(*vpp);
    631   1.86  perseant 	vgone(*vpp);
    632  1.108   thorpej 	error = VFS_VGET(mp, ino, vpp);
    633  1.134  perseant 
    634  1.250  dholland 	fstrans_done(ap->a_dvp->v_mount);
    635   1.52     assar 	if (error != 0) {
    636   1.52     assar 		*vpp = NULL;
    637   1.52     assar 		return (error);
    638   1.52     assar 	}
    639   1.86  perseant 	return (0);
    640    1.1   mycroft }
    641    1.1   mycroft 
    642    1.1   mycroft int
    643   1.51  perseant lfs_create(void *v)
    644   1.10  christos {
    645   1.22  perseant 	struct vop_create_args	/* {
    646    1.1   mycroft 		struct vnode *a_dvp;
    647    1.1   mycroft 		struct vnode **a_vpp;
    648    1.1   mycroft 		struct componentname *a_cnp;
    649    1.1   mycroft 		struct vattr *a_vap;
    650   1.10  christos 	} */ *ap = v;
    651   1.37  perseant 	int error;
    652    1.1   mycroft 
    653  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    654   1.34  perseant 		vput(ap->a_dvp);
    655   1.37  perseant 		return error;
    656   1.34  perseant 	}
    657  1.245  dholland 	error = ulfs_create(ap);
    658  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "create");
    659   1.37  perseant 	return (error);
    660   1.22  perseant }
    661   1.22  perseant 
    662   1.22  perseant int
    663   1.51  perseant lfs_mkdir(void *v)
    664   1.10  christos {
    665   1.22  perseant 	struct vop_mkdir_args	/* {
    666    1.1   mycroft 		struct vnode *a_dvp;
    667    1.1   mycroft 		struct vnode **a_vpp;
    668    1.1   mycroft 		struct componentname *a_cnp;
    669    1.1   mycroft 		struct vattr *a_vap;
    670   1.10  christos 	} */ *ap = v;
    671   1.37  perseant 	int error;
    672    1.1   mycroft 
    673  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    674   1.34  perseant 		vput(ap->a_dvp);
    675   1.37  perseant 		return error;
    676   1.34  perseant 	}
    677  1.245  dholland 	error = ulfs_mkdir(ap);
    678  1.138  perseant 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    679   1.37  perseant 	return (error);
    680    1.1   mycroft }
    681    1.1   mycroft 
    682    1.1   mycroft int
    683   1.51  perseant lfs_remove(void *v)
    684   1.10  christos {
    685   1.22  perseant 	struct vop_remove_args	/* {
    686    1.1   mycroft 		struct vnode *a_dvp;
    687    1.1   mycroft 		struct vnode *a_vp;
    688    1.1   mycroft 		struct componentname *a_cnp;
    689   1.10  christos 	} */ *ap = v;
    690   1.34  perseant 	struct vnode *dvp, *vp;
    691  1.188  perseant 	struct inode *ip;
    692   1.37  perseant 	int error;
    693   1.34  perseant 
    694   1.34  perseant 	dvp = ap->a_dvp;
    695   1.34  perseant 	vp = ap->a_vp;
    696  1.188  perseant 	ip = VTOI(vp);
    697  1.138  perseant 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    698   1.34  perseant 		if (dvp == vp)
    699   1.34  perseant 			vrele(vp);
    700   1.34  perseant 		else
    701   1.34  perseant 			vput(vp);
    702   1.34  perseant 		vput(dvp);
    703   1.37  perseant 		return error;
    704   1.34  perseant 	}
    705  1.245  dholland 	error = ulfs_remove(ap);
    706  1.188  perseant 	if (ip->i_nlink == 0)
    707  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    708  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    709   1.37  perseant 	return (error);
    710    1.1   mycroft }
    711    1.1   mycroft 
    712    1.1   mycroft int
    713   1.51  perseant lfs_rmdir(void *v)
    714   1.10  christos {
    715   1.22  perseant 	struct vop_rmdir_args	/* {
    716    1.1   mycroft 		struct vnodeop_desc *a_desc;
    717    1.1   mycroft 		struct vnode *a_dvp;
    718    1.1   mycroft 		struct vnode *a_vp;
    719    1.1   mycroft 		struct componentname *a_cnp;
    720   1.10  christos 	} */ *ap = v;
    721   1.84  perseant 	struct vnode *vp;
    722  1.188  perseant 	struct inode *ip;
    723   1.37  perseant 	int error;
    724    1.1   mycroft 
    725   1.84  perseant 	vp = ap->a_vp;
    726  1.188  perseant 	ip = VTOI(vp);
    727  1.138  perseant 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    728  1.194       chs 		if (ap->a_dvp == vp)
    729  1.194       chs 			vrele(ap->a_dvp);
    730  1.194       chs 		else
    731  1.194       chs 			vput(ap->a_dvp);
    732   1.84  perseant 		vput(vp);
    733   1.37  perseant 		return error;
    734   1.34  perseant 	}
    735  1.245  dholland 	error = ulfs_rmdir(ap);
    736  1.188  perseant 	if (ip->i_nlink == 0)
    737  1.188  perseant 		lfs_orphan(ip->i_lfs, ip->i_number);
    738  1.188  perseant 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    739   1.37  perseant 	return (error);
    740    1.1   mycroft }
    741    1.1   mycroft 
    742    1.1   mycroft int
    743   1.51  perseant lfs_link(void *v)
    744   1.10  christos {
    745   1.22  perseant 	struct vop_link_args	/* {
    746    1.9   mycroft 		struct vnode *a_dvp;
    747    1.1   mycroft 		struct vnode *a_vp;
    748    1.1   mycroft 		struct componentname *a_cnp;
    749   1.10  christos 	} */ *ap = v;
    750   1.37  perseant 	int error;
    751  1.138  perseant 	struct vnode **vpp = NULL;
    752    1.1   mycroft 
    753  1.138  perseant 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    754   1.34  perseant 		vput(ap->a_dvp);
    755   1.37  perseant 		return error;
    756   1.34  perseant 	}
    757  1.245  dholland 	error = ulfs_link(ap);
    758  1.138  perseant 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    759   1.37  perseant 	return (error);
    760    1.1   mycroft }
    761   1.22  perseant 
    762    1.1   mycroft /* XXX hack to avoid calling ITIMES in getattr */
    763    1.1   mycroft int
    764   1.51  perseant lfs_getattr(void *v)
    765   1.10  christos {
    766    1.1   mycroft 	struct vop_getattr_args /* {
    767    1.1   mycroft 		struct vnode *a_vp;
    768    1.1   mycroft 		struct vattr *a_vap;
    769  1.176      elad 		kauth_cred_t a_cred;
    770   1.10  christos 	} */ *ap = v;
    771   1.35  augustss 	struct vnode *vp = ap->a_vp;
    772   1.35  augustss 	struct inode *ip = VTOI(vp);
    773   1.35  augustss 	struct vattr *vap = ap->a_vap;
    774   1.51  perseant 	struct lfs *fs = ip->i_lfs;
    775    1.1   mycroft 	/*
    776    1.1   mycroft 	 * Copy from inode table
    777    1.1   mycroft 	 */
    778    1.1   mycroft 	vap->va_fsid = ip->i_dev;
    779    1.1   mycroft 	vap->va_fileid = ip->i_number;
    780  1.246  dholland 	vap->va_mode = ip->i_mode & ~LFS_IFMT;
    781  1.102      fvdl 	vap->va_nlink = ip->i_nlink;
    782  1.102      fvdl 	vap->va_uid = ip->i_uid;
    783  1.102      fvdl 	vap->va_gid = ip->i_gid;
    784  1.102      fvdl 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    785   1.55       chs 	vap->va_size = vp->v_size;
    786  1.102      fvdl 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    787  1.102      fvdl 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    788  1.102      fvdl 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    789  1.102      fvdl 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    790  1.102      fvdl 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    791  1.102      fvdl 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    792  1.102      fvdl 	vap->va_flags = ip->i_flags;
    793  1.102      fvdl 	vap->va_gen = ip->i_gen;
    794    1.1   mycroft 	/* this doesn't belong here */
    795    1.1   mycroft 	if (vp->v_type == VBLK)
    796    1.1   mycroft 		vap->va_blocksize = BLKDEV_IOSIZE;
    797    1.1   mycroft 	else if (vp->v_type == VCHR)
    798    1.1   mycroft 		vap->va_blocksize = MAXBSIZE;
    799    1.1   mycroft 	else
    800    1.1   mycroft 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    801  1.248  christos 	vap->va_bytes = lfs_fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    802    1.1   mycroft 	vap->va_type = vp->v_type;
    803    1.1   mycroft 	vap->va_filerev = ip->i_modrev;
    804    1.1   mycroft 	return (0);
    805   1.61  perseant }
    806   1.61  perseant 
    807   1.61  perseant /*
    808   1.61  perseant  * Check to make sure the inode blocks won't choke the buffer
    809  1.245  dholland  * cache, then call ulfs_setattr as usual.
    810   1.61  perseant  */
    811   1.61  perseant int
    812   1.61  perseant lfs_setattr(void *v)
    813   1.61  perseant {
    814  1.149     skrll 	struct vop_setattr_args /* {
    815   1.61  perseant 		struct vnode *a_vp;
    816   1.61  perseant 		struct vattr *a_vap;
    817  1.176      elad 		kauth_cred_t a_cred;
    818   1.61  perseant 	} */ *ap = v;
    819   1.61  perseant 	struct vnode *vp = ap->a_vp;
    820   1.61  perseant 
    821   1.61  perseant 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    822  1.245  dholland 	return ulfs_setattr(v);
    823    1.1   mycroft }
    824   1.22  perseant 
    825    1.1   mycroft /*
    826  1.179  perseant  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    827  1.188  perseant  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
    828  1.179  perseant  */
    829  1.179  perseant static int
    830  1.193  christos lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    831  1.179  perseant {
    832  1.214        ad 	if (fs->lfs_stoplwp != curlwp)
    833  1.179  perseant 		return EBUSY;
    834  1.179  perseant 
    835  1.214        ad 	fs->lfs_stoplwp = NULL;
    836  1.214        ad 	cv_signal(&fs->lfs_stopcv);
    837  1.179  perseant 
    838  1.179  perseant 	KASSERT(fs->lfs_nowrap > 0);
    839  1.179  perseant 	if (fs->lfs_nowrap <= 0) {
    840  1.179  perseant 		return 0;
    841  1.179  perseant 	}
    842  1.179  perseant 
    843  1.179  perseant 	if (--fs->lfs_nowrap == 0) {
    844  1.179  perseant 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    845  1.188  perseant 		wakeup(&fs->lfs_wrappass);
    846  1.180  perseant 		lfs_wakeup_cleaner(fs);
    847  1.179  perseant 	}
    848  1.179  perseant 	if (waitfor) {
    849  1.214        ad 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
    850  1.214        ad 		    0, &lfs_lock);
    851  1.179  perseant 	}
    852  1.179  perseant 
    853  1.179  perseant 	return 0;
    854  1.179  perseant }
    855  1.179  perseant 
    856  1.179  perseant /*
    857    1.1   mycroft  * Close called
    858    1.1   mycroft  */
    859    1.1   mycroft /* ARGSUSED */
    860    1.1   mycroft int
    861   1.51  perseant lfs_close(void *v)
    862   1.10  christos {
    863    1.1   mycroft 	struct vop_close_args /* {
    864    1.1   mycroft 		struct vnode *a_vp;
    865    1.1   mycroft 		int  a_fflag;
    866  1.176      elad 		kauth_cred_t a_cred;
    867   1.10  christos 	} */ *ap = v;
    868   1.35  augustss 	struct vnode *vp = ap->a_vp;
    869   1.35  augustss 	struct inode *ip = VTOI(vp);
    870  1.180  perseant 	struct lfs *fs = ip->i_lfs;
    871    1.1   mycroft 
    872  1.245  dholland 	if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
    873  1.214        ad 	    fs->lfs_stoplwp == curlwp) {
    874  1.214        ad 		mutex_enter(&lfs_lock);
    875  1.188  perseant 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
    876  1.180  perseant 		lfs_wrapgo(fs, ip, 0);
    877  1.214        ad 		mutex_exit(&lfs_lock);
    878  1.179  perseant 	}
    879  1.179  perseant 
    880   1.97  perseant 	if (vp == ip->i_lfs->lfs_ivnode &&
    881  1.119       dbj 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    882   1.97  perseant 		return 0;
    883   1.97  perseant 
    884   1.97  perseant 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    885  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
    886    1.1   mycroft 	}
    887    1.1   mycroft 	return (0);
    888   1.65  perseant }
    889   1.65  perseant 
    890   1.65  perseant /*
    891   1.65  perseant  * Close wrapper for special devices.
    892   1.65  perseant  *
    893   1.65  perseant  * Update the times on the inode then do device close.
    894   1.65  perseant  */
    895   1.65  perseant int
    896   1.65  perseant lfsspec_close(void *v)
    897   1.65  perseant {
    898   1.65  perseant 	struct vop_close_args /* {
    899   1.65  perseant 		struct vnode	*a_vp;
    900   1.65  perseant 		int		a_fflag;
    901  1.176      elad 		kauth_cred_t	a_cred;
    902   1.65  perseant 	} */ *ap = v;
    903   1.65  perseant 	struct vnode	*vp;
    904   1.65  perseant 	struct inode	*ip;
    905   1.65  perseant 
    906   1.65  perseant 	vp = ap->a_vp;
    907   1.65  perseant 	ip = VTOI(vp);
    908   1.65  perseant 	if (vp->v_usecount > 1) {
    909  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
    910   1.65  perseant 	}
    911   1.65  perseant 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
    912   1.65  perseant }
    913   1.65  perseant 
    914   1.65  perseant /*
    915   1.65  perseant  * Close wrapper for fifo's.
    916   1.65  perseant  *
    917   1.65  perseant  * Update the times on the inode then do device close.
    918   1.65  perseant  */
    919   1.65  perseant int
    920   1.65  perseant lfsfifo_close(void *v)
    921   1.65  perseant {
    922   1.65  perseant 	struct vop_close_args /* {
    923   1.65  perseant 		struct vnode	*a_vp;
    924   1.65  perseant 		int		a_fflag;
    925  1.176      elad 		kauth_cred_	a_cred;
    926   1.65  perseant 	} */ *ap = v;
    927   1.65  perseant 	struct vnode	*vp;
    928   1.65  perseant 	struct inode	*ip;
    929   1.65  perseant 
    930   1.65  perseant 	vp = ap->a_vp;
    931   1.65  perseant 	ip = VTOI(vp);
    932   1.65  perseant 	if (ap->a_vp->v_usecount > 1) {
    933  1.154  christos 		LFS_ITIMES(ip, NULL, NULL, NULL);
    934   1.65  perseant 	}
    935   1.65  perseant 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
    936    1.1   mycroft }
    937    1.1   mycroft 
    938    1.1   mycroft /*
    939   1.15      fvdl  * Reclaim an inode so that it can be used for other purposes.
    940    1.1   mycroft  */
    941    1.1   mycroft 
    942    1.1   mycroft int
    943   1.51  perseant lfs_reclaim(void *v)
    944   1.10  christos {
    945    1.1   mycroft 	struct vop_reclaim_args /* {
    946    1.1   mycroft 		struct vnode *a_vp;
    947   1.10  christos 	} */ *ap = v;
    948   1.15      fvdl 	struct vnode *vp = ap->a_vp;
    949   1.84  perseant 	struct inode *ip = VTOI(vp);
    950  1.203  perseant 	struct lfs *fs = ip->i_lfs;
    951    1.1   mycroft 	int error;
    952   1.77      yamt 
    953  1.231   hannken 	/*
    954  1.231   hannken 	 * The inode must be freed and updated before being removed
    955  1.231   hannken 	 * from its hash chain.  Other threads trying to gain a hold
    956  1.231   hannken 	 * on the inode will be stalled because it is locked (VI_XLOCK).
    957  1.231   hannken 	 */
    958  1.231   hannken 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
    959  1.231   hannken 		lfs_vfree(vp, ip->i_number, ip->i_omode);
    960  1.231   hannken 
    961  1.214        ad 	mutex_enter(&lfs_lock);
    962   1.84  perseant 	LFS_CLR_UINO(ip, IN_ALLMOD);
    963  1.214        ad 	mutex_exit(&lfs_lock);
    964  1.245  dholland 	if ((error = ulfs_reclaim(vp)))
    965    1.1   mycroft 		return (error);
    966  1.203  perseant 
    967  1.203  perseant 	/*
    968  1.203  perseant 	 * Take us off the paging and/or dirop queues if we were on them.
    969  1.203  perseant 	 * We shouldn't be on them.
    970  1.203  perseant 	 */
    971  1.214        ad 	mutex_enter(&lfs_lock);
    972  1.203  perseant 	if (ip->i_flags & IN_PAGING) {
    973  1.203  perseant 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
    974  1.203  perseant 		    fs->lfs_fsmnt);
    975  1.203  perseant 		ip->i_flags &= ~IN_PAGING;
    976  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
    977  1.203  perseant 	}
    978  1.212        ad 	if (vp->v_uflag & VU_DIROP) {
    979  1.212        ad 		panic("reclaimed vnode is VU_DIROP");
    980  1.212        ad 		vp->v_uflag &= ~VU_DIROP;
    981  1.203  perseant 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    982  1.203  perseant 	}
    983  1.214        ad 	mutex_exit(&lfs_lock);
    984  1.203  perseant 
    985  1.142  perseant 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
    986  1.145  perseant 	lfs_deregister_all(vp);
    987   1.84  perseant 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
    988   1.84  perseant 	ip->inode_ext.lfs = NULL;
    989  1.199        ad 	genfs_node_destroy(vp);
    990   1.19   thorpej 	pool_put(&lfs_inode_pool, vp->v_data);
    991    1.1   mycroft 	vp->v_data = NULL;
    992   1.94  perseant 	return (0);
    993   1.94  perseant }
    994   1.94  perseant 
    995   1.94  perseant /*
    996  1.101      yamt  * Read a block from a storage device.
    997   1.94  perseant  * In order to avoid reading blocks that are in the process of being
    998   1.94  perseant  * written by the cleaner---and hence are not mutexed by the normal
    999   1.94  perseant  * buffer cache / page cache mechanisms---check for collisions before
   1000   1.94  perseant  * reading.
   1001   1.94  perseant  *
   1002  1.245  dholland  * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
   1003   1.94  perseant  * the active cleaner test.
   1004   1.94  perseant  *
   1005   1.94  perseant  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1006   1.94  perseant  */
   1007   1.94  perseant int
   1008   1.94  perseant lfs_strategy(void *v)
   1009   1.94  perseant {
   1010   1.94  perseant 	struct vop_strategy_args /* {
   1011  1.128   hannken 		struct vnode *a_vp;
   1012   1.94  perseant 		struct buf *a_bp;
   1013   1.94  perseant 	} */ *ap = v;
   1014   1.94  perseant 	struct buf	*bp;
   1015   1.94  perseant 	struct lfs	*fs;
   1016   1.94  perseant 	struct vnode	*vp;
   1017   1.94  perseant 	struct inode	*ip;
   1018   1.94  perseant 	daddr_t		tbn;
   1019  1.239  perseant #define MAXLOOP 25
   1020  1.239  perseant 	int		i, sn, error, slept, loopcount;
   1021   1.94  perseant 
   1022   1.94  perseant 	bp = ap->a_bp;
   1023  1.128   hannken 	vp = ap->a_vp;
   1024   1.94  perseant 	ip = VTOI(vp);
   1025   1.94  perseant 	fs = ip->i_lfs;
   1026   1.94  perseant 
   1027  1.101      yamt 	/* lfs uses its strategy routine only for read */
   1028  1.101      yamt 	KASSERT(bp->b_flags & B_READ);
   1029  1.101      yamt 
   1030   1.94  perseant 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1031   1.94  perseant 		panic("lfs_strategy: spec");
   1032   1.94  perseant 	KASSERT(bp->b_bcount != 0);
   1033   1.94  perseant 	if (bp->b_blkno == bp->b_lblkno) {
   1034   1.94  perseant 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1035   1.94  perseant 				 NULL);
   1036   1.94  perseant 		if (error) {
   1037   1.94  perseant 			bp->b_error = error;
   1038  1.214        ad 			bp->b_resid = bp->b_bcount;
   1039   1.94  perseant 			biodone(bp);
   1040   1.94  perseant 			return (error);
   1041   1.94  perseant 		}
   1042   1.94  perseant 		if ((long)bp->b_blkno == -1) /* no valid data */
   1043   1.94  perseant 			clrbuf(bp);
   1044   1.94  perseant 	}
   1045   1.94  perseant 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1046  1.214        ad 		bp->b_resid = bp->b_bcount;
   1047   1.94  perseant 		biodone(bp);
   1048   1.94  perseant 		return (0);
   1049   1.94  perseant 	}
   1050   1.94  perseant 
   1051   1.94  perseant 	slept = 1;
   1052  1.239  perseant 	loopcount = 0;
   1053  1.214        ad 	mutex_enter(&lfs_lock);
   1054  1.101      yamt 	while (slept && fs->lfs_seglock) {
   1055  1.214        ad 		mutex_exit(&lfs_lock);
   1056   1.94  perseant 		/*
   1057   1.94  perseant 		 * Look through list of intervals.
   1058   1.94  perseant 		 * There will only be intervals to look through
   1059   1.94  perseant 		 * if the cleaner holds the seglock.
   1060   1.94  perseant 		 * Since the cleaner is synchronous, we can trust
   1061   1.94  perseant 		 * the list of intervals to be current.
   1062   1.94  perseant 		 */
   1063  1.248  christos 		tbn = LFS_DBTOFSB(fs, bp->b_blkno);
   1064  1.248  christos 		sn = lfs_dtosn(fs, tbn);
   1065   1.94  perseant 		slept = 0;
   1066   1.94  perseant 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1067  1.248  christos 			if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) &&
   1068   1.94  perseant 			    tbn >= fs->lfs_cleanint[i]) {
   1069  1.136  perseant 				DLOG((DLOG_CLEAN,
   1070  1.136  perseant 				      "lfs_strategy: ino %d lbn %" PRId64
   1071  1.203  perseant 				      " ind %d sn %d fsb %" PRIx32
   1072  1.203  perseant 				      " given sn %d fsb %" PRIx64 "\n",
   1073  1.203  perseant 				      ip->i_number, bp->b_lblkno, i,
   1074  1.248  christos 				      lfs_dtosn(fs, fs->lfs_cleanint[i]),
   1075  1.203  perseant 				      fs->lfs_cleanint[i], sn, tbn));
   1076  1.136  perseant 				DLOG((DLOG_CLEAN,
   1077  1.136  perseant 				      "lfs_strategy: sleeping on ino %d lbn %"
   1078  1.136  perseant 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1079  1.214        ad 				mutex_enter(&lfs_lock);
   1080  1.170  perseant 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1081  1.239  perseant 					/*
   1082  1.239  perseant 					 * Cleaner can't wait for itself.
   1083  1.239  perseant 					 * Instead, wait for the blocks
   1084  1.239  perseant 					 * to be written to disk.
   1085  1.239  perseant 					 * XXX we need pribio in the test
   1086  1.239  perseant 					 * XXX here.
   1087  1.239  perseant 					 */
   1088  1.239  perseant  					mtsleep(&fs->lfs_iocount,
   1089  1.239  perseant  						(PRIBIO + 1) | PNORELOCK,
   1090  1.239  perseant 						"clean2", hz/10 + 1,
   1091  1.239  perseant  						&lfs_lock);
   1092  1.170  perseant 					slept = 1;
   1093  1.239  perseant 					++loopcount;
   1094  1.170  perseant 					break;
   1095  1.170  perseant 				} else if (fs->lfs_seglock) {
   1096  1.214        ad 					mtsleep(&fs->lfs_seglock,
   1097  1.141  perseant 						(PRIBIO + 1) | PNORELOCK,
   1098  1.170  perseant 						"clean1", 0,
   1099  1.214        ad 						&lfs_lock);
   1100  1.167  perseant 					slept = 1;
   1101  1.167  perseant 					break;
   1102  1.167  perseant 				}
   1103  1.214        ad 				mutex_exit(&lfs_lock);
   1104   1.94  perseant 			}
   1105   1.94  perseant 		}
   1106  1.214        ad 		mutex_enter(&lfs_lock);
   1107  1.239  perseant 		if (loopcount > MAXLOOP) {
   1108  1.239  perseant 			printf("lfs_strategy: breaking out of clean2 loop\n");
   1109  1.239  perseant 			break;
   1110  1.239  perseant 		}
   1111   1.94  perseant 	}
   1112  1.214        ad 	mutex_exit(&lfs_lock);
   1113   1.94  perseant 
   1114   1.94  perseant 	vp = ip->i_devvp;
   1115  1.127   hannken 	VOP_STRATEGY(vp, bp);
   1116    1.1   mycroft 	return (0);
   1117   1.89  perseant }
   1118   1.89  perseant 
   1119  1.239  perseant /*
   1120  1.239  perseant  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1121  1.239  perseant  * Technically this is a checkpoint (the on-disk state is valid)
   1122  1.239  perseant  * even though we are leaving out all the file data.
   1123  1.239  perseant  */
   1124  1.239  perseant int
   1125   1.92  perseant lfs_flush_dirops(struct lfs *fs)
   1126   1.92  perseant {
   1127   1.92  perseant 	struct inode *ip, *nip;
   1128   1.92  perseant 	struct vnode *vp;
   1129   1.92  perseant 	extern int lfs_dostats;
   1130   1.92  perseant 	struct segment *sp;
   1131  1.239  perseant 	int flags = 0;
   1132  1.239  perseant 	int error = 0;
   1133   1.92  perseant 
   1134  1.163  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1135  1.171  perseant 	KASSERT(fs->lfs_nadirop == 0);
   1136  1.141  perseant 
   1137   1.92  perseant 	if (fs->lfs_ronly)
   1138  1.239  perseant 		return EROFS;
   1139   1.92  perseant 
   1140  1.214        ad 	mutex_enter(&lfs_lock);
   1141  1.141  perseant 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1142  1.214        ad 		mutex_exit(&lfs_lock);
   1143  1.239  perseant 		return 0;
   1144  1.141  perseant 	} else
   1145  1.214        ad 		mutex_exit(&lfs_lock);
   1146   1.92  perseant 
   1147   1.92  perseant 	if (lfs_dostats)
   1148   1.92  perseant 		++lfs_stats.flush_invoked;
   1149   1.92  perseant 
   1150   1.92  perseant 	lfs_imtime(fs);
   1151  1.239  perseant 	lfs_seglock(fs, flags);
   1152   1.92  perseant 	sp = fs->lfs_sp;
   1153   1.92  perseant 
   1154   1.92  perseant 	/*
   1155   1.92  perseant 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1156   1.92  perseant 	 * Only write dirops, and don't flush files' pages, only
   1157   1.92  perseant 	 * blocks from the directories.
   1158   1.92  perseant 	 *
   1159   1.92  perseant 	 * We don't need to vref these files because they are
   1160   1.92  perseant 	 * dirops and so hold an extra reference until the
   1161   1.92  perseant 	 * segunlock clears them of that status.
   1162   1.92  perseant 	 *
   1163   1.92  perseant 	 * We don't need to check for IN_ADIROP because we know that
   1164   1.92  perseant 	 * no dirops are active.
   1165   1.92  perseant 	 *
   1166   1.92  perseant 	 */
   1167  1.214        ad 	mutex_enter(&lfs_lock);
   1168   1.92  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1169   1.92  perseant 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1170  1.214        ad 		mutex_exit(&lfs_lock);
   1171   1.92  perseant 		vp = ITOV(ip);
   1172   1.92  perseant 
   1173  1.171  perseant 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1174  1.239  perseant 		KASSERT(vp->v_uflag & VU_DIROP);
   1175  1.239  perseant 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   1176  1.171  perseant 
   1177   1.92  perseant 		/*
   1178   1.92  perseant 		 * All writes to directories come from dirops; all
   1179   1.92  perseant 		 * writes to files' direct blocks go through the page
   1180   1.92  perseant 		 * cache, which we're not touching.  Reads to files
   1181   1.92  perseant 		 * and/or directories will not be affected by writing
   1182   1.92  perseant 		 * directory blocks inodes and file inodes.  So we don't
   1183  1.239  perseant 		 * really need to lock.
   1184   1.92  perseant 		 */
   1185  1.214        ad 		if (vp->v_iflag & VI_XLOCK) {
   1186  1.214        ad 			mutex_enter(&lfs_lock);
   1187   1.92  perseant 			continue;
   1188  1.167  perseant 		}
   1189  1.228   hannken 		/* XXX see below
   1190  1.228   hannken 		 * waslocked = VOP_ISLOCKED(vp);
   1191  1.228   hannken 		 */
   1192   1.92  perseant 		if (vp->v_type != VREG &&
   1193   1.92  perseant 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1194  1.239  perseant 			error = lfs_writefile(fs, sp, vp);
   1195   1.92  perseant 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1196   1.92  perseant 			    !(ip->i_flag & IN_ALLMOD)) {
   1197  1.214        ad 			    	mutex_enter(&lfs_lock);
   1198   1.92  perseant 				LFS_SET_UINO(ip, IN_MODIFIED);
   1199  1.214        ad 			    	mutex_exit(&lfs_lock);
   1200   1.92  perseant 			}
   1201  1.239  perseant 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1202  1.239  perseant 				mutex_enter(&lfs_lock);
   1203  1.239  perseant 				error = EAGAIN;
   1204  1.239  perseant 				break;
   1205  1.239  perseant 			}
   1206   1.92  perseant 		}
   1207  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1208  1.239  perseant 		error = lfs_writeinode(fs, sp, ip);
   1209  1.214        ad 		mutex_enter(&lfs_lock);
   1210  1.239  perseant 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1211  1.239  perseant 			error = EAGAIN;
   1212  1.239  perseant 			break;
   1213  1.239  perseant 		}
   1214  1.239  perseant 
   1215  1.228   hannken 		/*
   1216  1.239  perseant 		 * We might need to update these inodes again,
   1217  1.239  perseant 		 * for example, if they have data blocks to write.
   1218  1.239  perseant 		 * Make sure that after this flush, they are still
   1219  1.239  perseant 		 * marked IN_MODIFIED so that we don't forget to
   1220  1.239  perseant 		 * write them.
   1221  1.228   hannken 		 */
   1222  1.239  perseant 		/* XXX only for non-directories? --KS */
   1223  1.239  perseant 		LFS_SET_UINO(ip, IN_MODIFIED);
   1224   1.92  perseant 	}
   1225  1.214        ad 	mutex_exit(&lfs_lock);
   1226   1.92  perseant 	/* We've written all the dirops there are */
   1227   1.92  perseant 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1228  1.170  perseant 	lfs_finalize_fs_seguse(fs);
   1229   1.92  perseant 	(void) lfs_writeseg(fs, sp);
   1230   1.92  perseant 	lfs_segunlock(fs);
   1231  1.239  perseant 
   1232  1.239  perseant 	return error;
   1233   1.92  perseant }
   1234   1.92  perseant 
   1235   1.89  perseant /*
   1236  1.164  perseant  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1237  1.212        ad  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   1238  1.164  perseant  * has just run, this would be an error).  If we have to skip a vnode
   1239  1.164  perseant  * for any reason, just skip it; if we have to wait for the cleaner,
   1240  1.164  perseant  * abort.  The writer daemon will call us again later.
   1241  1.164  perseant  */
   1242  1.239  perseant int
   1243  1.164  perseant lfs_flush_pchain(struct lfs *fs)
   1244  1.164  perseant {
   1245  1.164  perseant 	struct inode *ip, *nip;
   1246  1.164  perseant 	struct vnode *vp;
   1247  1.164  perseant 	extern int lfs_dostats;
   1248  1.164  perseant 	struct segment *sp;
   1249  1.239  perseant 	int error, error2;
   1250  1.164  perseant 
   1251  1.164  perseant 	ASSERT_NO_SEGLOCK(fs);
   1252  1.164  perseant 
   1253  1.164  perseant 	if (fs->lfs_ronly)
   1254  1.239  perseant 		return EROFS;
   1255  1.164  perseant 
   1256  1.214        ad 	mutex_enter(&lfs_lock);
   1257  1.164  perseant 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1258  1.214        ad 		mutex_exit(&lfs_lock);
   1259  1.239  perseant 		return 0;
   1260  1.164  perseant 	} else
   1261  1.214        ad 		mutex_exit(&lfs_lock);
   1262  1.164  perseant 
   1263  1.164  perseant 	/* Get dirops out of the way */
   1264  1.239  perseant 	if ((error = lfs_flush_dirops(fs)) != 0)
   1265  1.239  perseant 		return error;
   1266  1.164  perseant 
   1267  1.164  perseant 	if (lfs_dostats)
   1268  1.164  perseant 		++lfs_stats.flush_invoked;
   1269  1.164  perseant 
   1270  1.164  perseant 	/*
   1271  1.164  perseant 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1272  1.164  perseant 	 */
   1273  1.164  perseant 	lfs_imtime(fs);
   1274  1.164  perseant 	lfs_seglock(fs, 0);
   1275  1.164  perseant 	sp = fs->lfs_sp;
   1276  1.164  perseant 
   1277  1.164  perseant 	/*
   1278  1.164  perseant 	 * lfs_writevnodes, optimized to clear pageout requests.
   1279  1.164  perseant 	 * Only write non-dirop files that are in the pageout queue.
   1280  1.164  perseant 	 * We're very conservative about what we write; we want to be
   1281  1.164  perseant 	 * fast and async.
   1282  1.164  perseant 	 */
   1283  1.214        ad 	mutex_enter(&lfs_lock);
   1284  1.214        ad     top:
   1285  1.164  perseant 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1286  1.164  perseant 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1287  1.164  perseant 		vp = ITOV(ip);
   1288  1.164  perseant 
   1289  1.164  perseant 		if (!(ip->i_flags & IN_PAGING))
   1290  1.164  perseant 			goto top;
   1291  1.164  perseant 
   1292  1.235     rmind 		mutex_enter(vp->v_interlock);
   1293  1.214        ad 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   1294  1.235     rmind 			mutex_exit(vp->v_interlock);
   1295  1.164  perseant 			continue;
   1296  1.214        ad 		}
   1297  1.214        ad 		if (vp->v_type != VREG) {
   1298  1.235     rmind 			mutex_exit(vp->v_interlock);
   1299  1.164  perseant 			continue;
   1300  1.214        ad 		}
   1301  1.164  perseant 		if (lfs_vref(vp))
   1302  1.164  perseant 			continue;
   1303  1.214        ad 		mutex_exit(&lfs_lock);
   1304  1.169  perseant 
   1305  1.228   hannken 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   1306  1.165  perseant 			lfs_vunref(vp);
   1307  1.214        ad 			mutex_enter(&lfs_lock);
   1308  1.164  perseant 			continue;
   1309  1.165  perseant 		}
   1310  1.164  perseant 
   1311  1.164  perseant 		error = lfs_writefile(fs, sp, vp);
   1312  1.164  perseant 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1313  1.164  perseant 		    !(ip->i_flag & IN_ALLMOD)) {
   1314  1.214        ad 		    	mutex_enter(&lfs_lock);
   1315  1.164  perseant 			LFS_SET_UINO(ip, IN_MODIFIED);
   1316  1.214        ad 		    	mutex_exit(&lfs_lock);
   1317  1.164  perseant 		}
   1318  1.188  perseant 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1319  1.239  perseant 		error2 = lfs_writeinode(fs, sp, ip);
   1320  1.164  perseant 
   1321  1.229   hannken 		VOP_UNLOCK(vp);
   1322  1.164  perseant 		lfs_vunref(vp);
   1323  1.164  perseant 
   1324  1.239  perseant 		if (error == EAGAIN || error2 == EAGAIN) {
   1325  1.164  perseant 			lfs_writeseg(fs, sp);
   1326  1.214        ad 			mutex_enter(&lfs_lock);
   1327  1.164  perseant 			break;
   1328  1.164  perseant 		}
   1329  1.214        ad 		mutex_enter(&lfs_lock);
   1330  1.164  perseant 	}
   1331  1.214        ad 	mutex_exit(&lfs_lock);
   1332  1.164  perseant 	(void) lfs_writeseg(fs, sp);
   1333  1.164  perseant 	lfs_segunlock(fs);
   1334  1.239  perseant 
   1335  1.239  perseant 	return 0;
   1336  1.164  perseant }
   1337  1.164  perseant 
   1338  1.164  perseant /*
   1339   1.90  perseant  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1340   1.89  perseant  */
   1341   1.89  perseant int
   1342   1.90  perseant lfs_fcntl(void *v)
   1343   1.89  perseant {
   1344  1.137    simonb 	struct vop_fcntl_args /* {
   1345  1.137    simonb 		struct vnode *a_vp;
   1346  1.218  gmcgarry 		u_int a_command;
   1347  1.201  christos 		void * a_data;
   1348  1.137    simonb 		int  a_fflag;
   1349  1.176      elad 		kauth_cred_t a_cred;
   1350  1.137    simonb 	} */ *ap = v;
   1351  1.222  christos 	struct timeval tv;
   1352   1.89  perseant 	struct timeval *tvp;
   1353   1.89  perseant 	BLOCK_INFO *blkiov;
   1354   1.92  perseant 	CLEANERINFO *cip;
   1355  1.148  perseant 	SEGUSE *sup;
   1356   1.92  perseant 	int blkcnt, error, oclean;
   1357  1.181    martin 	size_t fh_size;
   1358   1.90  perseant 	struct lfs_fcntl_markv blkvp;
   1359  1.185        ad 	struct lwp *l;
   1360   1.89  perseant 	fsid_t *fsidp;
   1361   1.92  perseant 	struct lfs *fs;
   1362   1.92  perseant 	struct buf *bp;
   1363  1.134  perseant 	fhandle_t *fhp;
   1364   1.92  perseant 	daddr_t off;
   1365   1.89  perseant 
   1366   1.90  perseant 	/* Only respect LFS fcntls on fs root or Ifile */
   1367  1.245  dholland 	if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
   1368   1.89  perseant 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1369  1.245  dholland 		return ulfs_fcntl(v);
   1370   1.89  perseant 	}
   1371   1.89  perseant 
   1372  1.100  perseant 	/* Avoid locking a draining lock */
   1373  1.119       dbj 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1374  1.100  perseant 		return ESHUTDOWN;
   1375  1.100  perseant 	}
   1376  1.100  perseant 
   1377  1.184  perseant 	/* LFS control and monitoring fcntls are available only to root */
   1378  1.213     pooka 	l = curlwp;
   1379  1.184  perseant 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1380  1.241      elad 	    (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
   1381  1.241      elad 	     KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
   1382  1.184  perseant 		return (error);
   1383  1.184  perseant 
   1384  1.100  perseant 	fs = VTOI(ap->a_vp)->i_lfs;
   1385  1.131  christos 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1386   1.89  perseant 
   1387  1.188  perseant 	error = 0;
   1388  1.218  gmcgarry 	switch ((int)ap->a_command) {
   1389  1.222  christos 	    case LFCNSEGWAITALL_COMPAT_50:
   1390  1.222  christos 	    case LFCNSEGWAITALL_COMPAT:
   1391  1.222  christos 		fsidp = NULL;
   1392  1.222  christos 		/* FALLSTHROUGH */
   1393  1.222  christos 	    case LFCNSEGWAIT_COMPAT_50:
   1394  1.222  christos 	    case LFCNSEGWAIT_COMPAT:
   1395  1.222  christos 		{
   1396  1.222  christos 			struct timeval50 *tvp50
   1397  1.222  christos 				= (struct timeval50 *)ap->a_data;
   1398  1.222  christos 			timeval50_to_timeval(tvp50, &tv);
   1399  1.222  christos 			tvp = &tv;
   1400  1.222  christos 		}
   1401  1.222  christos 		goto segwait_common;
   1402   1.90  perseant 	    case LFCNSEGWAITALL:
   1403  1.214        ad 		fsidp = NULL;
   1404  1.214        ad 		/* FALLSTHROUGH */
   1405   1.90  perseant 	    case LFCNSEGWAIT:
   1406  1.214        ad 		tvp = (struct timeval *)ap->a_data;
   1407  1.222  christos segwait_common:
   1408  1.214        ad 		mutex_enter(&lfs_lock);
   1409  1.214        ad 		++fs->lfs_sleepers;
   1410  1.214        ad 		mutex_exit(&lfs_lock);
   1411  1.214        ad 
   1412  1.214        ad 		error = lfs_segwait(fsidp, tvp);
   1413  1.214        ad 
   1414  1.214        ad 		mutex_enter(&lfs_lock);
   1415  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1416  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1417  1.214        ad 		mutex_exit(&lfs_lock);
   1418  1.214        ad 		return error;
   1419   1.89  perseant 
   1420   1.90  perseant 	    case LFCNBMAPV:
   1421   1.90  perseant 	    case LFCNMARKV:
   1422  1.214        ad 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1423   1.89  perseant 
   1424  1.214        ad 		blkcnt = blkvp.blkcnt;
   1425  1.214        ad 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1426  1.214        ad 			return (EINVAL);
   1427  1.214        ad 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1428  1.214        ad 		if ((error = copyin(blkvp.blkiov, blkiov,
   1429  1.214        ad 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1430  1.214        ad 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1431  1.214        ad 			return error;
   1432  1.214        ad 		}
   1433  1.214        ad 
   1434  1.214        ad 		mutex_enter(&lfs_lock);
   1435  1.214        ad 		++fs->lfs_sleepers;
   1436  1.214        ad 		mutex_exit(&lfs_lock);
   1437  1.214        ad 		if (ap->a_command == LFCNBMAPV)
   1438  1.214        ad 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1439  1.214        ad 		else /* LFCNMARKV */
   1440  1.214        ad 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1441  1.214        ad 		if (error == 0)
   1442  1.214        ad 			error = copyout(blkiov, blkvp.blkiov,
   1443  1.214        ad 					blkcnt * sizeof(BLOCK_INFO));
   1444  1.214        ad 		mutex_enter(&lfs_lock);
   1445  1.214        ad 		if (--fs->lfs_sleepers == 0)
   1446  1.214        ad 			wakeup(&fs->lfs_sleepers);
   1447  1.214        ad 		mutex_exit(&lfs_lock);
   1448  1.214        ad 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1449  1.214        ad 		return error;
   1450   1.92  perseant 
   1451   1.92  perseant 	    case LFCNRECLAIM:
   1452  1.214        ad 		/*
   1453  1.214        ad 		 * Flush dirops and write Ifile, allowing empty segments
   1454  1.214        ad 		 * to be immediately reclaimed.
   1455  1.214        ad 		 */
   1456  1.214        ad 		lfs_writer_enter(fs, "pndirop");
   1457  1.214        ad 		off = fs->lfs_offset;
   1458  1.214        ad 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1459  1.214        ad 		lfs_flush_dirops(fs);
   1460  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1461  1.214        ad 		oclean = cip->clean;
   1462  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1463  1.214        ad 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1464  1.214        ad 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1465  1.214        ad 		lfs_segunlock(fs);
   1466  1.214        ad 		lfs_writer_leave(fs);
   1467   1.92  perseant 
   1468  1.136  perseant #ifdef DEBUG
   1469  1.214        ad 		LFS_CLEANERINFO(cip, fs, bp);
   1470  1.214        ad 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1471  1.214        ad 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1472  1.214        ad 		      fs->lfs_offset - off, cip->clean - oclean,
   1473  1.214        ad 		      fs->lfs_activesb));
   1474  1.214        ad 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1475   1.92  perseant #endif
   1476   1.92  perseant 
   1477  1.214        ad 		return 0;
   1478   1.89  perseant 
   1479  1.182    martin 	    case LFCNIFILEFH_COMPAT:
   1480  1.214        ad 		/* Return the filehandle of the Ifile */
   1481  1.221      elad 		if ((error = kauth_authorize_system(l->l_cred,
   1482  1.221      elad 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   1483  1.214        ad 			return (error);
   1484  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1485  1.214        ad 		fhp->fh_fsid = *fsidp;
   1486  1.214        ad 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1487  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1488  1.182    martin 
   1489  1.187    martin 	    case LFCNIFILEFH_COMPAT2:
   1490  1.134  perseant 	    case LFCNIFILEFH:
   1491  1.214        ad 		/* Return the filehandle of the Ifile */
   1492  1.214        ad 		fhp = (struct fhandle *)ap->a_data;
   1493  1.214        ad 		fhp->fh_fsid = *fsidp;
   1494  1.214        ad 		fh_size = sizeof(struct lfs_fhandle) -
   1495  1.214        ad 		    offsetof(fhandle_t, fh_fid);
   1496  1.214        ad 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1497  1.134  perseant 
   1498  1.148  perseant 	    case LFCNREWIND:
   1499  1.214        ad 		/* Move lfs_offset to the lowest-numbered segment */
   1500  1.214        ad 		return lfs_rewind(fs, *(int *)ap->a_data);
   1501  1.148  perseant 
   1502  1.148  perseant 	    case LFCNINVAL:
   1503  1.214        ad 		/* Mark a segment SEGUSE_INVAL */
   1504  1.214        ad 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1505  1.214        ad 		if (sup->su_nbytes > 0) {
   1506  1.214        ad 			brelse(bp, 0);
   1507  1.214        ad 			lfs_unset_inval_all(fs);
   1508  1.214        ad 			return EBUSY;
   1509  1.214        ad 		}
   1510  1.214        ad 		sup->su_flags |= SEGUSE_INVAL;
   1511  1.236   hannken 		VOP_BWRITE(bp->b_vp, bp);
   1512  1.214        ad 		return 0;
   1513  1.148  perseant 
   1514  1.148  perseant 	    case LFCNRESIZE:
   1515  1.214        ad 		/* Resize the filesystem */
   1516  1.214        ad 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1517  1.148  perseant 
   1518  1.168  perseant 	    case LFCNWRAPSTOP:
   1519  1.179  perseant 	    case LFCNWRAPSTOP_COMPAT:
   1520  1.214        ad 		/*
   1521  1.214        ad 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1522  1.214        ad 		 * the filesystem wraps around.  To support external agents
   1523  1.214        ad 		 * (dump, fsck-based regression test) that need to look at
   1524  1.214        ad 		 * a snapshot of the filesystem, without necessarily
   1525  1.214        ad 		 * requiring that all fs activity stops.
   1526  1.214        ad 		 */
   1527  1.214        ad 		if (fs->lfs_stoplwp == curlwp)
   1528  1.214        ad 			return EALREADY;
   1529  1.214        ad 
   1530  1.214        ad 		mutex_enter(&lfs_lock);
   1531  1.214        ad 		while (fs->lfs_stoplwp != NULL)
   1532  1.214        ad 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   1533  1.214        ad 		fs->lfs_stoplwp = curlwp;
   1534  1.214        ad 		if (fs->lfs_nowrap == 0)
   1535  1.214        ad 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1536  1.214        ad 		++fs->lfs_nowrap;
   1537  1.222  christos 		if (*(int *)ap->a_data == 1
   1538  1.224     pooka 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1539  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1540  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1541  1.214        ad 				"segwrap", 0, &lfs_lock);
   1542  1.214        ad 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1543  1.214        ad 			if (error) {
   1544  1.214        ad 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1545  1.214        ad 			}
   1546  1.214        ad 		}
   1547  1.214        ad 		mutex_exit(&lfs_lock);
   1548  1.214        ad 		return 0;
   1549  1.168  perseant 
   1550  1.168  perseant 	    case LFCNWRAPGO:
   1551  1.179  perseant 	    case LFCNWRAPGO_COMPAT:
   1552  1.214        ad 		/*
   1553  1.214        ad 		 * Having done its work, the agent wakes up the writer.
   1554  1.214        ad 		 * If the argument is 1, it sleeps until a new segment
   1555  1.214        ad 		 * is selected.
   1556  1.214        ad 		 */
   1557  1.214        ad 		mutex_enter(&lfs_lock);
   1558  1.214        ad 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1559  1.222  christos 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1560  1.222  christos 				    *((int *)ap->a_data));
   1561  1.214        ad 		mutex_exit(&lfs_lock);
   1562  1.214        ad 		return error;
   1563  1.168  perseant 
   1564  1.188  perseant 	    case LFCNWRAPPASS:
   1565  1.214        ad 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1566  1.214        ad 			return EALREADY;
   1567  1.214        ad 		mutex_enter(&lfs_lock);
   1568  1.214        ad 		if (fs->lfs_stoplwp != curlwp) {
   1569  1.214        ad 			mutex_exit(&lfs_lock);
   1570  1.214        ad 			return EALREADY;
   1571  1.214        ad 		}
   1572  1.214        ad 		if (fs->lfs_nowrap == 0) {
   1573  1.214        ad 			mutex_exit(&lfs_lock);
   1574  1.214        ad 			return EBUSY;
   1575  1.214        ad 		}
   1576  1.214        ad 		fs->lfs_wrappass = 1;
   1577  1.214        ad 		wakeup(&fs->lfs_wrappass);
   1578  1.214        ad 		/* Wait for the log to wrap, if asked */
   1579  1.214        ad 		if (*(int *)ap->a_data) {
   1580  1.235     rmind 			mutex_enter(ap->a_vp->v_interlock);
   1581  1.239  perseant 			if (lfs_vref(ap->a_vp) != 0)
   1582  1.239  perseant 				panic("LFCNWRAPPASS: lfs_vref failed");
   1583  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1584  1.214        ad 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1585  1.214        ad 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1586  1.214        ad 				"segwrap", 0, &lfs_lock);
   1587  1.214        ad 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1588  1.214        ad 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1589  1.214        ad 			lfs_vunref(ap->a_vp);
   1590  1.214        ad 		}
   1591  1.214        ad 		mutex_exit(&lfs_lock);
   1592  1.214        ad 		return error;
   1593  1.188  perseant 
   1594  1.188  perseant 	    case LFCNWRAPSTATUS:
   1595  1.214        ad 		mutex_enter(&lfs_lock);
   1596  1.214        ad 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1597  1.214        ad 		mutex_exit(&lfs_lock);
   1598  1.214        ad 		return 0;
   1599  1.188  perseant 
   1600   1.89  perseant 	    default:
   1601  1.245  dholland 		return ulfs_fcntl(v);
   1602   1.89  perseant 	}
   1603   1.89  perseant 	return 0;
   1604   1.60       chs }
   1605   1.60       chs 
   1606   1.60       chs int
   1607   1.60       chs lfs_getpages(void *v)
   1608   1.60       chs {
   1609   1.60       chs 	struct vop_getpages_args /* {
   1610   1.60       chs 		struct vnode *a_vp;
   1611   1.60       chs 		voff_t a_offset;
   1612   1.60       chs 		struct vm_page **a_m;
   1613   1.60       chs 		int *a_count;
   1614   1.60       chs 		int a_centeridx;
   1615   1.60       chs 		vm_prot_t a_access_type;
   1616   1.60       chs 		int a_advice;
   1617   1.60       chs 		int a_flags;
   1618   1.60       chs 	} */ *ap = v;
   1619   1.60       chs 
   1620   1.97  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1621   1.97  perseant 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1622   1.97  perseant 		return EPERM;
   1623   1.97  perseant 	}
   1624   1.60       chs 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1625  1.214        ad 		mutex_enter(&lfs_lock);
   1626   1.60       chs 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1627  1.214        ad 		mutex_exit(&lfs_lock);
   1628   1.60       chs 	}
   1629  1.115      yamt 
   1630  1.115      yamt 	/*
   1631  1.115      yamt 	 * we're relying on the fact that genfs_getpages() always read in
   1632  1.115      yamt 	 * entire filesystem blocks.
   1633  1.115      yamt 	 */
   1634   1.95  perseant 	return genfs_getpages(v);
   1635    1.1   mycroft }
   1636   1.84  perseant 
   1637  1.204  perseant /*
   1638  1.204  perseant  * Wait for a page to become unbusy, possibly printing diagnostic messages
   1639  1.204  perseant  * as well.
   1640  1.204  perseant  *
   1641  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1642  1.204  perseant  */
   1643  1.203  perseant static void
   1644  1.203  perseant wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   1645  1.203  perseant {
   1646  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1647  1.203  perseant 	if ((pg->flags & PG_BUSY) == 0)
   1648  1.203  perseant 		return;		/* Nothing to wait for! */
   1649  1.203  perseant 
   1650  1.204  perseant #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   1651  1.203  perseant 	static struct vm_page *lastpg;
   1652  1.203  perseant 
   1653  1.203  perseant 	if (label != NULL && pg != lastpg) {
   1654  1.203  perseant 		if (pg->owner_tag) {
   1655  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   1656  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label,
   1657  1.203  perseant 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   1658  1.203  perseant 		} else {
   1659  1.203  perseant 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   1660  1.203  perseant 			       curproc->p_pid, curlwp->l_lid, label, pg);
   1661  1.203  perseant 		}
   1662  1.203  perseant 	}
   1663  1.203  perseant 	lastpg = pg;
   1664  1.203  perseant #endif
   1665  1.203  perseant 
   1666  1.203  perseant 	pg->flags |= PG_WANTED;
   1667  1.235     rmind 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   1668  1.235     rmind 	mutex_enter(vp->v_interlock);
   1669  1.203  perseant }
   1670  1.203  perseant 
   1671  1.203  perseant /*
   1672  1.203  perseant  * This routine is called by lfs_putpages() when it can't complete the
   1673  1.203  perseant  * write because a page is busy.  This means that either (1) someone,
   1674  1.203  perseant  * possibly the pagedaemon, is looking at this page, and will give it up
   1675  1.203  perseant  * presently; or (2) we ourselves are holding the page busy in the
   1676  1.203  perseant  * process of being written (either gathered or actually on its way to
   1677  1.203  perseant  * disk).  We don't need to give up the segment lock, but we might need
   1678  1.203  perseant  * to call lfs_writeseg() to expedite the page's journey to disk.
   1679  1.204  perseant  *
   1680  1.204  perseant  * Called with vp->v_interlock held; return with it held.
   1681  1.203  perseant  */
   1682  1.203  perseant /* #define BUSYWAIT */
   1683  1.203  perseant static void
   1684  1.203  perseant write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   1685  1.203  perseant 	       int seglocked, const char *label)
   1686  1.203  perseant {
   1687  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1688  1.203  perseant #ifndef BUSYWAIT
   1689  1.203  perseant 	struct inode *ip = VTOI(vp);
   1690  1.203  perseant 	struct segment *sp = fs->lfs_sp;
   1691  1.203  perseant 	int count = 0;
   1692  1.203  perseant 
   1693  1.203  perseant 	if (pg == NULL)
   1694  1.203  perseant 		return;
   1695  1.203  perseant 
   1696  1.226       eeh 	while (pg->flags & PG_BUSY &&
   1697  1.226       eeh 	    pg->uobject == &vp->v_uobj) {
   1698  1.235     rmind 		mutex_exit(vp->v_interlock);
   1699  1.203  perseant 		if (sp->cbpp - sp->bpp > 1) {
   1700  1.203  perseant 			/* Write gathered pages */
   1701  1.203  perseant 			lfs_updatemeta(sp);
   1702  1.203  perseant 			lfs_release_finfo(fs);
   1703  1.203  perseant 			(void) lfs_writeseg(fs, sp);
   1704  1.203  perseant 
   1705  1.203  perseant 			/*
   1706  1.203  perseant 			 * Reinitialize FIP
   1707  1.203  perseant 			 */
   1708  1.203  perseant 			KASSERT(sp->vp == vp);
   1709  1.203  perseant 			lfs_acquire_finfo(fs, ip->i_number,
   1710  1.203  perseant 					  ip->i_gen);
   1711  1.203  perseant 		}
   1712  1.204  perseant 		++count;
   1713  1.235     rmind 		mutex_enter(vp->v_interlock);
   1714  1.203  perseant 		wait_for_page(vp, pg, label);
   1715  1.203  perseant 	}
   1716  1.239  perseant 	if (label != NULL && count > 1) {
   1717  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   1718  1.239  perseant 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   1719  1.239  perseant 		      count));
   1720  1.239  perseant 	}
   1721  1.203  perseant #else
   1722  1.203  perseant 	preempt(1);
   1723  1.203  perseant #endif
   1724  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1725  1.203  perseant }
   1726  1.203  perseant 
   1727   1.84  perseant /*
   1728   1.84  perseant  * Make sure that for all pages in every block in the given range,
   1729   1.84  perseant  * either all are dirty or all are clean.  If any of the pages
   1730   1.84  perseant  * we've seen so far are dirty, put the vnode on the paging chain,
   1731   1.84  perseant  * and mark it IN_PAGING.
   1732  1.105  perseant  *
   1733  1.105  perseant  * If checkfirst != 0, don't check all the pages but return at the
   1734  1.105  perseant  * first dirty page.
   1735   1.84  perseant  */
   1736   1.84  perseant static int
   1737   1.84  perseant check_dirty(struct lfs *fs, struct vnode *vp,
   1738   1.84  perseant 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1739  1.203  perseant 	    int flags, int checkfirst, struct vm_page **pgp)
   1740   1.84  perseant {
   1741   1.86  perseant 	int by_list;
   1742  1.122  christos 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1743  1.122  christos 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1744  1.122  christos 	off_t soff = 0; /* XXX: gcc */
   1745   1.84  perseant 	voff_t off;
   1746  1.115      yamt 	int i;
   1747  1.115      yamt 	int nonexistent;
   1748  1.115      yamt 	int any_dirty;	/* number of dirty pages */
   1749  1.115      yamt 	int dirty;	/* number of dirty pages in a block */
   1750  1.115      yamt 	int tdirty;
   1751   1.84  perseant 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1752  1.207        ad 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1753   1.84  perseant 
   1754  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1755  1.141  perseant 	ASSERT_MAYBE_SEGLOCK(fs);
   1756   1.84  perseant   top:
   1757   1.84  perseant 	by_list = (vp->v_uobj.uo_npages <=
   1758   1.84  perseant 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1759  1.219      yamt 		   UVM_PAGE_TREE_PENALTY);
   1760   1.84  perseant 	any_dirty = 0;
   1761   1.84  perseant 
   1762   1.84  perseant 	if (by_list) {
   1763   1.84  perseant 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1764   1.84  perseant 	} else {
   1765   1.84  perseant 		soff = startoffset;
   1766   1.84  perseant 	}
   1767   1.84  perseant 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1768   1.84  perseant 		if (by_list) {
   1769  1.115      yamt 			/*
   1770  1.138  perseant 			 * Find the first page in a block.  Skip
   1771  1.138  perseant 			 * blocks outside our area of interest or beyond
   1772  1.138  perseant 			 * the end of file.
   1773  1.115      yamt 			 */
   1774  1.234    martin 			KASSERT(curpg == NULL
   1775  1.234    martin 			    || (curpg->flags & PG_MARKER) == 0);
   1776   1.84  perseant 			if (pages_per_block > 1) {
   1777  1.138  perseant 				while (curpg &&
   1778  1.230   hannken 				    ((curpg->offset & fs->lfs_bmask) ||
   1779  1.230   hannken 				    curpg->offset >= vp->v_size ||
   1780  1.230   hannken 				    curpg->offset >= endoffset)) {
   1781  1.217        ad 					curpg = TAILQ_NEXT(curpg, listq.queue);
   1782  1.230   hannken 					KASSERT(curpg == NULL ||
   1783  1.230   hannken 					    (curpg->flags & PG_MARKER) == 0);
   1784  1.230   hannken 				}
   1785   1.84  perseant 			}
   1786   1.84  perseant 			if (curpg == NULL)
   1787   1.84  perseant 				break;
   1788   1.84  perseant 			soff = curpg->offset;
   1789   1.84  perseant 		}
   1790   1.84  perseant 
   1791   1.84  perseant 		/*
   1792   1.84  perseant 		 * Mark all pages in extended range busy; find out if any
   1793   1.84  perseant 		 * of them are dirty.
   1794   1.84  perseant 		 */
   1795   1.84  perseant 		nonexistent = dirty = 0;
   1796   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1797  1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   1798   1.84  perseant 			if (by_list && pages_per_block <= 1) {
   1799   1.84  perseant 				pgs[i] = pg = curpg;
   1800   1.84  perseant 			} else {
   1801   1.84  perseant 				off = soff + (i << PAGE_SHIFT);
   1802   1.84  perseant 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1803   1.84  perseant 				if (pg == NULL) {
   1804   1.84  perseant 					++nonexistent;
   1805   1.84  perseant 					continue;
   1806   1.84  perseant 				}
   1807   1.84  perseant 			}
   1808   1.84  perseant 			KASSERT(pg != NULL);
   1809  1.158  perseant 
   1810  1.158  perseant 			/*
   1811  1.177  perseant 			 * If we're holding the segment lock, we can deadlock
   1812  1.158  perseant 			 * against a process that has our page and is waiting
   1813  1.158  perseant 			 * for the cleaner, while the cleaner waits for the
   1814  1.158  perseant 			 * segment lock.  Just bail in that case.
   1815  1.158  perseant 			 */
   1816  1.159  perseant 			if ((pg->flags & PG_BUSY) &&
   1817  1.159  perseant 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1818  1.203  perseant 				if (i > 0)
   1819  1.159  perseant 					uvm_page_unbusy(pgs, i);
   1820  1.159  perseant 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1821  1.203  perseant 				if (pgp)
   1822  1.203  perseant 					*pgp = pg;
   1823  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   1824  1.159  perseant 				return -1;
   1825  1.158  perseant 			}
   1826  1.158  perseant 
   1827   1.84  perseant 			while (pg->flags & PG_BUSY) {
   1828  1.203  perseant 				wait_for_page(vp, pg, NULL);
   1829  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   1830  1.203  perseant 				if (i > 0)
   1831  1.203  perseant 					uvm_page_unbusy(pgs, i);
   1832  1.239  perseant 				KASSERT(mutex_owned(vp->v_interlock));
   1833  1.203  perseant 				goto top;
   1834   1.84  perseant 			}
   1835   1.84  perseant 			pg->flags |= PG_BUSY;
   1836   1.84  perseant 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1837   1.84  perseant 
   1838   1.84  perseant 			pmap_page_protect(pg, VM_PROT_NONE);
   1839   1.84  perseant 			tdirty = (pmap_clear_modify(pg) ||
   1840   1.84  perseant 				  (pg->flags & PG_CLEAN) == 0);
   1841   1.84  perseant 			dirty += tdirty;
   1842   1.84  perseant 		}
   1843   1.84  perseant 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1844   1.84  perseant 			if (by_list) {
   1845  1.217        ad 				curpg = TAILQ_NEXT(curpg, listq.queue);
   1846   1.84  perseant 			} else {
   1847   1.84  perseant 				soff += fs->lfs_bsize;
   1848   1.84  perseant 			}
   1849   1.84  perseant 			continue;
   1850   1.84  perseant 		}
   1851   1.84  perseant 
   1852   1.84  perseant 		any_dirty += dirty;
   1853   1.84  perseant 		KASSERT(nonexistent == 0);
   1854  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   1855   1.84  perseant 
   1856   1.84  perseant 		/*
   1857   1.84  perseant 		 * If any are dirty make all dirty; unbusy them,
   1858   1.88  perseant 		 * but if we were asked to clean, wire them so that
   1859   1.88  perseant 		 * the pagedaemon doesn't bother us about them while
   1860   1.88  perseant 		 * they're on their way to disk.
   1861   1.84  perseant 		 */
   1862   1.84  perseant 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1863  1.239  perseant 			KASSERT(mutex_owned(vp->v_interlock));
   1864   1.84  perseant 			pg = pgs[i];
   1865   1.84  perseant 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1866  1.239  perseant 			KASSERT(pg->flags & PG_BUSY);
   1867   1.84  perseant 			if (dirty) {
   1868   1.84  perseant 				pg->flags &= ~PG_CLEAN;
   1869   1.84  perseant 				if (flags & PGO_FREE) {
   1870   1.85      yamt 					/*
   1871   1.96  perseant 					 * Wire the page so that
   1872   1.96  perseant 					 * pdaemon doesn't see it again.
   1873   1.85      yamt 					 */
   1874  1.214        ad 					mutex_enter(&uvm_pageqlock);
   1875   1.85      yamt 					uvm_pagewire(pg);
   1876  1.214        ad 					mutex_exit(&uvm_pageqlock);
   1877   1.88  perseant 
   1878   1.84  perseant 					/* Suspended write flag */
   1879   1.84  perseant 					pg->flags |= PG_DELWRI;
   1880   1.84  perseant 				}
   1881   1.84  perseant 			}
   1882   1.84  perseant 			if (pg->flags & PG_WANTED)
   1883   1.84  perseant 				wakeup(pg);
   1884   1.84  perseant 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1885   1.85      yamt 			UVM_PAGE_OWN(pg, NULL);
   1886   1.84  perseant 		}
   1887   1.84  perseant 
   1888  1.103  perseant 		if (checkfirst && any_dirty)
   1889  1.130      yamt 			break;
   1890  1.103  perseant 
   1891   1.84  perseant 		if (by_list) {
   1892  1.217        ad 			curpg = TAILQ_NEXT(curpg, listq.queue);
   1893   1.84  perseant 		} else {
   1894   1.84  perseant 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1895   1.84  perseant 		}
   1896   1.84  perseant 	}
   1897   1.84  perseant 
   1898  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1899   1.84  perseant 	return any_dirty;
   1900   1.84  perseant }
   1901   1.84  perseant 
   1902   1.84  perseant /*
   1903   1.84  perseant  * lfs_putpages functions like genfs_putpages except that
   1904  1.135     perry  *
   1905   1.84  perseant  * (1) It needs to bounds-check the incoming requests to ensure that
   1906   1.84  perseant  *     they are block-aligned; if they are not, expand the range and
   1907   1.84  perseant  *     do the right thing in case, e.g., the requested range is clean
   1908   1.84  perseant  *     but the expanded range is dirty.
   1909  1.178  perseant  *
   1910   1.84  perseant  * (2) It needs to explicitly send blocks to be written when it is done.
   1911  1.202  perseant  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   1912  1.202  perseant  *     the seglock and let lfs_segunlock wait for us.
   1913  1.202  perseant  *     XXX There might be a bad situation if we have to flush a vnode while
   1914  1.202  perseant  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   1915  1.202  perseant  *     XXX case.
   1916   1.84  perseant  *
   1917   1.84  perseant  * Assumptions:
   1918   1.84  perseant  *
   1919   1.84  perseant  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1920   1.84  perseant  *     there is a danger that when we expand the page range and busy the
   1921   1.84  perseant  *     pages we will deadlock.
   1922  1.178  perseant  *
   1923   1.84  perseant  * (2) We are called with vp->v_interlock held; we must return with it
   1924   1.84  perseant  *     released.
   1925  1.178  perseant  *
   1926   1.84  perseant  * (3) We don't absolutely have to free pages right away, provided that
   1927   1.84  perseant  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1928   1.84  perseant  *     us a request with PGO_FREE, we take the pages out of the paging
   1929   1.84  perseant  *     queue and wake up the writer, which will handle freeing them for us.
   1930   1.84  perseant  *
   1931   1.84  perseant  *     We ensure that for any filesystem block, all pages for that
   1932   1.84  perseant  *     block are either resident or not, even if those pages are higher
   1933   1.84  perseant  *     than EOF; that means that we will be getting requests to free
   1934   1.84  perseant  *     "unused" pages above EOF all the time, and should ignore them.
   1935  1.115      yamt  *
   1936  1.178  perseant  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   1937  1.178  perseant  *     into has been set up for us by lfs_writefile.  If not, we will
   1938  1.178  perseant  *     have to handle allocating and/or freeing an finfo entry.
   1939  1.178  perseant  *
   1940  1.115      yamt  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1941   1.84  perseant  */
   1942   1.84  perseant 
   1943  1.203  perseant /* How many times to loop before we should start to worry */
   1944  1.203  perseant #define TOOMANY 4
   1945  1.203  perseant 
   1946   1.84  perseant int
   1947   1.84  perseant lfs_putpages(void *v)
   1948   1.84  perseant {
   1949   1.84  perseant 	int error;
   1950   1.84  perseant 	struct vop_putpages_args /* {
   1951   1.84  perseant 		struct vnode *a_vp;
   1952   1.84  perseant 		voff_t a_offlo;
   1953   1.84  perseant 		voff_t a_offhi;
   1954   1.84  perseant 		int a_flags;
   1955   1.84  perseant 	} */ *ap = v;
   1956   1.84  perseant 	struct vnode *vp;
   1957   1.84  perseant 	struct inode *ip;
   1958   1.84  perseant 	struct lfs *fs;
   1959   1.84  perseant 	struct segment *sp;
   1960   1.84  perseant 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1961   1.95  perseant 	off_t off, max_endoffset;
   1962  1.239  perseant 	bool seglocked, sync, pagedaemon, reclaim;
   1963  1.203  perseant 	struct vm_page *pg, *busypg;
   1964   1.84  perseant 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1965  1.239  perseant 	int oreclaim = 0;
   1966  1.239  perseant 	int donewriting = 0;
   1967  1.203  perseant #ifdef DEBUG
   1968  1.203  perseant 	int debug_n_again, debug_n_dirtyclean;
   1969  1.203  perseant #endif
   1970   1.84  perseant 
   1971   1.84  perseant 	vp = ap->a_vp;
   1972   1.84  perseant 	ip = VTOI(vp);
   1973   1.84  perseant 	fs = ip->i_lfs;
   1974  1.126      yamt 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1975  1.239  perseant 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   1976  1.207        ad 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1977   1.84  perseant 
   1978  1.239  perseant 	KASSERT(mutex_owned(vp->v_interlock));
   1979  1.239  perseant 
   1980   1.84  perseant 	/* Putpages does nothing for metadata. */
   1981   1.84  perseant 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1982  1.235     rmind 		mutex_exit(vp->v_interlock);
   1983   1.84  perseant 		return 0;
   1984   1.84  perseant 	}
   1985   1.84  perseant 
   1986   1.84  perseant 	/*
   1987   1.84  perseant 	 * If there are no pages, don't do anything.
   1988   1.84  perseant 	 */
   1989   1.84  perseant 	if (vp->v_uobj.uo_npages == 0) {
   1990  1.195  perseant 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   1991  1.212        ad 		    (vp->v_iflag & VI_ONWORKLST) &&
   1992  1.195  perseant 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1993  1.212        ad 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1994  1.192   reinoud 			vn_syncer_remove_from_worklist(vp);
   1995  1.195  perseant 		}
   1996  1.235     rmind 		mutex_exit(vp->v_interlock);
   1997  1.164  perseant 
   1998  1.164  perseant 		/* Remove us from paging queue, if we were on it */
   1999  1.214        ad 		mutex_enter(&lfs_lock);
   2000  1.164  perseant 		if (ip->i_flags & IN_PAGING) {
   2001  1.164  perseant 			ip->i_flags &= ~IN_PAGING;
   2002  1.164  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2003  1.164  perseant 		}
   2004  1.214        ad 		mutex_exit(&lfs_lock);
   2005  1.239  perseant 
   2006  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2007   1.84  perseant 		return 0;
   2008   1.84  perseant 	}
   2009   1.84  perseant 
   2010  1.248  christos 	blkeof = lfs_blkroundup(fs, ip->i_size);
   2011   1.84  perseant 
   2012   1.84  perseant 	/*
   2013   1.84  perseant 	 * Ignore requests to free pages past EOF but in the same block
   2014  1.239  perseant 	 * as EOF, unless the vnode is being reclaimed or the request
   2015  1.239  perseant 	 * is synchronous.  (If the request is sync, it comes from
   2016  1.239  perseant 	 * lfs_truncate.)
   2017  1.239  perseant 	 *
   2018  1.239  perseant 	 * To avoid being flooded with this request, make these pages
   2019  1.239  perseant 	 * look "active".
   2020   1.84  perseant 	 */
   2021  1.239  perseant 	if (!sync && !reclaim &&
   2022  1.239  perseant 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2023   1.84  perseant 		origoffset = ap->a_offlo;
   2024   1.95  perseant 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2025   1.95  perseant 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2026   1.95  perseant 			KASSERT(pg != NULL);
   2027   1.95  perseant 			while (pg->flags & PG_BUSY) {
   2028   1.95  perseant 				pg->flags |= PG_WANTED;
   2029  1.235     rmind 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2030   1.95  perseant 						    "lfsput2", 0);
   2031  1.235     rmind 				mutex_enter(vp->v_interlock);
   2032   1.95  perseant 			}
   2033  1.214        ad 			mutex_enter(&uvm_pageqlock);
   2034   1.95  perseant 			uvm_pageactivate(pg);
   2035  1.214        ad 			mutex_exit(&uvm_pageqlock);
   2036   1.95  perseant 		}
   2037   1.84  perseant 		ap->a_offlo = blkeof;
   2038   1.84  perseant 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2039  1.235     rmind 			mutex_exit(vp->v_interlock);
   2040   1.84  perseant 			return 0;
   2041   1.84  perseant 		}
   2042   1.84  perseant 	}
   2043   1.84  perseant 
   2044   1.84  perseant 	/*
   2045   1.84  perseant 	 * Extend page range to start and end at block boundaries.
   2046   1.84  perseant 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2047   1.84  perseant 	 */
   2048   1.86  perseant 	origoffset = ap->a_offlo;
   2049   1.84  perseant 	origendoffset = ap->a_offhi;
   2050   1.86  perseant 	startoffset = origoffset & ~(fs->lfs_bmask);
   2051   1.84  perseant 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2052   1.84  perseant 					       << fs->lfs_bshift;
   2053   1.84  perseant 
   2054   1.84  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2055   1.86  perseant 		endoffset = max_endoffset;
   2056   1.84  perseant 		origendoffset = endoffset;
   2057   1.86  perseant 	} else {
   2058   1.84  perseant 		origendoffset = round_page(ap->a_offhi);
   2059  1.248  christos 		endoffset = round_page(lfs_blkroundup(fs, origendoffset));
   2060   1.84  perseant 	}
   2061   1.84  perseant 
   2062   1.84  perseant 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2063   1.84  perseant 	if (startoffset == endoffset) {
   2064   1.84  perseant 		/* Nothing to do, why were we called? */
   2065  1.235     rmind 		mutex_exit(vp->v_interlock);
   2066  1.136  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2067  1.136  perseant 		      PRId64 "\n", startoffset));
   2068   1.84  perseant 		return 0;
   2069   1.84  perseant 	}
   2070   1.84  perseant 
   2071   1.84  perseant 	ap->a_offlo = startoffset;
   2072   1.84  perseant 	ap->a_offhi = endoffset;
   2073   1.84  perseant 
   2074  1.203  perseant 	/*
   2075  1.203  perseant 	 * If not cleaning, just send the pages through genfs_putpages
   2076  1.203  perseant 	 * to be returned to the pool.
   2077  1.203  perseant 	 */
   2078  1.239  perseant 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2079  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2080  1.239  perseant 		      vp, (int)ip->i_number, ap->a_flags));
   2081  1.239  perseant 		int r = genfs_putpages(v);
   2082  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2083  1.239  perseant 		return r;
   2084  1.239  perseant 	}
   2085   1.84  perseant 
   2086  1.203  perseant 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   2087  1.203  perseant 	ap->a_flags |= PGO_BUSYFAIL;
   2088  1.203  perseant 
   2089   1.84  perseant 	/*
   2090  1.203  perseant 	 * Likewise, if we are asked to clean but the pages are not
   2091  1.203  perseant 	 * dirty, we can just free them using genfs_putpages.
   2092   1.84  perseant 	 */
   2093  1.203  perseant #ifdef DEBUG
   2094  1.203  perseant 	debug_n_dirtyclean = 0;
   2095  1.203  perseant #endif
   2096  1.103  perseant 	do {
   2097  1.103  perseant 		int r;
   2098  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2099  1.103  perseant 
   2100  1.203  perseant 		/* Count the number of dirty pages */
   2101  1.158  perseant 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2102  1.203  perseant 				ap->a_flags, 1, NULL);
   2103  1.158  perseant 		if (r < 0) {
   2104  1.203  perseant 			/* Pages are busy with another process */
   2105  1.235     rmind 			mutex_exit(vp->v_interlock);
   2106  1.158  perseant 			return EDEADLK;
   2107  1.158  perseant 		}
   2108  1.203  perseant 		if (r > 0) /* Some pages are dirty */
   2109  1.103  perseant 			break;
   2110  1.103  perseant 
   2111  1.134  perseant 		/*
   2112  1.134  perseant 		 * Sometimes pages are dirtied between the time that
   2113  1.134  perseant 		 * we check and the time we try to clean them.
   2114  1.134  perseant 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2115  1.134  perseant 		 * so we can write them properly.
   2116  1.134  perseant 		 */
   2117  1.134  perseant 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2118  1.206  perseant 		r = genfs_do_putpages(vp, startoffset, endoffset,
   2119  1.226       eeh 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   2120  1.134  perseant 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2121  1.239  perseant 		if (r != EDEADLK) {
   2122  1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   2123  1.239  perseant  			return r;
   2124  1.239  perseant 		}
   2125  1.103  perseant 
   2126  1.203  perseant 		/* One of the pages was busy.  Start over. */
   2127  1.235     rmind 		mutex_enter(vp->v_interlock);
   2128  1.203  perseant 		wait_for_page(vp, busypg, "dirtyclean");
   2129  1.203  perseant #ifdef DEBUG
   2130  1.203  perseant 		++debug_n_dirtyclean;
   2131  1.203  perseant #endif
   2132  1.103  perseant 	} while(1);
   2133  1.135     perry 
   2134  1.203  perseant #ifdef DEBUG
   2135  1.203  perseant 	if (debug_n_dirtyclean > TOOMANY)
   2136  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   2137  1.239  perseant 		      debug_n_dirtyclean));
   2138  1.203  perseant #endif
   2139  1.203  perseant 
   2140   1.84  perseant 	/*
   2141   1.84  perseant 	 * Dirty and asked to clean.
   2142   1.84  perseant 	 *
   2143   1.84  perseant 	 * Pagedaemon can't actually write LFS pages; wake up
   2144   1.84  perseant 	 * the writer to take care of that.  The writer will
   2145   1.84  perseant 	 * notice the pager inode queue and act on that.
   2146  1.232       eeh 	 *
   2147  1.232       eeh 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   2148  1.232       eeh 	 * get a nasty deadlock with lfs_flush_pchain().
   2149   1.84  perseant 	 */
   2150   1.84  perseant 	if (pagedaemon) {
   2151  1.235     rmind 		mutex_exit(vp->v_interlock);
   2152  1.214        ad 		mutex_enter(&lfs_lock);
   2153  1.164  perseant 		if (!(ip->i_flags & IN_PAGING)) {
   2154  1.164  perseant 			ip->i_flags |= IN_PAGING;
   2155  1.164  perseant 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2156  1.232       eeh 		}
   2157  1.164  perseant 		wakeup(&lfs_writer_daemon);
   2158  1.214        ad 		mutex_exit(&lfs_lock);
   2159  1.198        ad 		preempt();
   2160  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2161   1.84  perseant 		return EWOULDBLOCK;
   2162   1.84  perseant 	}
   2163   1.84  perseant 
   2164   1.84  perseant 	/*
   2165   1.84  perseant 	 * If this is a file created in a recent dirop, we can't flush its
   2166   1.84  perseant 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2167   1.84  perseant 	 * filesystem (taking care of any other pending dirops while we're
   2168   1.84  perseant 	 * at it).
   2169   1.84  perseant 	 */
   2170   1.84  perseant 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2171  1.212        ad 	    (vp->v_uflag & VU_DIROP)) {
   2172  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   2173  1.239  perseant 
   2174  1.239  perseant  		lfs_writer_enter(fs, "ppdirop");
   2175   1.84  perseant 
   2176  1.239  perseant 		/* Note if we hold the vnode locked */
   2177  1.239  perseant 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   2178  1.239  perseant 		{
   2179  1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   2180  1.239  perseant 		} else {
   2181  1.239  perseant 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   2182  1.239  perseant 		}
   2183  1.235     rmind 		mutex_exit(vp->v_interlock);
   2184  1.135     perry 
   2185  1.214        ad 		mutex_enter(&lfs_lock);
   2186   1.84  perseant 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2187  1.214        ad 		mutex_exit(&lfs_lock);
   2188  1.135     perry 
   2189  1.235     rmind 		mutex_enter(vp->v_interlock);
   2190  1.111      yamt 		lfs_writer_leave(fs);
   2191   1.84  perseant 
   2192  1.239  perseant 		/* The flush will have cleaned out this vnode as well,
   2193  1.239  perseant 		   no need to do more to it. */
   2194   1.84  perseant 	}
   2195   1.84  perseant 
   2196   1.84  perseant 	/*
   2197   1.86  perseant 	 * This is it.	We are going to write some pages.  From here on
   2198   1.84  perseant 	 * down it's all just mechanics.
   2199   1.84  perseant 	 *
   2200  1.103  perseant 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2201   1.84  perseant 	 */
   2202   1.84  perseant 	ap->a_flags &= ~PGO_SYNCIO;
   2203   1.84  perseant 
   2204   1.84  perseant 	/*
   2205   1.84  perseant 	 * If we've already got the seglock, flush the node and return.
   2206   1.84  perseant 	 * The FIP has already been set up for us by lfs_writefile,
   2207   1.84  perseant 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2208   1.84  perseant 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2209   1.84  perseant 	 * what we have, and correct FIP and segment header accounting.
   2210   1.84  perseant 	 */
   2211  1.203  perseant   get_seglock:
   2212  1.203  perseant 	/*
   2213  1.203  perseant 	 * If we are not called with the segment locked, lock it.
   2214  1.203  perseant 	 * Account for a new FIP in the segment header, and set sp->vp.
   2215  1.203  perseant 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2216  1.203  perseant 	 */
   2217  1.126      yamt 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2218  1.126      yamt 	if (!seglocked) {
   2219  1.235     rmind 		mutex_exit(vp->v_interlock);
   2220  1.126      yamt 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2221  1.239  perseant 		if (error != 0) {
   2222  1.239  perseant 			KASSERT(!mutex_owned(vp->v_interlock));
   2223  1.239  perseant  			return error;
   2224  1.239  perseant 		}
   2225  1.235     rmind 		mutex_enter(vp->v_interlock);
   2226  1.203  perseant 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2227   1.84  perseant 	}
   2228   1.84  perseant 	sp = fs->lfs_sp;
   2229  1.120      yamt 	KASSERT(sp->vp == NULL);
   2230   1.84  perseant 	sp->vp = vp;
   2231  1.135     perry 
   2232  1.239  perseant 	/* Note segments written by reclaim; only for debugging */
   2233  1.239  perseant 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   2234  1.239  perseant 		sp->seg_flags |= SEGM_RECLAIM;
   2235  1.239  perseant 		fs->lfs_reclino = ip->i_number;
   2236  1.239  perseant 	}
   2237  1.239  perseant 
   2238  1.203  perseant 	/*
   2239  1.203  perseant 	 * Ensure that the partial segment is marked SS_DIROP if this
   2240  1.203  perseant 	 * vnode is a DIROP.
   2241  1.203  perseant 	 */
   2242  1.212        ad 	if (!seglocked && vp->v_uflag & VU_DIROP)
   2243  1.203  perseant 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2244  1.135     perry 
   2245   1.84  perseant 	/*
   2246  1.203  perseant 	 * Loop over genfs_putpages until all pages are gathered.
   2247   1.88  perseant 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2248  1.103  perseant 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2249  1.203  perseant 	 * well, since more pages might have been dirtied in our absence.
   2250   1.84  perseant 	 */
   2251  1.203  perseant #ifdef DEBUG
   2252  1.203  perseant 	debug_n_again = 0;
   2253  1.203  perseant #endif
   2254  1.203  perseant 	do {
   2255  1.203  perseant 		busypg = NULL;
   2256  1.239  perseant 		KASSERT(mutex_owned(vp->v_interlock));
   2257  1.203  perseant 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2258  1.203  perseant 				ap->a_flags, 0, &busypg) < 0) {
   2259  1.235     rmind 			mutex_exit(vp->v_interlock);
   2260  1.239  perseant 			/* XXX why? --ks */
   2261  1.235     rmind 			mutex_enter(vp->v_interlock);
   2262  1.203  perseant 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   2263  1.203  perseant 			if (!seglocked) {
   2264  1.235     rmind 				mutex_exit(vp->v_interlock);
   2265  1.203  perseant 				lfs_release_finfo(fs);
   2266  1.203  perseant 				lfs_segunlock(fs);
   2267  1.235     rmind 				mutex_enter(vp->v_interlock);
   2268  1.203  perseant 			}
   2269  1.208  perseant 			sp->vp = NULL;
   2270  1.203  perseant 			goto get_seglock;
   2271   1.88  perseant 		}
   2272  1.203  perseant 
   2273  1.203  perseant 		busypg = NULL;
   2274  1.239  perseant 		KASSERT(!mutex_owned(&uvm_pageqlock));
   2275  1.239  perseant 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   2276  1.239  perseant 		ap->a_flags &= ~PGO_RECLAIM;
   2277  1.206  perseant 		error = genfs_do_putpages(vp, startoffset, endoffset,
   2278  1.203  perseant 					   ap->a_flags, &busypg);
   2279  1.239  perseant 		ap->a_flags |= oreclaim;
   2280  1.203  perseant 
   2281  1.203  perseant 		if (error == EDEADLK || error == EAGAIN) {
   2282  1.203  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2283  1.203  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   2284  1.203  perseant 			      ip->i_number, fs->lfs_offset,
   2285  1.248  christos 			      lfs_dtosn(fs, fs->lfs_offset)));
   2286   1.84  perseant 
   2287  1.239  perseant 			if (oreclaim) {
   2288  1.239  perseant 				mutex_enter(vp->v_interlock);
   2289  1.239  perseant 				write_and_wait(fs, vp, busypg, seglocked, "again");
   2290  1.239  perseant 				mutex_exit(vp->v_interlock);
   2291  1.239  perseant 			} else {
   2292  1.239  perseant 				if ((sp->seg_flags & SEGM_SINGLE) &&
   2293  1.239  perseant 				    fs->lfs_curseg != fs->lfs_startseg)
   2294  1.239  perseant 					donewriting = 1;
   2295  1.239  perseant 			}
   2296  1.239  perseant 		} else if (error) {
   2297  1.239  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2298  1.239  perseant 			      " %d ino %d off %x (seg %d)\n", error,
   2299  1.239  perseant 			      (int)ip->i_number, fs->lfs_offset,
   2300  1.248  christos 			      lfs_dtosn(fs, fs->lfs_offset)));
   2301  1.167  perseant 		}
   2302  1.239  perseant 		/* genfs_do_putpages loses the interlock */
   2303  1.203  perseant #ifdef DEBUG
   2304  1.203  perseant 		++debug_n_again;
   2305  1.203  perseant #endif
   2306  1.239  perseant 		if (oreclaim && error == EAGAIN) {
   2307  1.239  perseant 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   2308  1.239  perseant 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   2309  1.239  perseant 			mutex_enter(vp->v_interlock);
   2310  1.239  perseant 		}
   2311  1.239  perseant 		if (error == EDEADLK)
   2312  1.239  perseant 			mutex_enter(vp->v_interlock);
   2313  1.239  perseant 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   2314  1.203  perseant #ifdef DEBUG
   2315  1.203  perseant 	if (debug_n_again > TOOMANY)
   2316  1.239  perseant 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   2317  1.203  perseant #endif
   2318  1.103  perseant 
   2319  1.203  perseant 	KASSERT(sp != NULL && sp->vp == vp);
   2320  1.239  perseant 	if (!seglocked && !donewriting) {
   2321  1.178  perseant 		sp->vp = NULL;
   2322  1.126      yamt 
   2323  1.126      yamt 		/* Write indirect blocks as well */
   2324  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2325  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2326  1.126      yamt 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2327  1.120      yamt 
   2328  1.126      yamt 		KASSERT(sp->vp == NULL);
   2329  1.126      yamt 		sp->vp = vp;
   2330  1.126      yamt 	}
   2331   1.84  perseant 
   2332   1.84  perseant 	/*
   2333   1.84  perseant 	 * Blocks are now gathered into a segment waiting to be written.
   2334   1.84  perseant 	 * All that's left to do is update metadata, and write them.
   2335   1.84  perseant 	 */
   2336  1.120      yamt 	lfs_updatemeta(sp);
   2337  1.120      yamt 	KASSERT(sp->vp == vp);
   2338  1.120      yamt 	sp->vp = NULL;
   2339  1.126      yamt 
   2340  1.203  perseant 	/*
   2341  1.203  perseant 	 * If we were called from lfs_writefile, we don't need to clean up
   2342  1.203  perseant 	 * the FIP or unlock the segment lock.	We're done.
   2343  1.203  perseant 	 */
   2344  1.239  perseant 	if (seglocked) {
   2345  1.239  perseant 		KASSERT(!mutex_owned(vp->v_interlock));
   2346  1.126      yamt 		return error;
   2347  1.239  perseant 	}
   2348  1.120      yamt 
   2349  1.178  perseant 	/* Clean up FIP and send it to disk. */
   2350  1.178  perseant 	lfs_release_finfo(fs);
   2351   1.88  perseant 	lfs_writeseg(fs, fs->lfs_sp);
   2352   1.88  perseant 
   2353   1.84  perseant 	/*
   2354  1.203  perseant 	 * Remove us from paging queue if we wrote all our pages.
   2355  1.164  perseant 	 */
   2356  1.203  perseant 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2357  1.214        ad 		mutex_enter(&lfs_lock);
   2358  1.203  perseant 		if (ip->i_flags & IN_PAGING) {
   2359  1.203  perseant 			ip->i_flags &= ~IN_PAGING;
   2360  1.203  perseant 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2361  1.203  perseant 		}
   2362  1.214        ad 		mutex_exit(&lfs_lock);
   2363  1.164  perseant 	}
   2364  1.164  perseant 
   2365  1.164  perseant 	/*
   2366   1.84  perseant 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2367   1.84  perseant 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2368   1.84  perseant 	 * will not be true if we stop using malloc/copy.
   2369   1.84  perseant 	 */
   2370   1.84  perseant 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2371   1.84  perseant 	lfs_segunlock(fs);
   2372   1.84  perseant 
   2373   1.84  perseant 	/*
   2374   1.84  perseant 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2375   1.84  perseant 	 * take care of this, but there is a slight possibility that
   2376   1.84  perseant 	 * aiodoned might not have got around to our buffers yet.
   2377   1.84  perseant 	 */
   2378   1.84  perseant 	if (sync) {
   2379  1.235     rmind 		mutex_enter(vp->v_interlock);
   2380   1.98  perseant 		while (vp->v_numoutput > 0) {
   2381  1.136  perseant 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2382  1.136  perseant 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2383  1.235     rmind 			cv_wait(&vp->v_cv, vp->v_interlock);
   2384   1.84  perseant 		}
   2385  1.235     rmind 		mutex_exit(vp->v_interlock);
   2386   1.84  perseant 	}
   2387  1.239  perseant 	KASSERT(!mutex_owned(vp->v_interlock));
   2388   1.84  perseant 	return error;
   2389   1.84  perseant }
   2390   1.84  perseant 
   2391   1.84  perseant /*
   2392   1.84  perseant  * Return the last logical file offset that should be written for this file
   2393   1.86  perseant  * if we're doing a write that ends at "size".	If writing, we need to know
   2394   1.84  perseant  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2395   1.84  perseant  * to know about entire blocks.
   2396   1.84  perseant  */
   2397   1.84  perseant void
   2398   1.84  perseant lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2399   1.84  perseant {
   2400   1.84  perseant 	struct inode *ip = VTOI(vp);
   2401  1.135     perry 	struct lfs *fs = ip->i_lfs;
   2402   1.84  perseant 	daddr_t olbn, nlbn;
   2403   1.84  perseant 
   2404  1.248  christos 	olbn = lfs_lblkno(fs, ip->i_size);
   2405  1.248  christos 	nlbn = lfs_lblkno(fs, size);
   2406  1.245  dholland 	if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
   2407  1.248  christos 		*eobp = lfs_fragroundup(fs, size);
   2408   1.86  perseant 	} else {
   2409  1.248  christos 		*eobp = lfs_blkroundup(fs, size);
   2410   1.86  perseant 	}
   2411   1.84  perseant }
   2412   1.84  perseant 
   2413   1.84  perseant #ifdef DEBUG
   2414   1.84  perseant void lfs_dump_vop(void *);
   2415   1.84  perseant 
   2416   1.84  perseant void
   2417   1.84  perseant lfs_dump_vop(void *v)
   2418   1.84  perseant {
   2419   1.86  perseant 	struct vop_putpages_args /* {
   2420   1.86  perseant 		struct vnode *a_vp;
   2421   1.86  perseant 		voff_t a_offlo;
   2422   1.86  perseant 		voff_t a_offhi;
   2423   1.86  perseant 		int a_flags;
   2424   1.86  perseant 	} */ *ap = v;
   2425   1.84  perseant 
   2426  1.106     ragge #ifdef DDB
   2427   1.84  perseant 	vfs_vnode_print(ap->a_vp, 0, printf);
   2428  1.106     ragge #endif
   2429  1.102      fvdl 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2430   1.84  perseant }
   2431   1.84  perseant #endif
   2432   1.84  perseant 
   2433   1.84  perseant int
   2434   1.84  perseant lfs_mmap(void *v)
   2435   1.84  perseant {
   2436   1.84  perseant 	struct vop_mmap_args /* {
   2437   1.86  perseant 		const struct vnodeop_desc *a_desc;
   2438   1.86  perseant 		struct vnode *a_vp;
   2439  1.209     pooka 		vm_prot_t a_prot;
   2440  1.176      elad 		kauth_cred_t a_cred;
   2441   1.84  perseant 	} */ *ap = v;
   2442   1.84  perseant 
   2443   1.84  perseant 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2444   1.84  perseant 		return EOPNOTSUPP;
   2445  1.245  dholland 	return ulfs_mmap(v);
   2446   1.84  perseant }
   2447