lfs_vnops.c revision 1.102 1 /* $NetBSD: lfs_vnops.c,v 1.102 2003/04/02 10:39:42 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.102 2003/04/02 10:39:42 fvdl Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109 extern int lfs_subsys_pages;
110 extern int lfs_dirvcount;
111 extern struct simplelock lfs_subsys_lock;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
157 { &vop_valloc_desc, lfs_valloc }, /* valloc */
158 { &vop_balloc_desc, lfs_balloc }, /* balloc */
159 { &vop_vfree_desc, lfs_vfree }, /* vfree */
160 { &vop_truncate_desc, lfs_truncate }, /* truncate */
161 { &vop_update_desc, lfs_update }, /* update */
162 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
163 { &vop_getpages_desc, lfs_getpages }, /* getpages */
164 { &vop_putpages_desc, lfs_putpages }, /* putpages */
165 { NULL, NULL }
166 };
167 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
168 { &lfs_vnodeop_p, lfs_vnodeop_entries };
169
170 int (**lfs_specop_p)(void *);
171 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
172 { &vop_default_desc, vn_default_error },
173 { &vop_lookup_desc, spec_lookup }, /* lookup */
174 { &vop_create_desc, spec_create }, /* create */
175 { &vop_mknod_desc, spec_mknod }, /* mknod */
176 { &vop_open_desc, spec_open }, /* open */
177 { &vop_close_desc, lfsspec_close }, /* close */
178 { &vop_access_desc, ufs_access }, /* access */
179 { &vop_getattr_desc, lfs_getattr }, /* getattr */
180 { &vop_setattr_desc, lfs_setattr }, /* setattr */
181 { &vop_read_desc, ufsspec_read }, /* read */
182 { &vop_write_desc, ufsspec_write }, /* write */
183 { &vop_lease_desc, spec_lease_check }, /* lease */
184 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
185 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
186 { &vop_poll_desc, spec_poll }, /* poll */
187 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
188 { &vop_revoke_desc, spec_revoke }, /* revoke */
189 { &vop_mmap_desc, spec_mmap }, /* mmap */
190 { &vop_fsync_desc, spec_fsync }, /* fsync */
191 { &vop_seek_desc, spec_seek }, /* seek */
192 { &vop_remove_desc, spec_remove }, /* remove */
193 { &vop_link_desc, spec_link }, /* link */
194 { &vop_rename_desc, spec_rename }, /* rename */
195 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
196 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
197 { &vop_symlink_desc, spec_symlink }, /* symlink */
198 { &vop_readdir_desc, spec_readdir }, /* readdir */
199 { &vop_readlink_desc, spec_readlink }, /* readlink */
200 { &vop_abortop_desc, spec_abortop }, /* abortop */
201 { &vop_inactive_desc, lfs_inactive }, /* inactive */
202 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
203 { &vop_lock_desc, ufs_lock }, /* lock */
204 { &vop_unlock_desc, ufs_unlock }, /* unlock */
205 { &vop_bmap_desc, spec_bmap }, /* bmap */
206 { &vop_strategy_desc, spec_strategy }, /* strategy */
207 { &vop_print_desc, ufs_print }, /* print */
208 { &vop_islocked_desc, ufs_islocked }, /* islocked */
209 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
210 { &vop_advlock_desc, spec_advlock }, /* advlock */
211 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
212 { &vop_valloc_desc, spec_valloc }, /* valloc */
213 { &vop_vfree_desc, lfs_vfree }, /* vfree */
214 { &vop_truncate_desc, spec_truncate }, /* truncate */
215 { &vop_update_desc, lfs_update }, /* update */
216 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
217 { &vop_getpages_desc, spec_getpages }, /* getpages */
218 { &vop_putpages_desc, spec_putpages }, /* putpages */
219 { NULL, NULL }
220 };
221 const struct vnodeopv_desc lfs_specop_opv_desc =
222 { &lfs_specop_p, lfs_specop_entries };
223
224 int (**lfs_fifoop_p)(void *);
225 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
226 { &vop_default_desc, vn_default_error },
227 { &vop_lookup_desc, fifo_lookup }, /* lookup */
228 { &vop_create_desc, fifo_create }, /* create */
229 { &vop_mknod_desc, fifo_mknod }, /* mknod */
230 { &vop_open_desc, fifo_open }, /* open */
231 { &vop_close_desc, lfsfifo_close }, /* close */
232 { &vop_access_desc, ufs_access }, /* access */
233 { &vop_getattr_desc, lfs_getattr }, /* getattr */
234 { &vop_setattr_desc, lfs_setattr }, /* setattr */
235 { &vop_read_desc, ufsfifo_read }, /* read */
236 { &vop_write_desc, ufsfifo_write }, /* write */
237 { &vop_lease_desc, fifo_lease_check }, /* lease */
238 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
239 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
240 { &vop_poll_desc, fifo_poll }, /* poll */
241 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
242 { &vop_revoke_desc, fifo_revoke }, /* revoke */
243 { &vop_mmap_desc, fifo_mmap }, /* mmap */
244 { &vop_fsync_desc, fifo_fsync }, /* fsync */
245 { &vop_seek_desc, fifo_seek }, /* seek */
246 { &vop_remove_desc, fifo_remove }, /* remove */
247 { &vop_link_desc, fifo_link }, /* link */
248 { &vop_rename_desc, fifo_rename }, /* rename */
249 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
250 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
251 { &vop_symlink_desc, fifo_symlink }, /* symlink */
252 { &vop_readdir_desc, fifo_readdir }, /* readdir */
253 { &vop_readlink_desc, fifo_readlink }, /* readlink */
254 { &vop_abortop_desc, fifo_abortop }, /* abortop */
255 { &vop_inactive_desc, lfs_inactive }, /* inactive */
256 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
257 { &vop_lock_desc, ufs_lock }, /* lock */
258 { &vop_unlock_desc, ufs_unlock }, /* unlock */
259 { &vop_bmap_desc, fifo_bmap }, /* bmap */
260 { &vop_strategy_desc, fifo_strategy }, /* strategy */
261 { &vop_print_desc, ufs_print }, /* print */
262 { &vop_islocked_desc, ufs_islocked }, /* islocked */
263 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
264 { &vop_advlock_desc, fifo_advlock }, /* advlock */
265 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
266 { &vop_valloc_desc, fifo_valloc }, /* valloc */
267 { &vop_vfree_desc, lfs_vfree }, /* vfree */
268 { &vop_truncate_desc, fifo_truncate }, /* truncate */
269 { &vop_update_desc, lfs_update }, /* update */
270 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
271 { &vop_putpages_desc, fifo_putpages }, /* putpages */
272 { NULL, NULL }
273 };
274 const struct vnodeopv_desc lfs_fifoop_opv_desc =
275 { &lfs_fifoop_p, lfs_fifoop_entries };
276
277 /*
278 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
279 */
280 void
281 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
282 {
283 LFS_ITIMES(ip, acc, mod, cre);
284 }
285
286 #define LFS_READWRITE
287 #include <ufs/ufs/ufs_readwrite.c>
288 #undef LFS_READWRITE
289
290 /*
291 * Synch an open file.
292 */
293 /* ARGSUSED */
294 int
295 lfs_fsync(void *v)
296 {
297 struct vop_fsync_args /* {
298 struct vnode *a_vp;
299 struct ucred *a_cred;
300 int a_flags;
301 off_t offlo;
302 off_t offhi;
303 struct proc *a_p;
304 } */ *ap = v;
305 struct vnode *vp = ap->a_vp;
306 int error, wait;
307
308 /*
309 * Trickle sync checks for need to do a checkpoint after possible
310 * activity from the pagedaemon.
311 */
312 if (ap->a_flags & FSYNC_LAZY) {
313 wakeup(&lfs_writer_daemon);
314 return 0;
315 }
316
317 wait = (ap->a_flags & FSYNC_WAIT);
318 do {
319 #ifdef DEBUG
320 struct buf *bp;
321 #endif
322
323 simple_lock(&vp->v_interlock);
324 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
325 round_page(ap->a_offhi),
326 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
327 if (error)
328 return error;
329 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
330 if (wait && error == 0 && !VPISEMPTY(vp)) {
331 #ifdef DEBUG
332 printf("lfs_fsync: reflushing ino %d\n",
333 VTOI(vp)->i_number);
334 printf("vflags %x iflags %x npages %d\n",
335 vp->v_flag, VTOI(vp)->i_flag,
336 vp->v_uobj.uo_npages);
337 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
338 printf("%" PRId64 " (%lx)", bp->b_lblkno,
339 bp->b_flags);
340 printf("\n");
341 #endif
342 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
343 }
344 } while (wait && error == 0 && !VPISEMPTY(vp));
345
346 return error;
347 }
348
349 /*
350 * Take IN_ADIROP off, then call ufs_inactive.
351 */
352 int
353 lfs_inactive(void *v)
354 {
355 struct vop_inactive_args /* {
356 struct vnode *a_vp;
357 struct proc *a_p;
358 } */ *ap = v;
359
360 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
361
362 lfs_unmark_vnode(ap->a_vp);
363
364 /*
365 * The Ifile is only ever inactivated on unmount.
366 * Streamline this process by not giving it more dirty blocks.
367 */
368 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
369 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
370 VOP_UNLOCK(ap->a_vp, 0);
371 return 0;
372 }
373
374 return ufs_inactive(v);
375 }
376
377 /*
378 * These macros are used to bracket UFS directory ops, so that we can
379 * identify all the pages touched during directory ops which need to
380 * be ordered and flushed atomically, so that they may be recovered.
381 */
382 /*
383 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
384 * the cache from reclaiming them while a dirop is in progress, we must
385 * also manage the number of nodes so marked (otherwise we can run out).
386 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
387 * is decremented during segment write, when VDIROP is taken off.
388 */
389 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
390 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
391 static int lfs_set_dirop(struct vnode *, struct vnode *);
392 extern int lfs_dirvcount;
393 extern int lfs_do_flush;
394
395 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
396
397 static int
398 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
399 {
400 struct lfs *fs;
401 int error;
402
403 KASSERT(VOP_ISLOCKED(vp));
404 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
405
406 fs = VTOI(vp)->i_lfs;
407 /*
408 * We might need one directory block plus supporting indirect blocks,
409 * plus an inode block and ifile page for the new vnode.
410 */
411 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
412 return (error);
413
414 if (fs->lfs_dirops == 0)
415 lfs_check(vp, LFS_UNUSED_LBN, 0);
416 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
417 if (fs->lfs_writer)
418 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
419 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
420 wakeup(&lfs_writer_daemon);
421 preempt(NULL);
422 }
423
424 if (lfs_dirvcount > LFS_MAX_DIROP) {
425 #ifdef DEBUG_LFS
426 printf("lfs_set_dirop: sleeping with dirops=%d, "
427 "dirvcount=%d\n", fs->lfs_dirops,
428 lfs_dirvcount);
429 #endif
430 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
431 "lfs_maxdirop", 0)) != 0) {
432 goto unreserve;
433 }
434 }
435 }
436 ++fs->lfs_dirops;
437 fs->lfs_doifile = 1;
438
439 /* Hold a reference so SET_ENDOP will be happy */
440 vref(vp);
441 if (vp2)
442 vref(vp2);
443
444 return 0;
445
446 unreserve:
447 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
448 return error;
449 }
450
451 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
452 #define SET_ENDOP2(fs, vp, vp2, str) { \
453 --(fs)->lfs_dirops; \
454 if (!(fs)->lfs_dirops) { \
455 if ((fs)->lfs_nadirop) { \
456 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
457 (str), (fs)->lfs_nadirop); \
458 } \
459 wakeup(&(fs)->lfs_writer); \
460 lfs_check((vp),LFS_UNUSED_LBN,0); \
461 } \
462 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
463 vrele(vp); \
464 if (vp2) \
465 vrele(vp2); \
466 }
467
468 #define MARK_VNODE(dvp) do { \
469 struct inode *_ip = VTOI(dvp); \
470 struct lfs *_fs = _ip->i_lfs; \
471 \
472 if (!((dvp)->v_flag & VDIROP)) { \
473 (void)lfs_vref(dvp); \
474 ++lfs_dirvcount; \
475 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
476 } \
477 (dvp)->v_flag |= VDIROP; \
478 if (!(_ip->i_flag & IN_ADIROP)) { \
479 ++_fs->lfs_nadirop; \
480 } \
481 _ip->i_flag |= IN_ADIROP; \
482 } while (0)
483
484 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
485
486 void lfs_unmark_vnode(struct vnode *vp)
487 {
488 struct inode *ip;
489
490 ip = VTOI(vp);
491
492 if (ip->i_flag & IN_ADIROP)
493 --ip->i_lfs->lfs_nadirop;
494 ip->i_flag &= ~IN_ADIROP;
495 }
496
497 int
498 lfs_symlink(void *v)
499 {
500 struct vop_symlink_args /* {
501 struct vnode *a_dvp;
502 struct vnode **a_vpp;
503 struct componentname *a_cnp;
504 struct vattr *a_vap;
505 char *a_target;
506 } */ *ap = v;
507 int error;
508
509 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
510 vput(ap->a_dvp);
511 return error;
512 }
513 MARK_VNODE(ap->a_dvp);
514 error = ufs_symlink(ap);
515 UNMARK_VNODE(ap->a_dvp);
516 if (*(ap->a_vpp))
517 UNMARK_VNODE(*(ap->a_vpp));
518 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
519 return (error);
520 }
521
522 int
523 lfs_mknod(void *v)
524 {
525 struct vop_mknod_args /* {
526 struct vnode *a_dvp;
527 struct vnode **a_vpp;
528 struct componentname *a_cnp;
529 struct vattr *a_vap;
530 } */ *ap = v;
531 struct vattr *vap = ap->a_vap;
532 struct vnode **vpp = ap->a_vpp;
533 struct inode *ip;
534 int error;
535 struct mount *mp;
536 ino_t ino;
537
538 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
539 vput(ap->a_dvp);
540 return error;
541 }
542 MARK_VNODE(ap->a_dvp);
543 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
544 ap->a_dvp, vpp, ap->a_cnp);
545 UNMARK_VNODE(ap->a_dvp);
546 if (*(ap->a_vpp))
547 UNMARK_VNODE(*(ap->a_vpp));
548
549 /* Either way we're done with the dirop at this point */
550 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
551
552 if (error)
553 return (error);
554
555 ip = VTOI(*vpp);
556 mp = (*vpp)->v_mount;
557 ino = ip->i_number;
558 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
559 if (vap->va_rdev != VNOVAL) {
560 /*
561 * Want to be able to use this to make badblock
562 * inodes, so don't truncate the dev number.
563 */
564 #if 0
565 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
566 UFS_MPNEEDSWAP((*vpp)->v_mount));
567 #else
568 ip->i_ffs1_rdev = vap->va_rdev;
569 #endif
570 }
571 /*
572 * Call fsync to write the vnode so that we don't have to deal with
573 * flushing it when it's marked VDIROP|VXLOCK.
574 *
575 * XXX KS - If we can't flush we also can't call vgone(), so must
576 * return. But, that leaves this vnode in limbo, also not good.
577 * Can this ever happen (barring hardware failure)?
578 */
579 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
580 curproc)) != 0) {
581 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
582 VTOI(*vpp)->i_number);
583 return (error);
584 }
585 /*
586 * Remove vnode so that it will be reloaded by VFS_VGET and
587 * checked to see if it is an alias of an existing entry in
588 * the inode cache.
589 */
590 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
591 VOP_UNLOCK(*vpp, 0);
592 lfs_vunref(*vpp);
593 (*vpp)->v_type = VNON;
594 vgone(*vpp);
595 error = VFS_VGET(mp, ino, vpp);
596 if (error != 0) {
597 *vpp = NULL;
598 return (error);
599 }
600 return (0);
601 }
602
603 int
604 lfs_create(void *v)
605 {
606 struct vop_create_args /* {
607 struct vnode *a_dvp;
608 struct vnode **a_vpp;
609 struct componentname *a_cnp;
610 struct vattr *a_vap;
611 } */ *ap = v;
612 int error;
613
614 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
615 vput(ap->a_dvp);
616 return error;
617 }
618 MARK_VNODE(ap->a_dvp);
619 error = ufs_create(ap);
620 UNMARK_VNODE(ap->a_dvp);
621 if (*(ap->a_vpp))
622 UNMARK_VNODE(*(ap->a_vpp));
623 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
624 return (error);
625 }
626
627 int
628 lfs_mkdir(void *v)
629 {
630 struct vop_mkdir_args /* {
631 struct vnode *a_dvp;
632 struct vnode **a_vpp;
633 struct componentname *a_cnp;
634 struct vattr *a_vap;
635 } */ *ap = v;
636 int error;
637
638 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
639 vput(ap->a_dvp);
640 return error;
641 }
642 MARK_VNODE(ap->a_dvp);
643 error = ufs_mkdir(ap);
644 UNMARK_VNODE(ap->a_dvp);
645 if (*(ap->a_vpp))
646 UNMARK_VNODE(*(ap->a_vpp));
647 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
648 return (error);
649 }
650
651 int
652 lfs_remove(void *v)
653 {
654 struct vop_remove_args /* {
655 struct vnode *a_dvp;
656 struct vnode *a_vp;
657 struct componentname *a_cnp;
658 } */ *ap = v;
659 struct vnode *dvp, *vp;
660 int error;
661
662 dvp = ap->a_dvp;
663 vp = ap->a_vp;
664 if ((error = SET_DIROP2(dvp, vp)) != 0) {
665 if (dvp == vp)
666 vrele(vp);
667 else
668 vput(vp);
669 vput(dvp);
670 return error;
671 }
672 MARK_VNODE(dvp);
673 MARK_VNODE(vp);
674 error = ufs_remove(ap);
675 UNMARK_VNODE(dvp);
676 UNMARK_VNODE(vp);
677
678 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
679 return (error);
680 }
681
682 int
683 lfs_rmdir(void *v)
684 {
685 struct vop_rmdir_args /* {
686 struct vnodeop_desc *a_desc;
687 struct vnode *a_dvp;
688 struct vnode *a_vp;
689 struct componentname *a_cnp;
690 } */ *ap = v;
691 struct vnode *vp;
692 int error;
693
694 vp = ap->a_vp;
695 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
696 vrele(ap->a_dvp);
697 if (ap->a_vp != ap->a_dvp)
698 VOP_UNLOCK(ap->a_dvp, 0);
699 vput(vp);
700 return error;
701 }
702 MARK_VNODE(ap->a_dvp);
703 MARK_VNODE(vp);
704 error = ufs_rmdir(ap);
705 UNMARK_VNODE(ap->a_dvp);
706 UNMARK_VNODE(vp);
707
708 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
709 return (error);
710 }
711
712 int
713 lfs_link(void *v)
714 {
715 struct vop_link_args /* {
716 struct vnode *a_dvp;
717 struct vnode *a_vp;
718 struct componentname *a_cnp;
719 } */ *ap = v;
720 int error;
721
722 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
723 vput(ap->a_dvp);
724 return error;
725 }
726 MARK_VNODE(ap->a_dvp);
727 error = ufs_link(ap);
728 UNMARK_VNODE(ap->a_dvp);
729 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
730 return (error);
731 }
732
733 int
734 lfs_rename(void *v)
735 {
736 struct vop_rename_args /* {
737 struct vnode *a_fdvp;
738 struct vnode *a_fvp;
739 struct componentname *a_fcnp;
740 struct vnode *a_tdvp;
741 struct vnode *a_tvp;
742 struct componentname *a_tcnp;
743 } */ *ap = v;
744 struct vnode *tvp, *fvp, *tdvp, *fdvp;
745 struct componentname *tcnp, *fcnp;
746 int error;
747 struct lfs *fs;
748
749 fs = VTOI(ap->a_fdvp)->i_lfs;
750 tvp = ap->a_tvp;
751 tdvp = ap->a_tdvp;
752 tcnp = ap->a_tcnp;
753 fvp = ap->a_fvp;
754 fdvp = ap->a_fdvp;
755 fcnp = ap->a_fcnp;
756
757 /*
758 * Check for cross-device rename.
759 * If it is, we don't want to set dirops, just error out.
760 * (In particular note that MARK_VNODE(tdvp) will DTWT on
761 * a cross-device rename.)
762 *
763 * Copied from ufs_rename.
764 */
765 if ((fvp->v_mount != tdvp->v_mount) ||
766 (tvp && (fvp->v_mount != tvp->v_mount))) {
767 error = EXDEV;
768 goto errout;
769 }
770
771 /*
772 * Check to make sure we're not renaming a vnode onto itself
773 * (deleting a hard link by renaming one name onto another);
774 * if we are we can't recursively call VOP_REMOVE since that
775 * would leave us with an unaccounted-for number of live dirops.
776 *
777 * Inline the relevant section of ufs_rename here, *before*
778 * calling SET_DIROP2.
779 */
780 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
781 (VTOI(tdvp)->i_flags & APPEND))) {
782 error = EPERM;
783 goto errout;
784 }
785 if (fvp == tvp) {
786 if (fvp->v_type == VDIR) {
787 error = EINVAL;
788 goto errout;
789 }
790
791 /* Release destination completely. */
792 VOP_ABORTOP(tdvp, tcnp);
793 vput(tdvp);
794 vput(tvp);
795
796 /* Delete source. */
797 vrele(fvp);
798 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
799 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
800 fcnp->cn_nameiop = DELETE;
801 if ((error = relookup(fdvp, &fvp, fcnp))){
802 /* relookup blew away fdvp */
803 return (error);
804 }
805 return (VOP_REMOVE(fdvp, fvp, fcnp));
806 }
807
808 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
809 goto errout;
810 MARK_VNODE(fdvp);
811 MARK_VNODE(tdvp);
812 MARK_VNODE(fvp);
813 if (tvp) {
814 MARK_VNODE(tvp);
815 }
816
817 error = ufs_rename(ap);
818 UNMARK_VNODE(fdvp);
819 UNMARK_VNODE(tdvp);
820 UNMARK_VNODE(fvp);
821 if (tvp) {
822 UNMARK_VNODE(tvp);
823 }
824 SET_ENDOP2(fs, tdvp, tvp, "rename");
825 return (error);
826
827 errout:
828 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
829 if (tdvp == tvp)
830 vrele(tdvp);
831 else
832 vput(tdvp);
833 if (tvp)
834 vput(tvp);
835 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
836 vrele(fdvp);
837 vrele(fvp);
838 return (error);
839 }
840
841 /* XXX hack to avoid calling ITIMES in getattr */
842 int
843 lfs_getattr(void *v)
844 {
845 struct vop_getattr_args /* {
846 struct vnode *a_vp;
847 struct vattr *a_vap;
848 struct ucred *a_cred;
849 struct proc *a_p;
850 } */ *ap = v;
851 struct vnode *vp = ap->a_vp;
852 struct inode *ip = VTOI(vp);
853 struct vattr *vap = ap->a_vap;
854 struct lfs *fs = ip->i_lfs;
855 /*
856 * Copy from inode table
857 */
858 vap->va_fsid = ip->i_dev;
859 vap->va_fileid = ip->i_number;
860 vap->va_mode = ip->i_mode & ~IFMT;
861 vap->va_nlink = ip->i_nlink;
862 vap->va_uid = ip->i_uid;
863 vap->va_gid = ip->i_gid;
864 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
865 vap->va_size = vp->v_size;
866 vap->va_atime.tv_sec = ip->i_ffs1_atime;
867 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
868 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
869 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
870 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
871 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
872 vap->va_flags = ip->i_flags;
873 vap->va_gen = ip->i_gen;
874 /* this doesn't belong here */
875 if (vp->v_type == VBLK)
876 vap->va_blocksize = BLKDEV_IOSIZE;
877 else if (vp->v_type == VCHR)
878 vap->va_blocksize = MAXBSIZE;
879 else
880 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
881 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
882 vap->va_type = vp->v_type;
883 vap->va_filerev = ip->i_modrev;
884 return (0);
885 }
886
887 /*
888 * Check to make sure the inode blocks won't choke the buffer
889 * cache, then call ufs_setattr as usual.
890 */
891 int
892 lfs_setattr(void *v)
893 {
894 struct vop_getattr_args /* {
895 struct vnode *a_vp;
896 struct vattr *a_vap;
897 struct ucred *a_cred;
898 struct proc *a_p;
899 } */ *ap = v;
900 struct vnode *vp = ap->a_vp;
901
902 lfs_check(vp, LFS_UNUSED_LBN, 0);
903 return ufs_setattr(v);
904 }
905
906 /*
907 * Close called
908 *
909 * XXX -- we were using ufs_close, but since it updates the
910 * times on the inode, we might need to bump the uinodes
911 * count.
912 */
913 /* ARGSUSED */
914 int
915 lfs_close(void *v)
916 {
917 struct vop_close_args /* {
918 struct vnode *a_vp;
919 int a_fflag;
920 struct ucred *a_cred;
921 struct proc *a_p;
922 } */ *ap = v;
923 struct vnode *vp = ap->a_vp;
924 struct inode *ip = VTOI(vp);
925 struct timespec ts;
926
927 if (vp == ip->i_lfs->lfs_ivnode &&
928 vp->v_mount->mnt_flag & MNT_UNMOUNT)
929 return 0;
930
931 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
932 TIMEVAL_TO_TIMESPEC(&time, &ts);
933 LFS_ITIMES(ip, &ts, &ts, &ts);
934 }
935 return (0);
936 }
937
938 /*
939 * Close wrapper for special devices.
940 *
941 * Update the times on the inode then do device close.
942 */
943 int
944 lfsspec_close(void *v)
945 {
946 struct vop_close_args /* {
947 struct vnode *a_vp;
948 int a_fflag;
949 struct ucred *a_cred;
950 struct proc *a_p;
951 } */ *ap = v;
952 struct vnode *vp;
953 struct inode *ip;
954 struct timespec ts;
955
956 vp = ap->a_vp;
957 ip = VTOI(vp);
958 if (vp->v_usecount > 1) {
959 TIMEVAL_TO_TIMESPEC(&time, &ts);
960 LFS_ITIMES(ip, &ts, &ts, &ts);
961 }
962 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
963 }
964
965 /*
966 * Close wrapper for fifo's.
967 *
968 * Update the times on the inode then do device close.
969 */
970 int
971 lfsfifo_close(void *v)
972 {
973 struct vop_close_args /* {
974 struct vnode *a_vp;
975 int a_fflag;
976 struct ucred *a_cred;
977 struct proc *a_p;
978 } */ *ap = v;
979 struct vnode *vp;
980 struct inode *ip;
981 struct timespec ts;
982
983 vp = ap->a_vp;
984 ip = VTOI(vp);
985 if (ap->a_vp->v_usecount > 1) {
986 TIMEVAL_TO_TIMESPEC(&time, &ts);
987 LFS_ITIMES(ip, &ts, &ts, &ts);
988 }
989 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
990 }
991
992 /*
993 * Reclaim an inode so that it can be used for other purposes.
994 */
995 int lfs_no_inactive = 0;
996
997 int
998 lfs_reclaim(void *v)
999 {
1000 struct vop_reclaim_args /* {
1001 struct vnode *a_vp;
1002 struct proc *a_p;
1003 } */ *ap = v;
1004 struct vnode *vp = ap->a_vp;
1005 struct inode *ip = VTOI(vp);
1006 int error;
1007
1008 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1009
1010 LFS_CLR_UINO(ip, IN_ALLMOD);
1011 if ((error = ufs_reclaim(vp, ap->a_p)))
1012 return (error);
1013 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1014 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1015 ip->inode_ext.lfs = NULL;
1016 pool_put(&lfs_inode_pool, vp->v_data);
1017 vp->v_data = NULL;
1018 return (0);
1019 }
1020
1021 /*
1022 * Read a block from a storage device.
1023 * In order to avoid reading blocks that are in the process of being
1024 * written by the cleaner---and hence are not mutexed by the normal
1025 * buffer cache / page cache mechanisms---check for collisions before
1026 * reading.
1027 *
1028 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1029 * the active cleaner test.
1030 *
1031 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1032 */
1033 int
1034 lfs_strategy(void *v)
1035 {
1036 struct vop_strategy_args /* {
1037 struct buf *a_bp;
1038 } */ *ap = v;
1039 struct buf *bp;
1040 struct lfs *fs;
1041 struct vnode *vp;
1042 struct inode *ip;
1043 daddr_t tbn;
1044 int i, sn, error, slept;
1045
1046 bp = ap->a_bp;
1047 vp = bp->b_vp;
1048 ip = VTOI(vp);
1049 fs = ip->i_lfs;
1050
1051 /* lfs uses its strategy routine only for read */
1052 KASSERT(bp->b_flags & B_READ);
1053
1054 if (vp->v_type == VBLK || vp->v_type == VCHR)
1055 panic("lfs_strategy: spec");
1056 KASSERT(bp->b_bcount != 0);
1057 if (bp->b_blkno == bp->b_lblkno) {
1058 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1059 NULL);
1060 if (error) {
1061 bp->b_error = error;
1062 bp->b_flags |= B_ERROR;
1063 biodone(bp);
1064 return (error);
1065 }
1066 if ((long)bp->b_blkno == -1) /* no valid data */
1067 clrbuf(bp);
1068 }
1069 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1070 biodone(bp);
1071 return (0);
1072 }
1073
1074 slept = 1;
1075 simple_lock(&fs->lfs_interlock);
1076 while (slept && fs->lfs_seglock) {
1077 simple_unlock(&fs->lfs_interlock);
1078 /*
1079 * Look through list of intervals.
1080 * There will only be intervals to look through
1081 * if the cleaner holds the seglock.
1082 * Since the cleaner is synchronous, we can trust
1083 * the list of intervals to be current.
1084 */
1085 tbn = dbtofsb(fs, bp->b_blkno);
1086 sn = dtosn(fs, tbn);
1087 slept = 0;
1088 for (i = 0; i < fs->lfs_cleanind; i++) {
1089 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1090 tbn >= fs->lfs_cleanint[i]) {
1091 #ifdef DEBUG_LFS
1092 printf("lfs_strategy: ino %d lbn %" PRId64
1093 " ind %d sn %d fsb %" PRIx32
1094 " given sn %d fsb %" PRIx64 "\n",
1095 ip->i_number, bp->b_lblkno, i,
1096 dtosn(fs, fs->lfs_cleanint[i]),
1097 fs->lfs_cleanint[i], sn, tbn);
1098 printf("lfs_strategy: sleeping on ino %d lbn %"
1099 PRId64 "\n", ip->i_number, bp->b_lblkno);
1100 #endif
1101 tsleep(&fs->lfs_seglock, PRIBIO+1,
1102 "lfs_strategy", 0);
1103 /* Things may be different now; start over. */
1104 slept = 1;
1105 break;
1106 }
1107 }
1108 simple_lock(&fs->lfs_interlock);
1109 }
1110 simple_unlock(&fs->lfs_interlock);
1111
1112 vp = ip->i_devvp;
1113 bp->b_dev = vp->v_rdev;
1114 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1115 return (0);
1116 }
1117
1118 static void
1119 lfs_flush_dirops(struct lfs *fs)
1120 {
1121 struct inode *ip, *nip;
1122 struct vnode *vp;
1123 extern int lfs_dostats;
1124 struct segment *sp;
1125 int needunlock;
1126
1127 if (fs->lfs_ronly)
1128 return;
1129
1130 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1131 return;
1132
1133 /* XXX simplelock fs->lfs_dirops */
1134 while (fs->lfs_dirops > 0) {
1135 ++fs->lfs_diropwait;
1136 tsleep(&fs->lfs_writer, PRIBIO+1, "pndirop", 0);
1137 --fs->lfs_diropwait;
1138 }
1139 /* disallow dirops during flush */
1140 fs->lfs_writer++;
1141
1142 if (lfs_dostats)
1143 ++lfs_stats.flush_invoked;
1144
1145 /*
1146 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1147 * Technically this is a checkpoint (the on-disk state is valid)
1148 * even though we are leaving out all the file data.
1149 */
1150 lfs_imtime(fs);
1151 lfs_seglock(fs, SEGM_CKP);
1152 sp = fs->lfs_sp;
1153
1154 /*
1155 * lfs_writevnodes, optimized to get dirops out of the way.
1156 * Only write dirops, and don't flush files' pages, only
1157 * blocks from the directories.
1158 *
1159 * We don't need to vref these files because they are
1160 * dirops and so hold an extra reference until the
1161 * segunlock clears them of that status.
1162 *
1163 * We don't need to check for IN_ADIROP because we know that
1164 * no dirops are active.
1165 *
1166 */
1167 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1168 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1169 vp = ITOV(ip);
1170
1171 /*
1172 * All writes to directories come from dirops; all
1173 * writes to files' direct blocks go through the page
1174 * cache, which we're not touching. Reads to files
1175 * and/or directories will not be affected by writing
1176 * directory blocks inodes and file inodes. So we don't
1177 * really need to lock. If we don't lock, though,
1178 * make sure that we don't clear IN_MODIFIED
1179 * unnecessarily.
1180 */
1181 if (vp->v_flag & VXLOCK)
1182 continue;
1183 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1184 LK_NOWAIT) == 0) {
1185 needunlock = 1;
1186 } else {
1187 printf("lfs_flush_dirops: flushing locked ino %d\n",
1188 VTOI(vp)->i_number);
1189 needunlock = 0;
1190 }
1191 if (vp->v_type != VREG &&
1192 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1193 lfs_writefile(fs, sp, vp);
1194 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1195 !(ip->i_flag & IN_ALLMOD)) {
1196 LFS_SET_UINO(ip, IN_MODIFIED);
1197 }
1198 }
1199 (void) lfs_writeinode(fs, sp, ip);
1200 if (needunlock)
1201 VOP_UNLOCK(vp, 0);
1202 else
1203 LFS_SET_UINO(ip, IN_MODIFIED);
1204 }
1205 /* We've written all the dirops there are */
1206 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1207 (void) lfs_writeseg(fs, sp);
1208 lfs_segunlock(fs);
1209
1210 if (--fs->lfs_writer == 0)
1211 wakeup(&fs->lfs_dirops);
1212 }
1213
1214 /*
1215 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1216 */
1217 int
1218 lfs_fcntl(void *v)
1219 {
1220 struct vop_fcntl_args /* {
1221 struct vnode *a_vp;
1222 u_long a_command;
1223 caddr_t a_data;
1224 int a_fflag;
1225 struct ucred *a_cred;
1226 struct proc *a_p;
1227 } */ *ap = v;
1228 struct timeval *tvp;
1229 BLOCK_INFO *blkiov;
1230 CLEANERINFO *cip;
1231 int blkcnt, error, oclean;
1232 struct lfs_fcntl_markv blkvp;
1233 fsid_t *fsidp;
1234 struct lfs *fs;
1235 struct buf *bp;
1236 daddr_t off;
1237
1238 /* Only respect LFS fcntls on fs root or Ifile */
1239 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1240 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1241 return ufs_fcntl(v);
1242 }
1243
1244 /* Avoid locking a draining lock */
1245 if (ap->a_vp->v_mount->mnt_flag & MNT_UNMOUNT) {
1246 return ESHUTDOWN;
1247 }
1248
1249 fs = VTOI(ap->a_vp)->i_lfs;
1250 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1251
1252 switch (ap->a_command) {
1253 case LFCNSEGWAITALL:
1254 fsidp = NULL;
1255 /* FALLSTHROUGH */
1256 case LFCNSEGWAIT:
1257 tvp = (struct timeval *)ap->a_data;
1258 simple_lock(&fs->lfs_interlock);
1259 ++fs->lfs_sleepers;
1260 simple_unlock(&fs->lfs_interlock);
1261 VOP_UNLOCK(ap->a_vp, 0);
1262
1263 error = lfs_segwait(fsidp, tvp);
1264
1265 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1266 simple_lock(&fs->lfs_interlock);
1267 if (--fs->lfs_sleepers == 0)
1268 wakeup(&fs->lfs_sleepers);
1269 simple_unlock(&fs->lfs_interlock);
1270 return error;
1271
1272 case LFCNBMAPV:
1273 case LFCNMARKV:
1274 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1275 return (error);
1276 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1277
1278 blkcnt = blkvp.blkcnt;
1279 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1280 return (EINVAL);
1281 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1282 if ((error = copyin(blkvp.blkiov, blkiov,
1283 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1284 free(blkiov, M_SEGMENT);
1285 return error;
1286 }
1287
1288 simple_lock(&fs->lfs_interlock);
1289 ++fs->lfs_sleepers;
1290 simple_unlock(&fs->lfs_interlock);
1291 VOP_UNLOCK(ap->a_vp, 0);
1292 if (ap->a_command == LFCNBMAPV)
1293 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1294 else /* LFCNMARKV */
1295 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1296 if (error == 0)
1297 error = copyout(blkiov, blkvp.blkiov,
1298 blkcnt * sizeof(BLOCK_INFO));
1299 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1300 simple_lock(&fs->lfs_interlock);
1301 if (--fs->lfs_sleepers == 0)
1302 wakeup(&fs->lfs_sleepers);
1303 simple_unlock(&fs->lfs_interlock);
1304 free(blkiov, M_SEGMENT);
1305 return error;
1306
1307 case LFCNRECLAIM:
1308 /*
1309 * Flush dirops and write Ifile, allowing empty segments
1310 * to be immediately reclaimed.
1311 */
1312 off = fs->lfs_offset;
1313 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1314 lfs_flush_dirops(fs);
1315 LFS_CLEANERINFO(cip, fs, bp);
1316 oclean = cip->clean;
1317 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1318 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1319 lfs_segunlock(fs);
1320
1321 #ifdef DEBUG_LFS
1322 LFS_CLEANERINFO(cip, fs, bp);
1323 oclean = cip->clean;
1324 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1325 "%" PRId32 " segments (activesb %d)\n",
1326 fs->lfs_offset - off, cip->clean - oclean,
1327 fs->lfs_activesb);
1328 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1329 #endif
1330
1331 return 0;
1332
1333 default:
1334 return ufs_fcntl(v);
1335 }
1336 return 0;
1337 }
1338
1339 int
1340 lfs_getpages(void *v)
1341 {
1342 struct vop_getpages_args /* {
1343 struct vnode *a_vp;
1344 voff_t a_offset;
1345 struct vm_page **a_m;
1346 int *a_count;
1347 int a_centeridx;
1348 vm_prot_t a_access_type;
1349 int a_advice;
1350 int a_flags;
1351 } */ *ap = v;
1352
1353 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1354 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1355 return EPERM;
1356 }
1357 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1358 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1359 }
1360 return genfs_getpages(v);
1361 }
1362
1363 /*
1364 * Make sure that for all pages in every block in the given range,
1365 * either all are dirty or all are clean. If any of the pages
1366 * we've seen so far are dirty, put the vnode on the paging chain,
1367 * and mark it IN_PAGING.
1368 */
1369 static int
1370 check_dirty(struct lfs *fs, struct vnode *vp,
1371 off_t startoffset, off_t endoffset, off_t blkeof,
1372 int flags)
1373 {
1374 int by_list;
1375 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1376 struct lwp *l = curlwp ? curlwp : &lwp0;
1377 off_t soff;
1378 voff_t off;
1379 int i, dirty, tdirty, nonexistent, any_dirty;
1380 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1381
1382 top:
1383 by_list = (vp->v_uobj.uo_npages <=
1384 ((endoffset - startoffset) >> PAGE_SHIFT) *
1385 UVM_PAGE_HASH_PENALTY);
1386 any_dirty = 0;
1387
1388 if (by_list) {
1389 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1390 PHOLD(l);
1391 } else {
1392 soff = startoffset;
1393 }
1394 while (by_list || soff < MIN(blkeof, endoffset)) {
1395 if (by_list) {
1396 if (pages_per_block > 1) {
1397 while (curpg && (curpg->offset & fs->lfs_bmask))
1398 curpg = TAILQ_NEXT(curpg, listq);
1399 }
1400 if (curpg == NULL)
1401 break;
1402 soff = curpg->offset;
1403 }
1404
1405 /*
1406 * Mark all pages in extended range busy; find out if any
1407 * of them are dirty.
1408 */
1409 nonexistent = dirty = 0;
1410 for (i = 0; i == 0 || i < pages_per_block; i++) {
1411 if (by_list && pages_per_block <= 1) {
1412 pgs[i] = pg = curpg;
1413 } else {
1414 off = soff + (i << PAGE_SHIFT);
1415 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1416 if (pg == NULL) {
1417 ++nonexistent;
1418 continue;
1419 }
1420 }
1421 KASSERT(pg != NULL);
1422 while (pg->flags & PG_BUSY) {
1423 pg->flags |= PG_WANTED;
1424 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1425 "lfsput", 0);
1426 simple_lock(&vp->v_interlock);
1427 if (by_list) {
1428 if (i > 0)
1429 uvm_page_unbusy(pgs, i);
1430 goto top;
1431 }
1432 }
1433 pg->flags |= PG_BUSY;
1434 UVM_PAGE_OWN(pg, "lfs_putpages");
1435
1436 pmap_page_protect(pg, VM_PROT_NONE);
1437 tdirty = (pmap_clear_modify(pg) ||
1438 (pg->flags & PG_CLEAN) == 0);
1439 dirty += tdirty;
1440 }
1441 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1442 if (by_list) {
1443 curpg = TAILQ_NEXT(curpg, listq);
1444 } else {
1445 soff += fs->lfs_bsize;
1446 }
1447 continue;
1448 }
1449
1450 any_dirty += dirty;
1451 KASSERT(nonexistent == 0);
1452
1453 /*
1454 * If any are dirty make all dirty; unbusy them,
1455 * but if we were asked to clean, wire them so that
1456 * the pagedaemon doesn't bother us about them while
1457 * they're on their way to disk.
1458 */
1459 for (i = 0; i == 0 || i < pages_per_block; i++) {
1460 pg = pgs[i];
1461 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1462 if (dirty) {
1463 pg->flags &= ~PG_CLEAN;
1464 if (flags & PGO_FREE) {
1465 /* XXXUBC need better way to update */
1466 simple_lock(&lfs_subsys_lock);
1467 lfs_subsys_pages += MIN(1, pages_per_block);
1468 simple_unlock(&lfs_subsys_lock);
1469 /*
1470 * Wire the page so that
1471 * pdaemon doesn't see it again.
1472 */
1473 uvm_lock_pageq();
1474 uvm_pagewire(pg);
1475 uvm_unlock_pageq();
1476
1477 /* Suspended write flag */
1478 pg->flags |= PG_DELWRI;
1479 }
1480 }
1481 if (pg->flags & PG_WANTED)
1482 wakeup(pg);
1483 pg->flags &= ~(PG_WANTED|PG_BUSY);
1484 UVM_PAGE_OWN(pg, NULL);
1485 }
1486
1487 if (by_list) {
1488 curpg = TAILQ_NEXT(curpg, listq);
1489 } else {
1490 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1491 }
1492 }
1493 if (by_list) {
1494 PRELE(l);
1495 }
1496
1497 /*
1498 * If any pages were dirty, mark this inode as "pageout requested",
1499 * and put it on the paging queue.
1500 * XXXUBC locking (check locking on dchainhd too)
1501 */
1502 #ifdef notyet
1503 if (any_dirty) {
1504 if (!(ip->i_flags & IN_PAGING)) {
1505 ip->i_flags |= IN_PAGING;
1506 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1507 }
1508 }
1509 #endif
1510 return any_dirty;
1511 }
1512
1513 /*
1514 * lfs_putpages functions like genfs_putpages except that
1515 *
1516 * (1) It needs to bounds-check the incoming requests to ensure that
1517 * they are block-aligned; if they are not, expand the range and
1518 * do the right thing in case, e.g., the requested range is clean
1519 * but the expanded range is dirty.
1520 * (2) It needs to explicitly send blocks to be written when it is done.
1521 * VOP_PUTPAGES is not ever called with the seglock held, so
1522 * we simply take the seglock and let lfs_segunlock wait for us.
1523 * XXX Actually we can be called with the seglock held, if we have
1524 * XXX to flush a vnode while lfs_markv is in operation. As of this
1525 * XXX writing we panic in this case.
1526 *
1527 * Assumptions:
1528 *
1529 * (1) The caller does not hold any pages in this vnode busy. If it does,
1530 * there is a danger that when we expand the page range and busy the
1531 * pages we will deadlock.
1532 * (2) We are called with vp->v_interlock held; we must return with it
1533 * released.
1534 * (3) We don't absolutely have to free pages right away, provided that
1535 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1536 * us a request with PGO_FREE, we take the pages out of the paging
1537 * queue and wake up the writer, which will handle freeing them for us.
1538 *
1539 * We ensure that for any filesystem block, all pages for that
1540 * block are either resident or not, even if those pages are higher
1541 * than EOF; that means that we will be getting requests to free
1542 * "unused" pages above EOF all the time, and should ignore them.
1543 */
1544
1545 int
1546 lfs_putpages(void *v)
1547 {
1548 int error;
1549 struct vop_putpages_args /* {
1550 struct vnode *a_vp;
1551 voff_t a_offlo;
1552 voff_t a_offhi;
1553 int a_flags;
1554 } */ *ap = v;
1555 struct vnode *vp;
1556 struct inode *ip;
1557 struct lfs *fs;
1558 struct segment *sp;
1559 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1560 off_t off, max_endoffset;
1561 int pages_per_block;
1562 int s, sync, dirty, pagedaemon;
1563 struct vm_page *pg;
1564 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1565
1566 vp = ap->a_vp;
1567 ip = VTOI(vp);
1568 fs = ip->i_lfs;
1569 sync = (ap->a_flags & PGO_SYNCIO);
1570 pagedaemon = (curproc == uvm.pagedaemon_proc);
1571
1572 /* Putpages does nothing for metadata. */
1573 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1574 simple_unlock(&vp->v_interlock);
1575 return 0;
1576 }
1577
1578 /*
1579 * If there are no pages, don't do anything.
1580 */
1581 if (vp->v_uobj.uo_npages == 0) {
1582 s = splbio();
1583 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1584 (vp->v_flag & VONWORKLST)) {
1585 vp->v_flag &= ~VONWORKLST;
1586 LIST_REMOVE(vp, v_synclist);
1587 }
1588 splx(s);
1589 simple_unlock(&vp->v_interlock);
1590 return 0;
1591 }
1592
1593 blkeof = blkroundup(fs, ip->i_size);
1594
1595 /*
1596 * Ignore requests to free pages past EOF but in the same block
1597 * as EOF, unless the request is synchronous. (XXX why sync?)
1598 * XXXUBC Make these pages look "active" so the pagedaemon won't
1599 * XXXUBC bother us with them again.
1600 */
1601 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1602 origoffset = ap->a_offlo;
1603 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1604 pg = uvm_pagelookup(&vp->v_uobj, off);
1605 KASSERT(pg != NULL);
1606 while (pg->flags & PG_BUSY) {
1607 pg->flags |= PG_WANTED;
1608 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1609 "lfsput2", 0);
1610 simple_lock(&vp->v_interlock);
1611 }
1612 uvm_lock_pageq();
1613 uvm_pageactivate(pg);
1614 uvm_unlock_pageq();
1615 }
1616 ap->a_offlo = blkeof;
1617 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1618 simple_unlock(&vp->v_interlock);
1619 return 0;
1620 }
1621 }
1622
1623 /*
1624 * Extend page range to start and end at block boundaries.
1625 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1626 */
1627 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1628 origoffset = ap->a_offlo;
1629 origendoffset = ap->a_offhi;
1630 startoffset = origoffset & ~(fs->lfs_bmask);
1631 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1632 << fs->lfs_bshift;
1633
1634 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1635 endoffset = max_endoffset;
1636 origendoffset = endoffset;
1637 } else {
1638 origendoffset = round_page(ap->a_offhi);
1639 endoffset = round_page(blkroundup(fs, origendoffset));
1640 }
1641
1642 KASSERT(startoffset > 0 || endoffset >= startoffset);
1643 if (startoffset == endoffset) {
1644 /* Nothing to do, why were we called? */
1645 simple_unlock(&vp->v_interlock);
1646 #ifdef DEBUG
1647 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1648 startoffset);
1649 #endif
1650 return 0;
1651 }
1652
1653 ap->a_offlo = startoffset;
1654 ap->a_offhi = endoffset;
1655
1656 if (!(ap->a_flags & PGO_CLEANIT))
1657 return genfs_putpages(v);
1658
1659 /*
1660 * Make sure that all pages in any given block are dirty, or
1661 * none of them are. Find out if any of the pages we've been
1662 * asked about are dirty. If none are dirty, send them on
1663 * through genfs_putpages(), albeit with adjusted offsets.
1664 * XXXUBC I am assuming here that they can't be dirtied in
1665 * XXXUBC the meantime, but I bet that's wrong.
1666 */
1667 dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags);
1668 if (!dirty)
1669 return genfs_putpages(v);
1670
1671 /*
1672 * Dirty and asked to clean.
1673 *
1674 * Pagedaemon can't actually write LFS pages; wake up
1675 * the writer to take care of that. The writer will
1676 * notice the pager inode queue and act on that.
1677 */
1678 if (pagedaemon) {
1679 ++fs->lfs_pdflush;
1680 wakeup(&lfs_writer_daemon);
1681 simple_unlock(&vp->v_interlock);
1682 return EWOULDBLOCK;
1683 }
1684
1685 /*
1686 * If this is a file created in a recent dirop, we can't flush its
1687 * inode until the dirop is complete. Drain dirops, then flush the
1688 * filesystem (taking care of any other pending dirops while we're
1689 * at it).
1690 */
1691 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1692 (vp->v_flag & VDIROP)) {
1693 int locked;
1694
1695 /* printf("putpages to clean VDIROP, flushing\n"); */
1696 while (fs->lfs_dirops > 0) {
1697 ++fs->lfs_diropwait;
1698 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1699 --fs->lfs_diropwait;
1700 }
1701 ++fs->lfs_writer;
1702 locked = VOP_ISLOCKED(vp) && /* XXX */
1703 vp->v_lock.lk_lockholder == curproc->p_pid;
1704 if (locked)
1705 VOP_UNLOCK(vp, 0);
1706 simple_unlock(&vp->v_interlock);
1707
1708 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1709
1710 simple_lock(&vp->v_interlock);
1711 if (locked)
1712 VOP_LOCK(vp, LK_EXCLUSIVE);
1713 if (--fs->lfs_writer == 0)
1714 wakeup(&fs->lfs_dirops);
1715
1716 /* XXX the flush should have taken care of this one too! */
1717 }
1718
1719
1720 /*
1721 * This is it. We are going to write some pages. From here on
1722 * down it's all just mechanics.
1723 *
1724 * If there are more than one page per block, we don't want to get
1725 * caught locking them backwards; so set PGO_BUSYFAIL to avoid
1726 * deadlocks. Also, don't let genfs_putpages wait;
1727 * lfs_segunlock will wait for us, if need be.
1728 */
1729 ap->a_flags &= ~PGO_SYNCIO;
1730 if (pages_per_block > 1)
1731 ap->a_flags |= PGO_BUSYFAIL;
1732
1733 /*
1734 * If we've already got the seglock, flush the node and return.
1735 * The FIP has already been set up for us by lfs_writefile,
1736 * and FIP cleanup and lfs_updatemeta will also be done there,
1737 * unless genfs_putpages returns EDEADLK; then we must flush
1738 * what we have, and correct FIP and segment header accounting.
1739 */
1740 if (ap->a_flags & PGO_LOCKED) {
1741 sp = fs->lfs_sp;
1742 sp->vp = vp;
1743
1744 while ((error = genfs_putpages(v)) == EDEADLK) {
1745 #ifdef DEBUG_LFS
1746 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1747 " ino %d off %x (seg %d)\n",
1748 ip->i_number, fs->lfs_offset,
1749 dtosn(fs, fs->lfs_offset));
1750 #endif
1751 /* If nothing to write, short-circuit */
1752 if (sp->cbpp - sp->bpp == 1) {
1753 preempt(NULL);
1754 simple_lock(&vp->v_interlock);
1755 continue;
1756 }
1757 /* Write gathered pages */
1758 lfs_updatemeta(sp);
1759 (void) lfs_writeseg(fs, sp);
1760
1761 /* Reinitialize brand new FIP and add us to it */
1762 sp->vp = vp;
1763 sp->fip->fi_version = ip->i_gen;
1764 sp->fip->fi_ino = ip->i_number;
1765 /* Add us to the new segment summary. */
1766 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1767 sp->sum_bytes_left -=
1768 sizeof(struct finfo) - sizeof(int32_t);
1769
1770 /* Give the write a chance to complete */
1771 preempt(NULL);
1772 simple_lock(&vp->v_interlock);
1773 }
1774 return error;
1775 }
1776
1777 simple_unlock(&vp->v_interlock);
1778 /*
1779 * Take the seglock, because we are going to be writing pages.
1780 */
1781 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1782 return error;
1783
1784 /*
1785 * VOP_PUTPAGES should not be called while holding the seglock.
1786 * XXXUBC fix lfs_markv, or do this properly.
1787 */
1788 /* KASSERT(fs->lfs_seglock == 1); */
1789
1790 /*
1791 * We assume we're being called with sp->fip pointing at blank space.
1792 * Account for a new FIP in the segment header, and set sp->vp.
1793 * (This should duplicate the setup at the top of lfs_writefile().)
1794 */
1795 sp = fs->lfs_sp;
1796 if (sp->seg_bytes_left < fs->lfs_bsize ||
1797 sp->sum_bytes_left < sizeof(struct finfo))
1798 (void) lfs_writeseg(fs, fs->lfs_sp);
1799
1800 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1801 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1802 sp->vp = vp;
1803
1804 if (vp->v_flag & VDIROP)
1805 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1806
1807 sp->fip->fi_nblocks = 0;
1808 sp->fip->fi_ino = ip->i_number;
1809 sp->fip->fi_version = ip->i_gen;
1810
1811 /*
1812 * Loop through genfs_putpages until all pages are gathered.
1813 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1814 */
1815 simple_lock(&vp->v_interlock);
1816 while ((error = genfs_putpages(v)) == EDEADLK) {
1817 #ifdef DEBUG_LFS
1818 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1819 " ino %d off %x (seg %d)\n",
1820 ip->i_number, fs->lfs_offset,
1821 dtosn(fs, fs->lfs_offset));
1822 #endif
1823 /* If nothing to write, short-circuit */
1824 if (sp->cbpp - sp->bpp == 1) {
1825 preempt(NULL);
1826 simple_lock(&vp->v_interlock);
1827 continue;
1828 }
1829 /* Write gathered pages */
1830 lfs_updatemeta(sp);
1831 (void) lfs_writeseg(fs, sp);
1832
1833 /*
1834 * Reinitialize brand new FIP and add us to it.
1835 * (This should duplicate the fixup in lfs_gatherpages().)
1836 */
1837 sp->vp = vp;
1838 sp->fip->fi_version = ip->i_gen;
1839 sp->fip->fi_ino = ip->i_number;
1840 /* Add us to the new segment summary. */
1841 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1842 sp->sum_bytes_left -=
1843 sizeof(struct finfo) - sizeof(int32_t);
1844
1845 /* Give the write a chance to complete */
1846 preempt(NULL);
1847 simple_lock(&vp->v_interlock);
1848 }
1849
1850 /*
1851 * Blocks are now gathered into a segment waiting to be written.
1852 * All that's left to do is update metadata, and write them.
1853 */
1854 lfs_updatemeta(fs->lfs_sp);
1855 fs->lfs_sp->vp = NULL;
1856 /*
1857 * Clean up FIP, since we're done writing this file.
1858 * This should duplicate cleanup at the end of lfs_writefile().
1859 */
1860 if (sp->fip->fi_nblocks != 0) {
1861 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1862 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1863 sp->start_lbp = &sp->fip->fi_blocks[0];
1864 } else {
1865 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1866 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1867 }
1868 lfs_writeseg(fs, fs->lfs_sp);
1869
1870 /*
1871 * XXX - with the malloc/copy writeseg, the pages are freed by now
1872 * even if we don't wait (e.g. if we hold a nested lock). This
1873 * will not be true if we stop using malloc/copy.
1874 */
1875 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1876 lfs_segunlock(fs);
1877
1878 /*
1879 * Wait for v_numoutput to drop to zero. The seglock should
1880 * take care of this, but there is a slight possibility that
1881 * aiodoned might not have got around to our buffers yet.
1882 */
1883 if (sync) {
1884 int s;
1885
1886 s = splbio();
1887 simple_lock(&global_v_numoutput_slock);
1888 while (vp->v_numoutput > 0) {
1889 #ifdef DEBUG
1890 printf("ino %d sleeping on num %d\n",
1891 ip->i_number, vp->v_numoutput);
1892 #endif
1893 vp->v_flag |= VBWAIT;
1894 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1895 &global_v_numoutput_slock);
1896 }
1897 simple_unlock(&global_v_numoutput_slock);
1898 splx(s);
1899 }
1900 return error;
1901 }
1902
1903 /*
1904 * Return the last logical file offset that should be written for this file
1905 * if we're doing a write that ends at "size". If writing, we need to know
1906 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1907 * to know about entire blocks.
1908 */
1909 void
1910 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1911 {
1912 struct inode *ip = VTOI(vp);
1913 struct lfs *fs = ip->i_lfs;
1914 daddr_t olbn, nlbn;
1915
1916 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1917 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1918 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1919
1920 olbn = lblkno(fs, ip->i_size);
1921 nlbn = lblkno(fs, size);
1922 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1923 *eobp = fragroundup(fs, size);
1924 } else {
1925 *eobp = blkroundup(fs, size);
1926 }
1927 }
1928
1929 #ifdef DEBUG
1930 void lfs_dump_vop(void *);
1931
1932 void
1933 lfs_dump_vop(void *v)
1934 {
1935 struct vop_putpages_args /* {
1936 struct vnode *a_vp;
1937 voff_t a_offlo;
1938 voff_t a_offhi;
1939 int a_flags;
1940 } */ *ap = v;
1941
1942 vfs_vnode_print(ap->a_vp, 0, printf);
1943 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1944 }
1945 #endif
1946
1947 int
1948 lfs_mmap(void *v)
1949 {
1950 struct vop_mmap_args /* {
1951 const struct vnodeop_desc *a_desc;
1952 struct vnode *a_vp;
1953 int a_fflags;
1954 struct ucred *a_cred;
1955 struct proc *a_p;
1956 } */ *ap = v;
1957
1958 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1959 return EOPNOTSUPP;
1960 return ufs_mmap(v);
1961 }
1962