lfs_vnops.c revision 1.106 1 /* $NetBSD: lfs_vnops.c,v 1.106 2003/05/07 18:49:29 ragge Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.106 2003/05/07 18:49:29 ragge Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109 extern int lfs_subsys_pages;
110 extern int lfs_dirvcount;
111 extern struct simplelock lfs_subsys_lock;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
157 { &vop_valloc_desc, lfs_valloc }, /* valloc */
158 { &vop_balloc_desc, lfs_balloc }, /* balloc */
159 { &vop_vfree_desc, lfs_vfree }, /* vfree */
160 { &vop_truncate_desc, lfs_truncate }, /* truncate */
161 { &vop_update_desc, lfs_update }, /* update */
162 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
163 { &vop_getpages_desc, lfs_getpages }, /* getpages */
164 { &vop_putpages_desc, lfs_putpages }, /* putpages */
165 { NULL, NULL }
166 };
167 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
168 { &lfs_vnodeop_p, lfs_vnodeop_entries };
169
170 int (**lfs_specop_p)(void *);
171 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
172 { &vop_default_desc, vn_default_error },
173 { &vop_lookup_desc, spec_lookup }, /* lookup */
174 { &vop_create_desc, spec_create }, /* create */
175 { &vop_mknod_desc, spec_mknod }, /* mknod */
176 { &vop_open_desc, spec_open }, /* open */
177 { &vop_close_desc, lfsspec_close }, /* close */
178 { &vop_access_desc, ufs_access }, /* access */
179 { &vop_getattr_desc, lfs_getattr }, /* getattr */
180 { &vop_setattr_desc, lfs_setattr }, /* setattr */
181 { &vop_read_desc, ufsspec_read }, /* read */
182 { &vop_write_desc, ufsspec_write }, /* write */
183 { &vop_lease_desc, spec_lease_check }, /* lease */
184 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
185 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
186 { &vop_poll_desc, spec_poll }, /* poll */
187 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
188 { &vop_revoke_desc, spec_revoke }, /* revoke */
189 { &vop_mmap_desc, spec_mmap }, /* mmap */
190 { &vop_fsync_desc, spec_fsync }, /* fsync */
191 { &vop_seek_desc, spec_seek }, /* seek */
192 { &vop_remove_desc, spec_remove }, /* remove */
193 { &vop_link_desc, spec_link }, /* link */
194 { &vop_rename_desc, spec_rename }, /* rename */
195 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
196 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
197 { &vop_symlink_desc, spec_symlink }, /* symlink */
198 { &vop_readdir_desc, spec_readdir }, /* readdir */
199 { &vop_readlink_desc, spec_readlink }, /* readlink */
200 { &vop_abortop_desc, spec_abortop }, /* abortop */
201 { &vop_inactive_desc, lfs_inactive }, /* inactive */
202 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
203 { &vop_lock_desc, ufs_lock }, /* lock */
204 { &vop_unlock_desc, ufs_unlock }, /* unlock */
205 { &vop_bmap_desc, spec_bmap }, /* bmap */
206 { &vop_strategy_desc, spec_strategy }, /* strategy */
207 { &vop_print_desc, ufs_print }, /* print */
208 { &vop_islocked_desc, ufs_islocked }, /* islocked */
209 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
210 { &vop_advlock_desc, spec_advlock }, /* advlock */
211 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
212 { &vop_valloc_desc, spec_valloc }, /* valloc */
213 { &vop_vfree_desc, lfs_vfree }, /* vfree */
214 { &vop_truncate_desc, spec_truncate }, /* truncate */
215 { &vop_update_desc, lfs_update }, /* update */
216 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
217 { &vop_getpages_desc, spec_getpages }, /* getpages */
218 { &vop_putpages_desc, spec_putpages }, /* putpages */
219 { NULL, NULL }
220 };
221 const struct vnodeopv_desc lfs_specop_opv_desc =
222 { &lfs_specop_p, lfs_specop_entries };
223
224 int (**lfs_fifoop_p)(void *);
225 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
226 { &vop_default_desc, vn_default_error },
227 { &vop_lookup_desc, fifo_lookup }, /* lookup */
228 { &vop_create_desc, fifo_create }, /* create */
229 { &vop_mknod_desc, fifo_mknod }, /* mknod */
230 { &vop_open_desc, fifo_open }, /* open */
231 { &vop_close_desc, lfsfifo_close }, /* close */
232 { &vop_access_desc, ufs_access }, /* access */
233 { &vop_getattr_desc, lfs_getattr }, /* getattr */
234 { &vop_setattr_desc, lfs_setattr }, /* setattr */
235 { &vop_read_desc, ufsfifo_read }, /* read */
236 { &vop_write_desc, ufsfifo_write }, /* write */
237 { &vop_lease_desc, fifo_lease_check }, /* lease */
238 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
239 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
240 { &vop_poll_desc, fifo_poll }, /* poll */
241 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
242 { &vop_revoke_desc, fifo_revoke }, /* revoke */
243 { &vop_mmap_desc, fifo_mmap }, /* mmap */
244 { &vop_fsync_desc, fifo_fsync }, /* fsync */
245 { &vop_seek_desc, fifo_seek }, /* seek */
246 { &vop_remove_desc, fifo_remove }, /* remove */
247 { &vop_link_desc, fifo_link }, /* link */
248 { &vop_rename_desc, fifo_rename }, /* rename */
249 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
250 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
251 { &vop_symlink_desc, fifo_symlink }, /* symlink */
252 { &vop_readdir_desc, fifo_readdir }, /* readdir */
253 { &vop_readlink_desc, fifo_readlink }, /* readlink */
254 { &vop_abortop_desc, fifo_abortop }, /* abortop */
255 { &vop_inactive_desc, lfs_inactive }, /* inactive */
256 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
257 { &vop_lock_desc, ufs_lock }, /* lock */
258 { &vop_unlock_desc, ufs_unlock }, /* unlock */
259 { &vop_bmap_desc, fifo_bmap }, /* bmap */
260 { &vop_strategy_desc, fifo_strategy }, /* strategy */
261 { &vop_print_desc, ufs_print }, /* print */
262 { &vop_islocked_desc, ufs_islocked }, /* islocked */
263 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
264 { &vop_advlock_desc, fifo_advlock }, /* advlock */
265 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
266 { &vop_valloc_desc, fifo_valloc }, /* valloc */
267 { &vop_vfree_desc, lfs_vfree }, /* vfree */
268 { &vop_truncate_desc, fifo_truncate }, /* truncate */
269 { &vop_update_desc, lfs_update }, /* update */
270 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
271 { &vop_putpages_desc, fifo_putpages }, /* putpages */
272 { NULL, NULL }
273 };
274 const struct vnodeopv_desc lfs_fifoop_opv_desc =
275 { &lfs_fifoop_p, lfs_fifoop_entries };
276
277 /*
278 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
279 */
280 void
281 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
282 {
283 LFS_ITIMES(ip, acc, mod, cre);
284 }
285
286 #define LFS_READWRITE
287 #include <ufs/ufs/ufs_readwrite.c>
288 #undef LFS_READWRITE
289
290 /*
291 * Synch an open file.
292 */
293 /* ARGSUSED */
294 int
295 lfs_fsync(void *v)
296 {
297 struct vop_fsync_args /* {
298 struct vnode *a_vp;
299 struct ucred *a_cred;
300 int a_flags;
301 off_t offlo;
302 off_t offhi;
303 struct proc *a_p;
304 } */ *ap = v;
305 struct vnode *vp = ap->a_vp;
306 int error, wait;
307
308 /*
309 * Trickle sync checks for need to do a checkpoint after possible
310 * activity from the pagedaemon.
311 */
312 if (ap->a_flags & FSYNC_LAZY) {
313 wakeup(&lfs_writer_daemon);
314 return 0;
315 }
316
317 wait = (ap->a_flags & FSYNC_WAIT);
318 simple_lock(&vp->v_interlock);
319 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
320 round_page(ap->a_offhi),
321 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
322 if (error)
323 return error;
324 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
325 if (wait && !VPISEMPTY(vp))
326 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
327
328 return error;
329 }
330
331 /*
332 * Take IN_ADIROP off, then call ufs_inactive.
333 */
334 int
335 lfs_inactive(void *v)
336 {
337 struct vop_inactive_args /* {
338 struct vnode *a_vp;
339 struct proc *a_p;
340 } */ *ap = v;
341
342 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
343
344 lfs_unmark_vnode(ap->a_vp);
345
346 /*
347 * The Ifile is only ever inactivated on unmount.
348 * Streamline this process by not giving it more dirty blocks.
349 */
350 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
351 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
352 VOP_UNLOCK(ap->a_vp, 0);
353 return 0;
354 }
355
356 return ufs_inactive(v);
357 }
358
359 /*
360 * These macros are used to bracket UFS directory ops, so that we can
361 * identify all the pages touched during directory ops which need to
362 * be ordered and flushed atomically, so that they may be recovered.
363 */
364 /*
365 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
366 * the cache from reclaiming them while a dirop is in progress, we must
367 * also manage the number of nodes so marked (otherwise we can run out).
368 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
369 * is decremented during segment write, when VDIROP is taken off.
370 */
371 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
372 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
373 static int lfs_set_dirop(struct vnode *, struct vnode *);
374 extern int lfs_dirvcount;
375 extern int lfs_do_flush;
376
377 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
378
379 static int
380 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
381 {
382 struct lfs *fs;
383 int error;
384
385 KASSERT(VOP_ISLOCKED(vp));
386 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
387
388 fs = VTOI(vp)->i_lfs;
389 /*
390 * We might need one directory block plus supporting indirect blocks,
391 * plus an inode block and ifile page for the new vnode.
392 */
393 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
394 return (error);
395
396 if (fs->lfs_dirops == 0)
397 lfs_check(vp, LFS_UNUSED_LBN, 0);
398 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
399 if (fs->lfs_writer)
400 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
401 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
402 wakeup(&lfs_writer_daemon);
403 preempt(NULL);
404 }
405
406 if (lfs_dirvcount > LFS_MAX_DIROP) {
407 #ifdef DEBUG_LFS
408 printf("lfs_set_dirop: sleeping with dirops=%d, "
409 "dirvcount=%d\n", fs->lfs_dirops,
410 lfs_dirvcount);
411 #endif
412 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
413 "lfs_maxdirop", 0)) != 0) {
414 goto unreserve;
415 }
416 }
417 }
418 ++fs->lfs_dirops;
419 fs->lfs_doifile = 1;
420
421 /* Hold a reference so SET_ENDOP will be happy */
422 vref(vp);
423 if (vp2)
424 vref(vp2);
425
426 return 0;
427
428 unreserve:
429 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
430 return error;
431 }
432
433 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
434 #define SET_ENDOP2(fs, vp, vp2, str) { \
435 --(fs)->lfs_dirops; \
436 if (!(fs)->lfs_dirops) { \
437 if ((fs)->lfs_nadirop) { \
438 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
439 (str), (fs)->lfs_nadirop); \
440 } \
441 wakeup(&(fs)->lfs_writer); \
442 lfs_check((vp),LFS_UNUSED_LBN,0); \
443 } \
444 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
445 vrele(vp); \
446 if (vp2) \
447 vrele(vp2); \
448 }
449
450 #define MARK_VNODE(dvp) do { \
451 struct inode *_ip = VTOI(dvp); \
452 struct lfs *_fs = _ip->i_lfs; \
453 \
454 if (!((dvp)->v_flag & VDIROP)) { \
455 (void)lfs_vref(dvp); \
456 ++lfs_dirvcount; \
457 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
458 } \
459 (dvp)->v_flag |= VDIROP; \
460 if (!(_ip->i_flag & IN_ADIROP)) { \
461 ++_fs->lfs_nadirop; \
462 } \
463 _ip->i_flag |= IN_ADIROP; \
464 } while (0)
465
466 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
467
468 void lfs_unmark_vnode(struct vnode *vp)
469 {
470 struct inode *ip;
471
472 ip = VTOI(vp);
473
474 if (ip->i_flag & IN_ADIROP)
475 --ip->i_lfs->lfs_nadirop;
476 ip->i_flag &= ~IN_ADIROP;
477 }
478
479 int
480 lfs_symlink(void *v)
481 {
482 struct vop_symlink_args /* {
483 struct vnode *a_dvp;
484 struct vnode **a_vpp;
485 struct componentname *a_cnp;
486 struct vattr *a_vap;
487 char *a_target;
488 } */ *ap = v;
489 int error;
490
491 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
492 vput(ap->a_dvp);
493 return error;
494 }
495 MARK_VNODE(ap->a_dvp);
496 error = ufs_symlink(ap);
497 UNMARK_VNODE(ap->a_dvp);
498 if (*(ap->a_vpp))
499 UNMARK_VNODE(*(ap->a_vpp));
500 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
501 return (error);
502 }
503
504 int
505 lfs_mknod(void *v)
506 {
507 struct vop_mknod_args /* {
508 struct vnode *a_dvp;
509 struct vnode **a_vpp;
510 struct componentname *a_cnp;
511 struct vattr *a_vap;
512 } */ *ap = v;
513 struct vattr *vap = ap->a_vap;
514 struct vnode **vpp = ap->a_vpp;
515 struct inode *ip;
516 int error;
517 struct mount *mp;
518 ino_t ino;
519
520 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
521 vput(ap->a_dvp);
522 return error;
523 }
524 MARK_VNODE(ap->a_dvp);
525 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
526 ap->a_dvp, vpp, ap->a_cnp);
527 UNMARK_VNODE(ap->a_dvp);
528 if (*(ap->a_vpp))
529 UNMARK_VNODE(*(ap->a_vpp));
530
531 /* Either way we're done with the dirop at this point */
532 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
533
534 if (error)
535 return (error);
536
537 ip = VTOI(*vpp);
538 mp = (*vpp)->v_mount;
539 ino = ip->i_number;
540 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
541 if (vap->va_rdev != VNOVAL) {
542 /*
543 * Want to be able to use this to make badblock
544 * inodes, so don't truncate the dev number.
545 */
546 #if 0
547 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
548 UFS_MPNEEDSWAP((*vpp)->v_mount));
549 #else
550 ip->i_ffs1_rdev = vap->va_rdev;
551 #endif
552 }
553 /*
554 * Call fsync to write the vnode so that we don't have to deal with
555 * flushing it when it's marked VDIROP|VXLOCK.
556 *
557 * XXX KS - If we can't flush we also can't call vgone(), so must
558 * return. But, that leaves this vnode in limbo, also not good.
559 * Can this ever happen (barring hardware failure)?
560 */
561 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
562 curproc)) != 0) {
563 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
564 VTOI(*vpp)->i_number);
565 return (error);
566 }
567 /*
568 * Remove vnode so that it will be reloaded by VFS_VGET and
569 * checked to see if it is an alias of an existing entry in
570 * the inode cache.
571 */
572 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
573 VOP_UNLOCK(*vpp, 0);
574 lfs_vunref(*vpp);
575 (*vpp)->v_type = VNON;
576 vgone(*vpp);
577 error = VFS_VGET(mp, ino, vpp);
578 if (error != 0) {
579 *vpp = NULL;
580 return (error);
581 }
582 return (0);
583 }
584
585 int
586 lfs_create(void *v)
587 {
588 struct vop_create_args /* {
589 struct vnode *a_dvp;
590 struct vnode **a_vpp;
591 struct componentname *a_cnp;
592 struct vattr *a_vap;
593 } */ *ap = v;
594 int error;
595
596 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
597 vput(ap->a_dvp);
598 return error;
599 }
600 MARK_VNODE(ap->a_dvp);
601 error = ufs_create(ap);
602 UNMARK_VNODE(ap->a_dvp);
603 if (*(ap->a_vpp))
604 UNMARK_VNODE(*(ap->a_vpp));
605 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
606 return (error);
607 }
608
609 int
610 lfs_mkdir(void *v)
611 {
612 struct vop_mkdir_args /* {
613 struct vnode *a_dvp;
614 struct vnode **a_vpp;
615 struct componentname *a_cnp;
616 struct vattr *a_vap;
617 } */ *ap = v;
618 int error;
619
620 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
621 vput(ap->a_dvp);
622 return error;
623 }
624 MARK_VNODE(ap->a_dvp);
625 error = ufs_mkdir(ap);
626 UNMARK_VNODE(ap->a_dvp);
627 if (*(ap->a_vpp))
628 UNMARK_VNODE(*(ap->a_vpp));
629 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
630 return (error);
631 }
632
633 int
634 lfs_remove(void *v)
635 {
636 struct vop_remove_args /* {
637 struct vnode *a_dvp;
638 struct vnode *a_vp;
639 struct componentname *a_cnp;
640 } */ *ap = v;
641 struct vnode *dvp, *vp;
642 int error;
643
644 dvp = ap->a_dvp;
645 vp = ap->a_vp;
646 if ((error = SET_DIROP2(dvp, vp)) != 0) {
647 if (dvp == vp)
648 vrele(vp);
649 else
650 vput(vp);
651 vput(dvp);
652 return error;
653 }
654 MARK_VNODE(dvp);
655 MARK_VNODE(vp);
656 error = ufs_remove(ap);
657 UNMARK_VNODE(dvp);
658 UNMARK_VNODE(vp);
659
660 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
661 return (error);
662 }
663
664 int
665 lfs_rmdir(void *v)
666 {
667 struct vop_rmdir_args /* {
668 struct vnodeop_desc *a_desc;
669 struct vnode *a_dvp;
670 struct vnode *a_vp;
671 struct componentname *a_cnp;
672 } */ *ap = v;
673 struct vnode *vp;
674 int error;
675
676 vp = ap->a_vp;
677 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
678 vrele(ap->a_dvp);
679 if (ap->a_vp != ap->a_dvp)
680 VOP_UNLOCK(ap->a_dvp, 0);
681 vput(vp);
682 return error;
683 }
684 MARK_VNODE(ap->a_dvp);
685 MARK_VNODE(vp);
686 error = ufs_rmdir(ap);
687 UNMARK_VNODE(ap->a_dvp);
688 UNMARK_VNODE(vp);
689
690 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
691 return (error);
692 }
693
694 int
695 lfs_link(void *v)
696 {
697 struct vop_link_args /* {
698 struct vnode *a_dvp;
699 struct vnode *a_vp;
700 struct componentname *a_cnp;
701 } */ *ap = v;
702 int error;
703
704 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
705 vput(ap->a_dvp);
706 return error;
707 }
708 MARK_VNODE(ap->a_dvp);
709 error = ufs_link(ap);
710 UNMARK_VNODE(ap->a_dvp);
711 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
712 return (error);
713 }
714
715 int
716 lfs_rename(void *v)
717 {
718 struct vop_rename_args /* {
719 struct vnode *a_fdvp;
720 struct vnode *a_fvp;
721 struct componentname *a_fcnp;
722 struct vnode *a_tdvp;
723 struct vnode *a_tvp;
724 struct componentname *a_tcnp;
725 } */ *ap = v;
726 struct vnode *tvp, *fvp, *tdvp, *fdvp;
727 struct componentname *tcnp, *fcnp;
728 int error;
729 struct lfs *fs;
730
731 fs = VTOI(ap->a_fdvp)->i_lfs;
732 tvp = ap->a_tvp;
733 tdvp = ap->a_tdvp;
734 tcnp = ap->a_tcnp;
735 fvp = ap->a_fvp;
736 fdvp = ap->a_fdvp;
737 fcnp = ap->a_fcnp;
738
739 /*
740 * Check for cross-device rename.
741 * If it is, we don't want to set dirops, just error out.
742 * (In particular note that MARK_VNODE(tdvp) will DTWT on
743 * a cross-device rename.)
744 *
745 * Copied from ufs_rename.
746 */
747 if ((fvp->v_mount != tdvp->v_mount) ||
748 (tvp && (fvp->v_mount != tvp->v_mount))) {
749 error = EXDEV;
750 goto errout;
751 }
752
753 /*
754 * Check to make sure we're not renaming a vnode onto itself
755 * (deleting a hard link by renaming one name onto another);
756 * if we are we can't recursively call VOP_REMOVE since that
757 * would leave us with an unaccounted-for number of live dirops.
758 *
759 * Inline the relevant section of ufs_rename here, *before*
760 * calling SET_DIROP2.
761 */
762 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
763 (VTOI(tdvp)->i_flags & APPEND))) {
764 error = EPERM;
765 goto errout;
766 }
767 if (fvp == tvp) {
768 if (fvp->v_type == VDIR) {
769 error = EINVAL;
770 goto errout;
771 }
772
773 /* Release destination completely. */
774 VOP_ABORTOP(tdvp, tcnp);
775 vput(tdvp);
776 vput(tvp);
777
778 /* Delete source. */
779 vrele(fvp);
780 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
781 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
782 fcnp->cn_nameiop = DELETE;
783 if ((error = relookup(fdvp, &fvp, fcnp))){
784 /* relookup blew away fdvp */
785 return (error);
786 }
787 return (VOP_REMOVE(fdvp, fvp, fcnp));
788 }
789
790 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
791 goto errout;
792 MARK_VNODE(fdvp);
793 MARK_VNODE(tdvp);
794 MARK_VNODE(fvp);
795 if (tvp) {
796 MARK_VNODE(tvp);
797 }
798
799 error = ufs_rename(ap);
800 UNMARK_VNODE(fdvp);
801 UNMARK_VNODE(tdvp);
802 UNMARK_VNODE(fvp);
803 if (tvp) {
804 UNMARK_VNODE(tvp);
805 }
806 SET_ENDOP2(fs, tdvp, tvp, "rename");
807 return (error);
808
809 errout:
810 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
811 if (tdvp == tvp)
812 vrele(tdvp);
813 else
814 vput(tdvp);
815 if (tvp)
816 vput(tvp);
817 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
818 vrele(fdvp);
819 vrele(fvp);
820 return (error);
821 }
822
823 /* XXX hack to avoid calling ITIMES in getattr */
824 int
825 lfs_getattr(void *v)
826 {
827 struct vop_getattr_args /* {
828 struct vnode *a_vp;
829 struct vattr *a_vap;
830 struct ucred *a_cred;
831 struct proc *a_p;
832 } */ *ap = v;
833 struct vnode *vp = ap->a_vp;
834 struct inode *ip = VTOI(vp);
835 struct vattr *vap = ap->a_vap;
836 struct lfs *fs = ip->i_lfs;
837 /*
838 * Copy from inode table
839 */
840 vap->va_fsid = ip->i_dev;
841 vap->va_fileid = ip->i_number;
842 vap->va_mode = ip->i_mode & ~IFMT;
843 vap->va_nlink = ip->i_nlink;
844 vap->va_uid = ip->i_uid;
845 vap->va_gid = ip->i_gid;
846 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
847 vap->va_size = vp->v_size;
848 vap->va_atime.tv_sec = ip->i_ffs1_atime;
849 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
850 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
851 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
852 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
853 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
854 vap->va_flags = ip->i_flags;
855 vap->va_gen = ip->i_gen;
856 /* this doesn't belong here */
857 if (vp->v_type == VBLK)
858 vap->va_blocksize = BLKDEV_IOSIZE;
859 else if (vp->v_type == VCHR)
860 vap->va_blocksize = MAXBSIZE;
861 else
862 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
863 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
864 vap->va_type = vp->v_type;
865 vap->va_filerev = ip->i_modrev;
866 return (0);
867 }
868
869 /*
870 * Check to make sure the inode blocks won't choke the buffer
871 * cache, then call ufs_setattr as usual.
872 */
873 int
874 lfs_setattr(void *v)
875 {
876 struct vop_getattr_args /* {
877 struct vnode *a_vp;
878 struct vattr *a_vap;
879 struct ucred *a_cred;
880 struct proc *a_p;
881 } */ *ap = v;
882 struct vnode *vp = ap->a_vp;
883
884 lfs_check(vp, LFS_UNUSED_LBN, 0);
885 return ufs_setattr(v);
886 }
887
888 /*
889 * Close called
890 *
891 * XXX -- we were using ufs_close, but since it updates the
892 * times on the inode, we might need to bump the uinodes
893 * count.
894 */
895 /* ARGSUSED */
896 int
897 lfs_close(void *v)
898 {
899 struct vop_close_args /* {
900 struct vnode *a_vp;
901 int a_fflag;
902 struct ucred *a_cred;
903 struct proc *a_p;
904 } */ *ap = v;
905 struct vnode *vp = ap->a_vp;
906 struct inode *ip = VTOI(vp);
907 struct timespec ts;
908
909 if (vp == ip->i_lfs->lfs_ivnode &&
910 vp->v_mount->mnt_flag & MNT_UNMOUNT)
911 return 0;
912
913 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
914 TIMEVAL_TO_TIMESPEC(&time, &ts);
915 LFS_ITIMES(ip, &ts, &ts, &ts);
916 }
917 return (0);
918 }
919
920 /*
921 * Close wrapper for special devices.
922 *
923 * Update the times on the inode then do device close.
924 */
925 int
926 lfsspec_close(void *v)
927 {
928 struct vop_close_args /* {
929 struct vnode *a_vp;
930 int a_fflag;
931 struct ucred *a_cred;
932 struct proc *a_p;
933 } */ *ap = v;
934 struct vnode *vp;
935 struct inode *ip;
936 struct timespec ts;
937
938 vp = ap->a_vp;
939 ip = VTOI(vp);
940 if (vp->v_usecount > 1) {
941 TIMEVAL_TO_TIMESPEC(&time, &ts);
942 LFS_ITIMES(ip, &ts, &ts, &ts);
943 }
944 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
945 }
946
947 /*
948 * Close wrapper for fifo's.
949 *
950 * Update the times on the inode then do device close.
951 */
952 int
953 lfsfifo_close(void *v)
954 {
955 struct vop_close_args /* {
956 struct vnode *a_vp;
957 int a_fflag;
958 struct ucred *a_cred;
959 struct proc *a_p;
960 } */ *ap = v;
961 struct vnode *vp;
962 struct inode *ip;
963 struct timespec ts;
964
965 vp = ap->a_vp;
966 ip = VTOI(vp);
967 if (ap->a_vp->v_usecount > 1) {
968 TIMEVAL_TO_TIMESPEC(&time, &ts);
969 LFS_ITIMES(ip, &ts, &ts, &ts);
970 }
971 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
972 }
973
974 /*
975 * Reclaim an inode so that it can be used for other purposes.
976 */
977 int lfs_no_inactive = 0;
978
979 int
980 lfs_reclaim(void *v)
981 {
982 struct vop_reclaim_args /* {
983 struct vnode *a_vp;
984 struct proc *a_p;
985 } */ *ap = v;
986 struct vnode *vp = ap->a_vp;
987 struct inode *ip = VTOI(vp);
988 int error;
989
990 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
991
992 LFS_CLR_UINO(ip, IN_ALLMOD);
993 if ((error = ufs_reclaim(vp, ap->a_p)))
994 return (error);
995 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
996 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
997 ip->inode_ext.lfs = NULL;
998 pool_put(&lfs_inode_pool, vp->v_data);
999 vp->v_data = NULL;
1000 return (0);
1001 }
1002
1003 /*
1004 * Read a block from a storage device.
1005 * In order to avoid reading blocks that are in the process of being
1006 * written by the cleaner---and hence are not mutexed by the normal
1007 * buffer cache / page cache mechanisms---check for collisions before
1008 * reading.
1009 *
1010 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1011 * the active cleaner test.
1012 *
1013 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1014 */
1015 int
1016 lfs_strategy(void *v)
1017 {
1018 struct vop_strategy_args /* {
1019 struct buf *a_bp;
1020 } */ *ap = v;
1021 struct buf *bp;
1022 struct lfs *fs;
1023 struct vnode *vp;
1024 struct inode *ip;
1025 daddr_t tbn;
1026 int i, sn, error, slept;
1027
1028 bp = ap->a_bp;
1029 vp = bp->b_vp;
1030 ip = VTOI(vp);
1031 fs = ip->i_lfs;
1032
1033 /* lfs uses its strategy routine only for read */
1034 KASSERT(bp->b_flags & B_READ);
1035
1036 if (vp->v_type == VBLK || vp->v_type == VCHR)
1037 panic("lfs_strategy: spec");
1038 KASSERT(bp->b_bcount != 0);
1039 if (bp->b_blkno == bp->b_lblkno) {
1040 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1041 NULL);
1042 if (error) {
1043 bp->b_error = error;
1044 bp->b_flags |= B_ERROR;
1045 biodone(bp);
1046 return (error);
1047 }
1048 if ((long)bp->b_blkno == -1) /* no valid data */
1049 clrbuf(bp);
1050 }
1051 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1052 biodone(bp);
1053 return (0);
1054 }
1055
1056 slept = 1;
1057 simple_lock(&fs->lfs_interlock);
1058 while (slept && fs->lfs_seglock) {
1059 simple_unlock(&fs->lfs_interlock);
1060 /*
1061 * Look through list of intervals.
1062 * There will only be intervals to look through
1063 * if the cleaner holds the seglock.
1064 * Since the cleaner is synchronous, we can trust
1065 * the list of intervals to be current.
1066 */
1067 tbn = dbtofsb(fs, bp->b_blkno);
1068 sn = dtosn(fs, tbn);
1069 slept = 0;
1070 for (i = 0; i < fs->lfs_cleanind; i++) {
1071 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1072 tbn >= fs->lfs_cleanint[i]) {
1073 #ifdef DEBUG_LFS
1074 printf("lfs_strategy: ino %d lbn %" PRId64
1075 " ind %d sn %d fsb %" PRIx32
1076 " given sn %d fsb %" PRIx64 "\n",
1077 ip->i_number, bp->b_lblkno, i,
1078 dtosn(fs, fs->lfs_cleanint[i]),
1079 fs->lfs_cleanint[i], sn, tbn);
1080 printf("lfs_strategy: sleeping on ino %d lbn %"
1081 PRId64 "\n", ip->i_number, bp->b_lblkno);
1082 #endif
1083 tsleep(&fs->lfs_seglock, PRIBIO+1,
1084 "lfs_strategy", 0);
1085 /* Things may be different now; start over. */
1086 slept = 1;
1087 break;
1088 }
1089 }
1090 simple_lock(&fs->lfs_interlock);
1091 }
1092 simple_unlock(&fs->lfs_interlock);
1093
1094 vp = ip->i_devvp;
1095 bp->b_dev = vp->v_rdev;
1096 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1097 return (0);
1098 }
1099
1100 static void
1101 lfs_flush_dirops(struct lfs *fs)
1102 {
1103 struct inode *ip, *nip;
1104 struct vnode *vp;
1105 extern int lfs_dostats;
1106 struct segment *sp;
1107 int needunlock;
1108
1109 if (fs->lfs_ronly)
1110 return;
1111
1112 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1113 return;
1114
1115 /* XXX simplelock fs->lfs_dirops */
1116 while (fs->lfs_dirops > 0) {
1117 ++fs->lfs_diropwait;
1118 tsleep(&fs->lfs_writer, PRIBIO+1, "pndirop", 0);
1119 --fs->lfs_diropwait;
1120 }
1121 /* disallow dirops during flush */
1122 fs->lfs_writer++;
1123
1124 if (lfs_dostats)
1125 ++lfs_stats.flush_invoked;
1126
1127 /*
1128 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1129 * Technically this is a checkpoint (the on-disk state is valid)
1130 * even though we are leaving out all the file data.
1131 */
1132 lfs_imtime(fs);
1133 lfs_seglock(fs, SEGM_CKP);
1134 sp = fs->lfs_sp;
1135
1136 /*
1137 * lfs_writevnodes, optimized to get dirops out of the way.
1138 * Only write dirops, and don't flush files' pages, only
1139 * blocks from the directories.
1140 *
1141 * We don't need to vref these files because they are
1142 * dirops and so hold an extra reference until the
1143 * segunlock clears them of that status.
1144 *
1145 * We don't need to check for IN_ADIROP because we know that
1146 * no dirops are active.
1147 *
1148 */
1149 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1150 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1151 vp = ITOV(ip);
1152
1153 /*
1154 * All writes to directories come from dirops; all
1155 * writes to files' direct blocks go through the page
1156 * cache, which we're not touching. Reads to files
1157 * and/or directories will not be affected by writing
1158 * directory blocks inodes and file inodes. So we don't
1159 * really need to lock. If we don't lock, though,
1160 * make sure that we don't clear IN_MODIFIED
1161 * unnecessarily.
1162 */
1163 if (vp->v_flag & VXLOCK)
1164 continue;
1165 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1166 LK_NOWAIT) == 0) {
1167 needunlock = 1;
1168 } else {
1169 printf("lfs_flush_dirops: flushing locked ino %d\n",
1170 VTOI(vp)->i_number);
1171 needunlock = 0;
1172 }
1173 if (vp->v_type != VREG &&
1174 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1175 lfs_writefile(fs, sp, vp);
1176 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1177 !(ip->i_flag & IN_ALLMOD)) {
1178 LFS_SET_UINO(ip, IN_MODIFIED);
1179 }
1180 }
1181 (void) lfs_writeinode(fs, sp, ip);
1182 if (needunlock)
1183 VOP_UNLOCK(vp, 0);
1184 else
1185 LFS_SET_UINO(ip, IN_MODIFIED);
1186 }
1187 /* We've written all the dirops there are */
1188 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1189 (void) lfs_writeseg(fs, sp);
1190 lfs_segunlock(fs);
1191
1192 if (--fs->lfs_writer == 0)
1193 wakeup(&fs->lfs_dirops);
1194 }
1195
1196 /*
1197 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1198 */
1199 int
1200 lfs_fcntl(void *v)
1201 {
1202 struct vop_fcntl_args /* {
1203 struct vnode *a_vp;
1204 u_long a_command;
1205 caddr_t a_data;
1206 int a_fflag;
1207 struct ucred *a_cred;
1208 struct proc *a_p;
1209 } */ *ap = v;
1210 struct timeval *tvp;
1211 BLOCK_INFO *blkiov;
1212 CLEANERINFO *cip;
1213 int blkcnt, error, oclean;
1214 struct lfs_fcntl_markv blkvp;
1215 fsid_t *fsidp;
1216 struct lfs *fs;
1217 struct buf *bp;
1218 daddr_t off;
1219
1220 /* Only respect LFS fcntls on fs root or Ifile */
1221 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1222 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1223 return ufs_fcntl(v);
1224 }
1225
1226 /* Avoid locking a draining lock */
1227 if (ap->a_vp->v_mount->mnt_flag & MNT_UNMOUNT) {
1228 return ESHUTDOWN;
1229 }
1230
1231 fs = VTOI(ap->a_vp)->i_lfs;
1232 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1233
1234 switch (ap->a_command) {
1235 case LFCNSEGWAITALL:
1236 fsidp = NULL;
1237 /* FALLSTHROUGH */
1238 case LFCNSEGWAIT:
1239 tvp = (struct timeval *)ap->a_data;
1240 simple_lock(&fs->lfs_interlock);
1241 ++fs->lfs_sleepers;
1242 simple_unlock(&fs->lfs_interlock);
1243 VOP_UNLOCK(ap->a_vp, 0);
1244
1245 error = lfs_segwait(fsidp, tvp);
1246
1247 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1248 simple_lock(&fs->lfs_interlock);
1249 if (--fs->lfs_sleepers == 0)
1250 wakeup(&fs->lfs_sleepers);
1251 simple_unlock(&fs->lfs_interlock);
1252 return error;
1253
1254 case LFCNBMAPV:
1255 case LFCNMARKV:
1256 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1257 return (error);
1258 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1259
1260 blkcnt = blkvp.blkcnt;
1261 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1262 return (EINVAL);
1263 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1264 if ((error = copyin(blkvp.blkiov, blkiov,
1265 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1266 free(blkiov, M_SEGMENT);
1267 return error;
1268 }
1269
1270 simple_lock(&fs->lfs_interlock);
1271 ++fs->lfs_sleepers;
1272 simple_unlock(&fs->lfs_interlock);
1273 VOP_UNLOCK(ap->a_vp, 0);
1274 if (ap->a_command == LFCNBMAPV)
1275 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1276 else /* LFCNMARKV */
1277 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1278 if (error == 0)
1279 error = copyout(blkiov, blkvp.blkiov,
1280 blkcnt * sizeof(BLOCK_INFO));
1281 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1282 simple_lock(&fs->lfs_interlock);
1283 if (--fs->lfs_sleepers == 0)
1284 wakeup(&fs->lfs_sleepers);
1285 simple_unlock(&fs->lfs_interlock);
1286 free(blkiov, M_SEGMENT);
1287 return error;
1288
1289 case LFCNRECLAIM:
1290 /*
1291 * Flush dirops and write Ifile, allowing empty segments
1292 * to be immediately reclaimed.
1293 */
1294 off = fs->lfs_offset;
1295 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1296 lfs_flush_dirops(fs);
1297 LFS_CLEANERINFO(cip, fs, bp);
1298 oclean = cip->clean;
1299 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1300 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1301 lfs_segunlock(fs);
1302
1303 #ifdef DEBUG_LFS
1304 LFS_CLEANERINFO(cip, fs, bp);
1305 oclean = cip->clean;
1306 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1307 "%" PRId32 " segments (activesb %d)\n",
1308 fs->lfs_offset - off, cip->clean - oclean,
1309 fs->lfs_activesb);
1310 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1311 #endif
1312
1313 return 0;
1314
1315 default:
1316 return ufs_fcntl(v);
1317 }
1318 return 0;
1319 }
1320
1321 int
1322 lfs_getpages(void *v)
1323 {
1324 struct vop_getpages_args /* {
1325 struct vnode *a_vp;
1326 voff_t a_offset;
1327 struct vm_page **a_m;
1328 int *a_count;
1329 int a_centeridx;
1330 vm_prot_t a_access_type;
1331 int a_advice;
1332 int a_flags;
1333 } */ *ap = v;
1334
1335 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1336 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1337 return EPERM;
1338 }
1339 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1340 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1341 }
1342 return genfs_getpages(v);
1343 }
1344
1345 /*
1346 * Make sure that for all pages in every block in the given range,
1347 * either all are dirty or all are clean. If any of the pages
1348 * we've seen so far are dirty, put the vnode on the paging chain,
1349 * and mark it IN_PAGING.
1350 *
1351 * If checkfirst != 0, don't check all the pages but return at the
1352 * first dirty page.
1353 */
1354 static int
1355 check_dirty(struct lfs *fs, struct vnode *vp,
1356 off_t startoffset, off_t endoffset, off_t blkeof,
1357 int flags, int checkfirst)
1358 {
1359 int by_list;
1360 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1361 struct lwp *l = curlwp ? curlwp : &lwp0;
1362 off_t soff;
1363 voff_t off;
1364 int i, dirty, tdirty, nonexistent, any_dirty;
1365 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1366
1367 top:
1368 by_list = (vp->v_uobj.uo_npages <=
1369 ((endoffset - startoffset) >> PAGE_SHIFT) *
1370 UVM_PAGE_HASH_PENALTY);
1371 any_dirty = 0;
1372
1373 if (by_list) {
1374 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1375 PHOLD(l);
1376 } else {
1377 soff = startoffset;
1378 }
1379 while (by_list || soff < MIN(blkeof, endoffset)) {
1380 if (by_list) {
1381 if (pages_per_block > 1) {
1382 while (curpg && (curpg->offset & fs->lfs_bmask))
1383 curpg = TAILQ_NEXT(curpg, listq);
1384 }
1385 if (curpg == NULL)
1386 break;
1387 soff = curpg->offset;
1388 }
1389
1390 /*
1391 * Mark all pages in extended range busy; find out if any
1392 * of them are dirty.
1393 */
1394 nonexistent = dirty = 0;
1395 for (i = 0; i == 0 || i < pages_per_block; i++) {
1396 if (by_list && pages_per_block <= 1) {
1397 pgs[i] = pg = curpg;
1398 } else {
1399 off = soff + (i << PAGE_SHIFT);
1400 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1401 if (pg == NULL) {
1402 ++nonexistent;
1403 continue;
1404 }
1405 }
1406 KASSERT(pg != NULL);
1407 while (pg->flags & PG_BUSY) {
1408 pg->flags |= PG_WANTED;
1409 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1410 "lfsput", 0);
1411 simple_lock(&vp->v_interlock);
1412 if (by_list) {
1413 if (i > 0)
1414 uvm_page_unbusy(pgs, i);
1415 goto top;
1416 }
1417 }
1418 pg->flags |= PG_BUSY;
1419 UVM_PAGE_OWN(pg, "lfs_putpages");
1420
1421 pmap_page_protect(pg, VM_PROT_NONE);
1422 tdirty = (pmap_clear_modify(pg) ||
1423 (pg->flags & PG_CLEAN) == 0);
1424 dirty += tdirty;
1425 }
1426 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1427 if (by_list) {
1428 curpg = TAILQ_NEXT(curpg, listq);
1429 } else {
1430 soff += fs->lfs_bsize;
1431 }
1432 continue;
1433 }
1434
1435 any_dirty += dirty;
1436 KASSERT(nonexistent == 0);
1437
1438 /*
1439 * If any are dirty make all dirty; unbusy them,
1440 * but if we were asked to clean, wire them so that
1441 * the pagedaemon doesn't bother us about them while
1442 * they're on their way to disk.
1443 */
1444 for (i = 0; i == 0 || i < pages_per_block; i++) {
1445 pg = pgs[i];
1446 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1447 if (dirty) {
1448 pg->flags &= ~PG_CLEAN;
1449 if (flags & PGO_FREE) {
1450 /* XXXUBC need better way to update */
1451 simple_lock(&lfs_subsys_lock);
1452 lfs_subsys_pages += MIN(1, pages_per_block);
1453 simple_unlock(&lfs_subsys_lock);
1454 /*
1455 * Wire the page so that
1456 * pdaemon doesn't see it again.
1457 */
1458 uvm_lock_pageq();
1459 uvm_pagewire(pg);
1460 uvm_unlock_pageq();
1461
1462 /* Suspended write flag */
1463 pg->flags |= PG_DELWRI;
1464 }
1465 }
1466 if (pg->flags & PG_WANTED)
1467 wakeup(pg);
1468 pg->flags &= ~(PG_WANTED|PG_BUSY);
1469 UVM_PAGE_OWN(pg, NULL);
1470 }
1471
1472 if (checkfirst && any_dirty)
1473 return any_dirty;
1474
1475 if (by_list) {
1476 curpg = TAILQ_NEXT(curpg, listq);
1477 } else {
1478 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1479 }
1480 }
1481 if (by_list) {
1482 PRELE(l);
1483 }
1484
1485 /*
1486 * If any pages were dirty, mark this inode as "pageout requested",
1487 * and put it on the paging queue.
1488 * XXXUBC locking (check locking on dchainhd too)
1489 */
1490 #ifdef notyet
1491 if (any_dirty) {
1492 if (!(ip->i_flags & IN_PAGING)) {
1493 ip->i_flags |= IN_PAGING;
1494 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1495 }
1496 }
1497 #endif
1498 return any_dirty;
1499 }
1500
1501 /*
1502 * lfs_putpages functions like genfs_putpages except that
1503 *
1504 * (1) It needs to bounds-check the incoming requests to ensure that
1505 * they are block-aligned; if they are not, expand the range and
1506 * do the right thing in case, e.g., the requested range is clean
1507 * but the expanded range is dirty.
1508 * (2) It needs to explicitly send blocks to be written when it is done.
1509 * VOP_PUTPAGES is not ever called with the seglock held, so
1510 * we simply take the seglock and let lfs_segunlock wait for us.
1511 * XXX Actually we can be called with the seglock held, if we have
1512 * XXX to flush a vnode while lfs_markv is in operation. As of this
1513 * XXX writing we panic in this case.
1514 *
1515 * Assumptions:
1516 *
1517 * (1) The caller does not hold any pages in this vnode busy. If it does,
1518 * there is a danger that when we expand the page range and busy the
1519 * pages we will deadlock.
1520 * (2) We are called with vp->v_interlock held; we must return with it
1521 * released.
1522 * (3) We don't absolutely have to free pages right away, provided that
1523 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1524 * us a request with PGO_FREE, we take the pages out of the paging
1525 * queue and wake up the writer, which will handle freeing them for us.
1526 *
1527 * We ensure that for any filesystem block, all pages for that
1528 * block are either resident or not, even if those pages are higher
1529 * than EOF; that means that we will be getting requests to free
1530 * "unused" pages above EOF all the time, and should ignore them.
1531 */
1532
1533 int
1534 lfs_putpages(void *v)
1535 {
1536 int error;
1537 struct vop_putpages_args /* {
1538 struct vnode *a_vp;
1539 voff_t a_offlo;
1540 voff_t a_offhi;
1541 int a_flags;
1542 } */ *ap = v;
1543 struct vnode *vp;
1544 struct inode *ip;
1545 struct lfs *fs;
1546 struct segment *sp;
1547 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1548 off_t off, max_endoffset;
1549 int pages_per_block;
1550 int s, sync, dirty, pagedaemon;
1551 struct vm_page *pg;
1552 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1553
1554 vp = ap->a_vp;
1555 ip = VTOI(vp);
1556 fs = ip->i_lfs;
1557 sync = (ap->a_flags & PGO_SYNCIO);
1558 pagedaemon = (curproc == uvm.pagedaemon_proc);
1559
1560 /* Putpages does nothing for metadata. */
1561 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1562 simple_unlock(&vp->v_interlock);
1563 return 0;
1564 }
1565
1566 /*
1567 * If there are no pages, don't do anything.
1568 */
1569 if (vp->v_uobj.uo_npages == 0) {
1570 s = splbio();
1571 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1572 (vp->v_flag & VONWORKLST)) {
1573 vp->v_flag &= ~VONWORKLST;
1574 LIST_REMOVE(vp, v_synclist);
1575 }
1576 splx(s);
1577 simple_unlock(&vp->v_interlock);
1578 return 0;
1579 }
1580
1581 blkeof = blkroundup(fs, ip->i_size);
1582
1583 /*
1584 * Ignore requests to free pages past EOF but in the same block
1585 * as EOF, unless the request is synchronous. (XXX why sync?)
1586 * XXXUBC Make these pages look "active" so the pagedaemon won't
1587 * XXXUBC bother us with them again.
1588 */
1589 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1590 origoffset = ap->a_offlo;
1591 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1592 pg = uvm_pagelookup(&vp->v_uobj, off);
1593 KASSERT(pg != NULL);
1594 while (pg->flags & PG_BUSY) {
1595 pg->flags |= PG_WANTED;
1596 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1597 "lfsput2", 0);
1598 simple_lock(&vp->v_interlock);
1599 }
1600 uvm_lock_pageq();
1601 uvm_pageactivate(pg);
1602 uvm_unlock_pageq();
1603 }
1604 ap->a_offlo = blkeof;
1605 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1606 simple_unlock(&vp->v_interlock);
1607 return 0;
1608 }
1609 }
1610
1611 /*
1612 * Extend page range to start and end at block boundaries.
1613 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1614 */
1615 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1616 origoffset = ap->a_offlo;
1617 origendoffset = ap->a_offhi;
1618 startoffset = origoffset & ~(fs->lfs_bmask);
1619 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1620 << fs->lfs_bshift;
1621
1622 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1623 endoffset = max_endoffset;
1624 origendoffset = endoffset;
1625 } else {
1626 origendoffset = round_page(ap->a_offhi);
1627 endoffset = round_page(blkroundup(fs, origendoffset));
1628 }
1629
1630 KASSERT(startoffset > 0 || endoffset >= startoffset);
1631 if (startoffset == endoffset) {
1632 /* Nothing to do, why were we called? */
1633 simple_unlock(&vp->v_interlock);
1634 #ifdef DEBUG
1635 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1636 startoffset);
1637 #endif
1638 return 0;
1639 }
1640
1641 ap->a_offlo = startoffset;
1642 ap->a_offhi = endoffset;
1643
1644 if (!(ap->a_flags & PGO_CLEANIT))
1645 return genfs_putpages(v);
1646
1647 /*
1648 * If there are more than one page per block, we don't want
1649 * to get caught locking them backwards; so set PGO_BUSYFAIL
1650 * to avoid deadlocks.
1651 */
1652 ap->a_flags |= PGO_BUSYFAIL;
1653
1654 do {
1655 int r;
1656
1657 /* If no pages are dirty, we can just use genfs_putpages. */
1658 if ((dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1659 ap->a_flags, 1)) != 0)
1660 break;
1661
1662 if ((r = genfs_putpages(v)) != EDEADLK)
1663 return r;
1664
1665 /* Start over. */
1666 preempt(NULL);
1667 simple_lock(&vp->v_interlock);
1668 } while(1);
1669
1670 /*
1671 * Dirty and asked to clean.
1672 *
1673 * Pagedaemon can't actually write LFS pages; wake up
1674 * the writer to take care of that. The writer will
1675 * notice the pager inode queue and act on that.
1676 */
1677 if (pagedaemon) {
1678 ++fs->lfs_pdflush;
1679 wakeup(&lfs_writer_daemon);
1680 simple_unlock(&vp->v_interlock);
1681 return EWOULDBLOCK;
1682 }
1683
1684 /*
1685 * If this is a file created in a recent dirop, we can't flush its
1686 * inode until the dirop is complete. Drain dirops, then flush the
1687 * filesystem (taking care of any other pending dirops while we're
1688 * at it).
1689 */
1690 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1691 (vp->v_flag & VDIROP)) {
1692 int locked;
1693
1694 /* printf("putpages to clean VDIROP, flushing\n"); */
1695 while (fs->lfs_dirops > 0) {
1696 ++fs->lfs_diropwait;
1697 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1698 --fs->lfs_diropwait;
1699 }
1700 ++fs->lfs_writer;
1701 locked = VOP_ISLOCKED(vp) && /* XXX */
1702 vp->v_lock.lk_lockholder == curproc->p_pid;
1703 if (locked)
1704 VOP_UNLOCK(vp, 0);
1705 simple_unlock(&vp->v_interlock);
1706
1707 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1708
1709 simple_lock(&vp->v_interlock);
1710 if (locked)
1711 VOP_LOCK(vp, LK_EXCLUSIVE);
1712 if (--fs->lfs_writer == 0)
1713 wakeup(&fs->lfs_dirops);
1714
1715 /* XXX the flush should have taken care of this one too! */
1716 }
1717
1718 /*
1719 * This is it. We are going to write some pages. From here on
1720 * down it's all just mechanics.
1721 *
1722 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1723 */
1724 ap->a_flags &= ~PGO_SYNCIO;
1725
1726 /*
1727 * If we've already got the seglock, flush the node and return.
1728 * The FIP has already been set up for us by lfs_writefile,
1729 * and FIP cleanup and lfs_updatemeta will also be done there,
1730 * unless genfs_putpages returns EDEADLK; then we must flush
1731 * what we have, and correct FIP and segment header accounting.
1732 */
1733 if (ap->a_flags & PGO_LOCKED) {
1734 sp = fs->lfs_sp;
1735 sp->vp = vp;
1736
1737 /*
1738 * Make sure that all pages in any given block are dirty, or
1739 * none of them are.
1740 */
1741 again:
1742 check_dirty(fs, vp, startoffset, endoffset, blkeof,
1743 ap->a_flags, 0);
1744
1745 if ((error = genfs_putpages(v)) == EDEADLK) {
1746 #ifdef DEBUG_LFS
1747 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1748 " ino %d off %x (seg %d)\n",
1749 ip->i_number, fs->lfs_offset,
1750 dtosn(fs, fs->lfs_offset));
1751 #endif
1752 /* If nothing to write, short-circuit */
1753 if (sp->cbpp - sp->bpp == 1) {
1754 preempt(NULL);
1755 simple_lock(&vp->v_interlock);
1756 goto again;
1757 }
1758 /* Write gathered pages */
1759 lfs_updatemeta(sp);
1760 (void) lfs_writeseg(fs, sp);
1761
1762 /* Reinitialize brand new FIP and add us to it */
1763 sp->vp = vp;
1764 sp->fip->fi_version = ip->i_gen;
1765 sp->fip->fi_ino = ip->i_number;
1766 /* Add us to the new segment summary. */
1767 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1768 sp->sum_bytes_left -=
1769 sizeof(struct finfo) - sizeof(int32_t);
1770
1771 /* Give the write a chance to complete */
1772 preempt(NULL);
1773
1774 /* We've lost the interlock. Start over. */
1775 simple_lock(&vp->v_interlock);
1776 goto again;
1777 }
1778 lfs_updatemeta(sp);
1779 return error;
1780 }
1781
1782 simple_unlock(&vp->v_interlock);
1783 /*
1784 * Take the seglock, because we are going to be writing pages.
1785 */
1786 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1787 return error;
1788
1789 /*
1790 * VOP_PUTPAGES should not be called while holding the seglock.
1791 * XXXUBC fix lfs_markv, or do this properly.
1792 */
1793 /* KASSERT(fs->lfs_seglock == 1); */
1794
1795 /*
1796 * We assume we're being called with sp->fip pointing at blank space.
1797 * Account for a new FIP in the segment header, and set sp->vp.
1798 * (This should duplicate the setup at the top of lfs_writefile().)
1799 */
1800 sp = fs->lfs_sp;
1801 if (sp->seg_bytes_left < fs->lfs_bsize ||
1802 sp->sum_bytes_left < sizeof(struct finfo))
1803 (void) lfs_writeseg(fs, fs->lfs_sp);
1804
1805 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1806 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1807 sp->vp = vp;
1808
1809 if (vp->v_flag & VDIROP)
1810 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1811
1812 sp->fip->fi_nblocks = 0;
1813 sp->fip->fi_ino = ip->i_number;
1814 sp->fip->fi_version = ip->i_gen;
1815
1816 /*
1817 * Loop through genfs_putpages until all pages are gathered.
1818 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1819 * Whenever we lose the interlock we have to rerun check_dirty, as
1820 * well.
1821 */
1822 again2:
1823 simple_lock(&vp->v_interlock);
1824 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1825
1826 if ((error = genfs_putpages(v)) == EDEADLK) {
1827 #ifdef DEBUG_LFS
1828 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1829 " ino %d off %x (seg %d)\n",
1830 ip->i_number, fs->lfs_offset,
1831 dtosn(fs, fs->lfs_offset));
1832 #endif
1833 /* If nothing to write, short-circuit */
1834 if (sp->cbpp - sp->bpp == 1) {
1835 preempt(NULL);
1836 goto again2;
1837 }
1838 /* Write gathered pages */
1839 lfs_updatemeta(sp);
1840 (void) lfs_writeseg(fs, sp);
1841
1842 /*
1843 * Reinitialize brand new FIP and add us to it.
1844 * (This should duplicate the fixup in lfs_gatherpages().)
1845 */
1846 sp->vp = vp;
1847 sp->fip->fi_version = ip->i_gen;
1848 sp->fip->fi_ino = ip->i_number;
1849 /* Add us to the new segment summary. */
1850 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1851 sp->sum_bytes_left -=
1852 sizeof(struct finfo) - sizeof(int32_t);
1853
1854 /* Give the write a chance to complete */
1855 preempt(NULL);
1856
1857 /* We've lost the interlock. Start over. */
1858 goto again2;
1859 }
1860
1861 /* Write indirect blocks as well */
1862 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1863 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1864 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1865
1866 /*
1867 * Blocks are now gathered into a segment waiting to be written.
1868 * All that's left to do is update metadata, and write them.
1869 */
1870 lfs_updatemeta(fs->lfs_sp);
1871 fs->lfs_sp->vp = NULL;
1872 /*
1873 * Clean up FIP, since we're done writing this file.
1874 * This should duplicate cleanup at the end of lfs_writefile().
1875 */
1876 if (sp->fip->fi_nblocks != 0) {
1877 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1878 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1879 sp->start_lbp = &sp->fip->fi_blocks[0];
1880 } else {
1881 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1882 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1883 }
1884 lfs_writeseg(fs, fs->lfs_sp);
1885
1886 /*
1887 * XXX - with the malloc/copy writeseg, the pages are freed by now
1888 * even if we don't wait (e.g. if we hold a nested lock). This
1889 * will not be true if we stop using malloc/copy.
1890 */
1891 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1892 lfs_segunlock(fs);
1893
1894 /*
1895 * Wait for v_numoutput to drop to zero. The seglock should
1896 * take care of this, but there is a slight possibility that
1897 * aiodoned might not have got around to our buffers yet.
1898 */
1899 if (sync) {
1900 int s;
1901
1902 s = splbio();
1903 simple_lock(&global_v_numoutput_slock);
1904 while (vp->v_numoutput > 0) {
1905 #ifdef DEBUG
1906 printf("ino %d sleeping on num %d\n",
1907 ip->i_number, vp->v_numoutput);
1908 #endif
1909 vp->v_flag |= VBWAIT;
1910 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1911 &global_v_numoutput_slock);
1912 }
1913 simple_unlock(&global_v_numoutput_slock);
1914 splx(s);
1915 }
1916 return error;
1917 }
1918
1919 /*
1920 * Return the last logical file offset that should be written for this file
1921 * if we're doing a write that ends at "size". If writing, we need to know
1922 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1923 * to know about entire blocks.
1924 */
1925 void
1926 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1927 {
1928 struct inode *ip = VTOI(vp);
1929 struct lfs *fs = ip->i_lfs;
1930 daddr_t olbn, nlbn;
1931
1932 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1933 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1934 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1935
1936 olbn = lblkno(fs, ip->i_size);
1937 nlbn = lblkno(fs, size);
1938 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1939 *eobp = fragroundup(fs, size);
1940 } else {
1941 *eobp = blkroundup(fs, size);
1942 }
1943 }
1944
1945 #ifdef DEBUG
1946 void lfs_dump_vop(void *);
1947
1948 void
1949 lfs_dump_vop(void *v)
1950 {
1951 struct vop_putpages_args /* {
1952 struct vnode *a_vp;
1953 voff_t a_offlo;
1954 voff_t a_offhi;
1955 int a_flags;
1956 } */ *ap = v;
1957
1958 #ifdef DDB
1959 vfs_vnode_print(ap->a_vp, 0, printf);
1960 #endif
1961 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1962 }
1963 #endif
1964
1965 int
1966 lfs_mmap(void *v)
1967 {
1968 struct vop_mmap_args /* {
1969 const struct vnodeop_desc *a_desc;
1970 struct vnode *a_vp;
1971 int a_fflags;
1972 struct ucred *a_cred;
1973 struct proc *a_p;
1974 } */ *ap = v;
1975
1976 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1977 return EOPNOTSUPP;
1978 return ufs_mmap(v);
1979 }
1980