lfs_vnops.c revision 1.109.2.6 1 /* $NetBSD: lfs_vnops.c,v 1.109.2.6 2004/10/30 06:46:50 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.109.2.6 2004/10/30 06:46:50 skrll Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 /*
271 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
272 */
273 void
274 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
275 {
276 LFS_ITIMES(ip, acc, mod, cre);
277 }
278
279 #define LFS_READWRITE
280 #include <ufs/ufs/ufs_readwrite.c>
281 #undef LFS_READWRITE
282
283 /*
284 * Synch an open file.
285 */
286 /* ARGSUSED */
287 int
288 lfs_fsync(void *v)
289 {
290 struct vop_fsync_args /* {
291 struct vnode *a_vp;
292 struct ucred *a_cred;
293 int a_flags;
294 off_t offlo;
295 off_t offhi;
296 struct lwp *a_l;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299 int error, wait;
300
301 /*
302 * Trickle sync checks for need to do a checkpoint after possible
303 * activity from the pagedaemon.
304 */
305 if (ap->a_flags & FSYNC_LAZY) {
306 simple_lock(&lfs_subsys_lock);
307 wakeup(&lfs_writer_daemon);
308 simple_unlock(&lfs_subsys_lock);
309 return 0;
310 }
311
312 wait = (ap->a_flags & FSYNC_WAIT);
313 simple_lock(&vp->v_interlock);
314 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 round_page(ap->a_offhi),
316 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 if (error)
318 return error;
319 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
320 if (wait && !VPISEMPTY(vp))
321 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
322
323 return error;
324 }
325
326 /*
327 * Take IN_ADIROP off, then call ufs_inactive.
328 */
329 int
330 lfs_inactive(void *v)
331 {
332 struct vop_inactive_args /* {
333 struct vnode *a_vp;
334 struct lwp *a_l;
335 } */ *ap = v;
336
337 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
338
339 lfs_unmark_vnode(ap->a_vp);
340
341 /*
342 * The Ifile is only ever inactivated on unmount.
343 * Streamline this process by not giving it more dirty blocks.
344 */
345 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
346 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
347 VOP_UNLOCK(ap->a_vp, 0);
348 return 0;
349 }
350
351 return ufs_inactive(v);
352 }
353
354 /*
355 * These macros are used to bracket UFS directory ops, so that we can
356 * identify all the pages touched during directory ops which need to
357 * be ordered and flushed atomically, so that they may be recovered.
358 */
359 /*
360 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
361 * the cache from reclaiming them while a dirop is in progress, we must
362 * also manage the number of nodes so marked (otherwise we can run out).
363 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
364 * is decremented during segment write, when VDIROP is taken off.
365 */
366 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
367 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
368 static int lfs_set_dirop(struct vnode *, struct vnode *);
369
370 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
371
372 static int
373 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
374 {
375 struct lfs *fs;
376 int error;
377
378 KASSERT(VOP_ISLOCKED(vp));
379 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
380
381 fs = VTOI(vp)->i_lfs;
382 /*
383 * We might need one directory block plus supporting indirect blocks,
384 * plus an inode block and ifile page for the new vnode.
385 */
386 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
387 return (error);
388
389 if (fs->lfs_dirops == 0)
390 lfs_check(vp, LFS_UNUSED_LBN, 0);
391 restart:
392 simple_lock(&fs->lfs_interlock);
393 if (fs->lfs_writer) {
394 ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PNORELOCK,
395 "lfs_sdirop", 0, &fs->lfs_interlock);
396 goto restart;
397 }
398 simple_lock(&lfs_subsys_lock);
399 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
400 wakeup(&lfs_writer_daemon);
401 simple_unlock(&lfs_subsys_lock);
402 simple_unlock(&fs->lfs_interlock);
403 preempt(1);
404 goto restart;
405 }
406
407 if (lfs_dirvcount > LFS_MAX_DIROP) {
408 simple_unlock(&fs->lfs_interlock);
409 #ifdef DEBUG_LFS
410 printf("lfs_set_dirop: sleeping with dirops=%d, "
411 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount);
412 #endif
413 if ((error = ltsleep(&lfs_dirvcount,
414 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
415 &lfs_subsys_lock)) != 0) {
416 goto unreserve;
417 }
418 goto restart;
419 }
420 simple_unlock(&lfs_subsys_lock);
421
422 ++fs->lfs_dirops;
423 fs->lfs_doifile = 1;
424 simple_unlock(&fs->lfs_interlock);
425
426 /* Hold a reference so SET_ENDOP will be happy */
427 vref(vp);
428 if (vp2)
429 vref(vp2);
430
431 return 0;
432
433 unreserve:
434 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
435 return error;
436 }
437
438 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
439 #define SET_ENDOP2(fs, vp, vp2, str) { \
440 --(fs)->lfs_dirops; \
441 if (!(fs)->lfs_dirops) { \
442 if ((fs)->lfs_nadirop) { \
443 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
444 (str), (fs)->lfs_nadirop); \
445 } \
446 wakeup(&(fs)->lfs_writer); \
447 lfs_check((vp),LFS_UNUSED_LBN,0); \
448 } \
449 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
450 vrele(vp); \
451 if (vp2) \
452 vrele(vp2); \
453 }
454
455 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
456 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
457
458 void
459 lfs_mark_vnode(struct vnode *vp)
460 {
461 struct inode *ip = VTOI(vp);
462 struct lfs *fs = ip->i_lfs;
463
464 if (!(ip->i_flag & IN_ADIROP)) {
465 if (!(vp->v_flag & VDIROP)) {
466 (void)lfs_vref(vp);
467 ++lfs_dirvcount;
468 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
469 vp->v_flag |= VDIROP;
470 }
471 ++fs->lfs_nadirop;
472 ip->i_flag |= IN_ADIROP;
473 } else
474 KASSERT(vp->v_flag & VDIROP);
475 }
476
477 void
478 lfs_unmark_vnode(struct vnode *vp)
479 {
480 struct inode *ip = VTOI(vp);
481
482 if (ip->i_flag & IN_ADIROP) {
483 KASSERT(vp->v_flag & VDIROP);
484 --ip->i_lfs->lfs_nadirop;
485 ip->i_flag &= ~IN_ADIROP;
486 }
487 }
488
489 int
490 lfs_symlink(void *v)
491 {
492 struct vop_symlink_args /* {
493 struct vnode *a_dvp;
494 struct vnode **a_vpp;
495 struct componentname *a_cnp;
496 struct vattr *a_vap;
497 char *a_target;
498 } */ *ap = v;
499 int error;
500
501 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
502 vput(ap->a_dvp);
503 return error;
504 }
505 MARK_VNODE(ap->a_dvp);
506 error = ufs_symlink(ap);
507 UNMARK_VNODE(ap->a_dvp);
508 if (*(ap->a_vpp))
509 UNMARK_VNODE(*(ap->a_vpp));
510 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
511 return (error);
512 }
513
514 int
515 lfs_mknod(void *v)
516 {
517 struct vop_mknod_args /* {
518 struct vnode *a_dvp;
519 struct vnode **a_vpp;
520 struct componentname *a_cnp;
521 struct vattr *a_vap;
522 } */ *ap = v;
523 struct vattr *vap = ap->a_vap;
524 struct vnode **vpp = ap->a_vpp;
525 struct componentname *cnp = ap->a_cnp;
526 struct inode *ip;
527 int error;
528 struct mount *mp;
529 ino_t ino;
530
531 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
532 vput(ap->a_dvp);
533 return error;
534 }
535 MARK_VNODE(ap->a_dvp);
536 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
537 ap->a_dvp, vpp, cnp);
538 UNMARK_VNODE(ap->a_dvp);
539 if (*(ap->a_vpp))
540 UNMARK_VNODE(*(ap->a_vpp));
541
542 /* Either way we're done with the dirop at this point */
543 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
544
545 if (error)
546 return (error);
547
548 ip = VTOI(*vpp);
549 mp = (*vpp)->v_mount;
550 ino = ip->i_number;
551 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
552 if (vap->va_rdev != VNOVAL) {
553 /*
554 * Want to be able to use this to make badblock
555 * inodes, so don't truncate the dev number.
556 */
557 #if 0
558 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
559 UFS_MPNEEDSWAP((*vpp)->v_mount));
560 #else
561 ip->i_ffs1_rdev = vap->va_rdev;
562 #endif
563 }
564 /*
565 * Call fsync to write the vnode so that we don't have to deal with
566 * flushing it when it's marked VDIROP|VXLOCK.
567 *
568 * XXX KS - If we can't flush we also can't call vgone(), so must
569 * return. But, that leaves this vnode in limbo, also not good.
570 * Can this ever happen (barring hardware failure)?
571 */
572 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
573 cnp->cn_lwp)) != 0) {
574 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
575 VTOI(*vpp)->i_number);
576 return (error);
577 }
578 /*
579 * Remove vnode so that it will be reloaded by VFS_VGET and
580 * checked to see if it is an alias of an existing entry in
581 * the inode cache.
582 */
583 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
584 VOP_UNLOCK(*vpp, 0);
585 lfs_vunref(*vpp);
586 (*vpp)->v_type = VNON;
587 vgone(*vpp);
588 error = VFS_VGET(mp, ino, vpp);
589 if (error != 0) {
590 *vpp = NULL;
591 return (error);
592 }
593 return (0);
594 }
595
596 int
597 lfs_create(void *v)
598 {
599 struct vop_create_args /* {
600 struct vnode *a_dvp;
601 struct vnode **a_vpp;
602 struct componentname *a_cnp;
603 struct vattr *a_vap;
604 } */ *ap = v;
605 int error;
606
607 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
608 vput(ap->a_dvp);
609 return error;
610 }
611 MARK_VNODE(ap->a_dvp);
612 error = ufs_create(ap);
613 UNMARK_VNODE(ap->a_dvp);
614 if (*(ap->a_vpp))
615 UNMARK_VNODE(*(ap->a_vpp));
616 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
617 return (error);
618 }
619
620 int
621 lfs_mkdir(void *v)
622 {
623 struct vop_mkdir_args /* {
624 struct vnode *a_dvp;
625 struct vnode **a_vpp;
626 struct componentname *a_cnp;
627 struct vattr *a_vap;
628 } */ *ap = v;
629 int error;
630
631 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
632 vput(ap->a_dvp);
633 return error;
634 }
635 MARK_VNODE(ap->a_dvp);
636 error = ufs_mkdir(ap);
637 UNMARK_VNODE(ap->a_dvp);
638 if (*(ap->a_vpp))
639 UNMARK_VNODE(*(ap->a_vpp));
640 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
641 return (error);
642 }
643
644 int
645 lfs_remove(void *v)
646 {
647 struct vop_remove_args /* {
648 struct vnode *a_dvp;
649 struct vnode *a_vp;
650 struct componentname *a_cnp;
651 } */ *ap = v;
652 struct vnode *dvp, *vp;
653 int error;
654
655 dvp = ap->a_dvp;
656 vp = ap->a_vp;
657 if ((error = SET_DIROP2(dvp, vp)) != 0) {
658 if (dvp == vp)
659 vrele(vp);
660 else
661 vput(vp);
662 vput(dvp);
663 return error;
664 }
665 MARK_VNODE(dvp);
666 MARK_VNODE(vp);
667 error = ufs_remove(ap);
668 UNMARK_VNODE(dvp);
669 UNMARK_VNODE(vp);
670
671 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
672 return (error);
673 }
674
675 int
676 lfs_rmdir(void *v)
677 {
678 struct vop_rmdir_args /* {
679 struct vnodeop_desc *a_desc;
680 struct vnode *a_dvp;
681 struct vnode *a_vp;
682 struct componentname *a_cnp;
683 } */ *ap = v;
684 struct vnode *vp;
685 int error;
686
687 vp = ap->a_vp;
688 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
689 vrele(ap->a_dvp);
690 if (ap->a_vp != ap->a_dvp)
691 VOP_UNLOCK(ap->a_dvp, 0);
692 vput(vp);
693 return error;
694 }
695 MARK_VNODE(ap->a_dvp);
696 MARK_VNODE(vp);
697 error = ufs_rmdir(ap);
698 UNMARK_VNODE(ap->a_dvp);
699 UNMARK_VNODE(vp);
700
701 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
702 return (error);
703 }
704
705 int
706 lfs_link(void *v)
707 {
708 struct vop_link_args /* {
709 struct vnode *a_dvp;
710 struct vnode *a_vp;
711 struct componentname *a_cnp;
712 } */ *ap = v;
713 int error;
714
715 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
716 vput(ap->a_dvp);
717 return error;
718 }
719 MARK_VNODE(ap->a_dvp);
720 error = ufs_link(ap);
721 UNMARK_VNODE(ap->a_dvp);
722 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
723 return (error);
724 }
725
726 int
727 lfs_rename(void *v)
728 {
729 struct vop_rename_args /* {
730 struct vnode *a_fdvp;
731 struct vnode *a_fvp;
732 struct componentname *a_fcnp;
733 struct vnode *a_tdvp;
734 struct vnode *a_tvp;
735 struct componentname *a_tcnp;
736 } */ *ap = v;
737 struct vnode *tvp, *fvp, *tdvp, *fdvp;
738 struct componentname *tcnp, *fcnp;
739 int error;
740 struct lfs *fs;
741
742 fs = VTOI(ap->a_fdvp)->i_lfs;
743 tvp = ap->a_tvp;
744 tdvp = ap->a_tdvp;
745 tcnp = ap->a_tcnp;
746 fvp = ap->a_fvp;
747 fdvp = ap->a_fdvp;
748 fcnp = ap->a_fcnp;
749
750 /*
751 * Check for cross-device rename.
752 * If it is, we don't want to set dirops, just error out.
753 * (In particular note that MARK_VNODE(tdvp) will DTWT on
754 * a cross-device rename.)
755 *
756 * Copied from ufs_rename.
757 */
758 if ((fvp->v_mount != tdvp->v_mount) ||
759 (tvp && (fvp->v_mount != tvp->v_mount))) {
760 error = EXDEV;
761 goto errout;
762 }
763
764 /*
765 * Check to make sure we're not renaming a vnode onto itself
766 * (deleting a hard link by renaming one name onto another);
767 * if we are we can't recursively call VOP_REMOVE since that
768 * would leave us with an unaccounted-for number of live dirops.
769 *
770 * Inline the relevant section of ufs_rename here, *before*
771 * calling SET_DIROP2.
772 */
773 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
774 (VTOI(tdvp)->i_flags & APPEND))) {
775 error = EPERM;
776 goto errout;
777 }
778 if (fvp == tvp) {
779 if (fvp->v_type == VDIR) {
780 error = EINVAL;
781 goto errout;
782 }
783
784 /* Release destination completely. */
785 VOP_ABORTOP(tdvp, tcnp);
786 vput(tdvp);
787 vput(tvp);
788
789 /* Delete source. */
790 vrele(fvp);
791 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
792 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
793 fcnp->cn_nameiop = DELETE;
794 if ((error = relookup(fdvp, &fvp, fcnp))){
795 /* relookup blew away fdvp */
796 return (error);
797 }
798 return (VOP_REMOVE(fdvp, fvp, fcnp));
799 }
800
801 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
802 goto errout;
803 MARK_VNODE(fdvp);
804 MARK_VNODE(tdvp);
805 MARK_VNODE(fvp);
806 if (tvp) {
807 MARK_VNODE(tvp);
808 }
809
810 error = ufs_rename(ap);
811 UNMARK_VNODE(fdvp);
812 UNMARK_VNODE(tdvp);
813 UNMARK_VNODE(fvp);
814 if (tvp) {
815 UNMARK_VNODE(tvp);
816 }
817 SET_ENDOP2(fs, tdvp, tvp, "rename");
818 return (error);
819
820 errout:
821 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
822 if (tdvp == tvp)
823 vrele(tdvp);
824 else
825 vput(tdvp);
826 if (tvp)
827 vput(tvp);
828 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
829 vrele(fdvp);
830 vrele(fvp);
831 return (error);
832 }
833
834 /* XXX hack to avoid calling ITIMES in getattr */
835 int
836 lfs_getattr(void *v)
837 {
838 struct vop_getattr_args /* {
839 struct vnode *a_vp;
840 struct vattr *a_vap;
841 struct ucred *a_cred;
842 struct lwp *a_l;
843 } */ *ap = v;
844 struct vnode *vp = ap->a_vp;
845 struct inode *ip = VTOI(vp);
846 struct vattr *vap = ap->a_vap;
847 struct lfs *fs = ip->i_lfs;
848 /*
849 * Copy from inode table
850 */
851 vap->va_fsid = ip->i_dev;
852 vap->va_fileid = ip->i_number;
853 vap->va_mode = ip->i_mode & ~IFMT;
854 vap->va_nlink = ip->i_nlink;
855 vap->va_uid = ip->i_uid;
856 vap->va_gid = ip->i_gid;
857 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
858 vap->va_size = vp->v_size;
859 vap->va_atime.tv_sec = ip->i_ffs1_atime;
860 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
861 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
862 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
863 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
864 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
865 vap->va_flags = ip->i_flags;
866 vap->va_gen = ip->i_gen;
867 /* this doesn't belong here */
868 if (vp->v_type == VBLK)
869 vap->va_blocksize = BLKDEV_IOSIZE;
870 else if (vp->v_type == VCHR)
871 vap->va_blocksize = MAXBSIZE;
872 else
873 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
874 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
875 vap->va_type = vp->v_type;
876 vap->va_filerev = ip->i_modrev;
877 return (0);
878 }
879
880 /*
881 * Check to make sure the inode blocks won't choke the buffer
882 * cache, then call ufs_setattr as usual.
883 */
884 int
885 lfs_setattr(void *v)
886 {
887 struct vop_getattr_args /* {
888 struct vnode *a_vp;
889 struct vattr *a_vap;
890 struct ucred *a_cred;
891 struct lwp *a_l;
892 } */ *ap = v;
893 struct vnode *vp = ap->a_vp;
894
895 lfs_check(vp, LFS_UNUSED_LBN, 0);
896 return ufs_setattr(v);
897 }
898
899 /*
900 * Close called
901 *
902 * XXX -- we were using ufs_close, but since it updates the
903 * times on the inode, we might need to bump the uinodes
904 * count.
905 */
906 /* ARGSUSED */
907 int
908 lfs_close(void *v)
909 {
910 struct vop_close_args /* {
911 struct vnode *a_vp;
912 int a_fflag;
913 struct ucred *a_cred;
914 struct lwp *a_l;
915 } */ *ap = v;
916 struct vnode *vp = ap->a_vp;
917 struct inode *ip = VTOI(vp);
918 struct timespec ts;
919
920 if (vp == ip->i_lfs->lfs_ivnode &&
921 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
922 return 0;
923
924 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
925 TIMEVAL_TO_TIMESPEC(&time, &ts);
926 LFS_ITIMES(ip, &ts, &ts, &ts);
927 }
928 return (0);
929 }
930
931 /*
932 * Close wrapper for special devices.
933 *
934 * Update the times on the inode then do device close.
935 */
936 int
937 lfsspec_close(void *v)
938 {
939 struct vop_close_args /* {
940 struct vnode *a_vp;
941 int a_fflag;
942 struct ucred *a_cred;
943 struct lwp *a_l;
944 } */ *ap = v;
945 struct vnode *vp;
946 struct inode *ip;
947 struct timespec ts;
948
949 vp = ap->a_vp;
950 ip = VTOI(vp);
951 if (vp->v_usecount > 1) {
952 TIMEVAL_TO_TIMESPEC(&time, &ts);
953 LFS_ITIMES(ip, &ts, &ts, &ts);
954 }
955 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
956 }
957
958 /*
959 * Close wrapper for fifo's.
960 *
961 * Update the times on the inode then do device close.
962 */
963 int
964 lfsfifo_close(void *v)
965 {
966 struct vop_close_args /* {
967 struct vnode *a_vp;
968 int a_fflag;
969 struct ucred *a_cred;
970 struct lwp *a_l;
971 } */ *ap = v;
972 struct vnode *vp;
973 struct inode *ip;
974 struct timespec ts;
975
976 vp = ap->a_vp;
977 ip = VTOI(vp);
978 if (ap->a_vp->v_usecount > 1) {
979 TIMEVAL_TO_TIMESPEC(&time, &ts);
980 LFS_ITIMES(ip, &ts, &ts, &ts);
981 }
982 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
983 }
984
985 /*
986 * Reclaim an inode so that it can be used for other purposes.
987 */
988
989 int
990 lfs_reclaim(void *v)
991 {
992 struct vop_reclaim_args /* {
993 struct vnode *a_vp;
994 struct lwp *a_l;
995 } */ *ap = v;
996 struct vnode *vp = ap->a_vp;
997 struct inode *ip = VTOI(vp);
998 int error;
999
1000 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1001
1002 LFS_CLR_UINO(ip, IN_ALLMOD);
1003 if ((error = ufs_reclaim(vp, ap->a_l)))
1004 return (error);
1005 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1006 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1007 ip->inode_ext.lfs = NULL;
1008 pool_put(&lfs_inode_pool, vp->v_data);
1009 vp->v_data = NULL;
1010 return (0);
1011 }
1012
1013 /*
1014 * Read a block from a storage device.
1015 * In order to avoid reading blocks that are in the process of being
1016 * written by the cleaner---and hence are not mutexed by the normal
1017 * buffer cache / page cache mechanisms---check for collisions before
1018 * reading.
1019 *
1020 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1021 * the active cleaner test.
1022 *
1023 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1024 */
1025 int
1026 lfs_strategy(void *v)
1027 {
1028 struct vop_strategy_args /* {
1029 struct vnode *a_vp;
1030 struct buf *a_bp;
1031 } */ *ap = v;
1032 struct buf *bp;
1033 struct lfs *fs;
1034 struct vnode *vp;
1035 struct inode *ip;
1036 daddr_t tbn;
1037 int i, sn, error, slept;
1038
1039 bp = ap->a_bp;
1040 vp = ap->a_vp;
1041 ip = VTOI(vp);
1042 fs = ip->i_lfs;
1043
1044 /* lfs uses its strategy routine only for read */
1045 KASSERT(bp->b_flags & B_READ);
1046
1047 if (vp->v_type == VBLK || vp->v_type == VCHR)
1048 panic("lfs_strategy: spec");
1049 KASSERT(bp->b_bcount != 0);
1050 if (bp->b_blkno == bp->b_lblkno) {
1051 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1052 NULL);
1053 if (error) {
1054 bp->b_error = error;
1055 bp->b_flags |= B_ERROR;
1056 biodone(bp);
1057 return (error);
1058 }
1059 if ((long)bp->b_blkno == -1) /* no valid data */
1060 clrbuf(bp);
1061 }
1062 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1063 biodone(bp);
1064 return (0);
1065 }
1066
1067 slept = 1;
1068 simple_lock(&fs->lfs_interlock);
1069 while (slept && fs->lfs_seglock) {
1070 simple_unlock(&fs->lfs_interlock);
1071 /*
1072 * Look through list of intervals.
1073 * There will only be intervals to look through
1074 * if the cleaner holds the seglock.
1075 * Since the cleaner is synchronous, we can trust
1076 * the list of intervals to be current.
1077 */
1078 tbn = dbtofsb(fs, bp->b_blkno);
1079 sn = dtosn(fs, tbn);
1080 slept = 0;
1081 for (i = 0; i < fs->lfs_cleanind; i++) {
1082 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1083 tbn >= fs->lfs_cleanint[i]) {
1084 #ifdef DEBUG_LFS
1085 printf("lfs_strategy: ino %d lbn %" PRId64
1086 " ind %d sn %d fsb %" PRIx32
1087 " given sn %d fsb %" PRIx64 "\n",
1088 ip->i_number, bp->b_lblkno, i,
1089 dtosn(fs, fs->lfs_cleanint[i]),
1090 fs->lfs_cleanint[i], sn, tbn);
1091 printf("lfs_strategy: sleeping on ino %d lbn %"
1092 PRId64 "\n", ip->i_number, bp->b_lblkno);
1093 #endif
1094 tsleep(&fs->lfs_seglock, PRIBIO+1,
1095 "lfs_strategy", 0);
1096 /* Things may be different now; start over. */
1097 slept = 1;
1098 break;
1099 }
1100 }
1101 simple_lock(&fs->lfs_interlock);
1102 }
1103 simple_unlock(&fs->lfs_interlock);
1104
1105 vp = ip->i_devvp;
1106 VOP_STRATEGY(vp, bp);
1107 return (0);
1108 }
1109
1110 static void
1111 lfs_flush_dirops(struct lfs *fs)
1112 {
1113 struct inode *ip, *nip;
1114 struct vnode *vp;
1115 extern int lfs_dostats;
1116 struct segment *sp;
1117 int needunlock;
1118
1119 if (fs->lfs_ronly)
1120 return;
1121
1122 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1123 return;
1124
1125 if (lfs_dostats)
1126 ++lfs_stats.flush_invoked;
1127
1128 /*
1129 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1130 * Technically this is a checkpoint (the on-disk state is valid)
1131 * even though we are leaving out all the file data.
1132 */
1133 lfs_imtime(fs);
1134 lfs_seglock(fs, SEGM_CKP);
1135 sp = fs->lfs_sp;
1136
1137 /*
1138 * lfs_writevnodes, optimized to get dirops out of the way.
1139 * Only write dirops, and don't flush files' pages, only
1140 * blocks from the directories.
1141 *
1142 * We don't need to vref these files because they are
1143 * dirops and so hold an extra reference until the
1144 * segunlock clears them of that status.
1145 *
1146 * We don't need to check for IN_ADIROP because we know that
1147 * no dirops are active.
1148 *
1149 */
1150 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1151 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1152 vp = ITOV(ip);
1153
1154 /*
1155 * All writes to directories come from dirops; all
1156 * writes to files' direct blocks go through the page
1157 * cache, which we're not touching. Reads to files
1158 * and/or directories will not be affected by writing
1159 * directory blocks inodes and file inodes. So we don't
1160 * really need to lock. If we don't lock, though,
1161 * make sure that we don't clear IN_MODIFIED
1162 * unnecessarily.
1163 */
1164 if (vp->v_flag & VXLOCK)
1165 continue;
1166 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1167 LK_NOWAIT) == 0) {
1168 needunlock = 1;
1169 } else {
1170 printf("lfs_flush_dirops: flushing locked ino %d\n",
1171 VTOI(vp)->i_number);
1172 needunlock = 0;
1173 }
1174 if (vp->v_type != VREG &&
1175 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1176 lfs_writefile(fs, sp, vp);
1177 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1178 !(ip->i_flag & IN_ALLMOD)) {
1179 LFS_SET_UINO(ip, IN_MODIFIED);
1180 }
1181 }
1182 (void) lfs_writeinode(fs, sp, ip);
1183 if (needunlock)
1184 VOP_UNLOCK(vp, 0);
1185 else
1186 LFS_SET_UINO(ip, IN_MODIFIED);
1187 }
1188 /* We've written all the dirops there are */
1189 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1190 (void) lfs_writeseg(fs, sp);
1191 lfs_segunlock(fs);
1192 }
1193
1194 /*
1195 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1196 */
1197 int
1198 lfs_fcntl(void *v)
1199 {
1200 struct vop_fcntl_args /* {
1201 struct vnode *a_vp;
1202 u_long a_command;
1203 caddr_t a_data;
1204 int a_fflag;
1205 struct ucred *a_cred;
1206 struct lwp *a_l;
1207 } */ *ap = v;
1208 struct timeval *tvp;
1209 BLOCK_INFO *blkiov;
1210 CLEANERINFO *cip;
1211 int blkcnt, error, oclean;
1212 struct lfs_fcntl_markv blkvp;
1213 struct proc *p;
1214 fsid_t *fsidp;
1215 struct lfs *fs;
1216 struct buf *bp;
1217 daddr_t off;
1218
1219 /* Only respect LFS fcntls on fs root or Ifile */
1220 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1221 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1222 return ufs_fcntl(v);
1223 }
1224
1225 /* Avoid locking a draining lock */
1226 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1227 return ESHUTDOWN;
1228 }
1229
1230 p = ap->a_l->l_proc;
1231 fs = VTOI(ap->a_vp)->i_lfs;
1232 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1233
1234 switch (ap->a_command) {
1235 case LFCNSEGWAITALL:
1236 fsidp = NULL;
1237 /* FALLSTHROUGH */
1238 case LFCNSEGWAIT:
1239 tvp = (struct timeval *)ap->a_data;
1240 simple_lock(&fs->lfs_interlock);
1241 ++fs->lfs_sleepers;
1242 simple_unlock(&fs->lfs_interlock);
1243 VOP_UNLOCK(ap->a_vp, 0);
1244
1245 error = lfs_segwait(fsidp, tvp);
1246
1247 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1248 simple_lock(&fs->lfs_interlock);
1249 if (--fs->lfs_sleepers == 0)
1250 wakeup(&fs->lfs_sleepers);
1251 simple_unlock(&fs->lfs_interlock);
1252 return error;
1253
1254 case LFCNBMAPV:
1255 case LFCNMARKV:
1256 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1257 return (error);
1258 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1259
1260 blkcnt = blkvp.blkcnt;
1261 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1262 return (EINVAL);
1263 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1264 if ((error = copyin(blkvp.blkiov, blkiov,
1265 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1266 free(blkiov, M_SEGMENT);
1267 return error;
1268 }
1269
1270 simple_lock(&fs->lfs_interlock);
1271 ++fs->lfs_sleepers;
1272 simple_unlock(&fs->lfs_interlock);
1273 VOP_UNLOCK(ap->a_vp, 0);
1274 if (ap->a_command == LFCNBMAPV)
1275 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1276 else /* LFCNMARKV */
1277 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1278 if (error == 0)
1279 error = copyout(blkiov, blkvp.blkiov,
1280 blkcnt * sizeof(BLOCK_INFO));
1281 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1282 simple_lock(&fs->lfs_interlock);
1283 if (--fs->lfs_sleepers == 0)
1284 wakeup(&fs->lfs_sleepers);
1285 simple_unlock(&fs->lfs_interlock);
1286 free(blkiov, M_SEGMENT);
1287 return error;
1288
1289 case LFCNRECLAIM:
1290 /*
1291 * Flush dirops and write Ifile, allowing empty segments
1292 * to be immediately reclaimed.
1293 */
1294 lfs_writer_enter(fs, "pndirop");
1295 off = fs->lfs_offset;
1296 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1297 lfs_flush_dirops(fs);
1298 LFS_CLEANERINFO(cip, fs, bp);
1299 oclean = cip->clean;
1300 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1301 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1302 lfs_segunlock(fs);
1303 lfs_writer_leave(fs);
1304
1305 #ifdef DEBUG_LFS
1306 LFS_CLEANERINFO(cip, fs, bp);
1307 oclean = cip->clean;
1308 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1309 "%" PRId32 " segments (activesb %d)\n",
1310 fs->lfs_offset - off, cip->clean - oclean,
1311 fs->lfs_activesb);
1312 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1313 #endif
1314
1315 return 0;
1316
1317 default:
1318 return ufs_fcntl(v);
1319 }
1320 return 0;
1321 }
1322
1323 int
1324 lfs_getpages(void *v)
1325 {
1326 struct vop_getpages_args /* {
1327 struct vnode *a_vp;
1328 voff_t a_offset;
1329 struct vm_page **a_m;
1330 int *a_count;
1331 int a_centeridx;
1332 vm_prot_t a_access_type;
1333 int a_advice;
1334 int a_flags;
1335 } */ *ap = v;
1336
1337 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1338 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1339 return EPERM;
1340 }
1341 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1342 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1343 }
1344
1345 /*
1346 * we're relying on the fact that genfs_getpages() always read in
1347 * entire filesystem blocks.
1348 */
1349 return genfs_getpages(v);
1350 }
1351
1352 /*
1353 * Make sure that for all pages in every block in the given range,
1354 * either all are dirty or all are clean. If any of the pages
1355 * we've seen so far are dirty, put the vnode on the paging chain,
1356 * and mark it IN_PAGING.
1357 *
1358 * If checkfirst != 0, don't check all the pages but return at the
1359 * first dirty page.
1360 */
1361 static int
1362 check_dirty(struct lfs *fs, struct vnode *vp,
1363 off_t startoffset, off_t endoffset, off_t blkeof,
1364 int flags, int checkfirst)
1365 {
1366 int by_list;
1367 struct vm_page *curpg = NULL; /* XXX: gcc */
1368 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1369 off_t soff = 0; /* XXX: gcc */
1370 voff_t off;
1371 int i;
1372 int nonexistent;
1373 int any_dirty; /* number of dirty pages */
1374 int dirty; /* number of dirty pages in a block */
1375 int tdirty;
1376 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1377
1378 top:
1379 by_list = (vp->v_uobj.uo_npages <=
1380 ((endoffset - startoffset) >> PAGE_SHIFT) *
1381 UVM_PAGE_HASH_PENALTY);
1382 any_dirty = 0;
1383
1384 if (by_list) {
1385 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1386 } else {
1387 soff = startoffset;
1388 }
1389 while (by_list || soff < MIN(blkeof, endoffset)) {
1390 if (by_list) {
1391 /*
1392 * find the first page in a block.
1393 */
1394 if (pages_per_block > 1) {
1395 while (curpg && (curpg->offset & fs->lfs_bmask))
1396 curpg = TAILQ_NEXT(curpg, listq);
1397 }
1398 if (curpg == NULL)
1399 break;
1400 soff = curpg->offset;
1401 }
1402
1403 /*
1404 * Mark all pages in extended range busy; find out if any
1405 * of them are dirty.
1406 */
1407 nonexistent = dirty = 0;
1408 for (i = 0; i == 0 || i < pages_per_block; i++) {
1409 if (by_list && pages_per_block <= 1) {
1410 pgs[i] = pg = curpg;
1411 } else {
1412 off = soff + (i << PAGE_SHIFT);
1413 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1414 if (pg == NULL) {
1415 ++nonexistent;
1416 continue;
1417 }
1418 }
1419 KASSERT(pg != NULL);
1420 while (pg->flags & PG_BUSY) {
1421 pg->flags |= PG_WANTED;
1422 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1423 "lfsput", 0);
1424 simple_lock(&vp->v_interlock);
1425 if (by_list) {
1426 if (i > 0)
1427 uvm_page_unbusy(pgs, i);
1428 goto top;
1429 }
1430 }
1431 pg->flags |= PG_BUSY;
1432 UVM_PAGE_OWN(pg, "lfs_putpages");
1433
1434 pmap_page_protect(pg, VM_PROT_NONE);
1435 tdirty = (pmap_clear_modify(pg) ||
1436 (pg->flags & PG_CLEAN) == 0);
1437 dirty += tdirty;
1438 }
1439 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1440 if (by_list) {
1441 curpg = TAILQ_NEXT(curpg, listq);
1442 } else {
1443 soff += fs->lfs_bsize;
1444 }
1445 continue;
1446 }
1447
1448 any_dirty += dirty;
1449 KASSERT(nonexistent == 0);
1450
1451 /*
1452 * If any are dirty make all dirty; unbusy them,
1453 * but if we were asked to clean, wire them so that
1454 * the pagedaemon doesn't bother us about them while
1455 * they're on their way to disk.
1456 */
1457 for (i = 0; i == 0 || i < pages_per_block; i++) {
1458 pg = pgs[i];
1459 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1460 if (dirty) {
1461 pg->flags &= ~PG_CLEAN;
1462 if (flags & PGO_FREE) {
1463 /* XXXUBC need better way to update */
1464 simple_lock(&lfs_subsys_lock);
1465 lfs_subsys_pages += MIN(1, pages_per_block);
1466 simple_unlock(&lfs_subsys_lock);
1467 /*
1468 * Wire the page so that
1469 * pdaemon doesn't see it again.
1470 */
1471 uvm_lock_pageq();
1472 uvm_pagewire(pg);
1473 uvm_unlock_pageq();
1474
1475 /* Suspended write flag */
1476 pg->flags |= PG_DELWRI;
1477 }
1478 }
1479 if (pg->flags & PG_WANTED)
1480 wakeup(pg);
1481 pg->flags &= ~(PG_WANTED|PG_BUSY);
1482 UVM_PAGE_OWN(pg, NULL);
1483 }
1484
1485 if (checkfirst && any_dirty)
1486 break;
1487
1488 if (by_list) {
1489 curpg = TAILQ_NEXT(curpg, listq);
1490 } else {
1491 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1492 }
1493 }
1494
1495 /*
1496 * If any pages were dirty, mark this inode as "pageout requested",
1497 * and put it on the paging queue.
1498 * XXXUBC locking (check locking on dchainhd too)
1499 */
1500 #ifdef notyet
1501 if (any_dirty) {
1502 if (!(ip->i_flags & IN_PAGING)) {
1503 ip->i_flags |= IN_PAGING;
1504 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1505 }
1506 }
1507 #endif
1508 return any_dirty;
1509 }
1510
1511 /*
1512 * lfs_putpages functions like genfs_putpages except that
1513 *
1514 * (1) It needs to bounds-check the incoming requests to ensure that
1515 * they are block-aligned; if they are not, expand the range and
1516 * do the right thing in case, e.g., the requested range is clean
1517 * but the expanded range is dirty.
1518 * (2) It needs to explicitly send blocks to be written when it is done.
1519 * VOP_PUTPAGES is not ever called with the seglock held, so
1520 * we simply take the seglock and let lfs_segunlock wait for us.
1521 * XXX Actually we can be called with the seglock held, if we have
1522 * XXX to flush a vnode while lfs_markv is in operation. As of this
1523 * XXX writing we panic in this case.
1524 *
1525 * Assumptions:
1526 *
1527 * (1) The caller does not hold any pages in this vnode busy. If it does,
1528 * there is a danger that when we expand the page range and busy the
1529 * pages we will deadlock.
1530 * (2) We are called with vp->v_interlock held; we must return with it
1531 * released.
1532 * (3) We don't absolutely have to free pages right away, provided that
1533 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1534 * us a request with PGO_FREE, we take the pages out of the paging
1535 * queue and wake up the writer, which will handle freeing them for us.
1536 *
1537 * We ensure that for any filesystem block, all pages for that
1538 * block are either resident or not, even if those pages are higher
1539 * than EOF; that means that we will be getting requests to free
1540 * "unused" pages above EOF all the time, and should ignore them.
1541 *
1542 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1543 */
1544
1545 int
1546 lfs_putpages(void *v)
1547 {
1548 int error;
1549 struct vop_putpages_args /* {
1550 struct vnode *a_vp;
1551 voff_t a_offlo;
1552 voff_t a_offhi;
1553 int a_flags;
1554 } */ *ap = v;
1555 struct vnode *vp;
1556 struct inode *ip;
1557 struct lfs *fs;
1558 struct segment *sp;
1559 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1560 off_t off, max_endoffset;
1561 int s;
1562 boolean_t seglocked, sync, pagedaemon;
1563 struct vm_page *pg;
1564 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1565
1566 vp = ap->a_vp;
1567 ip = VTOI(vp);
1568 fs = ip->i_lfs;
1569 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1570 pagedaemon = (curproc == uvm.pagedaemon_proc);
1571
1572 /* Putpages does nothing for metadata. */
1573 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1574 simple_unlock(&vp->v_interlock);
1575 return 0;
1576 }
1577
1578 /*
1579 * If there are no pages, don't do anything.
1580 */
1581 if (vp->v_uobj.uo_npages == 0) {
1582 s = splbio();
1583 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1584 (vp->v_flag & VONWORKLST)) {
1585 vp->v_flag &= ~VONWORKLST;
1586 LIST_REMOVE(vp, v_synclist);
1587 }
1588 splx(s);
1589 simple_unlock(&vp->v_interlock);
1590 return 0;
1591 }
1592
1593 blkeof = blkroundup(fs, ip->i_size);
1594
1595 /*
1596 * Ignore requests to free pages past EOF but in the same block
1597 * as EOF, unless the request is synchronous. (XXX why sync?)
1598 * XXXUBC Make these pages look "active" so the pagedaemon won't
1599 * XXXUBC bother us with them again.
1600 */
1601 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1602 origoffset = ap->a_offlo;
1603 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1604 pg = uvm_pagelookup(&vp->v_uobj, off);
1605 KASSERT(pg != NULL);
1606 while (pg->flags & PG_BUSY) {
1607 pg->flags |= PG_WANTED;
1608 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1609 "lfsput2", 0);
1610 simple_lock(&vp->v_interlock);
1611 }
1612 uvm_lock_pageq();
1613 uvm_pageactivate(pg);
1614 uvm_unlock_pageq();
1615 }
1616 ap->a_offlo = blkeof;
1617 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1618 simple_unlock(&vp->v_interlock);
1619 return 0;
1620 }
1621 }
1622
1623 /*
1624 * Extend page range to start and end at block boundaries.
1625 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1626 */
1627 origoffset = ap->a_offlo;
1628 origendoffset = ap->a_offhi;
1629 startoffset = origoffset & ~(fs->lfs_bmask);
1630 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1631 << fs->lfs_bshift;
1632
1633 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1634 endoffset = max_endoffset;
1635 origendoffset = endoffset;
1636 } else {
1637 origendoffset = round_page(ap->a_offhi);
1638 endoffset = round_page(blkroundup(fs, origendoffset));
1639 }
1640
1641 KASSERT(startoffset > 0 || endoffset >= startoffset);
1642 if (startoffset == endoffset) {
1643 /* Nothing to do, why were we called? */
1644 simple_unlock(&vp->v_interlock);
1645 #ifdef DEBUG
1646 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1647 startoffset);
1648 #endif
1649 return 0;
1650 }
1651
1652 ap->a_offlo = startoffset;
1653 ap->a_offhi = endoffset;
1654
1655 if (!(ap->a_flags & PGO_CLEANIT))
1656 return genfs_putpages(v);
1657
1658 /*
1659 * If there are more than one page per block, we don't want
1660 * to get caught locking them backwards; so set PGO_BUSYFAIL
1661 * to avoid deadlocks.
1662 */
1663 ap->a_flags |= PGO_BUSYFAIL;
1664
1665 do {
1666 int r;
1667
1668 /* If no pages are dirty, we can just use genfs_putpages. */
1669 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1670 ap->a_flags, 1) != 0)
1671 break;
1672
1673 if ((r = genfs_putpages(v)) != EDEADLK)
1674 return r;
1675
1676 /* Start over. */
1677 preempt(1);
1678 simple_lock(&vp->v_interlock);
1679 } while(1);
1680
1681 /*
1682 * Dirty and asked to clean.
1683 *
1684 * Pagedaemon can't actually write LFS pages; wake up
1685 * the writer to take care of that. The writer will
1686 * notice the pager inode queue and act on that.
1687 */
1688 if (pagedaemon) {
1689 ++fs->lfs_pdflush;
1690 wakeup(&lfs_writer_daemon);
1691 simple_unlock(&vp->v_interlock);
1692 return EWOULDBLOCK;
1693 }
1694
1695 /*
1696 * If this is a file created in a recent dirop, we can't flush its
1697 * inode until the dirop is complete. Drain dirops, then flush the
1698 * filesystem (taking care of any other pending dirops while we're
1699 * at it).
1700 */
1701 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1702 (vp->v_flag & VDIROP)) {
1703 int locked;
1704
1705 /* printf("putpages to clean VDIROP, flushing\n"); */
1706 lfs_writer_enter(fs, "ppdirop");
1707 locked = VOP_ISLOCKED(vp) && /* XXX */
1708 vp->v_lock.lk_lockholder == curproc->p_pid;
1709 if (locked)
1710 VOP_UNLOCK(vp, 0);
1711 simple_unlock(&vp->v_interlock);
1712
1713 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1714
1715 simple_lock(&vp->v_interlock);
1716 if (locked)
1717 VOP_LOCK(vp, LK_EXCLUSIVE);
1718 lfs_writer_leave(fs);
1719
1720 /* XXX the flush should have taken care of this one too! */
1721 }
1722
1723 /*
1724 * This is it. We are going to write some pages. From here on
1725 * down it's all just mechanics.
1726 *
1727 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1728 */
1729 ap->a_flags &= ~PGO_SYNCIO;
1730
1731 /*
1732 * If we've already got the seglock, flush the node and return.
1733 * The FIP has already been set up for us by lfs_writefile,
1734 * and FIP cleanup and lfs_updatemeta will also be done there,
1735 * unless genfs_putpages returns EDEADLK; then we must flush
1736 * what we have, and correct FIP and segment header accounting.
1737 */
1738
1739 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1740 if (!seglocked) {
1741 simple_unlock(&vp->v_interlock);
1742 /*
1743 * Take the seglock, because we are going to be writing pages.
1744 */
1745 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1746 if (error != 0)
1747 return error;
1748 simple_lock(&vp->v_interlock);
1749 }
1750
1751 /*
1752 * VOP_PUTPAGES should not be called while holding the seglock.
1753 * XXXUBC fix lfs_markv, or do this properly.
1754 */
1755 /* KASSERT(fs->lfs_seglock == 1); */
1756
1757 /*
1758 * We assume we're being called with sp->fip pointing at blank space.
1759 * Account for a new FIP in the segment header, and set sp->vp.
1760 * (This should duplicate the setup at the top of lfs_writefile().)
1761 */
1762 sp = fs->lfs_sp;
1763 if (!seglocked) {
1764 if (sp->seg_bytes_left < fs->lfs_bsize ||
1765 sp->sum_bytes_left < sizeof(struct finfo))
1766 (void) lfs_writeseg(fs, fs->lfs_sp);
1767
1768 sp->sum_bytes_left -= FINFOSIZE;
1769 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1770 }
1771 KASSERT(sp->vp == NULL);
1772 sp->vp = vp;
1773
1774 if (!seglocked) {
1775 if (vp->v_flag & VDIROP)
1776 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1777 }
1778
1779 sp->fip->fi_nblocks = 0;
1780 sp->fip->fi_ino = ip->i_number;
1781 sp->fip->fi_version = ip->i_gen;
1782
1783 /*
1784 * Loop through genfs_putpages until all pages are gathered.
1785 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1786 * Whenever we lose the interlock we have to rerun check_dirty, as
1787 * well.
1788 */
1789 again:
1790 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1791
1792 if ((error = genfs_putpages(v)) == EDEADLK) {
1793 #ifdef DEBUG_LFS
1794 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1795 " ino %d off %x (seg %d)\n",
1796 ip->i_number, fs->lfs_offset,
1797 dtosn(fs, fs->lfs_offset));
1798 #endif
1799 /* If nothing to write, short-circuit */
1800 if (sp->cbpp - sp->bpp > 1) {
1801 /* Write gathered pages */
1802 lfs_updatemeta(sp);
1803 (void) lfs_writeseg(fs, sp);
1804
1805 /*
1806 * Reinitialize brand new FIP and add us to it.
1807 * (This should duplicate the fixup in
1808 * lfs_gatherpages().)
1809 */
1810 KASSERT(sp->vp == vp);
1811 sp->fip->fi_version = ip->i_gen;
1812 sp->fip->fi_ino = ip->i_number;
1813 /* Add us to the new segment summary. */
1814 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1815 sp->sum_bytes_left -= FINFOSIZE;
1816 }
1817
1818 /* Give the write a chance to complete */
1819 preempt(1);
1820
1821 /* We've lost the interlock. Start over. */
1822 simple_lock(&vp->v_interlock);
1823 goto again;
1824 }
1825
1826 KASSERT(sp->vp == vp);
1827 if (!seglocked) {
1828 sp->vp = NULL; /* XXX lfs_gather below will set this */
1829
1830 /* Write indirect blocks as well */
1831 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1832 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1833 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1834
1835 KASSERT(sp->vp == NULL);
1836 sp->vp = vp;
1837 }
1838
1839 /*
1840 * Blocks are now gathered into a segment waiting to be written.
1841 * All that's left to do is update metadata, and write them.
1842 */
1843 lfs_updatemeta(sp);
1844 KASSERT(sp->vp == vp);
1845 sp->vp = NULL;
1846
1847 if (seglocked) {
1848 /* we're called by lfs_writefile. */
1849 return error;
1850 }
1851
1852 /*
1853 * Clean up FIP, since we're done writing this file.
1854 * This should duplicate cleanup at the end of lfs_writefile().
1855 */
1856 if (sp->fip->fi_nblocks != 0) {
1857 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1858 sizeof(int32_t) * sp->fip->fi_nblocks);
1859 sp->start_lbp = &sp->fip->fi_blocks[0];
1860 } else {
1861 sp->sum_bytes_left += FINFOSIZE;
1862 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1863 }
1864 lfs_writeseg(fs, fs->lfs_sp);
1865
1866 /*
1867 * XXX - with the malloc/copy writeseg, the pages are freed by now
1868 * even if we don't wait (e.g. if we hold a nested lock). This
1869 * will not be true if we stop using malloc/copy.
1870 */
1871 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1872 lfs_segunlock(fs);
1873
1874 /*
1875 * Wait for v_numoutput to drop to zero. The seglock should
1876 * take care of this, but there is a slight possibility that
1877 * aiodoned might not have got around to our buffers yet.
1878 */
1879 if (sync) {
1880 int s;
1881
1882 s = splbio();
1883 simple_lock(&global_v_numoutput_slock);
1884 while (vp->v_numoutput > 0) {
1885 #ifdef DEBUG
1886 printf("ino %d sleeping on num %d\n",
1887 ip->i_number, vp->v_numoutput);
1888 #endif
1889 vp->v_flag |= VBWAIT;
1890 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1891 &global_v_numoutput_slock);
1892 }
1893 simple_unlock(&global_v_numoutput_slock);
1894 splx(s);
1895 }
1896 return error;
1897 }
1898
1899 /*
1900 * Return the last logical file offset that should be written for this file
1901 * if we're doing a write that ends at "size". If writing, we need to know
1902 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1903 * to know about entire blocks.
1904 */
1905 void
1906 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1907 {
1908 struct inode *ip = VTOI(vp);
1909 struct lfs *fs = ip->i_lfs;
1910 daddr_t olbn, nlbn;
1911
1912 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1913 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1914 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1915
1916 olbn = lblkno(fs, ip->i_size);
1917 nlbn = lblkno(fs, size);
1918 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1919 *eobp = fragroundup(fs, size);
1920 } else {
1921 *eobp = blkroundup(fs, size);
1922 }
1923 }
1924
1925 #ifdef DEBUG
1926 void lfs_dump_vop(void *);
1927
1928 void
1929 lfs_dump_vop(void *v)
1930 {
1931 struct vop_putpages_args /* {
1932 struct vnode *a_vp;
1933 voff_t a_offlo;
1934 voff_t a_offhi;
1935 int a_flags;
1936 } */ *ap = v;
1937
1938 #ifdef DDB
1939 vfs_vnode_print(ap->a_vp, 0, printf);
1940 #endif
1941 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1942 }
1943 #endif
1944
1945 int
1946 lfs_mmap(void *v)
1947 {
1948 struct vop_mmap_args /* {
1949 const struct vnodeop_desc *a_desc;
1950 struct vnode *a_vp;
1951 int a_fflags;
1952 struct ucred *a_cred;
1953 struct lwp *a_l;
1954 } */ *ap = v;
1955
1956 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1957 return EOPNOTSUPP;
1958 return ufs_mmap(v);
1959 }
1960