lfs_vnops.c revision 1.109.2.7 1 /* $NetBSD: lfs_vnops.c,v 1.109.2.7 2005/02/04 11:48:27 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.109.2.7 2005/02/04 11:48:27 skrll Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 /*
271 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
272 */
273 void
274 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
275 {
276 LFS_ITIMES(ip, acc, mod, cre);
277 }
278
279 #define LFS_READWRITE
280 #include <ufs/ufs/ufs_readwrite.c>
281 #undef LFS_READWRITE
282
283 /*
284 * Synch an open file.
285 */
286 /* ARGSUSED */
287 int
288 lfs_fsync(void *v)
289 {
290 struct vop_fsync_args /* {
291 struct vnode *a_vp;
292 struct ucred *a_cred;
293 int a_flags;
294 off_t offlo;
295 off_t offhi;
296 struct lwp *a_l;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299 int error, wait;
300
301 /*
302 * Trickle sync checks for need to do a checkpoint after possible
303 * activity from the pagedaemon.
304 */
305 if (ap->a_flags & FSYNC_LAZY) {
306 simple_lock(&lfs_subsys_lock);
307 wakeup(&lfs_writer_daemon);
308 simple_unlock(&lfs_subsys_lock);
309 return 0;
310 }
311
312 wait = (ap->a_flags & FSYNC_WAIT);
313 simple_lock(&vp->v_interlock);
314 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 round_page(ap->a_offhi),
316 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 if (error)
318 return error;
319 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
320 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
321 int l = 0;
322 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
323 ap->a_l->l_proc->p_ucred, ap->a_l);
324 }
325 if (wait && !VPISEMPTY(vp))
326 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
327
328 return error;
329 }
330
331 /*
332 * Take IN_ADIROP off, then call ufs_inactive.
333 */
334 int
335 lfs_inactive(void *v)
336 {
337 struct vop_inactive_args /* {
338 struct vnode *a_vp;
339 struct lwp *a_l;
340 } */ *ap = v;
341
342 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
343
344 lfs_unmark_vnode(ap->a_vp);
345
346 /*
347 * The Ifile is only ever inactivated on unmount.
348 * Streamline this process by not giving it more dirty blocks.
349 */
350 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
351 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
352 VOP_UNLOCK(ap->a_vp, 0);
353 return 0;
354 }
355
356 return ufs_inactive(v);
357 }
358
359 /*
360 * These macros are used to bracket UFS directory ops, so that we can
361 * identify all the pages touched during directory ops which need to
362 * be ordered and flushed atomically, so that they may be recovered.
363 */
364 /*
365 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
366 * the cache from reclaiming them while a dirop is in progress, we must
367 * also manage the number of nodes so marked (otherwise we can run out).
368 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
369 * is decremented during segment write, when VDIROP is taken off.
370 */
371 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
372 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
373 static int lfs_set_dirop(struct vnode *, struct vnode *);
374
375 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
376
377 static int
378 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
379 {
380 struct lfs *fs;
381 int error;
382
383 KASSERT(VOP_ISLOCKED(vp));
384 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
385
386 fs = VTOI(vp)->i_lfs;
387 /*
388 * We might need one directory block plus supporting indirect blocks,
389 * plus an inode block and ifile page for the new vnode.
390 */
391 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
392 return (error);
393
394 if (fs->lfs_dirops == 0)
395 lfs_check(vp, LFS_UNUSED_LBN, 0);
396 restart:
397 simple_lock(&fs->lfs_interlock);
398 if (fs->lfs_writer) {
399 ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PNORELOCK,
400 "lfs_sdirop", 0, &fs->lfs_interlock);
401 goto restart;
402 }
403 simple_lock(&lfs_subsys_lock);
404 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
405 wakeup(&lfs_writer_daemon);
406 simple_unlock(&lfs_subsys_lock);
407 simple_unlock(&fs->lfs_interlock);
408 preempt(1);
409 goto restart;
410 }
411
412 if (lfs_dirvcount > LFS_MAX_DIROP) {
413 simple_unlock(&fs->lfs_interlock);
414 #ifdef DEBUG_LFS
415 printf("lfs_set_dirop: sleeping with dirops=%d, "
416 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount);
417 #endif
418 if ((error = ltsleep(&lfs_dirvcount,
419 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
420 &lfs_subsys_lock)) != 0) {
421 goto unreserve;
422 }
423 goto restart;
424 }
425 simple_unlock(&lfs_subsys_lock);
426
427 ++fs->lfs_dirops;
428 fs->lfs_doifile = 1;
429 simple_unlock(&fs->lfs_interlock);
430
431 /* Hold a reference so SET_ENDOP will be happy */
432 vref(vp);
433 if (vp2)
434 vref(vp2);
435
436 return 0;
437
438 unreserve:
439 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
440 return error;
441 }
442
443 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
444 #define SET_ENDOP2(fs, vp, vp2, str) { \
445 --(fs)->lfs_dirops; \
446 if (!(fs)->lfs_dirops) { \
447 if ((fs)->lfs_nadirop) { \
448 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
449 (str), (fs)->lfs_nadirop); \
450 } \
451 wakeup(&(fs)->lfs_writer); \
452 lfs_check((vp),LFS_UNUSED_LBN,0); \
453 } \
454 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
455 vrele(vp); \
456 if (vp2) \
457 vrele(vp2); \
458 }
459
460 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
461 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
462
463 void
464 lfs_mark_vnode(struct vnode *vp)
465 {
466 struct inode *ip = VTOI(vp);
467 struct lfs *fs = ip->i_lfs;
468
469 if (!(ip->i_flag & IN_ADIROP)) {
470 if (!(vp->v_flag & VDIROP)) {
471 (void)lfs_vref(vp);
472 ++lfs_dirvcount;
473 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
474 vp->v_flag |= VDIROP;
475 }
476 ++fs->lfs_nadirop;
477 ip->i_flag |= IN_ADIROP;
478 } else
479 KASSERT(vp->v_flag & VDIROP);
480 }
481
482 void
483 lfs_unmark_vnode(struct vnode *vp)
484 {
485 struct inode *ip = VTOI(vp);
486
487 if (ip->i_flag & IN_ADIROP) {
488 KASSERT(vp->v_flag & VDIROP);
489 --ip->i_lfs->lfs_nadirop;
490 ip->i_flag &= ~IN_ADIROP;
491 }
492 }
493
494 int
495 lfs_symlink(void *v)
496 {
497 struct vop_symlink_args /* {
498 struct vnode *a_dvp;
499 struct vnode **a_vpp;
500 struct componentname *a_cnp;
501 struct vattr *a_vap;
502 char *a_target;
503 } */ *ap = v;
504 int error;
505
506 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
507 vput(ap->a_dvp);
508 return error;
509 }
510 MARK_VNODE(ap->a_dvp);
511 error = ufs_symlink(ap);
512 UNMARK_VNODE(ap->a_dvp);
513 if (*(ap->a_vpp))
514 UNMARK_VNODE(*(ap->a_vpp));
515 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
516 return (error);
517 }
518
519 int
520 lfs_mknod(void *v)
521 {
522 struct vop_mknod_args /* {
523 struct vnode *a_dvp;
524 struct vnode **a_vpp;
525 struct componentname *a_cnp;
526 struct vattr *a_vap;
527 } */ *ap = v;
528 struct vattr *vap = ap->a_vap;
529 struct vnode **vpp = ap->a_vpp;
530 struct componentname *cnp = ap->a_cnp;
531 struct inode *ip;
532 int error;
533 struct mount *mp;
534 ino_t ino;
535
536 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
537 vput(ap->a_dvp);
538 return error;
539 }
540 MARK_VNODE(ap->a_dvp);
541 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
542 ap->a_dvp, vpp, cnp);
543 UNMARK_VNODE(ap->a_dvp);
544 if (*(ap->a_vpp))
545 UNMARK_VNODE(*(ap->a_vpp));
546
547 /* Either way we're done with the dirop at this point */
548 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
549
550 if (error)
551 return (error);
552
553 ip = VTOI(*vpp);
554 mp = (*vpp)->v_mount;
555 ino = ip->i_number;
556 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
557 if (vap->va_rdev != VNOVAL) {
558 /*
559 * Want to be able to use this to make badblock
560 * inodes, so don't truncate the dev number.
561 */
562 #if 0
563 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
564 UFS_MPNEEDSWAP((*vpp)->v_mount));
565 #else
566 ip->i_ffs1_rdev = vap->va_rdev;
567 #endif
568 }
569 /*
570 * Call fsync to write the vnode so that we don't have to deal with
571 * flushing it when it's marked VDIROP|VXLOCK.
572 *
573 * XXX KS - If we can't flush we also can't call vgone(), so must
574 * return. But, that leaves this vnode in limbo, also not good.
575 * Can this ever happen (barring hardware failure)?
576 */
577 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
578 cnp->cn_lwp)) != 0) {
579 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
580 VTOI(*vpp)->i_number);
581 return (error);
582 }
583 /*
584 * Remove vnode so that it will be reloaded by VFS_VGET and
585 * checked to see if it is an alias of an existing entry in
586 * the inode cache.
587 */
588 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
589 VOP_UNLOCK(*vpp, 0);
590 lfs_vunref(*vpp);
591 (*vpp)->v_type = VNON;
592 vgone(*vpp);
593 error = VFS_VGET(mp, ino, vpp);
594 if (error != 0) {
595 *vpp = NULL;
596 return (error);
597 }
598 return (0);
599 }
600
601 int
602 lfs_create(void *v)
603 {
604 struct vop_create_args /* {
605 struct vnode *a_dvp;
606 struct vnode **a_vpp;
607 struct componentname *a_cnp;
608 struct vattr *a_vap;
609 } */ *ap = v;
610 int error;
611
612 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
613 vput(ap->a_dvp);
614 return error;
615 }
616 MARK_VNODE(ap->a_dvp);
617 error = ufs_create(ap);
618 UNMARK_VNODE(ap->a_dvp);
619 if (*(ap->a_vpp))
620 UNMARK_VNODE(*(ap->a_vpp));
621 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
622 return (error);
623 }
624
625 int
626 lfs_mkdir(void *v)
627 {
628 struct vop_mkdir_args /* {
629 struct vnode *a_dvp;
630 struct vnode **a_vpp;
631 struct componentname *a_cnp;
632 struct vattr *a_vap;
633 } */ *ap = v;
634 int error;
635
636 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
637 vput(ap->a_dvp);
638 return error;
639 }
640 MARK_VNODE(ap->a_dvp);
641 error = ufs_mkdir(ap);
642 UNMARK_VNODE(ap->a_dvp);
643 if (*(ap->a_vpp))
644 UNMARK_VNODE(*(ap->a_vpp));
645 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
646 return (error);
647 }
648
649 int
650 lfs_remove(void *v)
651 {
652 struct vop_remove_args /* {
653 struct vnode *a_dvp;
654 struct vnode *a_vp;
655 struct componentname *a_cnp;
656 } */ *ap = v;
657 struct vnode *dvp, *vp;
658 int error;
659
660 dvp = ap->a_dvp;
661 vp = ap->a_vp;
662 if ((error = SET_DIROP2(dvp, vp)) != 0) {
663 if (dvp == vp)
664 vrele(vp);
665 else
666 vput(vp);
667 vput(dvp);
668 return error;
669 }
670 MARK_VNODE(dvp);
671 MARK_VNODE(vp);
672 error = ufs_remove(ap);
673 UNMARK_VNODE(dvp);
674 UNMARK_VNODE(vp);
675
676 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
677 return (error);
678 }
679
680 int
681 lfs_rmdir(void *v)
682 {
683 struct vop_rmdir_args /* {
684 struct vnodeop_desc *a_desc;
685 struct vnode *a_dvp;
686 struct vnode *a_vp;
687 struct componentname *a_cnp;
688 } */ *ap = v;
689 struct vnode *vp;
690 int error;
691
692 vp = ap->a_vp;
693 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
694 vrele(ap->a_dvp);
695 if (ap->a_vp != ap->a_dvp)
696 VOP_UNLOCK(ap->a_dvp, 0);
697 vput(vp);
698 return error;
699 }
700 MARK_VNODE(ap->a_dvp);
701 MARK_VNODE(vp);
702 error = ufs_rmdir(ap);
703 UNMARK_VNODE(ap->a_dvp);
704 UNMARK_VNODE(vp);
705
706 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
707 return (error);
708 }
709
710 int
711 lfs_link(void *v)
712 {
713 struct vop_link_args /* {
714 struct vnode *a_dvp;
715 struct vnode *a_vp;
716 struct componentname *a_cnp;
717 } */ *ap = v;
718 int error;
719
720 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
721 vput(ap->a_dvp);
722 return error;
723 }
724 MARK_VNODE(ap->a_dvp);
725 error = ufs_link(ap);
726 UNMARK_VNODE(ap->a_dvp);
727 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
728 return (error);
729 }
730
731 int
732 lfs_rename(void *v)
733 {
734 struct vop_rename_args /* {
735 struct vnode *a_fdvp;
736 struct vnode *a_fvp;
737 struct componentname *a_fcnp;
738 struct vnode *a_tdvp;
739 struct vnode *a_tvp;
740 struct componentname *a_tcnp;
741 } */ *ap = v;
742 struct vnode *tvp, *fvp, *tdvp, *fdvp;
743 struct componentname *tcnp, *fcnp;
744 int error;
745 struct lfs *fs;
746
747 fs = VTOI(ap->a_fdvp)->i_lfs;
748 tvp = ap->a_tvp;
749 tdvp = ap->a_tdvp;
750 tcnp = ap->a_tcnp;
751 fvp = ap->a_fvp;
752 fdvp = ap->a_fdvp;
753 fcnp = ap->a_fcnp;
754
755 /*
756 * Check for cross-device rename.
757 * If it is, we don't want to set dirops, just error out.
758 * (In particular note that MARK_VNODE(tdvp) will DTWT on
759 * a cross-device rename.)
760 *
761 * Copied from ufs_rename.
762 */
763 if ((fvp->v_mount != tdvp->v_mount) ||
764 (tvp && (fvp->v_mount != tvp->v_mount))) {
765 error = EXDEV;
766 goto errout;
767 }
768
769 /*
770 * Check to make sure we're not renaming a vnode onto itself
771 * (deleting a hard link by renaming one name onto another);
772 * if we are we can't recursively call VOP_REMOVE since that
773 * would leave us with an unaccounted-for number of live dirops.
774 *
775 * Inline the relevant section of ufs_rename here, *before*
776 * calling SET_DIROP2.
777 */
778 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
779 (VTOI(tdvp)->i_flags & APPEND))) {
780 error = EPERM;
781 goto errout;
782 }
783 if (fvp == tvp) {
784 if (fvp->v_type == VDIR) {
785 error = EINVAL;
786 goto errout;
787 }
788
789 /* Release destination completely. */
790 VOP_ABORTOP(tdvp, tcnp);
791 vput(tdvp);
792 vput(tvp);
793
794 /* Delete source. */
795 vrele(fvp);
796 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
797 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
798 fcnp->cn_nameiop = DELETE;
799 if ((error = relookup(fdvp, &fvp, fcnp))){
800 /* relookup blew away fdvp */
801 return (error);
802 }
803 return (VOP_REMOVE(fdvp, fvp, fcnp));
804 }
805
806 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
807 goto errout;
808 MARK_VNODE(fdvp);
809 MARK_VNODE(tdvp);
810 MARK_VNODE(fvp);
811 if (tvp) {
812 MARK_VNODE(tvp);
813 }
814
815 error = ufs_rename(ap);
816 UNMARK_VNODE(fdvp);
817 UNMARK_VNODE(tdvp);
818 UNMARK_VNODE(fvp);
819 if (tvp) {
820 UNMARK_VNODE(tvp);
821 }
822 SET_ENDOP2(fs, tdvp, tvp, "rename");
823 return (error);
824
825 errout:
826 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
827 if (tdvp == tvp)
828 vrele(tdvp);
829 else
830 vput(tdvp);
831 if (tvp)
832 vput(tvp);
833 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
834 vrele(fdvp);
835 vrele(fvp);
836 return (error);
837 }
838
839 /* XXX hack to avoid calling ITIMES in getattr */
840 int
841 lfs_getattr(void *v)
842 {
843 struct vop_getattr_args /* {
844 struct vnode *a_vp;
845 struct vattr *a_vap;
846 struct ucred *a_cred;
847 struct lwp *a_l;
848 } */ *ap = v;
849 struct vnode *vp = ap->a_vp;
850 struct inode *ip = VTOI(vp);
851 struct vattr *vap = ap->a_vap;
852 struct lfs *fs = ip->i_lfs;
853 /*
854 * Copy from inode table
855 */
856 vap->va_fsid = ip->i_dev;
857 vap->va_fileid = ip->i_number;
858 vap->va_mode = ip->i_mode & ~IFMT;
859 vap->va_nlink = ip->i_nlink;
860 vap->va_uid = ip->i_uid;
861 vap->va_gid = ip->i_gid;
862 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
863 vap->va_size = vp->v_size;
864 vap->va_atime.tv_sec = ip->i_ffs1_atime;
865 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
866 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
867 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
868 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
869 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
870 vap->va_flags = ip->i_flags;
871 vap->va_gen = ip->i_gen;
872 /* this doesn't belong here */
873 if (vp->v_type == VBLK)
874 vap->va_blocksize = BLKDEV_IOSIZE;
875 else if (vp->v_type == VCHR)
876 vap->va_blocksize = MAXBSIZE;
877 else
878 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
879 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
880 vap->va_type = vp->v_type;
881 vap->va_filerev = ip->i_modrev;
882 return (0);
883 }
884
885 /*
886 * Check to make sure the inode blocks won't choke the buffer
887 * cache, then call ufs_setattr as usual.
888 */
889 int
890 lfs_setattr(void *v)
891 {
892 struct vop_getattr_args /* {
893 struct vnode *a_vp;
894 struct vattr *a_vap;
895 struct ucred *a_cred;
896 struct lwp *a_l;
897 } */ *ap = v;
898 struct vnode *vp = ap->a_vp;
899
900 lfs_check(vp, LFS_UNUSED_LBN, 0);
901 return ufs_setattr(v);
902 }
903
904 /*
905 * Close called
906 *
907 * XXX -- we were using ufs_close, but since it updates the
908 * times on the inode, we might need to bump the uinodes
909 * count.
910 */
911 /* ARGSUSED */
912 int
913 lfs_close(void *v)
914 {
915 struct vop_close_args /* {
916 struct vnode *a_vp;
917 int a_fflag;
918 struct ucred *a_cred;
919 struct lwp *a_l;
920 } */ *ap = v;
921 struct vnode *vp = ap->a_vp;
922 struct inode *ip = VTOI(vp);
923 struct timespec ts;
924
925 if (vp == ip->i_lfs->lfs_ivnode &&
926 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
927 return 0;
928
929 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
930 TIMEVAL_TO_TIMESPEC(&time, &ts);
931 LFS_ITIMES(ip, &ts, &ts, &ts);
932 }
933 return (0);
934 }
935
936 /*
937 * Close wrapper for special devices.
938 *
939 * Update the times on the inode then do device close.
940 */
941 int
942 lfsspec_close(void *v)
943 {
944 struct vop_close_args /* {
945 struct vnode *a_vp;
946 int a_fflag;
947 struct ucred *a_cred;
948 struct lwp *a_l;
949 } */ *ap = v;
950 struct vnode *vp;
951 struct inode *ip;
952 struct timespec ts;
953
954 vp = ap->a_vp;
955 ip = VTOI(vp);
956 if (vp->v_usecount > 1) {
957 TIMEVAL_TO_TIMESPEC(&time, &ts);
958 LFS_ITIMES(ip, &ts, &ts, &ts);
959 }
960 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
961 }
962
963 /*
964 * Close wrapper for fifo's.
965 *
966 * Update the times on the inode then do device close.
967 */
968 int
969 lfsfifo_close(void *v)
970 {
971 struct vop_close_args /* {
972 struct vnode *a_vp;
973 int a_fflag;
974 struct ucred *a_cred;
975 struct lwp *a_l;
976 } */ *ap = v;
977 struct vnode *vp;
978 struct inode *ip;
979 struct timespec ts;
980
981 vp = ap->a_vp;
982 ip = VTOI(vp);
983 if (ap->a_vp->v_usecount > 1) {
984 TIMEVAL_TO_TIMESPEC(&time, &ts);
985 LFS_ITIMES(ip, &ts, &ts, &ts);
986 }
987 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
988 }
989
990 /*
991 * Reclaim an inode so that it can be used for other purposes.
992 */
993
994 int
995 lfs_reclaim(void *v)
996 {
997 struct vop_reclaim_args /* {
998 struct vnode *a_vp;
999 struct lwp *a_l;
1000 } */ *ap = v;
1001 struct vnode *vp = ap->a_vp;
1002 struct inode *ip = VTOI(vp);
1003 int error;
1004
1005 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1006
1007 LFS_CLR_UINO(ip, IN_ALLMOD);
1008 if ((error = ufs_reclaim(vp, ap->a_l)))
1009 return (error);
1010 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1011 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1012 ip->inode_ext.lfs = NULL;
1013 pool_put(&lfs_inode_pool, vp->v_data);
1014 vp->v_data = NULL;
1015 return (0);
1016 }
1017
1018 /*
1019 * Read a block from a storage device.
1020 * In order to avoid reading blocks that are in the process of being
1021 * written by the cleaner---and hence are not mutexed by the normal
1022 * buffer cache / page cache mechanisms---check for collisions before
1023 * reading.
1024 *
1025 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1026 * the active cleaner test.
1027 *
1028 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1029 */
1030 int
1031 lfs_strategy(void *v)
1032 {
1033 struct vop_strategy_args /* {
1034 struct vnode *a_vp;
1035 struct buf *a_bp;
1036 } */ *ap = v;
1037 struct buf *bp;
1038 struct lfs *fs;
1039 struct vnode *vp;
1040 struct inode *ip;
1041 daddr_t tbn;
1042 int i, sn, error, slept;
1043
1044 bp = ap->a_bp;
1045 vp = ap->a_vp;
1046 ip = VTOI(vp);
1047 fs = ip->i_lfs;
1048
1049 /* lfs uses its strategy routine only for read */
1050 KASSERT(bp->b_flags & B_READ);
1051
1052 if (vp->v_type == VBLK || vp->v_type == VCHR)
1053 panic("lfs_strategy: spec");
1054 KASSERT(bp->b_bcount != 0);
1055 if (bp->b_blkno == bp->b_lblkno) {
1056 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1057 NULL);
1058 if (error) {
1059 bp->b_error = error;
1060 bp->b_flags |= B_ERROR;
1061 biodone(bp);
1062 return (error);
1063 }
1064 if ((long)bp->b_blkno == -1) /* no valid data */
1065 clrbuf(bp);
1066 }
1067 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1068 biodone(bp);
1069 return (0);
1070 }
1071
1072 slept = 1;
1073 simple_lock(&fs->lfs_interlock);
1074 while (slept && fs->lfs_seglock) {
1075 simple_unlock(&fs->lfs_interlock);
1076 /*
1077 * Look through list of intervals.
1078 * There will only be intervals to look through
1079 * if the cleaner holds the seglock.
1080 * Since the cleaner is synchronous, we can trust
1081 * the list of intervals to be current.
1082 */
1083 tbn = dbtofsb(fs, bp->b_blkno);
1084 sn = dtosn(fs, tbn);
1085 slept = 0;
1086 for (i = 0; i < fs->lfs_cleanind; i++) {
1087 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1088 tbn >= fs->lfs_cleanint[i]) {
1089 #ifdef DEBUG_LFS
1090 printf("lfs_strategy: ino %d lbn %" PRId64
1091 " ind %d sn %d fsb %" PRIx32
1092 " given sn %d fsb %" PRIx64 "\n",
1093 ip->i_number, bp->b_lblkno, i,
1094 dtosn(fs, fs->lfs_cleanint[i]),
1095 fs->lfs_cleanint[i], sn, tbn);
1096 printf("lfs_strategy: sleeping on ino %d lbn %"
1097 PRId64 "\n", ip->i_number, bp->b_lblkno);
1098 #endif
1099 tsleep(&fs->lfs_seglock, PRIBIO+1,
1100 "lfs_strategy", 0);
1101 /* Things may be different now; start over. */
1102 slept = 1;
1103 break;
1104 }
1105 }
1106 simple_lock(&fs->lfs_interlock);
1107 }
1108 simple_unlock(&fs->lfs_interlock);
1109
1110 vp = ip->i_devvp;
1111 VOP_STRATEGY(vp, bp);
1112 return (0);
1113 }
1114
1115 static void
1116 lfs_flush_dirops(struct lfs *fs)
1117 {
1118 struct inode *ip, *nip;
1119 struct vnode *vp;
1120 extern int lfs_dostats;
1121 struct segment *sp;
1122 int needunlock;
1123
1124 if (fs->lfs_ronly)
1125 return;
1126
1127 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1128 return;
1129
1130 if (lfs_dostats)
1131 ++lfs_stats.flush_invoked;
1132
1133 /*
1134 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1135 * Technically this is a checkpoint (the on-disk state is valid)
1136 * even though we are leaving out all the file data.
1137 */
1138 lfs_imtime(fs);
1139 lfs_seglock(fs, SEGM_CKP);
1140 sp = fs->lfs_sp;
1141
1142 /*
1143 * lfs_writevnodes, optimized to get dirops out of the way.
1144 * Only write dirops, and don't flush files' pages, only
1145 * blocks from the directories.
1146 *
1147 * We don't need to vref these files because they are
1148 * dirops and so hold an extra reference until the
1149 * segunlock clears them of that status.
1150 *
1151 * We don't need to check for IN_ADIROP because we know that
1152 * no dirops are active.
1153 *
1154 */
1155 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1156 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1157 vp = ITOV(ip);
1158
1159 /*
1160 * All writes to directories come from dirops; all
1161 * writes to files' direct blocks go through the page
1162 * cache, which we're not touching. Reads to files
1163 * and/or directories will not be affected by writing
1164 * directory blocks inodes and file inodes. So we don't
1165 * really need to lock. If we don't lock, though,
1166 * make sure that we don't clear IN_MODIFIED
1167 * unnecessarily.
1168 */
1169 if (vp->v_flag & VXLOCK)
1170 continue;
1171 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1172 LK_NOWAIT) == 0) {
1173 needunlock = 1;
1174 } else {
1175 printf("lfs_flush_dirops: flushing locked ino %d\n",
1176 VTOI(vp)->i_number);
1177 needunlock = 0;
1178 }
1179 if (vp->v_type != VREG &&
1180 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1181 lfs_writefile(fs, sp, vp);
1182 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1183 !(ip->i_flag & IN_ALLMOD)) {
1184 LFS_SET_UINO(ip, IN_MODIFIED);
1185 }
1186 }
1187 (void) lfs_writeinode(fs, sp, ip);
1188 if (needunlock)
1189 VOP_UNLOCK(vp, 0);
1190 else
1191 LFS_SET_UINO(ip, IN_MODIFIED);
1192 }
1193 /* We've written all the dirops there are */
1194 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1195 (void) lfs_writeseg(fs, sp);
1196 lfs_segunlock(fs);
1197 }
1198
1199 /*
1200 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1201 */
1202 int
1203 lfs_fcntl(void *v)
1204 {
1205 struct vop_fcntl_args /* {
1206 struct vnode *a_vp;
1207 u_long a_command;
1208 caddr_t a_data;
1209 int a_fflag;
1210 struct ucred *a_cred;
1211 struct lwp *a_l;
1212 } */ *ap = v;
1213 struct timeval *tvp;
1214 BLOCK_INFO *blkiov;
1215 CLEANERINFO *cip;
1216 int blkcnt, error, oclean;
1217 struct lfs_fcntl_markv blkvp;
1218 struct proc *p;
1219 fsid_t *fsidp;
1220 struct lfs *fs;
1221 struct buf *bp;
1222 daddr_t off;
1223
1224 /* Only respect LFS fcntls on fs root or Ifile */
1225 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1226 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1227 return ufs_fcntl(v);
1228 }
1229
1230 /* Avoid locking a draining lock */
1231 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1232 return ESHUTDOWN;
1233 }
1234
1235 p = ap->a_l->l_proc;
1236 fs = VTOI(ap->a_vp)->i_lfs;
1237 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1238
1239 switch (ap->a_command) {
1240 case LFCNSEGWAITALL:
1241 fsidp = NULL;
1242 /* FALLSTHROUGH */
1243 case LFCNSEGWAIT:
1244 tvp = (struct timeval *)ap->a_data;
1245 simple_lock(&fs->lfs_interlock);
1246 ++fs->lfs_sleepers;
1247 simple_unlock(&fs->lfs_interlock);
1248 VOP_UNLOCK(ap->a_vp, 0);
1249
1250 error = lfs_segwait(fsidp, tvp);
1251
1252 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1253 simple_lock(&fs->lfs_interlock);
1254 if (--fs->lfs_sleepers == 0)
1255 wakeup(&fs->lfs_sleepers);
1256 simple_unlock(&fs->lfs_interlock);
1257 return error;
1258
1259 case LFCNBMAPV:
1260 case LFCNMARKV:
1261 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1262 return (error);
1263 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1264
1265 blkcnt = blkvp.blkcnt;
1266 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1267 return (EINVAL);
1268 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1269 if ((error = copyin(blkvp.blkiov, blkiov,
1270 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1271 free(blkiov, M_SEGMENT);
1272 return error;
1273 }
1274
1275 simple_lock(&fs->lfs_interlock);
1276 ++fs->lfs_sleepers;
1277 simple_unlock(&fs->lfs_interlock);
1278 VOP_UNLOCK(ap->a_vp, 0);
1279 if (ap->a_command == LFCNBMAPV)
1280 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1281 else /* LFCNMARKV */
1282 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1283 if (error == 0)
1284 error = copyout(blkiov, blkvp.blkiov,
1285 blkcnt * sizeof(BLOCK_INFO));
1286 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1287 simple_lock(&fs->lfs_interlock);
1288 if (--fs->lfs_sleepers == 0)
1289 wakeup(&fs->lfs_sleepers);
1290 simple_unlock(&fs->lfs_interlock);
1291 free(blkiov, M_SEGMENT);
1292 return error;
1293
1294 case LFCNRECLAIM:
1295 /*
1296 * Flush dirops and write Ifile, allowing empty segments
1297 * to be immediately reclaimed.
1298 */
1299 lfs_writer_enter(fs, "pndirop");
1300 off = fs->lfs_offset;
1301 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1302 lfs_flush_dirops(fs);
1303 LFS_CLEANERINFO(cip, fs, bp);
1304 oclean = cip->clean;
1305 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1306 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1307 lfs_segunlock(fs);
1308 lfs_writer_leave(fs);
1309
1310 #ifdef DEBUG_LFS
1311 LFS_CLEANERINFO(cip, fs, bp);
1312 oclean = cip->clean;
1313 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1314 "%" PRId32 " segments (activesb %d)\n",
1315 fs->lfs_offset - off, cip->clean - oclean,
1316 fs->lfs_activesb);
1317 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1318 #endif
1319
1320 return 0;
1321
1322 default:
1323 return ufs_fcntl(v);
1324 }
1325 return 0;
1326 }
1327
1328 int
1329 lfs_getpages(void *v)
1330 {
1331 struct vop_getpages_args /* {
1332 struct vnode *a_vp;
1333 voff_t a_offset;
1334 struct vm_page **a_m;
1335 int *a_count;
1336 int a_centeridx;
1337 vm_prot_t a_access_type;
1338 int a_advice;
1339 int a_flags;
1340 } */ *ap = v;
1341
1342 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1343 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1344 return EPERM;
1345 }
1346 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1347 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1348 }
1349
1350 /*
1351 * we're relying on the fact that genfs_getpages() always read in
1352 * entire filesystem blocks.
1353 */
1354 return genfs_getpages(v);
1355 }
1356
1357 /*
1358 * Make sure that for all pages in every block in the given range,
1359 * either all are dirty or all are clean. If any of the pages
1360 * we've seen so far are dirty, put the vnode on the paging chain,
1361 * and mark it IN_PAGING.
1362 *
1363 * If checkfirst != 0, don't check all the pages but return at the
1364 * first dirty page.
1365 */
1366 static int
1367 check_dirty(struct lfs *fs, struct vnode *vp,
1368 off_t startoffset, off_t endoffset, off_t blkeof,
1369 int flags, int checkfirst)
1370 {
1371 int by_list;
1372 struct vm_page *curpg = NULL; /* XXX: gcc */
1373 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1374 off_t soff = 0; /* XXX: gcc */
1375 voff_t off;
1376 int i;
1377 int nonexistent;
1378 int any_dirty; /* number of dirty pages */
1379 int dirty; /* number of dirty pages in a block */
1380 int tdirty;
1381 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1382
1383 top:
1384 by_list = (vp->v_uobj.uo_npages <=
1385 ((endoffset - startoffset) >> PAGE_SHIFT) *
1386 UVM_PAGE_HASH_PENALTY);
1387 any_dirty = 0;
1388
1389 if (by_list) {
1390 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1391 } else {
1392 soff = startoffset;
1393 }
1394 while (by_list || soff < MIN(blkeof, endoffset)) {
1395 if (by_list) {
1396 /*
1397 * find the first page in a block.
1398 */
1399 if (pages_per_block > 1) {
1400 while (curpg && (curpg->offset & fs->lfs_bmask))
1401 curpg = TAILQ_NEXT(curpg, listq);
1402 }
1403 if (curpg == NULL)
1404 break;
1405 soff = curpg->offset;
1406 }
1407
1408 /*
1409 * Mark all pages in extended range busy; find out if any
1410 * of them are dirty.
1411 */
1412 nonexistent = dirty = 0;
1413 for (i = 0; i == 0 || i < pages_per_block; i++) {
1414 if (by_list && pages_per_block <= 1) {
1415 pgs[i] = pg = curpg;
1416 } else {
1417 off = soff + (i << PAGE_SHIFT);
1418 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1419 if (pg == NULL) {
1420 ++nonexistent;
1421 continue;
1422 }
1423 }
1424 KASSERT(pg != NULL);
1425 while (pg->flags & PG_BUSY) {
1426 pg->flags |= PG_WANTED;
1427 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1428 "lfsput", 0);
1429 simple_lock(&vp->v_interlock);
1430 if (by_list) {
1431 if (i > 0)
1432 uvm_page_unbusy(pgs, i);
1433 goto top;
1434 }
1435 }
1436 pg->flags |= PG_BUSY;
1437 UVM_PAGE_OWN(pg, "lfs_putpages");
1438
1439 pmap_page_protect(pg, VM_PROT_NONE);
1440 tdirty = (pmap_clear_modify(pg) ||
1441 (pg->flags & PG_CLEAN) == 0);
1442 dirty += tdirty;
1443 }
1444 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1445 if (by_list) {
1446 curpg = TAILQ_NEXT(curpg, listq);
1447 } else {
1448 soff += fs->lfs_bsize;
1449 }
1450 continue;
1451 }
1452
1453 any_dirty += dirty;
1454 KASSERT(nonexistent == 0);
1455
1456 /*
1457 * If any are dirty make all dirty; unbusy them,
1458 * but if we were asked to clean, wire them so that
1459 * the pagedaemon doesn't bother us about them while
1460 * they're on their way to disk.
1461 */
1462 for (i = 0; i == 0 || i < pages_per_block; i++) {
1463 pg = pgs[i];
1464 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1465 if (dirty) {
1466 pg->flags &= ~PG_CLEAN;
1467 if (flags & PGO_FREE) {
1468 /* XXXUBC need better way to update */
1469 simple_lock(&lfs_subsys_lock);
1470 lfs_subsys_pages += MIN(1, pages_per_block);
1471 simple_unlock(&lfs_subsys_lock);
1472 /*
1473 * Wire the page so that
1474 * pdaemon doesn't see it again.
1475 */
1476 uvm_lock_pageq();
1477 uvm_pagewire(pg);
1478 uvm_unlock_pageq();
1479
1480 /* Suspended write flag */
1481 pg->flags |= PG_DELWRI;
1482 }
1483 }
1484 if (pg->flags & PG_WANTED)
1485 wakeup(pg);
1486 pg->flags &= ~(PG_WANTED|PG_BUSY);
1487 UVM_PAGE_OWN(pg, NULL);
1488 }
1489
1490 if (checkfirst && any_dirty)
1491 break;
1492
1493 if (by_list) {
1494 curpg = TAILQ_NEXT(curpg, listq);
1495 } else {
1496 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1497 }
1498 }
1499
1500 /*
1501 * If any pages were dirty, mark this inode as "pageout requested",
1502 * and put it on the paging queue.
1503 * XXXUBC locking (check locking on dchainhd too)
1504 */
1505 #ifdef notyet
1506 if (any_dirty) {
1507 if (!(ip->i_flags & IN_PAGING)) {
1508 ip->i_flags |= IN_PAGING;
1509 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1510 }
1511 }
1512 #endif
1513 return any_dirty;
1514 }
1515
1516 /*
1517 * lfs_putpages functions like genfs_putpages except that
1518 *
1519 * (1) It needs to bounds-check the incoming requests to ensure that
1520 * they are block-aligned; if they are not, expand the range and
1521 * do the right thing in case, e.g., the requested range is clean
1522 * but the expanded range is dirty.
1523 * (2) It needs to explicitly send blocks to be written when it is done.
1524 * VOP_PUTPAGES is not ever called with the seglock held, so
1525 * we simply take the seglock and let lfs_segunlock wait for us.
1526 * XXX Actually we can be called with the seglock held, if we have
1527 * XXX to flush a vnode while lfs_markv is in operation. As of this
1528 * XXX writing we panic in this case.
1529 *
1530 * Assumptions:
1531 *
1532 * (1) The caller does not hold any pages in this vnode busy. If it does,
1533 * there is a danger that when we expand the page range and busy the
1534 * pages we will deadlock.
1535 * (2) We are called with vp->v_interlock held; we must return with it
1536 * released.
1537 * (3) We don't absolutely have to free pages right away, provided that
1538 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1539 * us a request with PGO_FREE, we take the pages out of the paging
1540 * queue and wake up the writer, which will handle freeing them for us.
1541 *
1542 * We ensure that for any filesystem block, all pages for that
1543 * block are either resident or not, even if those pages are higher
1544 * than EOF; that means that we will be getting requests to free
1545 * "unused" pages above EOF all the time, and should ignore them.
1546 *
1547 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1548 */
1549
1550 int
1551 lfs_putpages(void *v)
1552 {
1553 int error;
1554 struct vop_putpages_args /* {
1555 struct vnode *a_vp;
1556 voff_t a_offlo;
1557 voff_t a_offhi;
1558 int a_flags;
1559 } */ *ap = v;
1560 struct vnode *vp;
1561 struct inode *ip;
1562 struct lfs *fs;
1563 struct segment *sp;
1564 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1565 off_t off, max_endoffset;
1566 int s;
1567 boolean_t seglocked, sync, pagedaemon;
1568 struct vm_page *pg;
1569 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1570
1571 vp = ap->a_vp;
1572 ip = VTOI(vp);
1573 fs = ip->i_lfs;
1574 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1575 pagedaemon = (curproc == uvm.pagedaemon_proc);
1576
1577 /* Putpages does nothing for metadata. */
1578 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1579 simple_unlock(&vp->v_interlock);
1580 return 0;
1581 }
1582
1583 /*
1584 * If there are no pages, don't do anything.
1585 */
1586 if (vp->v_uobj.uo_npages == 0) {
1587 s = splbio();
1588 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1589 (vp->v_flag & VONWORKLST)) {
1590 vp->v_flag &= ~VONWORKLST;
1591 LIST_REMOVE(vp, v_synclist);
1592 }
1593 splx(s);
1594 simple_unlock(&vp->v_interlock);
1595 return 0;
1596 }
1597
1598 blkeof = blkroundup(fs, ip->i_size);
1599
1600 /*
1601 * Ignore requests to free pages past EOF but in the same block
1602 * as EOF, unless the request is synchronous. (XXX why sync?)
1603 * XXXUBC Make these pages look "active" so the pagedaemon won't
1604 * XXXUBC bother us with them again.
1605 */
1606 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1607 origoffset = ap->a_offlo;
1608 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1609 pg = uvm_pagelookup(&vp->v_uobj, off);
1610 KASSERT(pg != NULL);
1611 while (pg->flags & PG_BUSY) {
1612 pg->flags |= PG_WANTED;
1613 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1614 "lfsput2", 0);
1615 simple_lock(&vp->v_interlock);
1616 }
1617 uvm_lock_pageq();
1618 uvm_pageactivate(pg);
1619 uvm_unlock_pageq();
1620 }
1621 ap->a_offlo = blkeof;
1622 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1623 simple_unlock(&vp->v_interlock);
1624 return 0;
1625 }
1626 }
1627
1628 /*
1629 * Extend page range to start and end at block boundaries.
1630 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1631 */
1632 origoffset = ap->a_offlo;
1633 origendoffset = ap->a_offhi;
1634 startoffset = origoffset & ~(fs->lfs_bmask);
1635 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1636 << fs->lfs_bshift;
1637
1638 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1639 endoffset = max_endoffset;
1640 origendoffset = endoffset;
1641 } else {
1642 origendoffset = round_page(ap->a_offhi);
1643 endoffset = round_page(blkroundup(fs, origendoffset));
1644 }
1645
1646 KASSERT(startoffset > 0 || endoffset >= startoffset);
1647 if (startoffset == endoffset) {
1648 /* Nothing to do, why were we called? */
1649 simple_unlock(&vp->v_interlock);
1650 #ifdef DEBUG
1651 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1652 startoffset);
1653 #endif
1654 return 0;
1655 }
1656
1657 ap->a_offlo = startoffset;
1658 ap->a_offhi = endoffset;
1659
1660 if (!(ap->a_flags & PGO_CLEANIT))
1661 return genfs_putpages(v);
1662
1663 /*
1664 * If there are more than one page per block, we don't want
1665 * to get caught locking them backwards; so set PGO_BUSYFAIL
1666 * to avoid deadlocks.
1667 */
1668 ap->a_flags |= PGO_BUSYFAIL;
1669
1670 do {
1671 int r;
1672
1673 /* If no pages are dirty, we can just use genfs_putpages. */
1674 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1675 ap->a_flags, 1) != 0)
1676 break;
1677
1678 if ((r = genfs_putpages(v)) != EDEADLK)
1679 return r;
1680
1681 /* Start over. */
1682 preempt(1);
1683 simple_lock(&vp->v_interlock);
1684 } while(1);
1685
1686 /*
1687 * Dirty and asked to clean.
1688 *
1689 * Pagedaemon can't actually write LFS pages; wake up
1690 * the writer to take care of that. The writer will
1691 * notice the pager inode queue and act on that.
1692 */
1693 if (pagedaemon) {
1694 ++fs->lfs_pdflush;
1695 wakeup(&lfs_writer_daemon);
1696 simple_unlock(&vp->v_interlock);
1697 return EWOULDBLOCK;
1698 }
1699
1700 /*
1701 * If this is a file created in a recent dirop, we can't flush its
1702 * inode until the dirop is complete. Drain dirops, then flush the
1703 * filesystem (taking care of any other pending dirops while we're
1704 * at it).
1705 */
1706 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1707 (vp->v_flag & VDIROP)) {
1708 int locked;
1709
1710 /* printf("putpages to clean VDIROP, flushing\n"); */
1711 lfs_writer_enter(fs, "ppdirop");
1712 locked = VOP_ISLOCKED(vp) && /* XXX */
1713 vp->v_lock.lk_lockholder == curproc->p_pid;
1714 if (locked)
1715 VOP_UNLOCK(vp, 0);
1716 simple_unlock(&vp->v_interlock);
1717
1718 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1719
1720 simple_lock(&vp->v_interlock);
1721 if (locked)
1722 VOP_LOCK(vp, LK_EXCLUSIVE);
1723 lfs_writer_leave(fs);
1724
1725 /* XXX the flush should have taken care of this one too! */
1726 }
1727
1728 /*
1729 * This is it. We are going to write some pages. From here on
1730 * down it's all just mechanics.
1731 *
1732 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1733 */
1734 ap->a_flags &= ~PGO_SYNCIO;
1735
1736 /*
1737 * If we've already got the seglock, flush the node and return.
1738 * The FIP has already been set up for us by lfs_writefile,
1739 * and FIP cleanup and lfs_updatemeta will also be done there,
1740 * unless genfs_putpages returns EDEADLK; then we must flush
1741 * what we have, and correct FIP and segment header accounting.
1742 */
1743
1744 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1745 if (!seglocked) {
1746 simple_unlock(&vp->v_interlock);
1747 /*
1748 * Take the seglock, because we are going to be writing pages.
1749 */
1750 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1751 if (error != 0)
1752 return error;
1753 simple_lock(&vp->v_interlock);
1754 }
1755
1756 /*
1757 * VOP_PUTPAGES should not be called while holding the seglock.
1758 * XXXUBC fix lfs_markv, or do this properly.
1759 */
1760 /* KASSERT(fs->lfs_seglock == 1); */
1761
1762 /*
1763 * We assume we're being called with sp->fip pointing at blank space.
1764 * Account for a new FIP in the segment header, and set sp->vp.
1765 * (This should duplicate the setup at the top of lfs_writefile().)
1766 */
1767 sp = fs->lfs_sp;
1768 if (!seglocked) {
1769 if (sp->seg_bytes_left < fs->lfs_bsize ||
1770 sp->sum_bytes_left < sizeof(struct finfo))
1771 (void) lfs_writeseg(fs, fs->lfs_sp);
1772
1773 sp->sum_bytes_left -= FINFOSIZE;
1774 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1775 }
1776 KASSERT(sp->vp == NULL);
1777 sp->vp = vp;
1778
1779 if (!seglocked) {
1780 if (vp->v_flag & VDIROP)
1781 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1782 }
1783
1784 sp->fip->fi_nblocks = 0;
1785 sp->fip->fi_ino = ip->i_number;
1786 sp->fip->fi_version = ip->i_gen;
1787
1788 /*
1789 * Loop through genfs_putpages until all pages are gathered.
1790 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1791 * Whenever we lose the interlock we have to rerun check_dirty, as
1792 * well.
1793 */
1794 again:
1795 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1796
1797 if ((error = genfs_putpages(v)) == EDEADLK) {
1798 #ifdef DEBUG_LFS
1799 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1800 " ino %d off %x (seg %d)\n",
1801 ip->i_number, fs->lfs_offset,
1802 dtosn(fs, fs->lfs_offset));
1803 #endif
1804 /* If nothing to write, short-circuit */
1805 if (sp->cbpp - sp->bpp > 1) {
1806 /* Write gathered pages */
1807 lfs_updatemeta(sp);
1808 (void) lfs_writeseg(fs, sp);
1809
1810 /*
1811 * Reinitialize brand new FIP and add us to it.
1812 * (This should duplicate the fixup in
1813 * lfs_gatherpages().)
1814 */
1815 KASSERT(sp->vp == vp);
1816 sp->fip->fi_version = ip->i_gen;
1817 sp->fip->fi_ino = ip->i_number;
1818 /* Add us to the new segment summary. */
1819 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1820 sp->sum_bytes_left -= FINFOSIZE;
1821 }
1822
1823 /* Give the write a chance to complete */
1824 preempt(1);
1825
1826 /* We've lost the interlock. Start over. */
1827 simple_lock(&vp->v_interlock);
1828 goto again;
1829 }
1830
1831 KASSERT(sp->vp == vp);
1832 if (!seglocked) {
1833 sp->vp = NULL; /* XXX lfs_gather below will set this */
1834
1835 /* Write indirect blocks as well */
1836 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1837 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1838 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1839
1840 KASSERT(sp->vp == NULL);
1841 sp->vp = vp;
1842 }
1843
1844 /*
1845 * Blocks are now gathered into a segment waiting to be written.
1846 * All that's left to do is update metadata, and write them.
1847 */
1848 lfs_updatemeta(sp);
1849 KASSERT(sp->vp == vp);
1850 sp->vp = NULL;
1851
1852 if (seglocked) {
1853 /* we're called by lfs_writefile. */
1854 return error;
1855 }
1856
1857 /*
1858 * Clean up FIP, since we're done writing this file.
1859 * This should duplicate cleanup at the end of lfs_writefile().
1860 */
1861 if (sp->fip->fi_nblocks != 0) {
1862 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1863 sizeof(int32_t) * sp->fip->fi_nblocks);
1864 sp->start_lbp = &sp->fip->fi_blocks[0];
1865 } else {
1866 sp->sum_bytes_left += FINFOSIZE;
1867 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1868 }
1869 lfs_writeseg(fs, fs->lfs_sp);
1870
1871 /*
1872 * XXX - with the malloc/copy writeseg, the pages are freed by now
1873 * even if we don't wait (e.g. if we hold a nested lock). This
1874 * will not be true if we stop using malloc/copy.
1875 */
1876 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1877 lfs_segunlock(fs);
1878
1879 /*
1880 * Wait for v_numoutput to drop to zero. The seglock should
1881 * take care of this, but there is a slight possibility that
1882 * aiodoned might not have got around to our buffers yet.
1883 */
1884 if (sync) {
1885 int s;
1886
1887 s = splbio();
1888 simple_lock(&global_v_numoutput_slock);
1889 while (vp->v_numoutput > 0) {
1890 #ifdef DEBUG
1891 printf("ino %d sleeping on num %d\n",
1892 ip->i_number, vp->v_numoutput);
1893 #endif
1894 vp->v_flag |= VBWAIT;
1895 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1896 &global_v_numoutput_slock);
1897 }
1898 simple_unlock(&global_v_numoutput_slock);
1899 splx(s);
1900 }
1901 return error;
1902 }
1903
1904 /*
1905 * Return the last logical file offset that should be written for this file
1906 * if we're doing a write that ends at "size". If writing, we need to know
1907 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1908 * to know about entire blocks.
1909 */
1910 void
1911 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1912 {
1913 struct inode *ip = VTOI(vp);
1914 struct lfs *fs = ip->i_lfs;
1915 daddr_t olbn, nlbn;
1916
1917 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1918 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1919 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1920
1921 olbn = lblkno(fs, ip->i_size);
1922 nlbn = lblkno(fs, size);
1923 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1924 *eobp = fragroundup(fs, size);
1925 } else {
1926 *eobp = blkroundup(fs, size);
1927 }
1928 }
1929
1930 #ifdef DEBUG
1931 void lfs_dump_vop(void *);
1932
1933 void
1934 lfs_dump_vop(void *v)
1935 {
1936 struct vop_putpages_args /* {
1937 struct vnode *a_vp;
1938 voff_t a_offlo;
1939 voff_t a_offhi;
1940 int a_flags;
1941 } */ *ap = v;
1942
1943 #ifdef DDB
1944 vfs_vnode_print(ap->a_vp, 0, printf);
1945 #endif
1946 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1947 }
1948 #endif
1949
1950 int
1951 lfs_mmap(void *v)
1952 {
1953 struct vop_mmap_args /* {
1954 const struct vnodeop_desc *a_desc;
1955 struct vnode *a_vp;
1956 int a_fflags;
1957 struct ucred *a_cred;
1958 struct lwp *a_l;
1959 } */ *ap = v;
1960
1961 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1962 return EOPNOTSUPP;
1963 return ufs_mmap(v);
1964 }
1965