lfs_vnops.c revision 1.112 1 /* $NetBSD: lfs_vnops.c,v 1.112 2003/07/12 16:17:09 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.112 2003/07/12 16:17:09 yamt Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109
110 /* Global vfs data structures for lfs. */
111 int (**lfs_vnodeop_p)(void *);
112 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
113 { &vop_default_desc, vn_default_error },
114 { &vop_lookup_desc, ufs_lookup }, /* lookup */
115 { &vop_create_desc, lfs_create }, /* create */
116 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
117 { &vop_mknod_desc, lfs_mknod }, /* mknod */
118 { &vop_open_desc, ufs_open }, /* open */
119 { &vop_close_desc, lfs_close }, /* close */
120 { &vop_access_desc, ufs_access }, /* access */
121 { &vop_getattr_desc, lfs_getattr }, /* getattr */
122 { &vop_setattr_desc, lfs_setattr }, /* setattr */
123 { &vop_read_desc, lfs_read }, /* read */
124 { &vop_write_desc, lfs_write }, /* write */
125 { &vop_lease_desc, ufs_lease_check }, /* lease */
126 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
127 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
128 { &vop_poll_desc, ufs_poll }, /* poll */
129 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
130 { &vop_revoke_desc, ufs_revoke }, /* revoke */
131 { &vop_mmap_desc, lfs_mmap }, /* mmap */
132 { &vop_fsync_desc, lfs_fsync }, /* fsync */
133 { &vop_seek_desc, ufs_seek }, /* seek */
134 { &vop_remove_desc, lfs_remove }, /* remove */
135 { &vop_link_desc, lfs_link }, /* link */
136 { &vop_rename_desc, lfs_rename }, /* rename */
137 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
138 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
139 { &vop_symlink_desc, lfs_symlink }, /* symlink */
140 { &vop_readdir_desc, ufs_readdir }, /* readdir */
141 { &vop_readlink_desc, ufs_readlink }, /* readlink */
142 { &vop_abortop_desc, ufs_abortop }, /* abortop */
143 { &vop_inactive_desc, lfs_inactive }, /* inactive */
144 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
145 { &vop_lock_desc, ufs_lock }, /* lock */
146 { &vop_unlock_desc, ufs_unlock }, /* unlock */
147 { &vop_bmap_desc, ufs_bmap }, /* bmap */
148 { &vop_strategy_desc, lfs_strategy }, /* strategy */
149 { &vop_print_desc, ufs_print }, /* print */
150 { &vop_islocked_desc, ufs_islocked }, /* islocked */
151 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
152 { &vop_advlock_desc, ufs_advlock }, /* advlock */
153 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
154 { &vop_valloc_desc, lfs_valloc }, /* valloc */
155 { &vop_balloc_desc, lfs_balloc }, /* balloc */
156 { &vop_vfree_desc, lfs_vfree }, /* vfree */
157 { &vop_truncate_desc, lfs_truncate }, /* truncate */
158 { &vop_update_desc, lfs_update }, /* update */
159 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
160 { &vop_getpages_desc, lfs_getpages }, /* getpages */
161 { &vop_putpages_desc, lfs_putpages }, /* putpages */
162 { NULL, NULL }
163 };
164 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
165 { &lfs_vnodeop_p, lfs_vnodeop_entries };
166
167 int (**lfs_specop_p)(void *);
168 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
169 { &vop_default_desc, vn_default_error },
170 { &vop_lookup_desc, spec_lookup }, /* lookup */
171 { &vop_create_desc, spec_create }, /* create */
172 { &vop_mknod_desc, spec_mknod }, /* mknod */
173 { &vop_open_desc, spec_open }, /* open */
174 { &vop_close_desc, lfsspec_close }, /* close */
175 { &vop_access_desc, ufs_access }, /* access */
176 { &vop_getattr_desc, lfs_getattr }, /* getattr */
177 { &vop_setattr_desc, lfs_setattr }, /* setattr */
178 { &vop_read_desc, ufsspec_read }, /* read */
179 { &vop_write_desc, ufsspec_write }, /* write */
180 { &vop_lease_desc, spec_lease_check }, /* lease */
181 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
182 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
183 { &vop_poll_desc, spec_poll }, /* poll */
184 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
185 { &vop_revoke_desc, spec_revoke }, /* revoke */
186 { &vop_mmap_desc, spec_mmap }, /* mmap */
187 { &vop_fsync_desc, spec_fsync }, /* fsync */
188 { &vop_seek_desc, spec_seek }, /* seek */
189 { &vop_remove_desc, spec_remove }, /* remove */
190 { &vop_link_desc, spec_link }, /* link */
191 { &vop_rename_desc, spec_rename }, /* rename */
192 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
193 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
194 { &vop_symlink_desc, spec_symlink }, /* symlink */
195 { &vop_readdir_desc, spec_readdir }, /* readdir */
196 { &vop_readlink_desc, spec_readlink }, /* readlink */
197 { &vop_abortop_desc, spec_abortop }, /* abortop */
198 { &vop_inactive_desc, lfs_inactive }, /* inactive */
199 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
200 { &vop_lock_desc, ufs_lock }, /* lock */
201 { &vop_unlock_desc, ufs_unlock }, /* unlock */
202 { &vop_bmap_desc, spec_bmap }, /* bmap */
203 { &vop_strategy_desc, spec_strategy }, /* strategy */
204 { &vop_print_desc, ufs_print }, /* print */
205 { &vop_islocked_desc, ufs_islocked }, /* islocked */
206 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
207 { &vop_advlock_desc, spec_advlock }, /* advlock */
208 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
209 { &vop_valloc_desc, spec_valloc }, /* valloc */
210 { &vop_vfree_desc, lfs_vfree }, /* vfree */
211 { &vop_truncate_desc, spec_truncate }, /* truncate */
212 { &vop_update_desc, lfs_update }, /* update */
213 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
214 { &vop_getpages_desc, spec_getpages }, /* getpages */
215 { &vop_putpages_desc, spec_putpages }, /* putpages */
216 { NULL, NULL }
217 };
218 const struct vnodeopv_desc lfs_specop_opv_desc =
219 { &lfs_specop_p, lfs_specop_entries };
220
221 int (**lfs_fifoop_p)(void *);
222 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
223 { &vop_default_desc, vn_default_error },
224 { &vop_lookup_desc, fifo_lookup }, /* lookup */
225 { &vop_create_desc, fifo_create }, /* create */
226 { &vop_mknod_desc, fifo_mknod }, /* mknod */
227 { &vop_open_desc, fifo_open }, /* open */
228 { &vop_close_desc, lfsfifo_close }, /* close */
229 { &vop_access_desc, ufs_access }, /* access */
230 { &vop_getattr_desc, lfs_getattr }, /* getattr */
231 { &vop_setattr_desc, lfs_setattr }, /* setattr */
232 { &vop_read_desc, ufsfifo_read }, /* read */
233 { &vop_write_desc, ufsfifo_write }, /* write */
234 { &vop_lease_desc, fifo_lease_check }, /* lease */
235 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
236 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
237 { &vop_poll_desc, fifo_poll }, /* poll */
238 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
239 { &vop_revoke_desc, fifo_revoke }, /* revoke */
240 { &vop_mmap_desc, fifo_mmap }, /* mmap */
241 { &vop_fsync_desc, fifo_fsync }, /* fsync */
242 { &vop_seek_desc, fifo_seek }, /* seek */
243 { &vop_remove_desc, fifo_remove }, /* remove */
244 { &vop_link_desc, fifo_link }, /* link */
245 { &vop_rename_desc, fifo_rename }, /* rename */
246 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
247 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
248 { &vop_symlink_desc, fifo_symlink }, /* symlink */
249 { &vop_readdir_desc, fifo_readdir }, /* readdir */
250 { &vop_readlink_desc, fifo_readlink }, /* readlink */
251 { &vop_abortop_desc, fifo_abortop }, /* abortop */
252 { &vop_inactive_desc, lfs_inactive }, /* inactive */
253 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
254 { &vop_lock_desc, ufs_lock }, /* lock */
255 { &vop_unlock_desc, ufs_unlock }, /* unlock */
256 { &vop_bmap_desc, fifo_bmap }, /* bmap */
257 { &vop_strategy_desc, fifo_strategy }, /* strategy */
258 { &vop_print_desc, ufs_print }, /* print */
259 { &vop_islocked_desc, ufs_islocked }, /* islocked */
260 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
261 { &vop_advlock_desc, fifo_advlock }, /* advlock */
262 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
263 { &vop_valloc_desc, fifo_valloc }, /* valloc */
264 { &vop_vfree_desc, lfs_vfree }, /* vfree */
265 { &vop_truncate_desc, fifo_truncate }, /* truncate */
266 { &vop_update_desc, lfs_update }, /* update */
267 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
268 { &vop_putpages_desc, fifo_putpages }, /* putpages */
269 { NULL, NULL }
270 };
271 const struct vnodeopv_desc lfs_fifoop_opv_desc =
272 { &lfs_fifoop_p, lfs_fifoop_entries };
273
274 /*
275 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
276 */
277 void
278 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
279 {
280 LFS_ITIMES(ip, acc, mod, cre);
281 }
282
283 #define LFS_READWRITE
284 #include <ufs/ufs/ufs_readwrite.c>
285 #undef LFS_READWRITE
286
287 /*
288 * Synch an open file.
289 */
290 /* ARGSUSED */
291 int
292 lfs_fsync(void *v)
293 {
294 struct vop_fsync_args /* {
295 struct vnode *a_vp;
296 struct ucred *a_cred;
297 int a_flags;
298 off_t offlo;
299 off_t offhi;
300 struct proc *a_p;
301 } */ *ap = v;
302 struct vnode *vp = ap->a_vp;
303 int error, wait;
304
305 /*
306 * Trickle sync checks for need to do a checkpoint after possible
307 * activity from the pagedaemon.
308 */
309 if (ap->a_flags & FSYNC_LAZY) {
310 wakeup(&lfs_writer_daemon);
311 return 0;
312 }
313
314 wait = (ap->a_flags & FSYNC_WAIT);
315 simple_lock(&vp->v_interlock);
316 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317 round_page(ap->a_offhi),
318 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319 if (error)
320 return error;
321 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
322 if (wait && !VPISEMPTY(vp))
323 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
324
325 return error;
326 }
327
328 /*
329 * Take IN_ADIROP off, then call ufs_inactive.
330 */
331 int
332 lfs_inactive(void *v)
333 {
334 struct vop_inactive_args /* {
335 struct vnode *a_vp;
336 struct proc *a_p;
337 } */ *ap = v;
338
339 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
340
341 lfs_unmark_vnode(ap->a_vp);
342
343 /*
344 * The Ifile is only ever inactivated on unmount.
345 * Streamline this process by not giving it more dirty blocks.
346 */
347 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
348 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
349 VOP_UNLOCK(ap->a_vp, 0);
350 return 0;
351 }
352
353 return ufs_inactive(v);
354 }
355
356 /*
357 * These macros are used to bracket UFS directory ops, so that we can
358 * identify all the pages touched during directory ops which need to
359 * be ordered and flushed atomically, so that they may be recovered.
360 */
361 /*
362 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
363 * the cache from reclaiming them while a dirop is in progress, we must
364 * also manage the number of nodes so marked (otherwise we can run out).
365 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
366 * is decremented during segment write, when VDIROP is taken off.
367 */
368 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
369 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
370 static int lfs_set_dirop(struct vnode *, struct vnode *);
371 extern int lfs_do_flush;
372
373 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
374
375 static int
376 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
377 {
378 struct lfs *fs;
379 int error;
380
381 KASSERT(VOP_ISLOCKED(vp));
382 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
383
384 fs = VTOI(vp)->i_lfs;
385 /*
386 * We might need one directory block plus supporting indirect blocks,
387 * plus an inode block and ifile page for the new vnode.
388 */
389 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
390 return (error);
391
392 if (fs->lfs_dirops == 0)
393 lfs_check(vp, LFS_UNUSED_LBN, 0);
394 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
395 if (fs->lfs_writer)
396 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
397 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
398 wakeup(&lfs_writer_daemon);
399 preempt(NULL);
400 }
401
402 if (lfs_dirvcount > LFS_MAX_DIROP) {
403 #ifdef DEBUG_LFS
404 printf("lfs_set_dirop: sleeping with dirops=%d, "
405 "dirvcount=%d\n", fs->lfs_dirops,
406 lfs_dirvcount);
407 #endif
408 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
409 "lfs_maxdirop", 0)) != 0) {
410 goto unreserve;
411 }
412 }
413 }
414 ++fs->lfs_dirops;
415 fs->lfs_doifile = 1;
416
417 /* Hold a reference so SET_ENDOP will be happy */
418 vref(vp);
419 if (vp2)
420 vref(vp2);
421
422 return 0;
423
424 unreserve:
425 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
426 return error;
427 }
428
429 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
430 #define SET_ENDOP2(fs, vp, vp2, str) { \
431 --(fs)->lfs_dirops; \
432 if (!(fs)->lfs_dirops) { \
433 if ((fs)->lfs_nadirop) { \
434 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
435 (str), (fs)->lfs_nadirop); \
436 } \
437 wakeup(&(fs)->lfs_writer); \
438 lfs_check((vp),LFS_UNUSED_LBN,0); \
439 } \
440 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
441 vrele(vp); \
442 if (vp2) \
443 vrele(vp2); \
444 }
445
446 #define MARK_VNODE(dvp) do { \
447 struct inode *_ip = VTOI(dvp); \
448 struct lfs *_fs = _ip->i_lfs; \
449 \
450 if (!((dvp)->v_flag & VDIROP)) { \
451 (void)lfs_vref(dvp); \
452 ++lfs_dirvcount; \
453 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
454 } \
455 (dvp)->v_flag |= VDIROP; \
456 if (!(_ip->i_flag & IN_ADIROP)) { \
457 ++_fs->lfs_nadirop; \
458 } \
459 _ip->i_flag |= IN_ADIROP; \
460 } while (0)
461
462 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
463
464 void lfs_unmark_vnode(struct vnode *vp)
465 {
466 struct inode *ip;
467
468 ip = VTOI(vp);
469
470 if (ip->i_flag & IN_ADIROP)
471 --ip->i_lfs->lfs_nadirop;
472 ip->i_flag &= ~IN_ADIROP;
473 }
474
475 int
476 lfs_symlink(void *v)
477 {
478 struct vop_symlink_args /* {
479 struct vnode *a_dvp;
480 struct vnode **a_vpp;
481 struct componentname *a_cnp;
482 struct vattr *a_vap;
483 char *a_target;
484 } */ *ap = v;
485 int error;
486
487 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
488 vput(ap->a_dvp);
489 return error;
490 }
491 MARK_VNODE(ap->a_dvp);
492 error = ufs_symlink(ap);
493 UNMARK_VNODE(ap->a_dvp);
494 if (*(ap->a_vpp))
495 UNMARK_VNODE(*(ap->a_vpp));
496 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
497 return (error);
498 }
499
500 int
501 lfs_mknod(void *v)
502 {
503 struct vop_mknod_args /* {
504 struct vnode *a_dvp;
505 struct vnode **a_vpp;
506 struct componentname *a_cnp;
507 struct vattr *a_vap;
508 } */ *ap = v;
509 struct vattr *vap = ap->a_vap;
510 struct vnode **vpp = ap->a_vpp;
511 struct inode *ip;
512 int error;
513 struct mount *mp;
514 ino_t ino;
515
516 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
517 vput(ap->a_dvp);
518 return error;
519 }
520 MARK_VNODE(ap->a_dvp);
521 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
522 ap->a_dvp, vpp, ap->a_cnp);
523 UNMARK_VNODE(ap->a_dvp);
524 if (*(ap->a_vpp))
525 UNMARK_VNODE(*(ap->a_vpp));
526
527 /* Either way we're done with the dirop at this point */
528 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
529
530 if (error)
531 return (error);
532
533 ip = VTOI(*vpp);
534 mp = (*vpp)->v_mount;
535 ino = ip->i_number;
536 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
537 if (vap->va_rdev != VNOVAL) {
538 /*
539 * Want to be able to use this to make badblock
540 * inodes, so don't truncate the dev number.
541 */
542 #if 0
543 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
544 UFS_MPNEEDSWAP((*vpp)->v_mount));
545 #else
546 ip->i_ffs1_rdev = vap->va_rdev;
547 #endif
548 }
549 /*
550 * Call fsync to write the vnode so that we don't have to deal with
551 * flushing it when it's marked VDIROP|VXLOCK.
552 *
553 * XXX KS - If we can't flush we also can't call vgone(), so must
554 * return. But, that leaves this vnode in limbo, also not good.
555 * Can this ever happen (barring hardware failure)?
556 */
557 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
558 curproc)) != 0) {
559 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
560 VTOI(*vpp)->i_number);
561 return (error);
562 }
563 /*
564 * Remove vnode so that it will be reloaded by VFS_VGET and
565 * checked to see if it is an alias of an existing entry in
566 * the inode cache.
567 */
568 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
569 VOP_UNLOCK(*vpp, 0);
570 lfs_vunref(*vpp);
571 (*vpp)->v_type = VNON;
572 vgone(*vpp);
573 error = VFS_VGET(mp, ino, vpp);
574 if (error != 0) {
575 *vpp = NULL;
576 return (error);
577 }
578 return (0);
579 }
580
581 int
582 lfs_create(void *v)
583 {
584 struct vop_create_args /* {
585 struct vnode *a_dvp;
586 struct vnode **a_vpp;
587 struct componentname *a_cnp;
588 struct vattr *a_vap;
589 } */ *ap = v;
590 int error;
591
592 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
593 vput(ap->a_dvp);
594 return error;
595 }
596 MARK_VNODE(ap->a_dvp);
597 error = ufs_create(ap);
598 UNMARK_VNODE(ap->a_dvp);
599 if (*(ap->a_vpp))
600 UNMARK_VNODE(*(ap->a_vpp));
601 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
602 return (error);
603 }
604
605 int
606 lfs_mkdir(void *v)
607 {
608 struct vop_mkdir_args /* {
609 struct vnode *a_dvp;
610 struct vnode **a_vpp;
611 struct componentname *a_cnp;
612 struct vattr *a_vap;
613 } */ *ap = v;
614 int error;
615
616 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
617 vput(ap->a_dvp);
618 return error;
619 }
620 MARK_VNODE(ap->a_dvp);
621 error = ufs_mkdir(ap);
622 UNMARK_VNODE(ap->a_dvp);
623 if (*(ap->a_vpp))
624 UNMARK_VNODE(*(ap->a_vpp));
625 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
626 return (error);
627 }
628
629 int
630 lfs_remove(void *v)
631 {
632 struct vop_remove_args /* {
633 struct vnode *a_dvp;
634 struct vnode *a_vp;
635 struct componentname *a_cnp;
636 } */ *ap = v;
637 struct vnode *dvp, *vp;
638 int error;
639
640 dvp = ap->a_dvp;
641 vp = ap->a_vp;
642 if ((error = SET_DIROP2(dvp, vp)) != 0) {
643 if (dvp == vp)
644 vrele(vp);
645 else
646 vput(vp);
647 vput(dvp);
648 return error;
649 }
650 MARK_VNODE(dvp);
651 MARK_VNODE(vp);
652 error = ufs_remove(ap);
653 UNMARK_VNODE(dvp);
654 UNMARK_VNODE(vp);
655
656 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
657 return (error);
658 }
659
660 int
661 lfs_rmdir(void *v)
662 {
663 struct vop_rmdir_args /* {
664 struct vnodeop_desc *a_desc;
665 struct vnode *a_dvp;
666 struct vnode *a_vp;
667 struct componentname *a_cnp;
668 } */ *ap = v;
669 struct vnode *vp;
670 int error;
671
672 vp = ap->a_vp;
673 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
674 vrele(ap->a_dvp);
675 if (ap->a_vp != ap->a_dvp)
676 VOP_UNLOCK(ap->a_dvp, 0);
677 vput(vp);
678 return error;
679 }
680 MARK_VNODE(ap->a_dvp);
681 MARK_VNODE(vp);
682 error = ufs_rmdir(ap);
683 UNMARK_VNODE(ap->a_dvp);
684 UNMARK_VNODE(vp);
685
686 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
687 return (error);
688 }
689
690 int
691 lfs_link(void *v)
692 {
693 struct vop_link_args /* {
694 struct vnode *a_dvp;
695 struct vnode *a_vp;
696 struct componentname *a_cnp;
697 } */ *ap = v;
698 int error;
699
700 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
701 vput(ap->a_dvp);
702 return error;
703 }
704 MARK_VNODE(ap->a_dvp);
705 error = ufs_link(ap);
706 UNMARK_VNODE(ap->a_dvp);
707 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
708 return (error);
709 }
710
711 int
712 lfs_rename(void *v)
713 {
714 struct vop_rename_args /* {
715 struct vnode *a_fdvp;
716 struct vnode *a_fvp;
717 struct componentname *a_fcnp;
718 struct vnode *a_tdvp;
719 struct vnode *a_tvp;
720 struct componentname *a_tcnp;
721 } */ *ap = v;
722 struct vnode *tvp, *fvp, *tdvp, *fdvp;
723 struct componentname *tcnp, *fcnp;
724 int error;
725 struct lfs *fs;
726
727 fs = VTOI(ap->a_fdvp)->i_lfs;
728 tvp = ap->a_tvp;
729 tdvp = ap->a_tdvp;
730 tcnp = ap->a_tcnp;
731 fvp = ap->a_fvp;
732 fdvp = ap->a_fdvp;
733 fcnp = ap->a_fcnp;
734
735 /*
736 * Check for cross-device rename.
737 * If it is, we don't want to set dirops, just error out.
738 * (In particular note that MARK_VNODE(tdvp) will DTWT on
739 * a cross-device rename.)
740 *
741 * Copied from ufs_rename.
742 */
743 if ((fvp->v_mount != tdvp->v_mount) ||
744 (tvp && (fvp->v_mount != tvp->v_mount))) {
745 error = EXDEV;
746 goto errout;
747 }
748
749 /*
750 * Check to make sure we're not renaming a vnode onto itself
751 * (deleting a hard link by renaming one name onto another);
752 * if we are we can't recursively call VOP_REMOVE since that
753 * would leave us with an unaccounted-for number of live dirops.
754 *
755 * Inline the relevant section of ufs_rename here, *before*
756 * calling SET_DIROP2.
757 */
758 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
759 (VTOI(tdvp)->i_flags & APPEND))) {
760 error = EPERM;
761 goto errout;
762 }
763 if (fvp == tvp) {
764 if (fvp->v_type == VDIR) {
765 error = EINVAL;
766 goto errout;
767 }
768
769 /* Release destination completely. */
770 VOP_ABORTOP(tdvp, tcnp);
771 vput(tdvp);
772 vput(tvp);
773
774 /* Delete source. */
775 vrele(fvp);
776 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
777 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
778 fcnp->cn_nameiop = DELETE;
779 if ((error = relookup(fdvp, &fvp, fcnp))){
780 /* relookup blew away fdvp */
781 return (error);
782 }
783 return (VOP_REMOVE(fdvp, fvp, fcnp));
784 }
785
786 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
787 goto errout;
788 MARK_VNODE(fdvp);
789 MARK_VNODE(tdvp);
790 MARK_VNODE(fvp);
791 if (tvp) {
792 MARK_VNODE(tvp);
793 }
794
795 error = ufs_rename(ap);
796 UNMARK_VNODE(fdvp);
797 UNMARK_VNODE(tdvp);
798 UNMARK_VNODE(fvp);
799 if (tvp) {
800 UNMARK_VNODE(tvp);
801 }
802 SET_ENDOP2(fs, tdvp, tvp, "rename");
803 return (error);
804
805 errout:
806 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
807 if (tdvp == tvp)
808 vrele(tdvp);
809 else
810 vput(tdvp);
811 if (tvp)
812 vput(tvp);
813 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
814 vrele(fdvp);
815 vrele(fvp);
816 return (error);
817 }
818
819 /* XXX hack to avoid calling ITIMES in getattr */
820 int
821 lfs_getattr(void *v)
822 {
823 struct vop_getattr_args /* {
824 struct vnode *a_vp;
825 struct vattr *a_vap;
826 struct ucred *a_cred;
827 struct proc *a_p;
828 } */ *ap = v;
829 struct vnode *vp = ap->a_vp;
830 struct inode *ip = VTOI(vp);
831 struct vattr *vap = ap->a_vap;
832 struct lfs *fs = ip->i_lfs;
833 /*
834 * Copy from inode table
835 */
836 vap->va_fsid = ip->i_dev;
837 vap->va_fileid = ip->i_number;
838 vap->va_mode = ip->i_mode & ~IFMT;
839 vap->va_nlink = ip->i_nlink;
840 vap->va_uid = ip->i_uid;
841 vap->va_gid = ip->i_gid;
842 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
843 vap->va_size = vp->v_size;
844 vap->va_atime.tv_sec = ip->i_ffs1_atime;
845 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
846 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
847 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
848 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
849 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
850 vap->va_flags = ip->i_flags;
851 vap->va_gen = ip->i_gen;
852 /* this doesn't belong here */
853 if (vp->v_type == VBLK)
854 vap->va_blocksize = BLKDEV_IOSIZE;
855 else if (vp->v_type == VCHR)
856 vap->va_blocksize = MAXBSIZE;
857 else
858 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
859 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
860 vap->va_type = vp->v_type;
861 vap->va_filerev = ip->i_modrev;
862 return (0);
863 }
864
865 /*
866 * Check to make sure the inode blocks won't choke the buffer
867 * cache, then call ufs_setattr as usual.
868 */
869 int
870 lfs_setattr(void *v)
871 {
872 struct vop_getattr_args /* {
873 struct vnode *a_vp;
874 struct vattr *a_vap;
875 struct ucred *a_cred;
876 struct proc *a_p;
877 } */ *ap = v;
878 struct vnode *vp = ap->a_vp;
879
880 lfs_check(vp, LFS_UNUSED_LBN, 0);
881 return ufs_setattr(v);
882 }
883
884 /*
885 * Close called
886 *
887 * XXX -- we were using ufs_close, but since it updates the
888 * times on the inode, we might need to bump the uinodes
889 * count.
890 */
891 /* ARGSUSED */
892 int
893 lfs_close(void *v)
894 {
895 struct vop_close_args /* {
896 struct vnode *a_vp;
897 int a_fflag;
898 struct ucred *a_cred;
899 struct proc *a_p;
900 } */ *ap = v;
901 struct vnode *vp = ap->a_vp;
902 struct inode *ip = VTOI(vp);
903 struct timespec ts;
904
905 if (vp == ip->i_lfs->lfs_ivnode &&
906 vp->v_mount->mnt_flag & MNT_UNMOUNT)
907 return 0;
908
909 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
910 TIMEVAL_TO_TIMESPEC(&time, &ts);
911 LFS_ITIMES(ip, &ts, &ts, &ts);
912 }
913 return (0);
914 }
915
916 /*
917 * Close wrapper for special devices.
918 *
919 * Update the times on the inode then do device close.
920 */
921 int
922 lfsspec_close(void *v)
923 {
924 struct vop_close_args /* {
925 struct vnode *a_vp;
926 int a_fflag;
927 struct ucred *a_cred;
928 struct proc *a_p;
929 } */ *ap = v;
930 struct vnode *vp;
931 struct inode *ip;
932 struct timespec ts;
933
934 vp = ap->a_vp;
935 ip = VTOI(vp);
936 if (vp->v_usecount > 1) {
937 TIMEVAL_TO_TIMESPEC(&time, &ts);
938 LFS_ITIMES(ip, &ts, &ts, &ts);
939 }
940 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
941 }
942
943 /*
944 * Close wrapper for fifo's.
945 *
946 * Update the times on the inode then do device close.
947 */
948 int
949 lfsfifo_close(void *v)
950 {
951 struct vop_close_args /* {
952 struct vnode *a_vp;
953 int a_fflag;
954 struct ucred *a_cred;
955 struct proc *a_p;
956 } */ *ap = v;
957 struct vnode *vp;
958 struct inode *ip;
959 struct timespec ts;
960
961 vp = ap->a_vp;
962 ip = VTOI(vp);
963 if (ap->a_vp->v_usecount > 1) {
964 TIMEVAL_TO_TIMESPEC(&time, &ts);
965 LFS_ITIMES(ip, &ts, &ts, &ts);
966 }
967 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
968 }
969
970 /*
971 * Reclaim an inode so that it can be used for other purposes.
972 */
973 int lfs_no_inactive = 0;
974
975 int
976 lfs_reclaim(void *v)
977 {
978 struct vop_reclaim_args /* {
979 struct vnode *a_vp;
980 struct proc *a_p;
981 } */ *ap = v;
982 struct vnode *vp = ap->a_vp;
983 struct inode *ip = VTOI(vp);
984 int error;
985
986 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
987
988 LFS_CLR_UINO(ip, IN_ALLMOD);
989 if ((error = ufs_reclaim(vp, ap->a_p)))
990 return (error);
991 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
992 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
993 ip->inode_ext.lfs = NULL;
994 pool_put(&lfs_inode_pool, vp->v_data);
995 vp->v_data = NULL;
996 return (0);
997 }
998
999 /*
1000 * Read a block from a storage device.
1001 * In order to avoid reading blocks that are in the process of being
1002 * written by the cleaner---and hence are not mutexed by the normal
1003 * buffer cache / page cache mechanisms---check for collisions before
1004 * reading.
1005 *
1006 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1007 * the active cleaner test.
1008 *
1009 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1010 */
1011 int
1012 lfs_strategy(void *v)
1013 {
1014 struct vop_strategy_args /* {
1015 struct buf *a_bp;
1016 } */ *ap = v;
1017 struct buf *bp;
1018 struct lfs *fs;
1019 struct vnode *vp;
1020 struct inode *ip;
1021 daddr_t tbn;
1022 int i, sn, error, slept;
1023
1024 bp = ap->a_bp;
1025 vp = bp->b_vp;
1026 ip = VTOI(vp);
1027 fs = ip->i_lfs;
1028
1029 /* lfs uses its strategy routine only for read */
1030 KASSERT(bp->b_flags & B_READ);
1031
1032 if (vp->v_type == VBLK || vp->v_type == VCHR)
1033 panic("lfs_strategy: spec");
1034 KASSERT(bp->b_bcount != 0);
1035 if (bp->b_blkno == bp->b_lblkno) {
1036 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1037 NULL);
1038 if (error) {
1039 bp->b_error = error;
1040 bp->b_flags |= B_ERROR;
1041 biodone(bp);
1042 return (error);
1043 }
1044 if ((long)bp->b_blkno == -1) /* no valid data */
1045 clrbuf(bp);
1046 }
1047 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1048 biodone(bp);
1049 return (0);
1050 }
1051
1052 slept = 1;
1053 simple_lock(&fs->lfs_interlock);
1054 while (slept && fs->lfs_seglock) {
1055 simple_unlock(&fs->lfs_interlock);
1056 /*
1057 * Look through list of intervals.
1058 * There will only be intervals to look through
1059 * if the cleaner holds the seglock.
1060 * Since the cleaner is synchronous, we can trust
1061 * the list of intervals to be current.
1062 */
1063 tbn = dbtofsb(fs, bp->b_blkno);
1064 sn = dtosn(fs, tbn);
1065 slept = 0;
1066 for (i = 0; i < fs->lfs_cleanind; i++) {
1067 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1068 tbn >= fs->lfs_cleanint[i]) {
1069 #ifdef DEBUG_LFS
1070 printf("lfs_strategy: ino %d lbn %" PRId64
1071 " ind %d sn %d fsb %" PRIx32
1072 " given sn %d fsb %" PRIx64 "\n",
1073 ip->i_number, bp->b_lblkno, i,
1074 dtosn(fs, fs->lfs_cleanint[i]),
1075 fs->lfs_cleanint[i], sn, tbn);
1076 printf("lfs_strategy: sleeping on ino %d lbn %"
1077 PRId64 "\n", ip->i_number, bp->b_lblkno);
1078 #endif
1079 tsleep(&fs->lfs_seglock, PRIBIO+1,
1080 "lfs_strategy", 0);
1081 /* Things may be different now; start over. */
1082 slept = 1;
1083 break;
1084 }
1085 }
1086 simple_lock(&fs->lfs_interlock);
1087 }
1088 simple_unlock(&fs->lfs_interlock);
1089
1090 vp = ip->i_devvp;
1091 bp->b_dev = vp->v_rdev;
1092 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1093 return (0);
1094 }
1095
1096 static void
1097 lfs_flush_dirops(struct lfs *fs)
1098 {
1099 struct inode *ip, *nip;
1100 struct vnode *vp;
1101 extern int lfs_dostats;
1102 struct segment *sp;
1103 int needunlock;
1104
1105 if (fs->lfs_ronly)
1106 return;
1107
1108 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1109 return;
1110
1111 if (lfs_dostats)
1112 ++lfs_stats.flush_invoked;
1113
1114 /*
1115 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1116 * Technically this is a checkpoint (the on-disk state is valid)
1117 * even though we are leaving out all the file data.
1118 */
1119 lfs_imtime(fs);
1120 lfs_seglock(fs, SEGM_CKP);
1121 sp = fs->lfs_sp;
1122
1123 /*
1124 * lfs_writevnodes, optimized to get dirops out of the way.
1125 * Only write dirops, and don't flush files' pages, only
1126 * blocks from the directories.
1127 *
1128 * We don't need to vref these files because they are
1129 * dirops and so hold an extra reference until the
1130 * segunlock clears them of that status.
1131 *
1132 * We don't need to check for IN_ADIROP because we know that
1133 * no dirops are active.
1134 *
1135 */
1136 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1137 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1138 vp = ITOV(ip);
1139
1140 /*
1141 * All writes to directories come from dirops; all
1142 * writes to files' direct blocks go through the page
1143 * cache, which we're not touching. Reads to files
1144 * and/or directories will not be affected by writing
1145 * directory blocks inodes and file inodes. So we don't
1146 * really need to lock. If we don't lock, though,
1147 * make sure that we don't clear IN_MODIFIED
1148 * unnecessarily.
1149 */
1150 if (vp->v_flag & VXLOCK)
1151 continue;
1152 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1153 LK_NOWAIT) == 0) {
1154 needunlock = 1;
1155 } else {
1156 printf("lfs_flush_dirops: flushing locked ino %d\n",
1157 VTOI(vp)->i_number);
1158 needunlock = 0;
1159 }
1160 if (vp->v_type != VREG &&
1161 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1162 lfs_writefile(fs, sp, vp);
1163 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1164 !(ip->i_flag & IN_ALLMOD)) {
1165 LFS_SET_UINO(ip, IN_MODIFIED);
1166 }
1167 }
1168 (void) lfs_writeinode(fs, sp, ip);
1169 if (needunlock)
1170 VOP_UNLOCK(vp, 0);
1171 else
1172 LFS_SET_UINO(ip, IN_MODIFIED);
1173 }
1174 /* We've written all the dirops there are */
1175 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1176 (void) lfs_writeseg(fs, sp);
1177 lfs_segunlock(fs);
1178 }
1179
1180 /*
1181 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1182 */
1183 int
1184 lfs_fcntl(void *v)
1185 {
1186 struct vop_fcntl_args /* {
1187 struct vnode *a_vp;
1188 u_long a_command;
1189 caddr_t a_data;
1190 int a_fflag;
1191 struct ucred *a_cred;
1192 struct proc *a_p;
1193 } */ *ap = v;
1194 struct timeval *tvp;
1195 BLOCK_INFO *blkiov;
1196 CLEANERINFO *cip;
1197 int blkcnt, error, oclean;
1198 struct lfs_fcntl_markv blkvp;
1199 fsid_t *fsidp;
1200 struct lfs *fs;
1201 struct buf *bp;
1202 daddr_t off;
1203
1204 /* Only respect LFS fcntls on fs root or Ifile */
1205 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1206 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1207 return ufs_fcntl(v);
1208 }
1209
1210 /* Avoid locking a draining lock */
1211 if (ap->a_vp->v_mount->mnt_flag & MNT_UNMOUNT) {
1212 return ESHUTDOWN;
1213 }
1214
1215 fs = VTOI(ap->a_vp)->i_lfs;
1216 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1217
1218 switch (ap->a_command) {
1219 case LFCNSEGWAITALL:
1220 fsidp = NULL;
1221 /* FALLSTHROUGH */
1222 case LFCNSEGWAIT:
1223 tvp = (struct timeval *)ap->a_data;
1224 simple_lock(&fs->lfs_interlock);
1225 ++fs->lfs_sleepers;
1226 simple_unlock(&fs->lfs_interlock);
1227 VOP_UNLOCK(ap->a_vp, 0);
1228
1229 error = lfs_segwait(fsidp, tvp);
1230
1231 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1232 simple_lock(&fs->lfs_interlock);
1233 if (--fs->lfs_sleepers == 0)
1234 wakeup(&fs->lfs_sleepers);
1235 simple_unlock(&fs->lfs_interlock);
1236 return error;
1237
1238 case LFCNBMAPV:
1239 case LFCNMARKV:
1240 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1241 return (error);
1242 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1243
1244 blkcnt = blkvp.blkcnt;
1245 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1246 return (EINVAL);
1247 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1248 if ((error = copyin(blkvp.blkiov, blkiov,
1249 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1250 free(blkiov, M_SEGMENT);
1251 return error;
1252 }
1253
1254 simple_lock(&fs->lfs_interlock);
1255 ++fs->lfs_sleepers;
1256 simple_unlock(&fs->lfs_interlock);
1257 VOP_UNLOCK(ap->a_vp, 0);
1258 if (ap->a_command == LFCNBMAPV)
1259 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1260 else /* LFCNMARKV */
1261 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1262 if (error == 0)
1263 error = copyout(blkiov, blkvp.blkiov,
1264 blkcnt * sizeof(BLOCK_INFO));
1265 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1266 simple_lock(&fs->lfs_interlock);
1267 if (--fs->lfs_sleepers == 0)
1268 wakeup(&fs->lfs_sleepers);
1269 simple_unlock(&fs->lfs_interlock);
1270 free(blkiov, M_SEGMENT);
1271 return error;
1272
1273 case LFCNRECLAIM:
1274 /*
1275 * Flush dirops and write Ifile, allowing empty segments
1276 * to be immediately reclaimed.
1277 */
1278 lfs_writer_enter(fs, "pndirop");
1279 off = fs->lfs_offset;
1280 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1281 lfs_flush_dirops(fs);
1282 LFS_CLEANERINFO(cip, fs, bp);
1283 oclean = cip->clean;
1284 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1285 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1286 lfs_segunlock(fs);
1287 lfs_writer_leave(fs);
1288
1289 #ifdef DEBUG_LFS
1290 LFS_CLEANERINFO(cip, fs, bp);
1291 oclean = cip->clean;
1292 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1293 "%" PRId32 " segments (activesb %d)\n",
1294 fs->lfs_offset - off, cip->clean - oclean,
1295 fs->lfs_activesb);
1296 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1297 #endif
1298
1299 return 0;
1300
1301 default:
1302 return ufs_fcntl(v);
1303 }
1304 return 0;
1305 }
1306
1307 int
1308 lfs_getpages(void *v)
1309 {
1310 struct vop_getpages_args /* {
1311 struct vnode *a_vp;
1312 voff_t a_offset;
1313 struct vm_page **a_m;
1314 int *a_count;
1315 int a_centeridx;
1316 vm_prot_t a_access_type;
1317 int a_advice;
1318 int a_flags;
1319 } */ *ap = v;
1320
1321 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1322 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1323 return EPERM;
1324 }
1325 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1326 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1327 }
1328 return genfs_getpages(v);
1329 }
1330
1331 /*
1332 * Make sure that for all pages in every block in the given range,
1333 * either all are dirty or all are clean. If any of the pages
1334 * we've seen so far are dirty, put the vnode on the paging chain,
1335 * and mark it IN_PAGING.
1336 *
1337 * If checkfirst != 0, don't check all the pages but return at the
1338 * first dirty page.
1339 */
1340 static int
1341 check_dirty(struct lfs *fs, struct vnode *vp,
1342 off_t startoffset, off_t endoffset, off_t blkeof,
1343 int flags, int checkfirst)
1344 {
1345 int by_list;
1346 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1347 struct lwp *l = curlwp ? curlwp : &lwp0;
1348 off_t soff;
1349 voff_t off;
1350 int i, dirty, tdirty, nonexistent, any_dirty;
1351 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1352
1353 top:
1354 by_list = (vp->v_uobj.uo_npages <=
1355 ((endoffset - startoffset) >> PAGE_SHIFT) *
1356 UVM_PAGE_HASH_PENALTY);
1357 any_dirty = 0;
1358
1359 if (by_list) {
1360 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1361 PHOLD(l);
1362 } else {
1363 soff = startoffset;
1364 }
1365 while (by_list || soff < MIN(blkeof, endoffset)) {
1366 if (by_list) {
1367 if (pages_per_block > 1) {
1368 while (curpg && (curpg->offset & fs->lfs_bmask))
1369 curpg = TAILQ_NEXT(curpg, listq);
1370 }
1371 if (curpg == NULL)
1372 break;
1373 soff = curpg->offset;
1374 }
1375
1376 /*
1377 * Mark all pages in extended range busy; find out if any
1378 * of them are dirty.
1379 */
1380 nonexistent = dirty = 0;
1381 for (i = 0; i == 0 || i < pages_per_block; i++) {
1382 if (by_list && pages_per_block <= 1) {
1383 pgs[i] = pg = curpg;
1384 } else {
1385 off = soff + (i << PAGE_SHIFT);
1386 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1387 if (pg == NULL) {
1388 ++nonexistent;
1389 continue;
1390 }
1391 }
1392 KASSERT(pg != NULL);
1393 while (pg->flags & PG_BUSY) {
1394 pg->flags |= PG_WANTED;
1395 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1396 "lfsput", 0);
1397 simple_lock(&vp->v_interlock);
1398 if (by_list) {
1399 if (i > 0)
1400 uvm_page_unbusy(pgs, i);
1401 goto top;
1402 }
1403 }
1404 pg->flags |= PG_BUSY;
1405 UVM_PAGE_OWN(pg, "lfs_putpages");
1406
1407 pmap_page_protect(pg, VM_PROT_NONE);
1408 tdirty = (pmap_clear_modify(pg) ||
1409 (pg->flags & PG_CLEAN) == 0);
1410 dirty += tdirty;
1411 }
1412 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1413 if (by_list) {
1414 curpg = TAILQ_NEXT(curpg, listq);
1415 } else {
1416 soff += fs->lfs_bsize;
1417 }
1418 continue;
1419 }
1420
1421 any_dirty += dirty;
1422 KASSERT(nonexistent == 0);
1423
1424 /*
1425 * If any are dirty make all dirty; unbusy them,
1426 * but if we were asked to clean, wire them so that
1427 * the pagedaemon doesn't bother us about them while
1428 * they're on their way to disk.
1429 */
1430 for (i = 0; i == 0 || i < pages_per_block; i++) {
1431 pg = pgs[i];
1432 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1433 if (dirty) {
1434 pg->flags &= ~PG_CLEAN;
1435 if (flags & PGO_FREE) {
1436 /* XXXUBC need better way to update */
1437 simple_lock(&lfs_subsys_lock);
1438 lfs_subsys_pages += MIN(1, pages_per_block);
1439 simple_unlock(&lfs_subsys_lock);
1440 /*
1441 * Wire the page so that
1442 * pdaemon doesn't see it again.
1443 */
1444 uvm_lock_pageq();
1445 uvm_pagewire(pg);
1446 uvm_unlock_pageq();
1447
1448 /* Suspended write flag */
1449 pg->flags |= PG_DELWRI;
1450 }
1451 }
1452 if (pg->flags & PG_WANTED)
1453 wakeup(pg);
1454 pg->flags &= ~(PG_WANTED|PG_BUSY);
1455 UVM_PAGE_OWN(pg, NULL);
1456 }
1457
1458 if (checkfirst && any_dirty)
1459 return any_dirty;
1460
1461 if (by_list) {
1462 curpg = TAILQ_NEXT(curpg, listq);
1463 } else {
1464 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1465 }
1466 }
1467 if (by_list) {
1468 PRELE(l);
1469 }
1470
1471 /*
1472 * If any pages were dirty, mark this inode as "pageout requested",
1473 * and put it on the paging queue.
1474 * XXXUBC locking (check locking on dchainhd too)
1475 */
1476 #ifdef notyet
1477 if (any_dirty) {
1478 if (!(ip->i_flags & IN_PAGING)) {
1479 ip->i_flags |= IN_PAGING;
1480 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1481 }
1482 }
1483 #endif
1484 return any_dirty;
1485 }
1486
1487 /*
1488 * lfs_putpages functions like genfs_putpages except that
1489 *
1490 * (1) It needs to bounds-check the incoming requests to ensure that
1491 * they are block-aligned; if they are not, expand the range and
1492 * do the right thing in case, e.g., the requested range is clean
1493 * but the expanded range is dirty.
1494 * (2) It needs to explicitly send blocks to be written when it is done.
1495 * VOP_PUTPAGES is not ever called with the seglock held, so
1496 * we simply take the seglock and let lfs_segunlock wait for us.
1497 * XXX Actually we can be called with the seglock held, if we have
1498 * XXX to flush a vnode while lfs_markv is in operation. As of this
1499 * XXX writing we panic in this case.
1500 *
1501 * Assumptions:
1502 *
1503 * (1) The caller does not hold any pages in this vnode busy. If it does,
1504 * there is a danger that when we expand the page range and busy the
1505 * pages we will deadlock.
1506 * (2) We are called with vp->v_interlock held; we must return with it
1507 * released.
1508 * (3) We don't absolutely have to free pages right away, provided that
1509 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1510 * us a request with PGO_FREE, we take the pages out of the paging
1511 * queue and wake up the writer, which will handle freeing them for us.
1512 *
1513 * We ensure that for any filesystem block, all pages for that
1514 * block are either resident or not, even if those pages are higher
1515 * than EOF; that means that we will be getting requests to free
1516 * "unused" pages above EOF all the time, and should ignore them.
1517 */
1518
1519 int
1520 lfs_putpages(void *v)
1521 {
1522 int error;
1523 struct vop_putpages_args /* {
1524 struct vnode *a_vp;
1525 voff_t a_offlo;
1526 voff_t a_offhi;
1527 int a_flags;
1528 } */ *ap = v;
1529 struct vnode *vp;
1530 struct inode *ip;
1531 struct lfs *fs;
1532 struct segment *sp;
1533 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1534 off_t off, max_endoffset;
1535 int pages_per_block;
1536 int s, sync, dirty, pagedaemon;
1537 struct vm_page *pg;
1538 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1539
1540 vp = ap->a_vp;
1541 ip = VTOI(vp);
1542 fs = ip->i_lfs;
1543 sync = (ap->a_flags & PGO_SYNCIO);
1544 pagedaemon = (curproc == uvm.pagedaemon_proc);
1545
1546 /* Putpages does nothing for metadata. */
1547 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1548 simple_unlock(&vp->v_interlock);
1549 return 0;
1550 }
1551
1552 /*
1553 * If there are no pages, don't do anything.
1554 */
1555 if (vp->v_uobj.uo_npages == 0) {
1556 s = splbio();
1557 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1558 (vp->v_flag & VONWORKLST)) {
1559 vp->v_flag &= ~VONWORKLST;
1560 LIST_REMOVE(vp, v_synclist);
1561 }
1562 splx(s);
1563 simple_unlock(&vp->v_interlock);
1564 return 0;
1565 }
1566
1567 blkeof = blkroundup(fs, ip->i_size);
1568
1569 /*
1570 * Ignore requests to free pages past EOF but in the same block
1571 * as EOF, unless the request is synchronous. (XXX why sync?)
1572 * XXXUBC Make these pages look "active" so the pagedaemon won't
1573 * XXXUBC bother us with them again.
1574 */
1575 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1576 origoffset = ap->a_offlo;
1577 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1578 pg = uvm_pagelookup(&vp->v_uobj, off);
1579 KASSERT(pg != NULL);
1580 while (pg->flags & PG_BUSY) {
1581 pg->flags |= PG_WANTED;
1582 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1583 "lfsput2", 0);
1584 simple_lock(&vp->v_interlock);
1585 }
1586 uvm_lock_pageq();
1587 uvm_pageactivate(pg);
1588 uvm_unlock_pageq();
1589 }
1590 ap->a_offlo = blkeof;
1591 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1592 simple_unlock(&vp->v_interlock);
1593 return 0;
1594 }
1595 }
1596
1597 /*
1598 * Extend page range to start and end at block boundaries.
1599 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1600 */
1601 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1602 origoffset = ap->a_offlo;
1603 origendoffset = ap->a_offhi;
1604 startoffset = origoffset & ~(fs->lfs_bmask);
1605 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1606 << fs->lfs_bshift;
1607
1608 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1609 endoffset = max_endoffset;
1610 origendoffset = endoffset;
1611 } else {
1612 origendoffset = round_page(ap->a_offhi);
1613 endoffset = round_page(blkroundup(fs, origendoffset));
1614 }
1615
1616 KASSERT(startoffset > 0 || endoffset >= startoffset);
1617 if (startoffset == endoffset) {
1618 /* Nothing to do, why were we called? */
1619 simple_unlock(&vp->v_interlock);
1620 #ifdef DEBUG
1621 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1622 startoffset);
1623 #endif
1624 return 0;
1625 }
1626
1627 ap->a_offlo = startoffset;
1628 ap->a_offhi = endoffset;
1629
1630 if (!(ap->a_flags & PGO_CLEANIT))
1631 return genfs_putpages(v);
1632
1633 /*
1634 * If there are more than one page per block, we don't want
1635 * to get caught locking them backwards; so set PGO_BUSYFAIL
1636 * to avoid deadlocks.
1637 */
1638 ap->a_flags |= PGO_BUSYFAIL;
1639
1640 do {
1641 int r;
1642
1643 /* If no pages are dirty, we can just use genfs_putpages. */
1644 if ((dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1645 ap->a_flags, 1)) != 0)
1646 break;
1647
1648 if ((r = genfs_putpages(v)) != EDEADLK)
1649 return r;
1650
1651 /* Start over. */
1652 preempt(NULL);
1653 simple_lock(&vp->v_interlock);
1654 } while(1);
1655
1656 /*
1657 * Dirty and asked to clean.
1658 *
1659 * Pagedaemon can't actually write LFS pages; wake up
1660 * the writer to take care of that. The writer will
1661 * notice the pager inode queue and act on that.
1662 */
1663 if (pagedaemon) {
1664 ++fs->lfs_pdflush;
1665 wakeup(&lfs_writer_daemon);
1666 simple_unlock(&vp->v_interlock);
1667 return EWOULDBLOCK;
1668 }
1669
1670 /*
1671 * If this is a file created in a recent dirop, we can't flush its
1672 * inode until the dirop is complete. Drain dirops, then flush the
1673 * filesystem (taking care of any other pending dirops while we're
1674 * at it).
1675 */
1676 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1677 (vp->v_flag & VDIROP)) {
1678 int locked;
1679
1680 /* printf("putpages to clean VDIROP, flushing\n"); */
1681 lfs_writer_enter(fs, "ppdirop");
1682 locked = VOP_ISLOCKED(vp) && /* XXX */
1683 vp->v_lock.lk_lockholder == curproc->p_pid;
1684 if (locked)
1685 VOP_UNLOCK(vp, 0);
1686 simple_unlock(&vp->v_interlock);
1687
1688 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1689
1690 simple_lock(&vp->v_interlock);
1691 if (locked)
1692 VOP_LOCK(vp, LK_EXCLUSIVE);
1693 lfs_writer_leave(fs);
1694
1695 /* XXX the flush should have taken care of this one too! */
1696 }
1697
1698 /*
1699 * This is it. We are going to write some pages. From here on
1700 * down it's all just mechanics.
1701 *
1702 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1703 */
1704 ap->a_flags &= ~PGO_SYNCIO;
1705
1706 /*
1707 * If we've already got the seglock, flush the node and return.
1708 * The FIP has already been set up for us by lfs_writefile,
1709 * and FIP cleanup and lfs_updatemeta will also be done there,
1710 * unless genfs_putpages returns EDEADLK; then we must flush
1711 * what we have, and correct FIP and segment header accounting.
1712 */
1713 if (ap->a_flags & PGO_LOCKED) {
1714 sp = fs->lfs_sp;
1715 sp->vp = vp;
1716
1717 /*
1718 * Make sure that all pages in any given block are dirty, or
1719 * none of them are.
1720 */
1721 again:
1722 check_dirty(fs, vp, startoffset, endoffset, blkeof,
1723 ap->a_flags, 0);
1724
1725 if ((error = genfs_putpages(v)) == EDEADLK) {
1726 #ifdef DEBUG_LFS
1727 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1728 " ino %d off %x (seg %d)\n",
1729 ip->i_number, fs->lfs_offset,
1730 dtosn(fs, fs->lfs_offset));
1731 #endif
1732 /* If nothing to write, short-circuit */
1733 if (sp->cbpp - sp->bpp == 1) {
1734 preempt(NULL);
1735 simple_lock(&vp->v_interlock);
1736 goto again;
1737 }
1738 /* Write gathered pages */
1739 lfs_updatemeta(sp);
1740 (void) lfs_writeseg(fs, sp);
1741
1742 /* Reinitialize brand new FIP and add us to it */
1743 sp->vp = vp;
1744 sp->fip->fi_version = ip->i_gen;
1745 sp->fip->fi_ino = ip->i_number;
1746 /* Add us to the new segment summary. */
1747 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1748 sp->sum_bytes_left -=
1749 sizeof(struct finfo) - sizeof(int32_t);
1750
1751 /* Give the write a chance to complete */
1752 preempt(NULL);
1753
1754 /* We've lost the interlock. Start over. */
1755 simple_lock(&vp->v_interlock);
1756 goto again;
1757 }
1758 lfs_updatemeta(sp);
1759 return error;
1760 }
1761
1762 simple_unlock(&vp->v_interlock);
1763 /*
1764 * Take the seglock, because we are going to be writing pages.
1765 */
1766 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1767 return error;
1768
1769 /*
1770 * VOP_PUTPAGES should not be called while holding the seglock.
1771 * XXXUBC fix lfs_markv, or do this properly.
1772 */
1773 /* KASSERT(fs->lfs_seglock == 1); */
1774
1775 /*
1776 * We assume we're being called with sp->fip pointing at blank space.
1777 * Account for a new FIP in the segment header, and set sp->vp.
1778 * (This should duplicate the setup at the top of lfs_writefile().)
1779 */
1780 sp = fs->lfs_sp;
1781 if (sp->seg_bytes_left < fs->lfs_bsize ||
1782 sp->sum_bytes_left < sizeof(struct finfo))
1783 (void) lfs_writeseg(fs, fs->lfs_sp);
1784
1785 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1786 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1787 sp->vp = vp;
1788
1789 if (vp->v_flag & VDIROP)
1790 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1791
1792 sp->fip->fi_nblocks = 0;
1793 sp->fip->fi_ino = ip->i_number;
1794 sp->fip->fi_version = ip->i_gen;
1795
1796 /*
1797 * Loop through genfs_putpages until all pages are gathered.
1798 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1799 * Whenever we lose the interlock we have to rerun check_dirty, as
1800 * well.
1801 */
1802 again2:
1803 simple_lock(&vp->v_interlock);
1804 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1805
1806 if ((error = genfs_putpages(v)) == EDEADLK) {
1807 #ifdef DEBUG_LFS
1808 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1809 " ino %d off %x (seg %d)\n",
1810 ip->i_number, fs->lfs_offset,
1811 dtosn(fs, fs->lfs_offset));
1812 #endif
1813 /* If nothing to write, short-circuit */
1814 if (sp->cbpp - sp->bpp == 1) {
1815 preempt(NULL);
1816 goto again2;
1817 }
1818 /* Write gathered pages */
1819 lfs_updatemeta(sp);
1820 (void) lfs_writeseg(fs, sp);
1821
1822 /*
1823 * Reinitialize brand new FIP and add us to it.
1824 * (This should duplicate the fixup in lfs_gatherpages().)
1825 */
1826 sp->vp = vp;
1827 sp->fip->fi_version = ip->i_gen;
1828 sp->fip->fi_ino = ip->i_number;
1829 /* Add us to the new segment summary. */
1830 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1831 sp->sum_bytes_left -=
1832 sizeof(struct finfo) - sizeof(int32_t);
1833
1834 /* Give the write a chance to complete */
1835 preempt(NULL);
1836
1837 /* We've lost the interlock. Start over. */
1838 goto again2;
1839 }
1840
1841 /* Write indirect blocks as well */
1842 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1843 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1844 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1845
1846 /*
1847 * Blocks are now gathered into a segment waiting to be written.
1848 * All that's left to do is update metadata, and write them.
1849 */
1850 lfs_updatemeta(fs->lfs_sp);
1851 fs->lfs_sp->vp = NULL;
1852 /*
1853 * Clean up FIP, since we're done writing this file.
1854 * This should duplicate cleanup at the end of lfs_writefile().
1855 */
1856 if (sp->fip->fi_nblocks != 0) {
1857 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1858 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1859 sp->start_lbp = &sp->fip->fi_blocks[0];
1860 } else {
1861 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1862 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1863 }
1864 lfs_writeseg(fs, fs->lfs_sp);
1865
1866 /*
1867 * XXX - with the malloc/copy writeseg, the pages are freed by now
1868 * even if we don't wait (e.g. if we hold a nested lock). This
1869 * will not be true if we stop using malloc/copy.
1870 */
1871 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1872 lfs_segunlock(fs);
1873
1874 /*
1875 * Wait for v_numoutput to drop to zero. The seglock should
1876 * take care of this, but there is a slight possibility that
1877 * aiodoned might not have got around to our buffers yet.
1878 */
1879 if (sync) {
1880 int s;
1881
1882 s = splbio();
1883 simple_lock(&global_v_numoutput_slock);
1884 while (vp->v_numoutput > 0) {
1885 #ifdef DEBUG
1886 printf("ino %d sleeping on num %d\n",
1887 ip->i_number, vp->v_numoutput);
1888 #endif
1889 vp->v_flag |= VBWAIT;
1890 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1891 &global_v_numoutput_slock);
1892 }
1893 simple_unlock(&global_v_numoutput_slock);
1894 splx(s);
1895 }
1896 return error;
1897 }
1898
1899 /*
1900 * Return the last logical file offset that should be written for this file
1901 * if we're doing a write that ends at "size". If writing, we need to know
1902 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1903 * to know about entire blocks.
1904 */
1905 void
1906 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1907 {
1908 struct inode *ip = VTOI(vp);
1909 struct lfs *fs = ip->i_lfs;
1910 daddr_t olbn, nlbn;
1911
1912 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1913 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1914 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1915
1916 olbn = lblkno(fs, ip->i_size);
1917 nlbn = lblkno(fs, size);
1918 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1919 *eobp = fragroundup(fs, size);
1920 } else {
1921 *eobp = blkroundup(fs, size);
1922 }
1923 }
1924
1925 #ifdef DEBUG
1926 void lfs_dump_vop(void *);
1927
1928 void
1929 lfs_dump_vop(void *v)
1930 {
1931 struct vop_putpages_args /* {
1932 struct vnode *a_vp;
1933 voff_t a_offlo;
1934 voff_t a_offhi;
1935 int a_flags;
1936 } */ *ap = v;
1937
1938 #ifdef DDB
1939 vfs_vnode_print(ap->a_vp, 0, printf);
1940 #endif
1941 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1942 }
1943 #endif
1944
1945 int
1946 lfs_mmap(void *v)
1947 {
1948 struct vop_mmap_args /* {
1949 const struct vnodeop_desc *a_desc;
1950 struct vnode *a_vp;
1951 int a_fflags;
1952 struct ucred *a_cred;
1953 struct proc *a_p;
1954 } */ *ap = v;
1955
1956 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1957 return EOPNOTSUPP;
1958 return ufs_mmap(v);
1959 }
1960