lfs_vnops.c revision 1.114 1 /* $NetBSD: lfs_vnops.c,v 1.114 2003/08/07 16:34:40 agc Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.114 2003/08/07 16:34:40 agc Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 /*
271 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
272 */
273 void
274 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
275 {
276 LFS_ITIMES(ip, acc, mod, cre);
277 }
278
279 #define LFS_READWRITE
280 #include <ufs/ufs/ufs_readwrite.c>
281 #undef LFS_READWRITE
282
283 /*
284 * Synch an open file.
285 */
286 /* ARGSUSED */
287 int
288 lfs_fsync(void *v)
289 {
290 struct vop_fsync_args /* {
291 struct vnode *a_vp;
292 struct ucred *a_cred;
293 int a_flags;
294 off_t offlo;
295 off_t offhi;
296 struct proc *a_p;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299 int error, wait;
300
301 /*
302 * Trickle sync checks for need to do a checkpoint after possible
303 * activity from the pagedaemon.
304 */
305 if (ap->a_flags & FSYNC_LAZY) {
306 simple_lock(&lfs_subsys_lock);
307 wakeup(&lfs_writer_daemon);
308 simple_unlock(&lfs_subsys_lock);
309 return 0;
310 }
311
312 wait = (ap->a_flags & FSYNC_WAIT);
313 simple_lock(&vp->v_interlock);
314 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 round_page(ap->a_offhi),
316 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 if (error)
318 return error;
319 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
320 if (wait && !VPISEMPTY(vp))
321 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
322
323 return error;
324 }
325
326 /*
327 * Take IN_ADIROP off, then call ufs_inactive.
328 */
329 int
330 lfs_inactive(void *v)
331 {
332 struct vop_inactive_args /* {
333 struct vnode *a_vp;
334 struct proc *a_p;
335 } */ *ap = v;
336
337 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
338
339 lfs_unmark_vnode(ap->a_vp);
340
341 /*
342 * The Ifile is only ever inactivated on unmount.
343 * Streamline this process by not giving it more dirty blocks.
344 */
345 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
346 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
347 VOP_UNLOCK(ap->a_vp, 0);
348 return 0;
349 }
350
351 return ufs_inactive(v);
352 }
353
354 /*
355 * These macros are used to bracket UFS directory ops, so that we can
356 * identify all the pages touched during directory ops which need to
357 * be ordered and flushed atomically, so that they may be recovered.
358 */
359 /*
360 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
361 * the cache from reclaiming them while a dirop is in progress, we must
362 * also manage the number of nodes so marked (otherwise we can run out).
363 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
364 * is decremented during segment write, when VDIROP is taken off.
365 */
366 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
367 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
368 static int lfs_set_dirop(struct vnode *, struct vnode *);
369 extern int lfs_do_flush;
370
371 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
372
373 static int
374 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
375 {
376 struct lfs *fs;
377 int error;
378
379 KASSERT(VOP_ISLOCKED(vp));
380 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
381
382 fs = VTOI(vp)->i_lfs;
383 /*
384 * We might need one directory block plus supporting indirect blocks,
385 * plus an inode block and ifile page for the new vnode.
386 */
387 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
388 return (error);
389
390 if (fs->lfs_dirops == 0)
391 lfs_check(vp, LFS_UNUSED_LBN, 0);
392 restart:
393 simple_lock(&fs->lfs_interlock);
394 if (fs->lfs_writer) {
395 ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PNORELOCK,
396 "lfs_sdirop", 0, &fs->lfs_interlock);
397 goto restart;
398 }
399 simple_lock(&lfs_subsys_lock);
400 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
401 wakeup(&lfs_writer_daemon);
402 simple_unlock(&lfs_subsys_lock);
403 simple_unlock(&fs->lfs_interlock);
404 preempt(NULL);
405 goto restart;
406 }
407
408 if (lfs_dirvcount > LFS_MAX_DIROP) {
409 simple_unlock(&fs->lfs_interlock);
410 #ifdef DEBUG_LFS
411 printf("lfs_set_dirop: sleeping with dirops=%d, "
412 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount);
413 #endif
414 if ((error = ltsleep(&lfs_dirvcount,
415 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
416 &lfs_subsys_lock)) != 0) {
417 goto unreserve;
418 }
419 goto restart;
420 }
421 simple_unlock(&lfs_subsys_lock);
422
423 ++fs->lfs_dirops;
424 fs->lfs_doifile = 1;
425 simple_unlock(&fs->lfs_interlock);
426
427 /* Hold a reference so SET_ENDOP will be happy */
428 vref(vp);
429 if (vp2)
430 vref(vp2);
431
432 return 0;
433
434 unreserve:
435 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
436 return error;
437 }
438
439 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
440 #define SET_ENDOP2(fs, vp, vp2, str) { \
441 --(fs)->lfs_dirops; \
442 if (!(fs)->lfs_dirops) { \
443 if ((fs)->lfs_nadirop) { \
444 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
445 (str), (fs)->lfs_nadirop); \
446 } \
447 wakeup(&(fs)->lfs_writer); \
448 lfs_check((vp),LFS_UNUSED_LBN,0); \
449 } \
450 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
451 vrele(vp); \
452 if (vp2) \
453 vrele(vp2); \
454 }
455
456 #define MARK_VNODE(dvp) do { \
457 struct inode *_ip = VTOI(dvp); \
458 struct lfs *_fs = _ip->i_lfs; \
459 \
460 if (!((dvp)->v_flag & VDIROP)) { \
461 (void)lfs_vref(dvp); \
462 ++lfs_dirvcount; \
463 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
464 } \
465 (dvp)->v_flag |= VDIROP; \
466 if (!(_ip->i_flag & IN_ADIROP)) { \
467 ++_fs->lfs_nadirop; \
468 } \
469 _ip->i_flag |= IN_ADIROP; \
470 } while (0)
471
472 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
473
474 void lfs_unmark_vnode(struct vnode *vp)
475 {
476 struct inode *ip;
477
478 ip = VTOI(vp);
479
480 if (ip->i_flag & IN_ADIROP)
481 --ip->i_lfs->lfs_nadirop;
482 ip->i_flag &= ~IN_ADIROP;
483 }
484
485 int
486 lfs_symlink(void *v)
487 {
488 struct vop_symlink_args /* {
489 struct vnode *a_dvp;
490 struct vnode **a_vpp;
491 struct componentname *a_cnp;
492 struct vattr *a_vap;
493 char *a_target;
494 } */ *ap = v;
495 int error;
496
497 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
498 vput(ap->a_dvp);
499 return error;
500 }
501 MARK_VNODE(ap->a_dvp);
502 error = ufs_symlink(ap);
503 UNMARK_VNODE(ap->a_dvp);
504 if (*(ap->a_vpp))
505 UNMARK_VNODE(*(ap->a_vpp));
506 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
507 return (error);
508 }
509
510 int
511 lfs_mknod(void *v)
512 {
513 struct vop_mknod_args /* {
514 struct vnode *a_dvp;
515 struct vnode **a_vpp;
516 struct componentname *a_cnp;
517 struct vattr *a_vap;
518 } */ *ap = v;
519 struct vattr *vap = ap->a_vap;
520 struct vnode **vpp = ap->a_vpp;
521 struct inode *ip;
522 int error;
523 struct mount *mp;
524 ino_t ino;
525
526 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
527 vput(ap->a_dvp);
528 return error;
529 }
530 MARK_VNODE(ap->a_dvp);
531 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
532 ap->a_dvp, vpp, ap->a_cnp);
533 UNMARK_VNODE(ap->a_dvp);
534 if (*(ap->a_vpp))
535 UNMARK_VNODE(*(ap->a_vpp));
536
537 /* Either way we're done with the dirop at this point */
538 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
539
540 if (error)
541 return (error);
542
543 ip = VTOI(*vpp);
544 mp = (*vpp)->v_mount;
545 ino = ip->i_number;
546 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
547 if (vap->va_rdev != VNOVAL) {
548 /*
549 * Want to be able to use this to make badblock
550 * inodes, so don't truncate the dev number.
551 */
552 #if 0
553 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
554 UFS_MPNEEDSWAP((*vpp)->v_mount));
555 #else
556 ip->i_ffs1_rdev = vap->va_rdev;
557 #endif
558 }
559 /*
560 * Call fsync to write the vnode so that we don't have to deal with
561 * flushing it when it's marked VDIROP|VXLOCK.
562 *
563 * XXX KS - If we can't flush we also can't call vgone(), so must
564 * return. But, that leaves this vnode in limbo, also not good.
565 * Can this ever happen (barring hardware failure)?
566 */
567 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
568 curproc)) != 0) {
569 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
570 VTOI(*vpp)->i_number);
571 return (error);
572 }
573 /*
574 * Remove vnode so that it will be reloaded by VFS_VGET and
575 * checked to see if it is an alias of an existing entry in
576 * the inode cache.
577 */
578 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
579 VOP_UNLOCK(*vpp, 0);
580 lfs_vunref(*vpp);
581 (*vpp)->v_type = VNON;
582 vgone(*vpp);
583 error = VFS_VGET(mp, ino, vpp);
584 if (error != 0) {
585 *vpp = NULL;
586 return (error);
587 }
588 return (0);
589 }
590
591 int
592 lfs_create(void *v)
593 {
594 struct vop_create_args /* {
595 struct vnode *a_dvp;
596 struct vnode **a_vpp;
597 struct componentname *a_cnp;
598 struct vattr *a_vap;
599 } */ *ap = v;
600 int error;
601
602 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
603 vput(ap->a_dvp);
604 return error;
605 }
606 MARK_VNODE(ap->a_dvp);
607 error = ufs_create(ap);
608 UNMARK_VNODE(ap->a_dvp);
609 if (*(ap->a_vpp))
610 UNMARK_VNODE(*(ap->a_vpp));
611 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
612 return (error);
613 }
614
615 int
616 lfs_mkdir(void *v)
617 {
618 struct vop_mkdir_args /* {
619 struct vnode *a_dvp;
620 struct vnode **a_vpp;
621 struct componentname *a_cnp;
622 struct vattr *a_vap;
623 } */ *ap = v;
624 int error;
625
626 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
627 vput(ap->a_dvp);
628 return error;
629 }
630 MARK_VNODE(ap->a_dvp);
631 error = ufs_mkdir(ap);
632 UNMARK_VNODE(ap->a_dvp);
633 if (*(ap->a_vpp))
634 UNMARK_VNODE(*(ap->a_vpp));
635 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
636 return (error);
637 }
638
639 int
640 lfs_remove(void *v)
641 {
642 struct vop_remove_args /* {
643 struct vnode *a_dvp;
644 struct vnode *a_vp;
645 struct componentname *a_cnp;
646 } */ *ap = v;
647 struct vnode *dvp, *vp;
648 int error;
649
650 dvp = ap->a_dvp;
651 vp = ap->a_vp;
652 if ((error = SET_DIROP2(dvp, vp)) != 0) {
653 if (dvp == vp)
654 vrele(vp);
655 else
656 vput(vp);
657 vput(dvp);
658 return error;
659 }
660 MARK_VNODE(dvp);
661 MARK_VNODE(vp);
662 error = ufs_remove(ap);
663 UNMARK_VNODE(dvp);
664 UNMARK_VNODE(vp);
665
666 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
667 return (error);
668 }
669
670 int
671 lfs_rmdir(void *v)
672 {
673 struct vop_rmdir_args /* {
674 struct vnodeop_desc *a_desc;
675 struct vnode *a_dvp;
676 struct vnode *a_vp;
677 struct componentname *a_cnp;
678 } */ *ap = v;
679 struct vnode *vp;
680 int error;
681
682 vp = ap->a_vp;
683 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
684 vrele(ap->a_dvp);
685 if (ap->a_vp != ap->a_dvp)
686 VOP_UNLOCK(ap->a_dvp, 0);
687 vput(vp);
688 return error;
689 }
690 MARK_VNODE(ap->a_dvp);
691 MARK_VNODE(vp);
692 error = ufs_rmdir(ap);
693 UNMARK_VNODE(ap->a_dvp);
694 UNMARK_VNODE(vp);
695
696 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
697 return (error);
698 }
699
700 int
701 lfs_link(void *v)
702 {
703 struct vop_link_args /* {
704 struct vnode *a_dvp;
705 struct vnode *a_vp;
706 struct componentname *a_cnp;
707 } */ *ap = v;
708 int error;
709
710 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
711 vput(ap->a_dvp);
712 return error;
713 }
714 MARK_VNODE(ap->a_dvp);
715 error = ufs_link(ap);
716 UNMARK_VNODE(ap->a_dvp);
717 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
718 return (error);
719 }
720
721 int
722 lfs_rename(void *v)
723 {
724 struct vop_rename_args /* {
725 struct vnode *a_fdvp;
726 struct vnode *a_fvp;
727 struct componentname *a_fcnp;
728 struct vnode *a_tdvp;
729 struct vnode *a_tvp;
730 struct componentname *a_tcnp;
731 } */ *ap = v;
732 struct vnode *tvp, *fvp, *tdvp, *fdvp;
733 struct componentname *tcnp, *fcnp;
734 int error;
735 struct lfs *fs;
736
737 fs = VTOI(ap->a_fdvp)->i_lfs;
738 tvp = ap->a_tvp;
739 tdvp = ap->a_tdvp;
740 tcnp = ap->a_tcnp;
741 fvp = ap->a_fvp;
742 fdvp = ap->a_fdvp;
743 fcnp = ap->a_fcnp;
744
745 /*
746 * Check for cross-device rename.
747 * If it is, we don't want to set dirops, just error out.
748 * (In particular note that MARK_VNODE(tdvp) will DTWT on
749 * a cross-device rename.)
750 *
751 * Copied from ufs_rename.
752 */
753 if ((fvp->v_mount != tdvp->v_mount) ||
754 (tvp && (fvp->v_mount != tvp->v_mount))) {
755 error = EXDEV;
756 goto errout;
757 }
758
759 /*
760 * Check to make sure we're not renaming a vnode onto itself
761 * (deleting a hard link by renaming one name onto another);
762 * if we are we can't recursively call VOP_REMOVE since that
763 * would leave us with an unaccounted-for number of live dirops.
764 *
765 * Inline the relevant section of ufs_rename here, *before*
766 * calling SET_DIROP2.
767 */
768 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
769 (VTOI(tdvp)->i_flags & APPEND))) {
770 error = EPERM;
771 goto errout;
772 }
773 if (fvp == tvp) {
774 if (fvp->v_type == VDIR) {
775 error = EINVAL;
776 goto errout;
777 }
778
779 /* Release destination completely. */
780 VOP_ABORTOP(tdvp, tcnp);
781 vput(tdvp);
782 vput(tvp);
783
784 /* Delete source. */
785 vrele(fvp);
786 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
787 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
788 fcnp->cn_nameiop = DELETE;
789 if ((error = relookup(fdvp, &fvp, fcnp))){
790 /* relookup blew away fdvp */
791 return (error);
792 }
793 return (VOP_REMOVE(fdvp, fvp, fcnp));
794 }
795
796 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
797 goto errout;
798 MARK_VNODE(fdvp);
799 MARK_VNODE(tdvp);
800 MARK_VNODE(fvp);
801 if (tvp) {
802 MARK_VNODE(tvp);
803 }
804
805 error = ufs_rename(ap);
806 UNMARK_VNODE(fdvp);
807 UNMARK_VNODE(tdvp);
808 UNMARK_VNODE(fvp);
809 if (tvp) {
810 UNMARK_VNODE(tvp);
811 }
812 SET_ENDOP2(fs, tdvp, tvp, "rename");
813 return (error);
814
815 errout:
816 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
817 if (tdvp == tvp)
818 vrele(tdvp);
819 else
820 vput(tdvp);
821 if (tvp)
822 vput(tvp);
823 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
824 vrele(fdvp);
825 vrele(fvp);
826 return (error);
827 }
828
829 /* XXX hack to avoid calling ITIMES in getattr */
830 int
831 lfs_getattr(void *v)
832 {
833 struct vop_getattr_args /* {
834 struct vnode *a_vp;
835 struct vattr *a_vap;
836 struct ucred *a_cred;
837 struct proc *a_p;
838 } */ *ap = v;
839 struct vnode *vp = ap->a_vp;
840 struct inode *ip = VTOI(vp);
841 struct vattr *vap = ap->a_vap;
842 struct lfs *fs = ip->i_lfs;
843 /*
844 * Copy from inode table
845 */
846 vap->va_fsid = ip->i_dev;
847 vap->va_fileid = ip->i_number;
848 vap->va_mode = ip->i_mode & ~IFMT;
849 vap->va_nlink = ip->i_nlink;
850 vap->va_uid = ip->i_uid;
851 vap->va_gid = ip->i_gid;
852 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
853 vap->va_size = vp->v_size;
854 vap->va_atime.tv_sec = ip->i_ffs1_atime;
855 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
856 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
857 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
858 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
859 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
860 vap->va_flags = ip->i_flags;
861 vap->va_gen = ip->i_gen;
862 /* this doesn't belong here */
863 if (vp->v_type == VBLK)
864 vap->va_blocksize = BLKDEV_IOSIZE;
865 else if (vp->v_type == VCHR)
866 vap->va_blocksize = MAXBSIZE;
867 else
868 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
869 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
870 vap->va_type = vp->v_type;
871 vap->va_filerev = ip->i_modrev;
872 return (0);
873 }
874
875 /*
876 * Check to make sure the inode blocks won't choke the buffer
877 * cache, then call ufs_setattr as usual.
878 */
879 int
880 lfs_setattr(void *v)
881 {
882 struct vop_getattr_args /* {
883 struct vnode *a_vp;
884 struct vattr *a_vap;
885 struct ucred *a_cred;
886 struct proc *a_p;
887 } */ *ap = v;
888 struct vnode *vp = ap->a_vp;
889
890 lfs_check(vp, LFS_UNUSED_LBN, 0);
891 return ufs_setattr(v);
892 }
893
894 /*
895 * Close called
896 *
897 * XXX -- we were using ufs_close, but since it updates the
898 * times on the inode, we might need to bump the uinodes
899 * count.
900 */
901 /* ARGSUSED */
902 int
903 lfs_close(void *v)
904 {
905 struct vop_close_args /* {
906 struct vnode *a_vp;
907 int a_fflag;
908 struct ucred *a_cred;
909 struct proc *a_p;
910 } */ *ap = v;
911 struct vnode *vp = ap->a_vp;
912 struct inode *ip = VTOI(vp);
913 struct timespec ts;
914
915 if (vp == ip->i_lfs->lfs_ivnode &&
916 vp->v_mount->mnt_flag & MNT_UNMOUNT)
917 return 0;
918
919 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
920 TIMEVAL_TO_TIMESPEC(&time, &ts);
921 LFS_ITIMES(ip, &ts, &ts, &ts);
922 }
923 return (0);
924 }
925
926 /*
927 * Close wrapper for special devices.
928 *
929 * Update the times on the inode then do device close.
930 */
931 int
932 lfsspec_close(void *v)
933 {
934 struct vop_close_args /* {
935 struct vnode *a_vp;
936 int a_fflag;
937 struct ucred *a_cred;
938 struct proc *a_p;
939 } */ *ap = v;
940 struct vnode *vp;
941 struct inode *ip;
942 struct timespec ts;
943
944 vp = ap->a_vp;
945 ip = VTOI(vp);
946 if (vp->v_usecount > 1) {
947 TIMEVAL_TO_TIMESPEC(&time, &ts);
948 LFS_ITIMES(ip, &ts, &ts, &ts);
949 }
950 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
951 }
952
953 /*
954 * Close wrapper for fifo's.
955 *
956 * Update the times on the inode then do device close.
957 */
958 int
959 lfsfifo_close(void *v)
960 {
961 struct vop_close_args /* {
962 struct vnode *a_vp;
963 int a_fflag;
964 struct ucred *a_cred;
965 struct proc *a_p;
966 } */ *ap = v;
967 struct vnode *vp;
968 struct inode *ip;
969 struct timespec ts;
970
971 vp = ap->a_vp;
972 ip = VTOI(vp);
973 if (ap->a_vp->v_usecount > 1) {
974 TIMEVAL_TO_TIMESPEC(&time, &ts);
975 LFS_ITIMES(ip, &ts, &ts, &ts);
976 }
977 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
978 }
979
980 /*
981 * Reclaim an inode so that it can be used for other purposes.
982 */
983 int lfs_no_inactive = 0;
984
985 int
986 lfs_reclaim(void *v)
987 {
988 struct vop_reclaim_args /* {
989 struct vnode *a_vp;
990 struct proc *a_p;
991 } */ *ap = v;
992 struct vnode *vp = ap->a_vp;
993 struct inode *ip = VTOI(vp);
994 int error;
995
996 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
997
998 LFS_CLR_UINO(ip, IN_ALLMOD);
999 if ((error = ufs_reclaim(vp, ap->a_p)))
1000 return (error);
1001 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1002 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1003 ip->inode_ext.lfs = NULL;
1004 pool_put(&lfs_inode_pool, vp->v_data);
1005 vp->v_data = NULL;
1006 return (0);
1007 }
1008
1009 /*
1010 * Read a block from a storage device.
1011 * In order to avoid reading blocks that are in the process of being
1012 * written by the cleaner---and hence are not mutexed by the normal
1013 * buffer cache / page cache mechanisms---check for collisions before
1014 * reading.
1015 *
1016 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1017 * the active cleaner test.
1018 *
1019 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1020 */
1021 int
1022 lfs_strategy(void *v)
1023 {
1024 struct vop_strategy_args /* {
1025 struct buf *a_bp;
1026 } */ *ap = v;
1027 struct buf *bp;
1028 struct lfs *fs;
1029 struct vnode *vp;
1030 struct inode *ip;
1031 daddr_t tbn;
1032 int i, sn, error, slept;
1033
1034 bp = ap->a_bp;
1035 vp = bp->b_vp;
1036 ip = VTOI(vp);
1037 fs = ip->i_lfs;
1038
1039 /* lfs uses its strategy routine only for read */
1040 KASSERT(bp->b_flags & B_READ);
1041
1042 if (vp->v_type == VBLK || vp->v_type == VCHR)
1043 panic("lfs_strategy: spec");
1044 KASSERT(bp->b_bcount != 0);
1045 if (bp->b_blkno == bp->b_lblkno) {
1046 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1047 NULL);
1048 if (error) {
1049 bp->b_error = error;
1050 bp->b_flags |= B_ERROR;
1051 biodone(bp);
1052 return (error);
1053 }
1054 if ((long)bp->b_blkno == -1) /* no valid data */
1055 clrbuf(bp);
1056 }
1057 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1058 biodone(bp);
1059 return (0);
1060 }
1061
1062 slept = 1;
1063 simple_lock(&fs->lfs_interlock);
1064 while (slept && fs->lfs_seglock) {
1065 simple_unlock(&fs->lfs_interlock);
1066 /*
1067 * Look through list of intervals.
1068 * There will only be intervals to look through
1069 * if the cleaner holds the seglock.
1070 * Since the cleaner is synchronous, we can trust
1071 * the list of intervals to be current.
1072 */
1073 tbn = dbtofsb(fs, bp->b_blkno);
1074 sn = dtosn(fs, tbn);
1075 slept = 0;
1076 for (i = 0; i < fs->lfs_cleanind; i++) {
1077 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1078 tbn >= fs->lfs_cleanint[i]) {
1079 #ifdef DEBUG_LFS
1080 printf("lfs_strategy: ino %d lbn %" PRId64
1081 " ind %d sn %d fsb %" PRIx32
1082 " given sn %d fsb %" PRIx64 "\n",
1083 ip->i_number, bp->b_lblkno, i,
1084 dtosn(fs, fs->lfs_cleanint[i]),
1085 fs->lfs_cleanint[i], sn, tbn);
1086 printf("lfs_strategy: sleeping on ino %d lbn %"
1087 PRId64 "\n", ip->i_number, bp->b_lblkno);
1088 #endif
1089 tsleep(&fs->lfs_seglock, PRIBIO+1,
1090 "lfs_strategy", 0);
1091 /* Things may be different now; start over. */
1092 slept = 1;
1093 break;
1094 }
1095 }
1096 simple_lock(&fs->lfs_interlock);
1097 }
1098 simple_unlock(&fs->lfs_interlock);
1099
1100 vp = ip->i_devvp;
1101 bp->b_dev = vp->v_rdev;
1102 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1103 return (0);
1104 }
1105
1106 static void
1107 lfs_flush_dirops(struct lfs *fs)
1108 {
1109 struct inode *ip, *nip;
1110 struct vnode *vp;
1111 extern int lfs_dostats;
1112 struct segment *sp;
1113 int needunlock;
1114
1115 if (fs->lfs_ronly)
1116 return;
1117
1118 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1119 return;
1120
1121 if (lfs_dostats)
1122 ++lfs_stats.flush_invoked;
1123
1124 /*
1125 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1126 * Technically this is a checkpoint (the on-disk state is valid)
1127 * even though we are leaving out all the file data.
1128 */
1129 lfs_imtime(fs);
1130 lfs_seglock(fs, SEGM_CKP);
1131 sp = fs->lfs_sp;
1132
1133 /*
1134 * lfs_writevnodes, optimized to get dirops out of the way.
1135 * Only write dirops, and don't flush files' pages, only
1136 * blocks from the directories.
1137 *
1138 * We don't need to vref these files because they are
1139 * dirops and so hold an extra reference until the
1140 * segunlock clears them of that status.
1141 *
1142 * We don't need to check for IN_ADIROP because we know that
1143 * no dirops are active.
1144 *
1145 */
1146 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1147 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1148 vp = ITOV(ip);
1149
1150 /*
1151 * All writes to directories come from dirops; all
1152 * writes to files' direct blocks go through the page
1153 * cache, which we're not touching. Reads to files
1154 * and/or directories will not be affected by writing
1155 * directory blocks inodes and file inodes. So we don't
1156 * really need to lock. If we don't lock, though,
1157 * make sure that we don't clear IN_MODIFIED
1158 * unnecessarily.
1159 */
1160 if (vp->v_flag & VXLOCK)
1161 continue;
1162 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1163 LK_NOWAIT) == 0) {
1164 needunlock = 1;
1165 } else {
1166 printf("lfs_flush_dirops: flushing locked ino %d\n",
1167 VTOI(vp)->i_number);
1168 needunlock = 0;
1169 }
1170 if (vp->v_type != VREG &&
1171 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1172 lfs_writefile(fs, sp, vp);
1173 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1174 !(ip->i_flag & IN_ALLMOD)) {
1175 LFS_SET_UINO(ip, IN_MODIFIED);
1176 }
1177 }
1178 (void) lfs_writeinode(fs, sp, ip);
1179 if (needunlock)
1180 VOP_UNLOCK(vp, 0);
1181 else
1182 LFS_SET_UINO(ip, IN_MODIFIED);
1183 }
1184 /* We've written all the dirops there are */
1185 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1186 (void) lfs_writeseg(fs, sp);
1187 lfs_segunlock(fs);
1188 }
1189
1190 /*
1191 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1192 */
1193 int
1194 lfs_fcntl(void *v)
1195 {
1196 struct vop_fcntl_args /* {
1197 struct vnode *a_vp;
1198 u_long a_command;
1199 caddr_t a_data;
1200 int a_fflag;
1201 struct ucred *a_cred;
1202 struct proc *a_p;
1203 } */ *ap = v;
1204 struct timeval *tvp;
1205 BLOCK_INFO *blkiov;
1206 CLEANERINFO *cip;
1207 int blkcnt, error, oclean;
1208 struct lfs_fcntl_markv blkvp;
1209 fsid_t *fsidp;
1210 struct lfs *fs;
1211 struct buf *bp;
1212 daddr_t off;
1213
1214 /* Only respect LFS fcntls on fs root or Ifile */
1215 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1216 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1217 return ufs_fcntl(v);
1218 }
1219
1220 /* Avoid locking a draining lock */
1221 if (ap->a_vp->v_mount->mnt_flag & MNT_UNMOUNT) {
1222 return ESHUTDOWN;
1223 }
1224
1225 fs = VTOI(ap->a_vp)->i_lfs;
1226 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1227
1228 switch (ap->a_command) {
1229 case LFCNSEGWAITALL:
1230 fsidp = NULL;
1231 /* FALLSTHROUGH */
1232 case LFCNSEGWAIT:
1233 tvp = (struct timeval *)ap->a_data;
1234 simple_lock(&fs->lfs_interlock);
1235 ++fs->lfs_sleepers;
1236 simple_unlock(&fs->lfs_interlock);
1237 VOP_UNLOCK(ap->a_vp, 0);
1238
1239 error = lfs_segwait(fsidp, tvp);
1240
1241 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1242 simple_lock(&fs->lfs_interlock);
1243 if (--fs->lfs_sleepers == 0)
1244 wakeup(&fs->lfs_sleepers);
1245 simple_unlock(&fs->lfs_interlock);
1246 return error;
1247
1248 case LFCNBMAPV:
1249 case LFCNMARKV:
1250 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1251 return (error);
1252 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1253
1254 blkcnt = blkvp.blkcnt;
1255 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1256 return (EINVAL);
1257 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1258 if ((error = copyin(blkvp.blkiov, blkiov,
1259 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1260 free(blkiov, M_SEGMENT);
1261 return error;
1262 }
1263
1264 simple_lock(&fs->lfs_interlock);
1265 ++fs->lfs_sleepers;
1266 simple_unlock(&fs->lfs_interlock);
1267 VOP_UNLOCK(ap->a_vp, 0);
1268 if (ap->a_command == LFCNBMAPV)
1269 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1270 else /* LFCNMARKV */
1271 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1272 if (error == 0)
1273 error = copyout(blkiov, blkvp.blkiov,
1274 blkcnt * sizeof(BLOCK_INFO));
1275 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1276 simple_lock(&fs->lfs_interlock);
1277 if (--fs->lfs_sleepers == 0)
1278 wakeup(&fs->lfs_sleepers);
1279 simple_unlock(&fs->lfs_interlock);
1280 free(blkiov, M_SEGMENT);
1281 return error;
1282
1283 case LFCNRECLAIM:
1284 /*
1285 * Flush dirops and write Ifile, allowing empty segments
1286 * to be immediately reclaimed.
1287 */
1288 lfs_writer_enter(fs, "pndirop");
1289 off = fs->lfs_offset;
1290 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1291 lfs_flush_dirops(fs);
1292 LFS_CLEANERINFO(cip, fs, bp);
1293 oclean = cip->clean;
1294 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1295 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1296 lfs_segunlock(fs);
1297 lfs_writer_leave(fs);
1298
1299 #ifdef DEBUG_LFS
1300 LFS_CLEANERINFO(cip, fs, bp);
1301 oclean = cip->clean;
1302 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1303 "%" PRId32 " segments (activesb %d)\n",
1304 fs->lfs_offset - off, cip->clean - oclean,
1305 fs->lfs_activesb);
1306 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1307 #endif
1308
1309 return 0;
1310
1311 default:
1312 return ufs_fcntl(v);
1313 }
1314 return 0;
1315 }
1316
1317 int
1318 lfs_getpages(void *v)
1319 {
1320 struct vop_getpages_args /* {
1321 struct vnode *a_vp;
1322 voff_t a_offset;
1323 struct vm_page **a_m;
1324 int *a_count;
1325 int a_centeridx;
1326 vm_prot_t a_access_type;
1327 int a_advice;
1328 int a_flags;
1329 } */ *ap = v;
1330
1331 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1332 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1333 return EPERM;
1334 }
1335 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1336 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1337 }
1338 return genfs_getpages(v);
1339 }
1340
1341 /*
1342 * Make sure that for all pages in every block in the given range,
1343 * either all are dirty or all are clean. If any of the pages
1344 * we've seen so far are dirty, put the vnode on the paging chain,
1345 * and mark it IN_PAGING.
1346 *
1347 * If checkfirst != 0, don't check all the pages but return at the
1348 * first dirty page.
1349 */
1350 static int
1351 check_dirty(struct lfs *fs, struct vnode *vp,
1352 off_t startoffset, off_t endoffset, off_t blkeof,
1353 int flags, int checkfirst)
1354 {
1355 int by_list;
1356 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1357 struct lwp *l = curlwp ? curlwp : &lwp0;
1358 off_t soff;
1359 voff_t off;
1360 int i, dirty, tdirty, nonexistent, any_dirty;
1361 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1362
1363 top:
1364 by_list = (vp->v_uobj.uo_npages <=
1365 ((endoffset - startoffset) >> PAGE_SHIFT) *
1366 UVM_PAGE_HASH_PENALTY);
1367 any_dirty = 0;
1368
1369 if (by_list) {
1370 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1371 PHOLD(l);
1372 } else {
1373 soff = startoffset;
1374 }
1375 while (by_list || soff < MIN(blkeof, endoffset)) {
1376 if (by_list) {
1377 if (pages_per_block > 1) {
1378 while (curpg && (curpg->offset & fs->lfs_bmask))
1379 curpg = TAILQ_NEXT(curpg, listq);
1380 }
1381 if (curpg == NULL)
1382 break;
1383 soff = curpg->offset;
1384 }
1385
1386 /*
1387 * Mark all pages in extended range busy; find out if any
1388 * of them are dirty.
1389 */
1390 nonexistent = dirty = 0;
1391 for (i = 0; i == 0 || i < pages_per_block; i++) {
1392 if (by_list && pages_per_block <= 1) {
1393 pgs[i] = pg = curpg;
1394 } else {
1395 off = soff + (i << PAGE_SHIFT);
1396 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1397 if (pg == NULL) {
1398 ++nonexistent;
1399 continue;
1400 }
1401 }
1402 KASSERT(pg != NULL);
1403 while (pg->flags & PG_BUSY) {
1404 pg->flags |= PG_WANTED;
1405 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1406 "lfsput", 0);
1407 simple_lock(&vp->v_interlock);
1408 if (by_list) {
1409 if (i > 0)
1410 uvm_page_unbusy(pgs, i);
1411 goto top;
1412 }
1413 }
1414 pg->flags |= PG_BUSY;
1415 UVM_PAGE_OWN(pg, "lfs_putpages");
1416
1417 pmap_page_protect(pg, VM_PROT_NONE);
1418 tdirty = (pmap_clear_modify(pg) ||
1419 (pg->flags & PG_CLEAN) == 0);
1420 dirty += tdirty;
1421 }
1422 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1423 if (by_list) {
1424 curpg = TAILQ_NEXT(curpg, listq);
1425 } else {
1426 soff += fs->lfs_bsize;
1427 }
1428 continue;
1429 }
1430
1431 any_dirty += dirty;
1432 KASSERT(nonexistent == 0);
1433
1434 /*
1435 * If any are dirty make all dirty; unbusy them,
1436 * but if we were asked to clean, wire them so that
1437 * the pagedaemon doesn't bother us about them while
1438 * they're on their way to disk.
1439 */
1440 for (i = 0; i == 0 || i < pages_per_block; i++) {
1441 pg = pgs[i];
1442 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1443 if (dirty) {
1444 pg->flags &= ~PG_CLEAN;
1445 if (flags & PGO_FREE) {
1446 /* XXXUBC need better way to update */
1447 simple_lock(&lfs_subsys_lock);
1448 lfs_subsys_pages += MIN(1, pages_per_block);
1449 simple_unlock(&lfs_subsys_lock);
1450 /*
1451 * Wire the page so that
1452 * pdaemon doesn't see it again.
1453 */
1454 uvm_lock_pageq();
1455 uvm_pagewire(pg);
1456 uvm_unlock_pageq();
1457
1458 /* Suspended write flag */
1459 pg->flags |= PG_DELWRI;
1460 }
1461 }
1462 if (pg->flags & PG_WANTED)
1463 wakeup(pg);
1464 pg->flags &= ~(PG_WANTED|PG_BUSY);
1465 UVM_PAGE_OWN(pg, NULL);
1466 }
1467
1468 if (checkfirst && any_dirty)
1469 return any_dirty;
1470
1471 if (by_list) {
1472 curpg = TAILQ_NEXT(curpg, listq);
1473 } else {
1474 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1475 }
1476 }
1477 if (by_list) {
1478 PRELE(l);
1479 }
1480
1481 /*
1482 * If any pages were dirty, mark this inode as "pageout requested",
1483 * and put it on the paging queue.
1484 * XXXUBC locking (check locking on dchainhd too)
1485 */
1486 #ifdef notyet
1487 if (any_dirty) {
1488 if (!(ip->i_flags & IN_PAGING)) {
1489 ip->i_flags |= IN_PAGING;
1490 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1491 }
1492 }
1493 #endif
1494 return any_dirty;
1495 }
1496
1497 /*
1498 * lfs_putpages functions like genfs_putpages except that
1499 *
1500 * (1) It needs to bounds-check the incoming requests to ensure that
1501 * they are block-aligned; if they are not, expand the range and
1502 * do the right thing in case, e.g., the requested range is clean
1503 * but the expanded range is dirty.
1504 * (2) It needs to explicitly send blocks to be written when it is done.
1505 * VOP_PUTPAGES is not ever called with the seglock held, so
1506 * we simply take the seglock and let lfs_segunlock wait for us.
1507 * XXX Actually we can be called with the seglock held, if we have
1508 * XXX to flush a vnode while lfs_markv is in operation. As of this
1509 * XXX writing we panic in this case.
1510 *
1511 * Assumptions:
1512 *
1513 * (1) The caller does not hold any pages in this vnode busy. If it does,
1514 * there is a danger that when we expand the page range and busy the
1515 * pages we will deadlock.
1516 * (2) We are called with vp->v_interlock held; we must return with it
1517 * released.
1518 * (3) We don't absolutely have to free pages right away, provided that
1519 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1520 * us a request with PGO_FREE, we take the pages out of the paging
1521 * queue and wake up the writer, which will handle freeing them for us.
1522 *
1523 * We ensure that for any filesystem block, all pages for that
1524 * block are either resident or not, even if those pages are higher
1525 * than EOF; that means that we will be getting requests to free
1526 * "unused" pages above EOF all the time, and should ignore them.
1527 */
1528
1529 int
1530 lfs_putpages(void *v)
1531 {
1532 int error;
1533 struct vop_putpages_args /* {
1534 struct vnode *a_vp;
1535 voff_t a_offlo;
1536 voff_t a_offhi;
1537 int a_flags;
1538 } */ *ap = v;
1539 struct vnode *vp;
1540 struct inode *ip;
1541 struct lfs *fs;
1542 struct segment *sp;
1543 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1544 off_t off, max_endoffset;
1545 int pages_per_block;
1546 int s, sync, dirty, pagedaemon;
1547 struct vm_page *pg;
1548 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1549
1550 vp = ap->a_vp;
1551 ip = VTOI(vp);
1552 fs = ip->i_lfs;
1553 sync = (ap->a_flags & PGO_SYNCIO);
1554 pagedaemon = (curproc == uvm.pagedaemon_proc);
1555
1556 /* Putpages does nothing for metadata. */
1557 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1558 simple_unlock(&vp->v_interlock);
1559 return 0;
1560 }
1561
1562 /*
1563 * If there are no pages, don't do anything.
1564 */
1565 if (vp->v_uobj.uo_npages == 0) {
1566 s = splbio();
1567 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1568 (vp->v_flag & VONWORKLST)) {
1569 vp->v_flag &= ~VONWORKLST;
1570 LIST_REMOVE(vp, v_synclist);
1571 }
1572 splx(s);
1573 simple_unlock(&vp->v_interlock);
1574 return 0;
1575 }
1576
1577 blkeof = blkroundup(fs, ip->i_size);
1578
1579 /*
1580 * Ignore requests to free pages past EOF but in the same block
1581 * as EOF, unless the request is synchronous. (XXX why sync?)
1582 * XXXUBC Make these pages look "active" so the pagedaemon won't
1583 * XXXUBC bother us with them again.
1584 */
1585 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1586 origoffset = ap->a_offlo;
1587 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1588 pg = uvm_pagelookup(&vp->v_uobj, off);
1589 KASSERT(pg != NULL);
1590 while (pg->flags & PG_BUSY) {
1591 pg->flags |= PG_WANTED;
1592 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1593 "lfsput2", 0);
1594 simple_lock(&vp->v_interlock);
1595 }
1596 uvm_lock_pageq();
1597 uvm_pageactivate(pg);
1598 uvm_unlock_pageq();
1599 }
1600 ap->a_offlo = blkeof;
1601 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1602 simple_unlock(&vp->v_interlock);
1603 return 0;
1604 }
1605 }
1606
1607 /*
1608 * Extend page range to start and end at block boundaries.
1609 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1610 */
1611 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1612 origoffset = ap->a_offlo;
1613 origendoffset = ap->a_offhi;
1614 startoffset = origoffset & ~(fs->lfs_bmask);
1615 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1616 << fs->lfs_bshift;
1617
1618 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1619 endoffset = max_endoffset;
1620 origendoffset = endoffset;
1621 } else {
1622 origendoffset = round_page(ap->a_offhi);
1623 endoffset = round_page(blkroundup(fs, origendoffset));
1624 }
1625
1626 KASSERT(startoffset > 0 || endoffset >= startoffset);
1627 if (startoffset == endoffset) {
1628 /* Nothing to do, why were we called? */
1629 simple_unlock(&vp->v_interlock);
1630 #ifdef DEBUG
1631 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1632 startoffset);
1633 #endif
1634 return 0;
1635 }
1636
1637 ap->a_offlo = startoffset;
1638 ap->a_offhi = endoffset;
1639
1640 if (!(ap->a_flags & PGO_CLEANIT))
1641 return genfs_putpages(v);
1642
1643 /*
1644 * If there are more than one page per block, we don't want
1645 * to get caught locking them backwards; so set PGO_BUSYFAIL
1646 * to avoid deadlocks.
1647 */
1648 ap->a_flags |= PGO_BUSYFAIL;
1649
1650 do {
1651 int r;
1652
1653 /* If no pages are dirty, we can just use genfs_putpages. */
1654 if ((dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1655 ap->a_flags, 1)) != 0)
1656 break;
1657
1658 if ((r = genfs_putpages(v)) != EDEADLK)
1659 return r;
1660
1661 /* Start over. */
1662 preempt(NULL);
1663 simple_lock(&vp->v_interlock);
1664 } while(1);
1665
1666 /*
1667 * Dirty and asked to clean.
1668 *
1669 * Pagedaemon can't actually write LFS pages; wake up
1670 * the writer to take care of that. The writer will
1671 * notice the pager inode queue and act on that.
1672 */
1673 if (pagedaemon) {
1674 ++fs->lfs_pdflush;
1675 wakeup(&lfs_writer_daemon);
1676 simple_unlock(&vp->v_interlock);
1677 return EWOULDBLOCK;
1678 }
1679
1680 /*
1681 * If this is a file created in a recent dirop, we can't flush its
1682 * inode until the dirop is complete. Drain dirops, then flush the
1683 * filesystem (taking care of any other pending dirops while we're
1684 * at it).
1685 */
1686 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1687 (vp->v_flag & VDIROP)) {
1688 int locked;
1689
1690 /* printf("putpages to clean VDIROP, flushing\n"); */
1691 lfs_writer_enter(fs, "ppdirop");
1692 locked = VOP_ISLOCKED(vp) && /* XXX */
1693 vp->v_lock.lk_lockholder == curproc->p_pid;
1694 if (locked)
1695 VOP_UNLOCK(vp, 0);
1696 simple_unlock(&vp->v_interlock);
1697
1698 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1699
1700 simple_lock(&vp->v_interlock);
1701 if (locked)
1702 VOP_LOCK(vp, LK_EXCLUSIVE);
1703 lfs_writer_leave(fs);
1704
1705 /* XXX the flush should have taken care of this one too! */
1706 }
1707
1708 /*
1709 * This is it. We are going to write some pages. From here on
1710 * down it's all just mechanics.
1711 *
1712 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1713 */
1714 ap->a_flags &= ~PGO_SYNCIO;
1715
1716 /*
1717 * If we've already got the seglock, flush the node and return.
1718 * The FIP has already been set up for us by lfs_writefile,
1719 * and FIP cleanup and lfs_updatemeta will also be done there,
1720 * unless genfs_putpages returns EDEADLK; then we must flush
1721 * what we have, and correct FIP and segment header accounting.
1722 */
1723 if (ap->a_flags & PGO_LOCKED) {
1724 sp = fs->lfs_sp;
1725 sp->vp = vp;
1726
1727 /*
1728 * Make sure that all pages in any given block are dirty, or
1729 * none of them are.
1730 */
1731 again:
1732 check_dirty(fs, vp, startoffset, endoffset, blkeof,
1733 ap->a_flags, 0);
1734
1735 if ((error = genfs_putpages(v)) == EDEADLK) {
1736 #ifdef DEBUG_LFS
1737 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1738 " ino %d off %x (seg %d)\n",
1739 ip->i_number, fs->lfs_offset,
1740 dtosn(fs, fs->lfs_offset));
1741 #endif
1742 /* If nothing to write, short-circuit */
1743 if (sp->cbpp - sp->bpp == 1) {
1744 preempt(NULL);
1745 simple_lock(&vp->v_interlock);
1746 goto again;
1747 }
1748 /* Write gathered pages */
1749 lfs_updatemeta(sp);
1750 (void) lfs_writeseg(fs, sp);
1751
1752 /* Reinitialize brand new FIP and add us to it */
1753 sp->vp = vp;
1754 sp->fip->fi_version = ip->i_gen;
1755 sp->fip->fi_ino = ip->i_number;
1756 /* Add us to the new segment summary. */
1757 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1758 sp->sum_bytes_left -=
1759 sizeof(struct finfo) - sizeof(int32_t);
1760
1761 /* Give the write a chance to complete */
1762 preempt(NULL);
1763
1764 /* We've lost the interlock. Start over. */
1765 simple_lock(&vp->v_interlock);
1766 goto again;
1767 }
1768 lfs_updatemeta(sp);
1769 return error;
1770 }
1771
1772 simple_unlock(&vp->v_interlock);
1773 /*
1774 * Take the seglock, because we are going to be writing pages.
1775 */
1776 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1777 return error;
1778
1779 /*
1780 * VOP_PUTPAGES should not be called while holding the seglock.
1781 * XXXUBC fix lfs_markv, or do this properly.
1782 */
1783 /* KASSERT(fs->lfs_seglock == 1); */
1784
1785 /*
1786 * We assume we're being called with sp->fip pointing at blank space.
1787 * Account for a new FIP in the segment header, and set sp->vp.
1788 * (This should duplicate the setup at the top of lfs_writefile().)
1789 */
1790 sp = fs->lfs_sp;
1791 if (sp->seg_bytes_left < fs->lfs_bsize ||
1792 sp->sum_bytes_left < sizeof(struct finfo))
1793 (void) lfs_writeseg(fs, fs->lfs_sp);
1794
1795 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1796 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1797 sp->vp = vp;
1798
1799 if (vp->v_flag & VDIROP)
1800 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1801
1802 sp->fip->fi_nblocks = 0;
1803 sp->fip->fi_ino = ip->i_number;
1804 sp->fip->fi_version = ip->i_gen;
1805
1806 /*
1807 * Loop through genfs_putpages until all pages are gathered.
1808 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1809 * Whenever we lose the interlock we have to rerun check_dirty, as
1810 * well.
1811 */
1812 again2:
1813 simple_lock(&vp->v_interlock);
1814 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1815
1816 if ((error = genfs_putpages(v)) == EDEADLK) {
1817 #ifdef DEBUG_LFS
1818 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1819 " ino %d off %x (seg %d)\n",
1820 ip->i_number, fs->lfs_offset,
1821 dtosn(fs, fs->lfs_offset));
1822 #endif
1823 /* If nothing to write, short-circuit */
1824 if (sp->cbpp - sp->bpp == 1) {
1825 preempt(NULL);
1826 goto again2;
1827 }
1828 /* Write gathered pages */
1829 lfs_updatemeta(sp);
1830 (void) lfs_writeseg(fs, sp);
1831
1832 /*
1833 * Reinitialize brand new FIP and add us to it.
1834 * (This should duplicate the fixup in lfs_gatherpages().)
1835 */
1836 sp->vp = vp;
1837 sp->fip->fi_version = ip->i_gen;
1838 sp->fip->fi_ino = ip->i_number;
1839 /* Add us to the new segment summary. */
1840 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1841 sp->sum_bytes_left -=
1842 sizeof(struct finfo) - sizeof(int32_t);
1843
1844 /* Give the write a chance to complete */
1845 preempt(NULL);
1846
1847 /* We've lost the interlock. Start over. */
1848 goto again2;
1849 }
1850
1851 /* Write indirect blocks as well */
1852 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1853 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1854 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1855
1856 /*
1857 * Blocks are now gathered into a segment waiting to be written.
1858 * All that's left to do is update metadata, and write them.
1859 */
1860 lfs_updatemeta(fs->lfs_sp);
1861 fs->lfs_sp->vp = NULL;
1862 /*
1863 * Clean up FIP, since we're done writing this file.
1864 * This should duplicate cleanup at the end of lfs_writefile().
1865 */
1866 if (sp->fip->fi_nblocks != 0) {
1867 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1868 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1869 sp->start_lbp = &sp->fip->fi_blocks[0];
1870 } else {
1871 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1872 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1873 }
1874 lfs_writeseg(fs, fs->lfs_sp);
1875
1876 /*
1877 * XXX - with the malloc/copy writeseg, the pages are freed by now
1878 * even if we don't wait (e.g. if we hold a nested lock). This
1879 * will not be true if we stop using malloc/copy.
1880 */
1881 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1882 lfs_segunlock(fs);
1883
1884 /*
1885 * Wait for v_numoutput to drop to zero. The seglock should
1886 * take care of this, but there is a slight possibility that
1887 * aiodoned might not have got around to our buffers yet.
1888 */
1889 if (sync) {
1890 int s;
1891
1892 s = splbio();
1893 simple_lock(&global_v_numoutput_slock);
1894 while (vp->v_numoutput > 0) {
1895 #ifdef DEBUG
1896 printf("ino %d sleeping on num %d\n",
1897 ip->i_number, vp->v_numoutput);
1898 #endif
1899 vp->v_flag |= VBWAIT;
1900 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1901 &global_v_numoutput_slock);
1902 }
1903 simple_unlock(&global_v_numoutput_slock);
1904 splx(s);
1905 }
1906 return error;
1907 }
1908
1909 /*
1910 * Return the last logical file offset that should be written for this file
1911 * if we're doing a write that ends at "size". If writing, we need to know
1912 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1913 * to know about entire blocks.
1914 */
1915 void
1916 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1917 {
1918 struct inode *ip = VTOI(vp);
1919 struct lfs *fs = ip->i_lfs;
1920 daddr_t olbn, nlbn;
1921
1922 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1923 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1924 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1925
1926 olbn = lblkno(fs, ip->i_size);
1927 nlbn = lblkno(fs, size);
1928 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1929 *eobp = fragroundup(fs, size);
1930 } else {
1931 *eobp = blkroundup(fs, size);
1932 }
1933 }
1934
1935 #ifdef DEBUG
1936 void lfs_dump_vop(void *);
1937
1938 void
1939 lfs_dump_vop(void *v)
1940 {
1941 struct vop_putpages_args /* {
1942 struct vnode *a_vp;
1943 voff_t a_offlo;
1944 voff_t a_offhi;
1945 int a_flags;
1946 } */ *ap = v;
1947
1948 #ifdef DDB
1949 vfs_vnode_print(ap->a_vp, 0, printf);
1950 #endif
1951 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1952 }
1953 #endif
1954
1955 int
1956 lfs_mmap(void *v)
1957 {
1958 struct vop_mmap_args /* {
1959 const struct vnodeop_desc *a_desc;
1960 struct vnode *a_vp;
1961 int a_fflags;
1962 struct ucred *a_cred;
1963 struct proc *a_p;
1964 } */ *ap = v;
1965
1966 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1967 return EOPNOTSUPP;
1968 return ufs_mmap(v);
1969 }
1970