lfs_vnops.c revision 1.136 1 /* $NetBSD: lfs_vnops.c,v 1.136 2005/03/08 00:18:21 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.136 2005/03/08 00:18:21 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
271
272 /*
273 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
274 */
275 void
276 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
277 {
278 LFS_ITIMES(ip, acc, mod, cre);
279 }
280
281 #define LFS_READWRITE
282 #include <ufs/ufs/ufs_readwrite.c>
283 #undef LFS_READWRITE
284
285 /*
286 * Synch an open file.
287 */
288 /* ARGSUSED */
289 int
290 lfs_fsync(void *v)
291 {
292 struct vop_fsync_args /* {
293 struct vnode *a_vp;
294 struct ucred *a_cred;
295 int a_flags;
296 off_t offlo;
297 off_t offhi;
298 struct proc *a_p;
299 } */ *ap = v;
300 struct vnode *vp = ap->a_vp;
301 int error, wait;
302
303 /*
304 * Trickle sync checks for need to do a checkpoint after possible
305 * activity from the pagedaemon.
306 */
307 if (ap->a_flags & FSYNC_LAZY) {
308 simple_lock(&lfs_subsys_lock);
309 wakeup(&lfs_writer_daemon);
310 simple_unlock(&lfs_subsys_lock);
311 return 0;
312 }
313
314 wait = (ap->a_flags & FSYNC_WAIT);
315 simple_lock(&vp->v_interlock);
316 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317 round_page(ap->a_offhi),
318 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319 if (error)
320 return error;
321 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
322 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
323 int l = 0;
324 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
325 ap->a_p->p_ucred, ap->a_p);
326 }
327 if (wait && !VPISEMPTY(vp))
328 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
329
330 return error;
331 }
332
333 /*
334 * Take IN_ADIROP off, then call ufs_inactive.
335 */
336 int
337 lfs_inactive(void *v)
338 {
339 struct vop_inactive_args /* {
340 struct vnode *a_vp;
341 struct proc *a_p;
342 } */ *ap = v;
343
344 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
345
346 lfs_unmark_vnode(ap->a_vp);
347
348 /*
349 * The Ifile is only ever inactivated on unmount.
350 * Streamline this process by not giving it more dirty blocks.
351 */
352 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
353 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
354 VOP_UNLOCK(ap->a_vp, 0);
355 return 0;
356 }
357
358 return ufs_inactive(v);
359 }
360
361 /*
362 * These macros are used to bracket UFS directory ops, so that we can
363 * identify all the pages touched during directory ops which need to
364 * be ordered and flushed atomically, so that they may be recovered.
365 */
366 /*
367 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
368 * the cache from reclaiming them while a dirop is in progress, we must
369 * also manage the number of nodes so marked (otherwise we can run out).
370 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
371 * is decremented during segment write, when VDIROP is taken off.
372 */
373 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
374 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
375 static int lfs_set_dirop(struct vnode *, struct vnode *);
376
377 static int
378 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
379 {
380 struct lfs *fs;
381 int error;
382
383 KASSERT(VOP_ISLOCKED(vp));
384 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
385
386 fs = VTOI(vp)->i_lfs;
387 /*
388 * LFS_NRESERVE calculates direct and indirect blocks as well
389 * as an inode block; an overestimate in most cases.
390 */
391 if ((error = lfs_reserve(fs, vp, vp2, LFS_NRESERVE(fs))) != 0)
392 return (error);
393
394 if (fs->lfs_dirops == 0)
395 lfs_check(vp, LFS_UNUSED_LBN, 0);
396 restart:
397 simple_lock(&fs->lfs_interlock);
398 if (fs->lfs_writer) {
399 ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PNORELOCK,
400 "lfs_sdirop", 0, &fs->lfs_interlock);
401 goto restart;
402 }
403 simple_lock(&lfs_subsys_lock);
404 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
405 wakeup(&lfs_writer_daemon);
406 simple_unlock(&lfs_subsys_lock);
407 simple_unlock(&fs->lfs_interlock);
408 preempt(1);
409 goto restart;
410 }
411
412 if (lfs_dirvcount > LFS_MAX_DIROP) {
413 simple_unlock(&fs->lfs_interlock);
414 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
415 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
416 if ((error = ltsleep(&lfs_dirvcount,
417 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
418 &lfs_subsys_lock)) != 0) {
419 goto unreserve;
420 }
421 goto restart;
422 }
423 simple_unlock(&lfs_subsys_lock);
424
425 ++fs->lfs_dirops;
426 fs->lfs_doifile = 1;
427 simple_unlock(&fs->lfs_interlock);
428
429 /* Hold a reference so SET_ENDOP will be happy */
430 vref(vp);
431 if (vp2)
432 vref(vp2);
433
434 return 0;
435
436 unreserve:
437 lfs_reserve(fs, vp, vp2, -LFS_NRESERVE(fs));
438 return error;
439 }
440
441 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
442 #define SET_ENDOP2(fs, vp, vp2, str) { \
443 --(fs)->lfs_dirops; \
444 if (!(fs)->lfs_dirops) { \
445 if ((fs)->lfs_nadirop) { \
446 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
447 (str), (fs)->lfs_nadirop); \
448 } \
449 wakeup(&(fs)->lfs_writer); \
450 lfs_check((vp),LFS_UNUSED_LBN,0); \
451 } \
452 lfs_reserve((fs), vp, vp2, -LFS_NRESERVE(fs)); /* XXX */ \
453 vrele(vp); \
454 if (vp2) \
455 vrele(vp2); \
456 }
457
458 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
459 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
460
461 void
462 lfs_mark_vnode(struct vnode *vp)
463 {
464 struct inode *ip = VTOI(vp);
465 struct lfs *fs = ip->i_lfs;
466
467 if (!(ip->i_flag & IN_ADIROP)) {
468 if (!(vp->v_flag & VDIROP)) {
469 (void)lfs_vref(vp);
470 ++lfs_dirvcount;
471 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
472 vp->v_flag |= VDIROP;
473 }
474 ++fs->lfs_nadirop;
475 ip->i_flag |= IN_ADIROP;
476 } else
477 KASSERT(vp->v_flag & VDIROP);
478 }
479
480 void
481 lfs_unmark_vnode(struct vnode *vp)
482 {
483 struct inode *ip = VTOI(vp);
484
485 if (ip->i_flag & IN_ADIROP) {
486 KASSERT(vp->v_flag & VDIROP);
487 --ip->i_lfs->lfs_nadirop;
488 ip->i_flag &= ~IN_ADIROP;
489 }
490 }
491
492 int
493 lfs_symlink(void *v)
494 {
495 struct vop_symlink_args /* {
496 struct vnode *a_dvp;
497 struct vnode **a_vpp;
498 struct componentname *a_cnp;
499 struct vattr *a_vap;
500 char *a_target;
501 } */ *ap = v;
502 int error;
503
504 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
505 vput(ap->a_dvp);
506 return error;
507 }
508 MARK_VNODE(ap->a_dvp);
509 error = ufs_symlink(ap);
510 UNMARK_VNODE(ap->a_dvp);
511 if (*(ap->a_vpp))
512 UNMARK_VNODE(*(ap->a_vpp));
513 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
514 return (error);
515 }
516
517 int
518 lfs_mknod(void *v)
519 {
520 struct vop_mknod_args /* {
521 struct vnode *a_dvp;
522 struct vnode **a_vpp;
523 struct componentname *a_cnp;
524 struct vattr *a_vap;
525 } */ *ap = v;
526 struct vattr *vap = ap->a_vap;
527 struct vnode **vpp = ap->a_vpp;
528 struct inode *ip;
529 int error;
530 struct mount *mp;
531 ino_t ino;
532
533 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
534 vput(ap->a_dvp);
535 return error;
536 }
537 MARK_VNODE(ap->a_dvp);
538 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
539 ap->a_dvp, vpp, ap->a_cnp);
540 UNMARK_VNODE(ap->a_dvp);
541 if (*(ap->a_vpp))
542 UNMARK_VNODE(*(ap->a_vpp));
543
544 /* Either way we're done with the dirop at this point */
545 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
546
547 if (error)
548 return (error);
549
550 ip = VTOI(*vpp);
551 mp = (*vpp)->v_mount;
552 ino = ip->i_number;
553 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
554 if (vap->va_rdev != VNOVAL) {
555 /*
556 * Want to be able to use this to make badblock
557 * inodes, so don't truncate the dev number.
558 */
559 #if 0
560 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
561 UFS_MPNEEDSWAP((*vpp)->v_mount));
562 #else
563 ip->i_ffs1_rdev = vap->va_rdev;
564 #endif
565 }
566
567 /*
568 * Call fsync to write the vnode so that we don't have to deal with
569 * flushing it when it's marked VDIROP|VXLOCK.
570 *
571 * XXX KS - If we can't flush we also can't call vgone(), so must
572 * return. But, that leaves this vnode in limbo, also not good.
573 * Can this ever happen (barring hardware failure)?
574 */
575 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
576 curproc)) != 0) {
577 panic("lfs_mknod: couldn't fsync (ino %d)", ino);
578 /* return (error); */
579 }
580 /*
581 * Remove vnode so that it will be reloaded by VFS_VGET and
582 * checked to see if it is an alias of an existing entry in
583 * the inode cache.
584 */
585 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
586
587 VOP_UNLOCK(*vpp, 0);
588 lfs_vunref(*vpp);
589 (*vpp)->v_type = VNON;
590 vgone(*vpp);
591 error = VFS_VGET(mp, ino, vpp);
592
593 if (error != 0) {
594 *vpp = NULL;
595 return (error);
596 }
597 return (0);
598 }
599
600 int
601 lfs_create(void *v)
602 {
603 struct vop_create_args /* {
604 struct vnode *a_dvp;
605 struct vnode **a_vpp;
606 struct componentname *a_cnp;
607 struct vattr *a_vap;
608 } */ *ap = v;
609 int error;
610
611 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
612 vput(ap->a_dvp);
613 return error;
614 }
615 MARK_VNODE(ap->a_dvp);
616 error = ufs_create(ap);
617 UNMARK_VNODE(ap->a_dvp);
618 if (*(ap->a_vpp))
619 UNMARK_VNODE(*(ap->a_vpp));
620 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
621 return (error);
622 }
623
624 int
625 lfs_mkdir(void *v)
626 {
627 struct vop_mkdir_args /* {
628 struct vnode *a_dvp;
629 struct vnode **a_vpp;
630 struct componentname *a_cnp;
631 struct vattr *a_vap;
632 } */ *ap = v;
633 int error;
634
635 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
636 vput(ap->a_dvp);
637 return error;
638 }
639 MARK_VNODE(ap->a_dvp);
640 error = ufs_mkdir(ap);
641 UNMARK_VNODE(ap->a_dvp);
642 if (*(ap->a_vpp))
643 UNMARK_VNODE(*(ap->a_vpp));
644 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
645 return (error);
646 }
647
648 int
649 lfs_remove(void *v)
650 {
651 struct vop_remove_args /* {
652 struct vnode *a_dvp;
653 struct vnode *a_vp;
654 struct componentname *a_cnp;
655 } */ *ap = v;
656 struct vnode *dvp, *vp;
657 int error;
658
659 dvp = ap->a_dvp;
660 vp = ap->a_vp;
661 if ((error = SET_DIROP2(dvp, vp)) != 0) {
662 if (dvp == vp)
663 vrele(vp);
664 else
665 vput(vp);
666 vput(dvp);
667 return error;
668 }
669 MARK_VNODE(dvp);
670 MARK_VNODE(vp);
671 error = ufs_remove(ap);
672 UNMARK_VNODE(dvp);
673 UNMARK_VNODE(vp);
674
675 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
676 return (error);
677 }
678
679 int
680 lfs_rmdir(void *v)
681 {
682 struct vop_rmdir_args /* {
683 struct vnodeop_desc *a_desc;
684 struct vnode *a_dvp;
685 struct vnode *a_vp;
686 struct componentname *a_cnp;
687 } */ *ap = v;
688 struct vnode *vp;
689 int error;
690
691 vp = ap->a_vp;
692 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
693 vrele(ap->a_dvp);
694 if (ap->a_vp != ap->a_dvp)
695 VOP_UNLOCK(ap->a_dvp, 0);
696 vput(vp);
697 return error;
698 }
699 MARK_VNODE(ap->a_dvp);
700 MARK_VNODE(vp);
701 error = ufs_rmdir(ap);
702 UNMARK_VNODE(ap->a_dvp);
703 UNMARK_VNODE(vp);
704
705 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
706 return (error);
707 }
708
709 int
710 lfs_link(void *v)
711 {
712 struct vop_link_args /* {
713 struct vnode *a_dvp;
714 struct vnode *a_vp;
715 struct componentname *a_cnp;
716 } */ *ap = v;
717 int error;
718
719 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
720 vput(ap->a_dvp);
721 return error;
722 }
723 MARK_VNODE(ap->a_dvp);
724 error = ufs_link(ap);
725 UNMARK_VNODE(ap->a_dvp);
726 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
727 return (error);
728 }
729
730 int
731 lfs_rename(void *v)
732 {
733 struct vop_rename_args /* {
734 struct vnode *a_fdvp;
735 struct vnode *a_fvp;
736 struct componentname *a_fcnp;
737 struct vnode *a_tdvp;
738 struct vnode *a_tvp;
739 struct componentname *a_tcnp;
740 } */ *ap = v;
741 struct vnode *tvp, *fvp, *tdvp, *fdvp;
742 struct componentname *tcnp, *fcnp;
743 int error;
744 struct lfs *fs;
745
746 fs = VTOI(ap->a_fdvp)->i_lfs;
747 tvp = ap->a_tvp;
748 tdvp = ap->a_tdvp;
749 tcnp = ap->a_tcnp;
750 fvp = ap->a_fvp;
751 fdvp = ap->a_fdvp;
752 fcnp = ap->a_fcnp;
753
754 /*
755 * Check for cross-device rename.
756 * If it is, we don't want to set dirops, just error out.
757 * (In particular note that MARK_VNODE(tdvp) will DTWT on
758 * a cross-device rename.)
759 *
760 * Copied from ufs_rename.
761 */
762 if ((fvp->v_mount != tdvp->v_mount) ||
763 (tvp && (fvp->v_mount != tvp->v_mount))) {
764 error = EXDEV;
765 goto errout;
766 }
767
768 /*
769 * Check to make sure we're not renaming a vnode onto itself
770 * (deleting a hard link by renaming one name onto another);
771 * if we are we can't recursively call VOP_REMOVE since that
772 * would leave us with an unaccounted-for number of live dirops.
773 *
774 * Inline the relevant section of ufs_rename here, *before*
775 * calling SET_DIROP2.
776 */
777 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
778 (VTOI(tdvp)->i_flags & APPEND))) {
779 error = EPERM;
780 goto errout;
781 }
782 if (fvp == tvp) {
783 if (fvp->v_type == VDIR) {
784 error = EINVAL;
785 goto errout;
786 }
787
788 /* Release destination completely. */
789 VOP_ABORTOP(tdvp, tcnp);
790 vput(tdvp);
791 vput(tvp);
792
793 /* Delete source. */
794 vrele(fvp);
795 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
796 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
797 fcnp->cn_nameiop = DELETE;
798 if ((error = relookup(fdvp, &fvp, fcnp))){
799 /* relookup blew away fdvp */
800 return (error);
801 }
802 return (VOP_REMOVE(fdvp, fvp, fcnp));
803 }
804
805 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
806 goto errout;
807 MARK_VNODE(fdvp);
808 MARK_VNODE(tdvp);
809 MARK_VNODE(fvp);
810 if (tvp) {
811 MARK_VNODE(tvp);
812 }
813
814 error = ufs_rename(ap);
815 UNMARK_VNODE(fdvp);
816 UNMARK_VNODE(tdvp);
817 UNMARK_VNODE(fvp);
818 if (tvp) {
819 UNMARK_VNODE(tvp);
820 }
821 SET_ENDOP2(fs, tdvp, tvp, "rename");
822 return (error);
823
824 errout:
825 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
826 if (tdvp == tvp)
827 vrele(tdvp);
828 else
829 vput(tdvp);
830 if (tvp)
831 vput(tvp);
832 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
833 vrele(fdvp);
834 vrele(fvp);
835 return (error);
836 }
837
838 /* XXX hack to avoid calling ITIMES in getattr */
839 int
840 lfs_getattr(void *v)
841 {
842 struct vop_getattr_args /* {
843 struct vnode *a_vp;
844 struct vattr *a_vap;
845 struct ucred *a_cred;
846 struct proc *a_p;
847 } */ *ap = v;
848 struct vnode *vp = ap->a_vp;
849 struct inode *ip = VTOI(vp);
850 struct vattr *vap = ap->a_vap;
851 struct lfs *fs = ip->i_lfs;
852 /*
853 * Copy from inode table
854 */
855 vap->va_fsid = ip->i_dev;
856 vap->va_fileid = ip->i_number;
857 vap->va_mode = ip->i_mode & ~IFMT;
858 vap->va_nlink = ip->i_nlink;
859 vap->va_uid = ip->i_uid;
860 vap->va_gid = ip->i_gid;
861 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
862 vap->va_size = vp->v_size;
863 vap->va_atime.tv_sec = ip->i_ffs1_atime;
864 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
865 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
866 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
867 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
868 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
869 vap->va_flags = ip->i_flags;
870 vap->va_gen = ip->i_gen;
871 /* this doesn't belong here */
872 if (vp->v_type == VBLK)
873 vap->va_blocksize = BLKDEV_IOSIZE;
874 else if (vp->v_type == VCHR)
875 vap->va_blocksize = MAXBSIZE;
876 else
877 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
878 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
879 vap->va_type = vp->v_type;
880 vap->va_filerev = ip->i_modrev;
881 return (0);
882 }
883
884 /*
885 * Check to make sure the inode blocks won't choke the buffer
886 * cache, then call ufs_setattr as usual.
887 */
888 int
889 lfs_setattr(void *v)
890 {
891 struct vop_getattr_args /* {
892 struct vnode *a_vp;
893 struct vattr *a_vap;
894 struct ucred *a_cred;
895 struct proc *a_p;
896 } */ *ap = v;
897 struct vnode *vp = ap->a_vp;
898
899 lfs_check(vp, LFS_UNUSED_LBN, 0);
900 return ufs_setattr(v);
901 }
902
903 /*
904 * Close called
905 *
906 * XXX -- we were using ufs_close, but since it updates the
907 * times on the inode, we might need to bump the uinodes
908 * count.
909 */
910 /* ARGSUSED */
911 int
912 lfs_close(void *v)
913 {
914 struct vop_close_args /* {
915 struct vnode *a_vp;
916 int a_fflag;
917 struct ucred *a_cred;
918 struct proc *a_p;
919 } */ *ap = v;
920 struct vnode *vp = ap->a_vp;
921 struct inode *ip = VTOI(vp);
922 struct timespec ts;
923
924 if (vp == ip->i_lfs->lfs_ivnode &&
925 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
926 return 0;
927
928 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
929 TIMEVAL_TO_TIMESPEC(&time, &ts);
930 LFS_ITIMES(ip, &ts, &ts, &ts);
931 }
932 return (0);
933 }
934
935 /*
936 * Close wrapper for special devices.
937 *
938 * Update the times on the inode then do device close.
939 */
940 int
941 lfsspec_close(void *v)
942 {
943 struct vop_close_args /* {
944 struct vnode *a_vp;
945 int a_fflag;
946 struct ucred *a_cred;
947 struct proc *a_p;
948 } */ *ap = v;
949 struct vnode *vp;
950 struct inode *ip;
951 struct timespec ts;
952
953 vp = ap->a_vp;
954 ip = VTOI(vp);
955 if (vp->v_usecount > 1) {
956 TIMEVAL_TO_TIMESPEC(&time, &ts);
957 LFS_ITIMES(ip, &ts, &ts, &ts);
958 }
959 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
960 }
961
962 /*
963 * Close wrapper for fifo's.
964 *
965 * Update the times on the inode then do device close.
966 */
967 int
968 lfsfifo_close(void *v)
969 {
970 struct vop_close_args /* {
971 struct vnode *a_vp;
972 int a_fflag;
973 struct ucred *a_cred;
974 struct proc *a_p;
975 } */ *ap = v;
976 struct vnode *vp;
977 struct inode *ip;
978 struct timespec ts;
979
980 vp = ap->a_vp;
981 ip = VTOI(vp);
982 if (ap->a_vp->v_usecount > 1) {
983 TIMEVAL_TO_TIMESPEC(&time, &ts);
984 LFS_ITIMES(ip, &ts, &ts, &ts);
985 }
986 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
987 }
988
989 /*
990 * Reclaim an inode so that it can be used for other purposes.
991 */
992
993 int
994 lfs_reclaim(void *v)
995 {
996 struct vop_reclaim_args /* {
997 struct vnode *a_vp;
998 struct proc *a_p;
999 } */ *ap = v;
1000 struct vnode *vp = ap->a_vp;
1001 struct inode *ip = VTOI(vp);
1002 int error;
1003
1004 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1005
1006 LFS_CLR_UINO(ip, IN_ALLMOD);
1007 if ((error = ufs_reclaim(vp, ap->a_p)))
1008 return (error);
1009 lfs_deregister_all(vp);
1010 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1011 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1012 ip->inode_ext.lfs = NULL;
1013 pool_put(&lfs_inode_pool, vp->v_data);
1014 vp->v_data = NULL;
1015 return (0);
1016 }
1017
1018 /*
1019 * Read a block from a storage device.
1020 * In order to avoid reading blocks that are in the process of being
1021 * written by the cleaner---and hence are not mutexed by the normal
1022 * buffer cache / page cache mechanisms---check for collisions before
1023 * reading.
1024 *
1025 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1026 * the active cleaner test.
1027 *
1028 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1029 */
1030 int
1031 lfs_strategy(void *v)
1032 {
1033 struct vop_strategy_args /* {
1034 struct vnode *a_vp;
1035 struct buf *a_bp;
1036 } */ *ap = v;
1037 struct buf *bp;
1038 struct lfs *fs;
1039 struct vnode *vp;
1040 struct inode *ip;
1041 daddr_t tbn;
1042 int i, sn, error, slept;
1043
1044 bp = ap->a_bp;
1045 vp = ap->a_vp;
1046 ip = VTOI(vp);
1047 fs = ip->i_lfs;
1048
1049 /* lfs uses its strategy routine only for read */
1050 KASSERT(bp->b_flags & B_READ);
1051
1052 if (vp->v_type == VBLK || vp->v_type == VCHR)
1053 panic("lfs_strategy: spec");
1054 KASSERT(bp->b_bcount != 0);
1055 if (bp->b_blkno == bp->b_lblkno) {
1056 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1057 NULL);
1058 if (error) {
1059 bp->b_error = error;
1060 bp->b_flags |= B_ERROR;
1061 biodone(bp);
1062 return (error);
1063 }
1064 if ((long)bp->b_blkno == -1) /* no valid data */
1065 clrbuf(bp);
1066 }
1067 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1068 biodone(bp);
1069 return (0);
1070 }
1071
1072 slept = 1;
1073 simple_lock(&fs->lfs_interlock);
1074 while (slept && fs->lfs_seglock) {
1075 simple_unlock(&fs->lfs_interlock);
1076 /*
1077 * Look through list of intervals.
1078 * There will only be intervals to look through
1079 * if the cleaner holds the seglock.
1080 * Since the cleaner is synchronous, we can trust
1081 * the list of intervals to be current.
1082 */
1083 tbn = dbtofsb(fs, bp->b_blkno);
1084 sn = dtosn(fs, tbn);
1085 slept = 0;
1086 for (i = 0; i < fs->lfs_cleanind; i++) {
1087 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1088 tbn >= fs->lfs_cleanint[i]) {
1089 DLOG((DLOG_CLEAN,
1090 "lfs_strategy: ino %d lbn %" PRId64
1091 " ind %d sn %d fsb %" PRIx32
1092 " given sn %d fsb %" PRIx64 "\n",
1093 ip->i_number, bp->b_lblkno, i,
1094 dtosn(fs, fs->lfs_cleanint[i]),
1095 fs->lfs_cleanint[i], sn, tbn));
1096 DLOG((DLOG_CLEAN,
1097 "lfs_strategy: sleeping on ino %d lbn %"
1098 PRId64 "\n", ip->i_number, bp->b_lblkno));
1099 tsleep(&fs->lfs_seglock, PRIBIO+1,
1100 "lfs_strategy", 0);
1101 /* Things may be different now; start over. */
1102 slept = 1;
1103 break;
1104 }
1105 }
1106 simple_lock(&fs->lfs_interlock);
1107 }
1108 simple_unlock(&fs->lfs_interlock);
1109
1110 vp = ip->i_devvp;
1111 VOP_STRATEGY(vp, bp);
1112 return (0);
1113 }
1114
1115 static void
1116 lfs_flush_dirops(struct lfs *fs)
1117 {
1118 struct inode *ip, *nip;
1119 struct vnode *vp;
1120 extern int lfs_dostats;
1121 struct segment *sp;
1122 int needunlock;
1123
1124 if (fs->lfs_ronly)
1125 return;
1126
1127 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1128 return;
1129
1130 if (lfs_dostats)
1131 ++lfs_stats.flush_invoked;
1132
1133 /*
1134 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1135 * Technically this is a checkpoint (the on-disk state is valid)
1136 * even though we are leaving out all the file data.
1137 */
1138 lfs_imtime(fs);
1139 lfs_seglock(fs, SEGM_CKP);
1140 sp = fs->lfs_sp;
1141
1142 /*
1143 * lfs_writevnodes, optimized to get dirops out of the way.
1144 * Only write dirops, and don't flush files' pages, only
1145 * blocks from the directories.
1146 *
1147 * We don't need to vref these files because they are
1148 * dirops and so hold an extra reference until the
1149 * segunlock clears them of that status.
1150 *
1151 * We don't need to check for IN_ADIROP because we know that
1152 * no dirops are active.
1153 *
1154 */
1155 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1156 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1157 vp = ITOV(ip);
1158
1159 /*
1160 * All writes to directories come from dirops; all
1161 * writes to files' direct blocks go through the page
1162 * cache, which we're not touching. Reads to files
1163 * and/or directories will not be affected by writing
1164 * directory blocks inodes and file inodes. So we don't
1165 * really need to lock. If we don't lock, though,
1166 * make sure that we don't clear IN_MODIFIED
1167 * unnecessarily.
1168 */
1169 if (vp->v_flag & VXLOCK)
1170 continue;
1171 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1172 LK_NOWAIT) == 0) {
1173 needunlock = 1;
1174 } else {
1175 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1176 VTOI(vp)->i_number));
1177 needunlock = 0;
1178 }
1179 if (vp->v_type != VREG &&
1180 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1181 lfs_writefile(fs, sp, vp);
1182 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1183 !(ip->i_flag & IN_ALLMOD)) {
1184 LFS_SET_UINO(ip, IN_MODIFIED);
1185 }
1186 }
1187 (void) lfs_writeinode(fs, sp, ip);
1188 if (needunlock)
1189 VOP_UNLOCK(vp, 0);
1190 else
1191 LFS_SET_UINO(ip, IN_MODIFIED);
1192 }
1193 /* We've written all the dirops there are */
1194 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1195 (void) lfs_writeseg(fs, sp);
1196 lfs_segunlock(fs);
1197 }
1198
1199 /*
1200 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1201 */
1202 int
1203 lfs_fcntl(void *v)
1204 {
1205 struct vop_fcntl_args /* {
1206 struct vnode *a_vp;
1207 u_long a_command;
1208 caddr_t a_data;
1209 int a_fflag;
1210 struct ucred *a_cred;
1211 struct proc *a_p;
1212 } */ *ap = v;
1213 struct timeval *tvp;
1214 BLOCK_INFO *blkiov;
1215 CLEANERINFO *cip;
1216 int blkcnt, error, oclean;
1217 struct lfs_fcntl_markv blkvp;
1218 fsid_t *fsidp;
1219 struct lfs *fs;
1220 struct buf *bp;
1221 fhandle_t *fhp;
1222 daddr_t off;
1223
1224 /* Only respect LFS fcntls on fs root or Ifile */
1225 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1226 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1227 return ufs_fcntl(v);
1228 }
1229
1230 /* Avoid locking a draining lock */
1231 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1232 return ESHUTDOWN;
1233 }
1234
1235 fs = VTOI(ap->a_vp)->i_lfs;
1236 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1237
1238 switch (ap->a_command) {
1239 case LFCNSEGWAITALL:
1240 case LFCNSEGWAITALL_COMPAT:
1241 fsidp = NULL;
1242 /* FALLSTHROUGH */
1243 case LFCNSEGWAIT:
1244 case LFCNSEGWAIT_COMPAT:
1245 tvp = (struct timeval *)ap->a_data;
1246 simple_lock(&fs->lfs_interlock);
1247 ++fs->lfs_sleepers;
1248 simple_unlock(&fs->lfs_interlock);
1249 VOP_UNLOCK(ap->a_vp, 0);
1250
1251 error = lfs_segwait(fsidp, tvp);
1252
1253 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1254 simple_lock(&fs->lfs_interlock);
1255 if (--fs->lfs_sleepers == 0)
1256 wakeup(&fs->lfs_sleepers);
1257 simple_unlock(&fs->lfs_interlock);
1258 return error;
1259
1260 case LFCNBMAPV:
1261 case LFCNMARKV:
1262 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1263 return (error);
1264 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1265
1266 blkcnt = blkvp.blkcnt;
1267 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1268 return (EINVAL);
1269 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1270 if ((error = copyin(blkvp.blkiov, blkiov,
1271 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1272 free(blkiov, M_SEGMENT);
1273 return error;
1274 }
1275
1276 simple_lock(&fs->lfs_interlock);
1277 ++fs->lfs_sleepers;
1278 simple_unlock(&fs->lfs_interlock);
1279 VOP_UNLOCK(ap->a_vp, 0);
1280 if (ap->a_command == LFCNBMAPV)
1281 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1282 else /* LFCNMARKV */
1283 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1284 if (error == 0)
1285 error = copyout(blkiov, blkvp.blkiov,
1286 blkcnt * sizeof(BLOCK_INFO));
1287 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1288 simple_lock(&fs->lfs_interlock);
1289 if (--fs->lfs_sleepers == 0)
1290 wakeup(&fs->lfs_sleepers);
1291 simple_unlock(&fs->lfs_interlock);
1292 free(blkiov, M_SEGMENT);
1293 return error;
1294
1295 case LFCNRECLAIM:
1296 /*
1297 * Flush dirops and write Ifile, allowing empty segments
1298 * to be immediately reclaimed.
1299 */
1300 lfs_writer_enter(fs, "pndirop");
1301 off = fs->lfs_offset;
1302 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1303 lfs_flush_dirops(fs);
1304 LFS_CLEANERINFO(cip, fs, bp);
1305 oclean = cip->clean;
1306 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1307 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1308 lfs_segunlock(fs);
1309 lfs_writer_leave(fs);
1310
1311 #ifdef DEBUG
1312 LFS_CLEANERINFO(cip, fs, bp);
1313 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1314 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1315 fs->lfs_offset - off, cip->clean - oclean,
1316 fs->lfs_activesb));
1317 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1318 #endif
1319
1320 return 0;
1321
1322 case LFCNIFILEFH:
1323 /* Return the filehandle of the Ifile */
1324 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1325 return (error);
1326 fhp = (struct fhandle *)ap->a_data;
1327 fhp->fh_fsid = *fsidp;
1328 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1329
1330 default:
1331 return ufs_fcntl(v);
1332 }
1333 return 0;
1334 }
1335
1336 int
1337 lfs_getpages(void *v)
1338 {
1339 struct vop_getpages_args /* {
1340 struct vnode *a_vp;
1341 voff_t a_offset;
1342 struct vm_page **a_m;
1343 int *a_count;
1344 int a_centeridx;
1345 vm_prot_t a_access_type;
1346 int a_advice;
1347 int a_flags;
1348 } */ *ap = v;
1349
1350 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1351 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1352 return EPERM;
1353 }
1354 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1355 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1356 }
1357
1358 /*
1359 * we're relying on the fact that genfs_getpages() always read in
1360 * entire filesystem blocks.
1361 */
1362 return genfs_getpages(v);
1363 }
1364
1365 /*
1366 * Make sure that for all pages in every block in the given range,
1367 * either all are dirty or all are clean. If any of the pages
1368 * we've seen so far are dirty, put the vnode on the paging chain,
1369 * and mark it IN_PAGING.
1370 *
1371 * If checkfirst != 0, don't check all the pages but return at the
1372 * first dirty page.
1373 */
1374 static int
1375 check_dirty(struct lfs *fs, struct vnode *vp,
1376 off_t startoffset, off_t endoffset, off_t blkeof,
1377 int flags, int checkfirst)
1378 {
1379 int by_list;
1380 struct vm_page *curpg = NULL; /* XXX: gcc */
1381 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1382 off_t soff = 0; /* XXX: gcc */
1383 voff_t off;
1384 int i;
1385 int nonexistent;
1386 int any_dirty; /* number of dirty pages */
1387 int dirty; /* number of dirty pages in a block */
1388 int tdirty;
1389 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1390
1391 top:
1392 by_list = (vp->v_uobj.uo_npages <=
1393 ((endoffset - startoffset) >> PAGE_SHIFT) *
1394 UVM_PAGE_HASH_PENALTY);
1395 any_dirty = 0;
1396
1397 if (by_list) {
1398 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1399 } else {
1400 soff = startoffset;
1401 }
1402 while (by_list || soff < MIN(blkeof, endoffset)) {
1403 if (by_list) {
1404 /*
1405 * find the first page in a block.
1406 */
1407 if (pages_per_block > 1) {
1408 while (curpg && (curpg->offset & fs->lfs_bmask))
1409 curpg = TAILQ_NEXT(curpg, listq);
1410 }
1411 if (curpg == NULL)
1412 break;
1413 soff = curpg->offset;
1414 }
1415
1416 /*
1417 * Mark all pages in extended range busy; find out if any
1418 * of them are dirty.
1419 */
1420 nonexistent = dirty = 0;
1421 for (i = 0; i == 0 || i < pages_per_block; i++) {
1422 if (by_list && pages_per_block <= 1) {
1423 pgs[i] = pg = curpg;
1424 } else {
1425 off = soff + (i << PAGE_SHIFT);
1426 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1427 if (pg == NULL) {
1428 ++nonexistent;
1429 continue;
1430 }
1431 }
1432 KASSERT(pg != NULL);
1433 while (pg->flags & PG_BUSY) {
1434 pg->flags |= PG_WANTED;
1435 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1436 "lfsput", 0);
1437 simple_lock(&vp->v_interlock);
1438 if (by_list) {
1439 if (i > 0)
1440 uvm_page_unbusy(pgs, i);
1441 goto top;
1442 }
1443 }
1444 pg->flags |= PG_BUSY;
1445 UVM_PAGE_OWN(pg, "lfs_putpages");
1446
1447 pmap_page_protect(pg, VM_PROT_NONE);
1448 tdirty = (pmap_clear_modify(pg) ||
1449 (pg->flags & PG_CLEAN) == 0);
1450 dirty += tdirty;
1451 }
1452 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1453 if (by_list) {
1454 curpg = TAILQ_NEXT(curpg, listq);
1455 } else {
1456 soff += fs->lfs_bsize;
1457 }
1458 continue;
1459 }
1460
1461 any_dirty += dirty;
1462 KASSERT(nonexistent == 0);
1463
1464 /*
1465 * If any are dirty make all dirty; unbusy them,
1466 * but if we were asked to clean, wire them so that
1467 * the pagedaemon doesn't bother us about them while
1468 * they're on their way to disk.
1469 */
1470 for (i = 0; i == 0 || i < pages_per_block; i++) {
1471 pg = pgs[i];
1472 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1473 if (dirty) {
1474 pg->flags &= ~PG_CLEAN;
1475 if (flags & PGO_FREE) {
1476 /* XXXUBC need better way to update */
1477 simple_lock(&lfs_subsys_lock);
1478 lfs_subsys_pages += MIN(1, pages_per_block);
1479 simple_unlock(&lfs_subsys_lock);
1480 /*
1481 * Wire the page so that
1482 * pdaemon doesn't see it again.
1483 */
1484 uvm_lock_pageq();
1485 uvm_pagewire(pg);
1486 uvm_unlock_pageq();
1487
1488 /* Suspended write flag */
1489 pg->flags |= PG_DELWRI;
1490 }
1491 }
1492 if (pg->flags & PG_WANTED)
1493 wakeup(pg);
1494 pg->flags &= ~(PG_WANTED|PG_BUSY);
1495 UVM_PAGE_OWN(pg, NULL);
1496 }
1497
1498 if (checkfirst && any_dirty)
1499 break;
1500
1501 if (by_list) {
1502 curpg = TAILQ_NEXT(curpg, listq);
1503 } else {
1504 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1505 }
1506 }
1507
1508 /*
1509 * If any pages were dirty, mark this inode as "pageout requested",
1510 * and put it on the paging queue.
1511 * XXXUBC locking (check locking on dchainhd too)
1512 */
1513 #ifdef notyet
1514 if (any_dirty) {
1515 if (!(ip->i_flags & IN_PAGING)) {
1516 ip->i_flags |= IN_PAGING;
1517 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1518 }
1519 }
1520 #endif
1521 return any_dirty;
1522 }
1523
1524 /*
1525 * lfs_putpages functions like genfs_putpages except that
1526 *
1527 * (1) It needs to bounds-check the incoming requests to ensure that
1528 * they are block-aligned; if they are not, expand the range and
1529 * do the right thing in case, e.g., the requested range is clean
1530 * but the expanded range is dirty.
1531 * (2) It needs to explicitly send blocks to be written when it is done.
1532 * VOP_PUTPAGES is not ever called with the seglock held, so
1533 * we simply take the seglock and let lfs_segunlock wait for us.
1534 * XXX Actually we can be called with the seglock held, if we have
1535 * XXX to flush a vnode while lfs_markv is in operation. As of this
1536 * XXX writing we panic in this case.
1537 *
1538 * Assumptions:
1539 *
1540 * (1) The caller does not hold any pages in this vnode busy. If it does,
1541 * there is a danger that when we expand the page range and busy the
1542 * pages we will deadlock.
1543 * (2) We are called with vp->v_interlock held; we must return with it
1544 * released.
1545 * (3) We don't absolutely have to free pages right away, provided that
1546 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1547 * us a request with PGO_FREE, we take the pages out of the paging
1548 * queue and wake up the writer, which will handle freeing them for us.
1549 *
1550 * We ensure that for any filesystem block, all pages for that
1551 * block are either resident or not, even if those pages are higher
1552 * than EOF; that means that we will be getting requests to free
1553 * "unused" pages above EOF all the time, and should ignore them.
1554 *
1555 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1556 */
1557
1558 int
1559 lfs_putpages(void *v)
1560 {
1561 int error;
1562 struct vop_putpages_args /* {
1563 struct vnode *a_vp;
1564 voff_t a_offlo;
1565 voff_t a_offhi;
1566 int a_flags;
1567 } */ *ap = v;
1568 struct vnode *vp;
1569 struct inode *ip;
1570 struct lfs *fs;
1571 struct segment *sp;
1572 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1573 off_t off, max_endoffset;
1574 int s;
1575 boolean_t seglocked, sync, pagedaemon;
1576 struct vm_page *pg;
1577 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1578
1579 vp = ap->a_vp;
1580 ip = VTOI(vp);
1581 fs = ip->i_lfs;
1582 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1583 pagedaemon = (curproc == uvm.pagedaemon_proc);
1584
1585 /* Putpages does nothing for metadata. */
1586 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1587 simple_unlock(&vp->v_interlock);
1588 return 0;
1589 }
1590
1591 /*
1592 * If there are no pages, don't do anything.
1593 */
1594 if (vp->v_uobj.uo_npages == 0) {
1595 s = splbio();
1596 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1597 (vp->v_flag & VONWORKLST)) {
1598 vp->v_flag &= ~VONWORKLST;
1599 LIST_REMOVE(vp, v_synclist);
1600 }
1601 splx(s);
1602 simple_unlock(&vp->v_interlock);
1603 return 0;
1604 }
1605
1606 blkeof = blkroundup(fs, ip->i_size);
1607
1608 /*
1609 * Ignore requests to free pages past EOF but in the same block
1610 * as EOF, unless the request is synchronous. (XXX why sync?)
1611 * XXXUBC Make these pages look "active" so the pagedaemon won't
1612 * XXXUBC bother us with them again.
1613 */
1614 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1615 origoffset = ap->a_offlo;
1616 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1617 pg = uvm_pagelookup(&vp->v_uobj, off);
1618 KASSERT(pg != NULL);
1619 while (pg->flags & PG_BUSY) {
1620 pg->flags |= PG_WANTED;
1621 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1622 "lfsput2", 0);
1623 simple_lock(&vp->v_interlock);
1624 }
1625 uvm_lock_pageq();
1626 uvm_pageactivate(pg);
1627 uvm_unlock_pageq();
1628 }
1629 ap->a_offlo = blkeof;
1630 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1631 simple_unlock(&vp->v_interlock);
1632 return 0;
1633 }
1634 }
1635
1636 /*
1637 * Extend page range to start and end at block boundaries.
1638 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1639 */
1640 origoffset = ap->a_offlo;
1641 origendoffset = ap->a_offhi;
1642 startoffset = origoffset & ~(fs->lfs_bmask);
1643 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1644 << fs->lfs_bshift;
1645
1646 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1647 endoffset = max_endoffset;
1648 origendoffset = endoffset;
1649 } else {
1650 origendoffset = round_page(ap->a_offhi);
1651 endoffset = round_page(blkroundup(fs, origendoffset));
1652 }
1653
1654 KASSERT(startoffset > 0 || endoffset >= startoffset);
1655 if (startoffset == endoffset) {
1656 /* Nothing to do, why were we called? */
1657 simple_unlock(&vp->v_interlock);
1658 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1659 PRId64 "\n", startoffset));
1660 return 0;
1661 }
1662
1663 ap->a_offlo = startoffset;
1664 ap->a_offhi = endoffset;
1665
1666 if (!(ap->a_flags & PGO_CLEANIT))
1667 return genfs_putpages(v);
1668
1669 /*
1670 * If there are more than one page per block, we don't want
1671 * to get caught locking them backwards; so set PGO_BUSYFAIL
1672 * to avoid deadlocks.
1673 */
1674 ap->a_flags |= PGO_BUSYFAIL;
1675
1676 do {
1677 int r;
1678
1679 /* If no pages are dirty, we can just use genfs_putpages. */
1680 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1681 ap->a_flags, 1) != 0)
1682 break;
1683
1684 /*
1685 * Sometimes pages are dirtied between the time that
1686 * we check and the time we try to clean them.
1687 * Instruct lfs_gop_write to return EDEADLK in this case
1688 * so we can write them properly.
1689 */
1690 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1691 r = genfs_putpages(v);
1692 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1693 if (r != EDEADLK)
1694 return r;
1695
1696 /* Start over. */
1697 preempt(1);
1698 simple_lock(&vp->v_interlock);
1699 } while(1);
1700
1701 /*
1702 * Dirty and asked to clean.
1703 *
1704 * Pagedaemon can't actually write LFS pages; wake up
1705 * the writer to take care of that. The writer will
1706 * notice the pager inode queue and act on that.
1707 */
1708 if (pagedaemon) {
1709 ++fs->lfs_pdflush;
1710 wakeup(&lfs_writer_daemon);
1711 simple_unlock(&vp->v_interlock);
1712 return EWOULDBLOCK;
1713 }
1714
1715 /*
1716 * If this is a file created in a recent dirop, we can't flush its
1717 * inode until the dirop is complete. Drain dirops, then flush the
1718 * filesystem (taking care of any other pending dirops while we're
1719 * at it).
1720 */
1721 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1722 (vp->v_flag & VDIROP)) {
1723 int locked;
1724
1725 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1726 lfs_writer_enter(fs, "ppdirop");
1727 locked = VOP_ISLOCKED(vp) && /* XXX */
1728 vp->v_lock.lk_lockholder == curproc->p_pid;
1729 if (locked)
1730 VOP_UNLOCK(vp, 0);
1731 simple_unlock(&vp->v_interlock);
1732
1733 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1734
1735 simple_lock(&vp->v_interlock);
1736 if (locked)
1737 VOP_LOCK(vp, LK_EXCLUSIVE);
1738 lfs_writer_leave(fs);
1739
1740 /* XXX the flush should have taken care of this one too! */
1741 }
1742
1743 /*
1744 * This is it. We are going to write some pages. From here on
1745 * down it's all just mechanics.
1746 *
1747 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1748 */
1749 ap->a_flags &= ~PGO_SYNCIO;
1750
1751 /*
1752 * If we've already got the seglock, flush the node and return.
1753 * The FIP has already been set up for us by lfs_writefile,
1754 * and FIP cleanup and lfs_updatemeta will also be done there,
1755 * unless genfs_putpages returns EDEADLK; then we must flush
1756 * what we have, and correct FIP and segment header accounting.
1757 */
1758
1759 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1760 if (!seglocked) {
1761 simple_unlock(&vp->v_interlock);
1762 /*
1763 * Take the seglock, because we are going to be writing pages.
1764 */
1765 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1766 if (error != 0)
1767 return error;
1768 simple_lock(&vp->v_interlock);
1769 }
1770
1771 /*
1772 * VOP_PUTPAGES should not be called while holding the seglock.
1773 * XXXUBC fix lfs_markv, or do this properly.
1774 */
1775 /* KASSERT(fs->lfs_seglock == 1); */
1776
1777 /*
1778 * We assume we're being called with sp->fip pointing at blank space.
1779 * Account for a new FIP in the segment header, and set sp->vp.
1780 * (This should duplicate the setup at the top of lfs_writefile().)
1781 */
1782 sp = fs->lfs_sp;
1783 if (!seglocked) {
1784 if (sp->seg_bytes_left < fs->lfs_bsize ||
1785 sp->sum_bytes_left < sizeof(struct finfo))
1786 (void) lfs_writeseg(fs, fs->lfs_sp);
1787
1788 sp->sum_bytes_left -= FINFOSIZE;
1789 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1790 }
1791 KASSERT(sp->vp == NULL);
1792 sp->vp = vp;
1793
1794 if (!seglocked) {
1795 if (vp->v_flag & VDIROP)
1796 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1797 }
1798
1799 sp->fip->fi_nblocks = 0;
1800 sp->fip->fi_ino = ip->i_number;
1801 sp->fip->fi_version = ip->i_gen;
1802
1803 /*
1804 * Loop through genfs_putpages until all pages are gathered.
1805 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1806 * Whenever we lose the interlock we have to rerun check_dirty, as
1807 * well.
1808 */
1809 again:
1810 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1811
1812 if ((error = genfs_putpages(v)) == EDEADLK) {
1813 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1814 " EDEADLK [2] ino %d off %x (seg %d)\n",
1815 ip->i_number, fs->lfs_offset,
1816 dtosn(fs, fs->lfs_offset)));
1817 /* If nothing to write, short-circuit */
1818 if (sp->cbpp - sp->bpp > 1) {
1819 /* Write gathered pages */
1820 lfs_updatemeta(sp);
1821 (void) lfs_writeseg(fs, sp);
1822
1823 /*
1824 * Reinitialize brand new FIP and add us to it.
1825 * (This should duplicate the fixup in
1826 * lfs_gatherpages().)
1827 */
1828 KASSERT(sp->vp == vp);
1829 sp->fip->fi_version = ip->i_gen;
1830 sp->fip->fi_ino = ip->i_number;
1831 /* Add us to the new segment summary. */
1832 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1833 sp->sum_bytes_left -= FINFOSIZE;
1834 }
1835
1836 /* Give the write a chance to complete */
1837 preempt(1);
1838
1839 /* We've lost the interlock. Start over. */
1840 simple_lock(&vp->v_interlock);
1841 goto again;
1842 }
1843
1844 KASSERT(sp->vp == vp);
1845 if (!seglocked) {
1846 sp->vp = NULL; /* XXX lfs_gather below will set this */
1847
1848 /* Write indirect blocks as well */
1849 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1850 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1851 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1852
1853 KASSERT(sp->vp == NULL);
1854 sp->vp = vp;
1855 }
1856
1857 /*
1858 * Blocks are now gathered into a segment waiting to be written.
1859 * All that's left to do is update metadata, and write them.
1860 */
1861 lfs_updatemeta(sp);
1862 KASSERT(sp->vp == vp);
1863 sp->vp = NULL;
1864
1865 if (seglocked) {
1866 /* we're called by lfs_writefile. */
1867 return error;
1868 }
1869
1870 /*
1871 * Clean up FIP, since we're done writing this file.
1872 * This should duplicate cleanup at the end of lfs_writefile().
1873 */
1874 if (sp->fip->fi_nblocks != 0) {
1875 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1876 sizeof(int32_t) * sp->fip->fi_nblocks);
1877 sp->start_lbp = &sp->fip->fi_blocks[0];
1878 } else {
1879 sp->sum_bytes_left += FINFOSIZE;
1880 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1881 }
1882 lfs_writeseg(fs, fs->lfs_sp);
1883
1884 /*
1885 * XXX - with the malloc/copy writeseg, the pages are freed by now
1886 * even if we don't wait (e.g. if we hold a nested lock). This
1887 * will not be true if we stop using malloc/copy.
1888 */
1889 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1890 lfs_segunlock(fs);
1891
1892 /*
1893 * Wait for v_numoutput to drop to zero. The seglock should
1894 * take care of this, but there is a slight possibility that
1895 * aiodoned might not have got around to our buffers yet.
1896 */
1897 if (sync) {
1898 int s;
1899
1900 s = splbio();
1901 simple_lock(&global_v_numoutput_slock);
1902 while (vp->v_numoutput > 0) {
1903 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1904 " num %d\n", ip->i_number, vp->v_numoutput));
1905 vp->v_flag |= VBWAIT;
1906 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1907 &global_v_numoutput_slock);
1908 }
1909 simple_unlock(&global_v_numoutput_slock);
1910 splx(s);
1911 }
1912 return error;
1913 }
1914
1915 /*
1916 * Return the last logical file offset that should be written for this file
1917 * if we're doing a write that ends at "size". If writing, we need to know
1918 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1919 * to know about entire blocks.
1920 */
1921 void
1922 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1923 {
1924 struct inode *ip = VTOI(vp);
1925 struct lfs *fs = ip->i_lfs;
1926 daddr_t olbn, nlbn;
1927
1928 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1929 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1930 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1931
1932 olbn = lblkno(fs, ip->i_size);
1933 nlbn = lblkno(fs, size);
1934 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1935 *eobp = fragroundup(fs, size);
1936 } else {
1937 *eobp = blkroundup(fs, size);
1938 }
1939 }
1940
1941 #ifdef DEBUG
1942 void lfs_dump_vop(void *);
1943
1944 void
1945 lfs_dump_vop(void *v)
1946 {
1947 struct vop_putpages_args /* {
1948 struct vnode *a_vp;
1949 voff_t a_offlo;
1950 voff_t a_offhi;
1951 int a_flags;
1952 } */ *ap = v;
1953
1954 #ifdef DDB
1955 vfs_vnode_print(ap->a_vp, 0, printf);
1956 #endif
1957 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1958 }
1959 #endif
1960
1961 int
1962 lfs_mmap(void *v)
1963 {
1964 struct vop_mmap_args /* {
1965 const struct vnodeop_desc *a_desc;
1966 struct vnode *a_vp;
1967 int a_fflags;
1968 struct ucred *a_cred;
1969 struct proc *a_p;
1970 } */ *ap = v;
1971
1972 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1973 return EOPNOTSUPP;
1974 return ufs_mmap(v);
1975 }
1976