lfs_vnops.c revision 1.138 1 /* $NetBSD: lfs_vnops.c,v 1.138 2005/03/23 00:12:51 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.138 2005/03/23 00:12:51 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
271
272 /*
273 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
274 */
275 void
276 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
277 {
278 LFS_ITIMES(ip, acc, mod, cre);
279 }
280
281 #define LFS_READWRITE
282 #include <ufs/ufs/ufs_readwrite.c>
283 #undef LFS_READWRITE
284
285 /*
286 * Synch an open file.
287 */
288 /* ARGSUSED */
289 int
290 lfs_fsync(void *v)
291 {
292 struct vop_fsync_args /* {
293 struct vnode *a_vp;
294 struct ucred *a_cred;
295 int a_flags;
296 off_t offlo;
297 off_t offhi;
298 struct proc *a_p;
299 } */ *ap = v;
300 struct vnode *vp = ap->a_vp;
301 int error, wait;
302
303 /*
304 * Trickle sync checks for need to do a checkpoint after possible
305 * activity from the pagedaemon.
306 */
307 if (ap->a_flags & FSYNC_LAZY) {
308 simple_lock(&lfs_subsys_lock);
309 wakeup(&lfs_writer_daemon);
310 simple_unlock(&lfs_subsys_lock);
311 return 0;
312 }
313
314 wait = (ap->a_flags & FSYNC_WAIT);
315 simple_lock(&vp->v_interlock);
316 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317 round_page(ap->a_offhi),
318 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319 if (error)
320 return error;
321 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
322 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
323 int l = 0;
324 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
325 ap->a_p->p_ucred, ap->a_p);
326 }
327 if (wait && !VPISEMPTY(vp))
328 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
329
330 return error;
331 }
332
333 /*
334 * Take IN_ADIROP off, then call ufs_inactive.
335 */
336 int
337 lfs_inactive(void *v)
338 {
339 struct vop_inactive_args /* {
340 struct vnode *a_vp;
341 struct proc *a_p;
342 } */ *ap = v;
343
344 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
345
346 lfs_unmark_vnode(ap->a_vp);
347
348 /*
349 * The Ifile is only ever inactivated on unmount.
350 * Streamline this process by not giving it more dirty blocks.
351 */
352 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
353 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
354 VOP_UNLOCK(ap->a_vp, 0);
355 return 0;
356 }
357
358 return ufs_inactive(v);
359 }
360
361 /*
362 * These macros are used to bracket UFS directory ops, so that we can
363 * identify all the pages touched during directory ops which need to
364 * be ordered and flushed atomically, so that they may be recovered.
365 *
366 * Because we have to mark nodes VDIROP in order to prevent
367 * the cache from reclaiming them while a dirop is in progress, we must
368 * also manage the number of nodes so marked (otherwise we can run out).
369 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
370 * is decremented during segment write, when VDIROP is taken off.
371 */
372 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
373 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
374 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
375 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
376 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
377 static int lfs_set_dirop(struct vnode *, struct vnode *);
378
379 static int
380 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
381 {
382 struct lfs *fs;
383 int error;
384
385 KASSERT(VOP_ISLOCKED(dvp));
386 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
387
388 fs = VTOI(dvp)->i_lfs;
389 /*
390 * LFS_NRESERVE calculates direct and indirect blocks as well
391 * as an inode block; an overestimate in most cases.
392 */
393 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
394 return (error);
395
396 if (fs->lfs_dirops == 0)
397 lfs_check(dvp, LFS_UNUSED_LBN, 0);
398 restart:
399 simple_lock(&fs->lfs_interlock);
400 if (fs->lfs_writer) {
401 ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PNORELOCK,
402 "lfs_sdirop", 0, &fs->lfs_interlock);
403 goto restart;
404 }
405 simple_lock(&lfs_subsys_lock);
406 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
407 wakeup(&lfs_writer_daemon);
408 simple_unlock(&lfs_subsys_lock);
409 simple_unlock(&fs->lfs_interlock);
410 preempt(1);
411 goto restart;
412 }
413
414 if (lfs_dirvcount > LFS_MAX_DIROP) {
415 simple_unlock(&fs->lfs_interlock);
416 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
417 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
418 if ((error = ltsleep(&lfs_dirvcount,
419 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
420 &lfs_subsys_lock)) != 0) {
421 goto unreserve;
422 }
423 goto restart;
424 }
425 simple_unlock(&lfs_subsys_lock);
426
427 ++fs->lfs_dirops;
428 fs->lfs_doifile = 1;
429 simple_unlock(&fs->lfs_interlock);
430
431 /* Hold a reference so SET_ENDOP will be happy */
432 vref(dvp);
433 if (vp) {
434 vref(vp);
435 MARK_VNODE(vp);
436 }
437
438 MARK_VNODE(dvp);
439 return 0;
440
441 unreserve:
442 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
443 return error;
444 }
445
446 /*
447 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
448 * in getnewvnode(), if we have a stacked filesystem mounted on top
449 * of us.
450 *
451 * NB: this means we have to clear the new vnodes on error. Fortunately
452 * SET_ENDOP is there to do that for us.
453 */
454 static int
455 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
456 {
457 int error;
458 struct lfs *fs;
459
460 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
461 if (fs->lfs_ronly)
462 return EROFS;
463 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
464 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
465 dvp, error));
466 return error;
467 }
468 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
469 if (vpp) {
470 ungetnewvnode(*vpp);
471 *vpp = NULL;
472 }
473 return error;
474 }
475 return 0;
476 }
477
478 #define SET_ENDOP_BASE(fs, dvp, str) \
479 do { \
480 simple_lock(&(fs)->lfs_interlock); \
481 --(fs)->lfs_dirops; \
482 if (!(fs)->lfs_dirops) { \
483 if ((fs)->lfs_nadirop) { \
484 panic("SET_ENDOP: %s: no dirops but " \
485 " nadirop=%d", (str), \
486 (fs)->lfs_nadirop); \
487 } \
488 wakeup(&(fs)->lfs_writer); \
489 simple_unlock(&(fs)->lfs_interlock); \
490 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
491 } else \
492 simple_unlock(&(fs)->lfs_interlock); \
493 } while(0)
494 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
495 do { \
496 UNMARK_VNODE(dvp); \
497 if (nvpp && *nvpp) \
498 UNMARK_VNODE(*nvpp); \
499 /* Check for error return to stem vnode leakage */ \
500 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
501 ungetnewvnode(*(nvpp)); \
502 SET_ENDOP_BASE((fs), (dvp), (str)); \
503 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
504 vrele(dvp); \
505 } while(0)
506 #define SET_ENDOP_CREATE_AP(ap, str) \
507 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
508 (ap)->a_vpp, (str))
509 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
510 do { \
511 UNMARK_VNODE(dvp); \
512 if (ovp) \
513 UNMARK_VNODE(ovp); \
514 SET_ENDOP_BASE((fs), (dvp), (str)); \
515 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
516 vrele(dvp); \
517 if (ovp) \
518 vrele(ovp); \
519 } while(0)
520
521 void
522 lfs_mark_vnode(struct vnode *vp)
523 {
524 struct inode *ip = VTOI(vp);
525 struct lfs *fs = ip->i_lfs;
526
527 if (!(ip->i_flag & IN_ADIROP)) {
528 if (!(vp->v_flag & VDIROP)) {
529 (void)lfs_vref(vp);
530 ++lfs_dirvcount;
531 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
532 vp->v_flag |= VDIROP;
533 }
534 ++fs->lfs_nadirop;
535 ip->i_flag |= IN_ADIROP;
536 } else
537 KASSERT(vp->v_flag & VDIROP);
538 }
539
540 void
541 lfs_unmark_vnode(struct vnode *vp)
542 {
543 struct inode *ip = VTOI(vp);
544
545 if (ip->i_flag & IN_ADIROP) {
546 KASSERT(vp->v_flag & VDIROP);
547 --ip->i_lfs->lfs_nadirop;
548 ip->i_flag &= ~IN_ADIROP;
549 }
550 }
551
552 int
553 lfs_symlink(void *v)
554 {
555 struct vop_symlink_args /* {
556 struct vnode *a_dvp;
557 struct vnode **a_vpp;
558 struct componentname *a_cnp;
559 struct vattr *a_vap;
560 char *a_target;
561 } */ *ap = v;
562 int error;
563
564 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
565 vput(ap->a_dvp);
566 return error;
567 }
568 error = ufs_symlink(ap);
569 SET_ENDOP_CREATE_AP(ap, "symlink");
570 return (error);
571 }
572
573 int
574 lfs_mknod(void *v)
575 {
576 struct vop_mknod_args /* {
577 struct vnode *a_dvp;
578 struct vnode **a_vpp;
579 struct componentname *a_cnp;
580 struct vattr *a_vap;
581 } */ *ap = v;
582 struct vattr *vap = ap->a_vap;
583 struct vnode **vpp = ap->a_vpp;
584 struct inode *ip;
585 int error;
586 struct mount *mp;
587 ino_t ino;
588
589 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
590 vput(ap->a_dvp);
591 return error;
592 }
593 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
594 ap->a_dvp, vpp, ap->a_cnp);
595
596 /* Either way we're done with the dirop at this point */
597 SET_ENDOP_CREATE_AP(ap, "mknod");
598
599 if (error)
600 return (error);
601
602 ip = VTOI(*vpp);
603 mp = (*vpp)->v_mount;
604 ino = ip->i_number;
605 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
606 if (vap->va_rdev != VNOVAL) {
607 /*
608 * Want to be able to use this to make badblock
609 * inodes, so don't truncate the dev number.
610 */
611 #if 0
612 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
613 UFS_MPNEEDSWAP((*vpp)->v_mount));
614 #else
615 ip->i_ffs1_rdev = vap->va_rdev;
616 #endif
617 }
618
619 /*
620 * Call fsync to write the vnode so that we don't have to deal with
621 * flushing it when it's marked VDIROP|VXLOCK.
622 *
623 * XXX KS - If we can't flush we also can't call vgone(), so must
624 * return. But, that leaves this vnode in limbo, also not good.
625 * Can this ever happen (barring hardware failure)?
626 */
627 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
628 curproc)) != 0) {
629 panic("lfs_mknod: couldn't fsync (ino %d)", ino);
630 /* return (error); */
631 }
632 /*
633 * Remove vnode so that it will be reloaded by VFS_VGET and
634 * checked to see if it is an alias of an existing entry in
635 * the inode cache.
636 */
637 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
638
639 VOP_UNLOCK(*vpp, 0);
640 lfs_vunref(*vpp);
641 (*vpp)->v_type = VNON;
642 vgone(*vpp);
643 error = VFS_VGET(mp, ino, vpp);
644
645 if (error != 0) {
646 *vpp = NULL;
647 return (error);
648 }
649 return (0);
650 }
651
652 int
653 lfs_create(void *v)
654 {
655 struct vop_create_args /* {
656 struct vnode *a_dvp;
657 struct vnode **a_vpp;
658 struct componentname *a_cnp;
659 struct vattr *a_vap;
660 } */ *ap = v;
661 int error;
662
663 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
664 vput(ap->a_dvp);
665 return error;
666 }
667 error = ufs_create(ap);
668 SET_ENDOP_CREATE_AP(ap, "create");
669 return (error);
670 }
671
672 int
673 lfs_mkdir(void *v)
674 {
675 struct vop_mkdir_args /* {
676 struct vnode *a_dvp;
677 struct vnode **a_vpp;
678 struct componentname *a_cnp;
679 struct vattr *a_vap;
680 } */ *ap = v;
681 int error;
682
683 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
684 vput(ap->a_dvp);
685 return error;
686 }
687 error = ufs_mkdir(ap);
688 SET_ENDOP_CREATE_AP(ap, "mkdir");
689 return (error);
690 }
691
692 int
693 lfs_remove(void *v)
694 {
695 struct vop_remove_args /* {
696 struct vnode *a_dvp;
697 struct vnode *a_vp;
698 struct componentname *a_cnp;
699 } */ *ap = v;
700 struct vnode *dvp, *vp;
701 int error;
702
703 dvp = ap->a_dvp;
704 vp = ap->a_vp;
705 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
706 if (dvp == vp)
707 vrele(vp);
708 else
709 vput(vp);
710 vput(dvp);
711 return error;
712 }
713 error = ufs_remove(ap);
714 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
715 return (error);
716 }
717
718 int
719 lfs_rmdir(void *v)
720 {
721 struct vop_rmdir_args /* {
722 struct vnodeop_desc *a_desc;
723 struct vnode *a_dvp;
724 struct vnode *a_vp;
725 struct componentname *a_cnp;
726 } */ *ap = v;
727 struct vnode *vp;
728 int error;
729
730 vp = ap->a_vp;
731 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
732 vrele(ap->a_dvp);
733 if (ap->a_vp != ap->a_dvp)
734 VOP_UNLOCK(ap->a_dvp, 0);
735 vput(vp);
736 return error;
737 }
738 error = ufs_rmdir(ap);
739 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
740 return (error);
741 }
742
743 int
744 lfs_link(void *v)
745 {
746 struct vop_link_args /* {
747 struct vnode *a_dvp;
748 struct vnode *a_vp;
749 struct componentname *a_cnp;
750 } */ *ap = v;
751 int error;
752 struct vnode **vpp = NULL;
753
754 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
755 vput(ap->a_dvp);
756 return error;
757 }
758 error = ufs_link(ap);
759 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
760 return (error);
761 }
762
763 int
764 lfs_rename(void *v)
765 {
766 struct vop_rename_args /* {
767 struct vnode *a_fdvp;
768 struct vnode *a_fvp;
769 struct componentname *a_fcnp;
770 struct vnode *a_tdvp;
771 struct vnode *a_tvp;
772 struct componentname *a_tcnp;
773 } */ *ap = v;
774 struct vnode *tvp, *fvp, *tdvp, *fdvp;
775 struct componentname *tcnp, *fcnp;
776 int error;
777 struct lfs *fs;
778
779 fs = VTOI(ap->a_fdvp)->i_lfs;
780 tvp = ap->a_tvp;
781 tdvp = ap->a_tdvp;
782 tcnp = ap->a_tcnp;
783 fvp = ap->a_fvp;
784 fdvp = ap->a_fdvp;
785 fcnp = ap->a_fcnp;
786
787 /*
788 * Check for cross-device rename.
789 * If it is, we don't want to set dirops, just error out.
790 * (In particular note that MARK_VNODE(tdvp) will DTWT on
791 * a cross-device rename.)
792 *
793 * Copied from ufs_rename.
794 */
795 if ((fvp->v_mount != tdvp->v_mount) ||
796 (tvp && (fvp->v_mount != tvp->v_mount))) {
797 error = EXDEV;
798 goto errout;
799 }
800
801 /*
802 * Check to make sure we're not renaming a vnode onto itself
803 * (deleting a hard link by renaming one name onto another);
804 * if we are we can't recursively call VOP_REMOVE since that
805 * would leave us with an unaccounted-for number of live dirops.
806 *
807 * Inline the relevant section of ufs_rename here, *before*
808 * calling SET_DIROP_REMOVE.
809 */
810 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
811 (VTOI(tdvp)->i_flags & APPEND))) {
812 error = EPERM;
813 goto errout;
814 }
815 if (fvp == tvp) {
816 if (fvp->v_type == VDIR) {
817 error = EINVAL;
818 goto errout;
819 }
820
821 /* Release destination completely. */
822 VOP_ABORTOP(tdvp, tcnp);
823 vput(tdvp);
824 vput(tvp);
825
826 /* Delete source. */
827 vrele(fvp);
828 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
829 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
830 fcnp->cn_nameiop = DELETE;
831 if ((error = relookup(fdvp, &fvp, fcnp))){
832 /* relookup blew away fdvp */
833 return (error);
834 }
835 return (VOP_REMOVE(fdvp, fvp, fcnp));
836 }
837
838 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
839 goto errout;
840 MARK_VNODE(fdvp);
841 MARK_VNODE(fvp);
842
843 error = ufs_rename(ap);
844 UNMARK_VNODE(fdvp);
845 UNMARK_VNODE(fvp);
846 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
847 return (error);
848
849 errout:
850 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
851 if (tdvp == tvp)
852 vrele(tdvp);
853 else
854 vput(tdvp);
855 if (tvp)
856 vput(tvp);
857 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
858 vrele(fdvp);
859 vrele(fvp);
860 return (error);
861 }
862
863 /* XXX hack to avoid calling ITIMES in getattr */
864 int
865 lfs_getattr(void *v)
866 {
867 struct vop_getattr_args /* {
868 struct vnode *a_vp;
869 struct vattr *a_vap;
870 struct ucred *a_cred;
871 struct proc *a_p;
872 } */ *ap = v;
873 struct vnode *vp = ap->a_vp;
874 struct inode *ip = VTOI(vp);
875 struct vattr *vap = ap->a_vap;
876 struct lfs *fs = ip->i_lfs;
877 /*
878 * Copy from inode table
879 */
880 vap->va_fsid = ip->i_dev;
881 vap->va_fileid = ip->i_number;
882 vap->va_mode = ip->i_mode & ~IFMT;
883 vap->va_nlink = ip->i_nlink;
884 vap->va_uid = ip->i_uid;
885 vap->va_gid = ip->i_gid;
886 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
887 vap->va_size = vp->v_size;
888 vap->va_atime.tv_sec = ip->i_ffs1_atime;
889 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
890 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
891 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
892 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
893 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
894 vap->va_flags = ip->i_flags;
895 vap->va_gen = ip->i_gen;
896 /* this doesn't belong here */
897 if (vp->v_type == VBLK)
898 vap->va_blocksize = BLKDEV_IOSIZE;
899 else if (vp->v_type == VCHR)
900 vap->va_blocksize = MAXBSIZE;
901 else
902 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
903 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
904 vap->va_type = vp->v_type;
905 vap->va_filerev = ip->i_modrev;
906 return (0);
907 }
908
909 /*
910 * Check to make sure the inode blocks won't choke the buffer
911 * cache, then call ufs_setattr as usual.
912 */
913 int
914 lfs_setattr(void *v)
915 {
916 struct vop_getattr_args /* {
917 struct vnode *a_vp;
918 struct vattr *a_vap;
919 struct ucred *a_cred;
920 struct proc *a_p;
921 } */ *ap = v;
922 struct vnode *vp = ap->a_vp;
923
924 lfs_check(vp, LFS_UNUSED_LBN, 0);
925 return ufs_setattr(v);
926 }
927
928 /*
929 * Close called
930 *
931 * XXX -- we were using ufs_close, but since it updates the
932 * times on the inode, we might need to bump the uinodes
933 * count.
934 */
935 /* ARGSUSED */
936 int
937 lfs_close(void *v)
938 {
939 struct vop_close_args /* {
940 struct vnode *a_vp;
941 int a_fflag;
942 struct ucred *a_cred;
943 struct proc *a_p;
944 } */ *ap = v;
945 struct vnode *vp = ap->a_vp;
946 struct inode *ip = VTOI(vp);
947 struct timespec ts;
948
949 if (vp == ip->i_lfs->lfs_ivnode &&
950 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
951 return 0;
952
953 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
954 TIMEVAL_TO_TIMESPEC(&time, &ts);
955 LFS_ITIMES(ip, &ts, &ts, &ts);
956 }
957 return (0);
958 }
959
960 /*
961 * Close wrapper for special devices.
962 *
963 * Update the times on the inode then do device close.
964 */
965 int
966 lfsspec_close(void *v)
967 {
968 struct vop_close_args /* {
969 struct vnode *a_vp;
970 int a_fflag;
971 struct ucred *a_cred;
972 struct proc *a_p;
973 } */ *ap = v;
974 struct vnode *vp;
975 struct inode *ip;
976 struct timespec ts;
977
978 vp = ap->a_vp;
979 ip = VTOI(vp);
980 if (vp->v_usecount > 1) {
981 TIMEVAL_TO_TIMESPEC(&time, &ts);
982 LFS_ITIMES(ip, &ts, &ts, &ts);
983 }
984 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
985 }
986
987 /*
988 * Close wrapper for fifo's.
989 *
990 * Update the times on the inode then do device close.
991 */
992 int
993 lfsfifo_close(void *v)
994 {
995 struct vop_close_args /* {
996 struct vnode *a_vp;
997 int a_fflag;
998 struct ucred *a_cred;
999 struct proc *a_p;
1000 } */ *ap = v;
1001 struct vnode *vp;
1002 struct inode *ip;
1003 struct timespec ts;
1004
1005 vp = ap->a_vp;
1006 ip = VTOI(vp);
1007 if (ap->a_vp->v_usecount > 1) {
1008 TIMEVAL_TO_TIMESPEC(&time, &ts);
1009 LFS_ITIMES(ip, &ts, &ts, &ts);
1010 }
1011 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1012 }
1013
1014 /*
1015 * Reclaim an inode so that it can be used for other purposes.
1016 */
1017
1018 int
1019 lfs_reclaim(void *v)
1020 {
1021 struct vop_reclaim_args /* {
1022 struct vnode *a_vp;
1023 struct proc *a_p;
1024 } */ *ap = v;
1025 struct vnode *vp = ap->a_vp;
1026 struct inode *ip = VTOI(vp);
1027 int error;
1028
1029 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1030
1031 LFS_CLR_UINO(ip, IN_ALLMOD);
1032 if ((error = ufs_reclaim(vp, ap->a_p)))
1033 return (error);
1034 lfs_deregister_all(vp);
1035 pool_put(&lfs_dinode_pool, VTOI(vp)->i_din.ffs1_din);
1036 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1037 ip->inode_ext.lfs = NULL;
1038 pool_put(&lfs_inode_pool, vp->v_data);
1039 vp->v_data = NULL;
1040 return (0);
1041 }
1042
1043 /*
1044 * Read a block from a storage device.
1045 * In order to avoid reading blocks that are in the process of being
1046 * written by the cleaner---and hence are not mutexed by the normal
1047 * buffer cache / page cache mechanisms---check for collisions before
1048 * reading.
1049 *
1050 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1051 * the active cleaner test.
1052 *
1053 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1054 */
1055 int
1056 lfs_strategy(void *v)
1057 {
1058 struct vop_strategy_args /* {
1059 struct vnode *a_vp;
1060 struct buf *a_bp;
1061 } */ *ap = v;
1062 struct buf *bp;
1063 struct lfs *fs;
1064 struct vnode *vp;
1065 struct inode *ip;
1066 daddr_t tbn;
1067 int i, sn, error, slept;
1068
1069 bp = ap->a_bp;
1070 vp = ap->a_vp;
1071 ip = VTOI(vp);
1072 fs = ip->i_lfs;
1073
1074 /* lfs uses its strategy routine only for read */
1075 KASSERT(bp->b_flags & B_READ);
1076
1077 if (vp->v_type == VBLK || vp->v_type == VCHR)
1078 panic("lfs_strategy: spec");
1079 KASSERT(bp->b_bcount != 0);
1080 if (bp->b_blkno == bp->b_lblkno) {
1081 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1082 NULL);
1083 if (error) {
1084 bp->b_error = error;
1085 bp->b_flags |= B_ERROR;
1086 biodone(bp);
1087 return (error);
1088 }
1089 if ((long)bp->b_blkno == -1) /* no valid data */
1090 clrbuf(bp);
1091 }
1092 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1093 biodone(bp);
1094 return (0);
1095 }
1096
1097 slept = 1;
1098 simple_lock(&fs->lfs_interlock);
1099 while (slept && fs->lfs_seglock) {
1100 simple_unlock(&fs->lfs_interlock);
1101 /*
1102 * Look through list of intervals.
1103 * There will only be intervals to look through
1104 * if the cleaner holds the seglock.
1105 * Since the cleaner is synchronous, we can trust
1106 * the list of intervals to be current.
1107 */
1108 tbn = dbtofsb(fs, bp->b_blkno);
1109 sn = dtosn(fs, tbn);
1110 slept = 0;
1111 for (i = 0; i < fs->lfs_cleanind; i++) {
1112 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1113 tbn >= fs->lfs_cleanint[i]) {
1114 DLOG((DLOG_CLEAN,
1115 "lfs_strategy: ino %d lbn %" PRId64
1116 " ind %d sn %d fsb %" PRIx32
1117 " given sn %d fsb %" PRIx64 "\n",
1118 ip->i_number, bp->b_lblkno, i,
1119 dtosn(fs, fs->lfs_cleanint[i]),
1120 fs->lfs_cleanint[i], sn, tbn));
1121 DLOG((DLOG_CLEAN,
1122 "lfs_strategy: sleeping on ino %d lbn %"
1123 PRId64 "\n", ip->i_number, bp->b_lblkno));
1124 tsleep(&fs->lfs_seglock, PRIBIO+1,
1125 "lfs_strategy", 0);
1126 /* Things may be different now; start over. */
1127 slept = 1;
1128 break;
1129 }
1130 }
1131 simple_lock(&fs->lfs_interlock);
1132 }
1133 simple_unlock(&fs->lfs_interlock);
1134
1135 vp = ip->i_devvp;
1136 VOP_STRATEGY(vp, bp);
1137 return (0);
1138 }
1139
1140 static void
1141 lfs_flush_dirops(struct lfs *fs)
1142 {
1143 struct inode *ip, *nip;
1144 struct vnode *vp;
1145 extern int lfs_dostats;
1146 struct segment *sp;
1147 int needunlock;
1148
1149 if (fs->lfs_ronly)
1150 return;
1151
1152 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1153 return;
1154
1155 if (lfs_dostats)
1156 ++lfs_stats.flush_invoked;
1157
1158 /*
1159 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1160 * Technically this is a checkpoint (the on-disk state is valid)
1161 * even though we are leaving out all the file data.
1162 */
1163 lfs_imtime(fs);
1164 lfs_seglock(fs, SEGM_CKP);
1165 sp = fs->lfs_sp;
1166
1167 /*
1168 * lfs_writevnodes, optimized to get dirops out of the way.
1169 * Only write dirops, and don't flush files' pages, only
1170 * blocks from the directories.
1171 *
1172 * We don't need to vref these files because they are
1173 * dirops and so hold an extra reference until the
1174 * segunlock clears them of that status.
1175 *
1176 * We don't need to check for IN_ADIROP because we know that
1177 * no dirops are active.
1178 *
1179 */
1180 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1181 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1182 vp = ITOV(ip);
1183
1184 /*
1185 * All writes to directories come from dirops; all
1186 * writes to files' direct blocks go through the page
1187 * cache, which we're not touching. Reads to files
1188 * and/or directories will not be affected by writing
1189 * directory blocks inodes and file inodes. So we don't
1190 * really need to lock. If we don't lock, though,
1191 * make sure that we don't clear IN_MODIFIED
1192 * unnecessarily.
1193 */
1194 if (vp->v_flag & VXLOCK)
1195 continue;
1196 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1197 LK_NOWAIT) == 0) {
1198 needunlock = 1;
1199 } else {
1200 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1201 VTOI(vp)->i_number));
1202 needunlock = 0;
1203 }
1204 if (vp->v_type != VREG &&
1205 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1206 lfs_writefile(fs, sp, vp);
1207 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1208 !(ip->i_flag & IN_ALLMOD)) {
1209 LFS_SET_UINO(ip, IN_MODIFIED);
1210 }
1211 }
1212 (void) lfs_writeinode(fs, sp, ip);
1213 if (needunlock)
1214 VOP_UNLOCK(vp, 0);
1215 else
1216 LFS_SET_UINO(ip, IN_MODIFIED);
1217 }
1218 /* We've written all the dirops there are */
1219 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1220 (void) lfs_writeseg(fs, sp);
1221 lfs_segunlock(fs);
1222 }
1223
1224 /*
1225 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1226 */
1227 int
1228 lfs_fcntl(void *v)
1229 {
1230 struct vop_fcntl_args /* {
1231 struct vnode *a_vp;
1232 u_long a_command;
1233 caddr_t a_data;
1234 int a_fflag;
1235 struct ucred *a_cred;
1236 struct proc *a_p;
1237 } */ *ap = v;
1238 struct timeval *tvp;
1239 BLOCK_INFO *blkiov;
1240 CLEANERINFO *cip;
1241 int blkcnt, error, oclean;
1242 struct lfs_fcntl_markv blkvp;
1243 fsid_t *fsidp;
1244 struct lfs *fs;
1245 struct buf *bp;
1246 fhandle_t *fhp;
1247 daddr_t off;
1248
1249 /* Only respect LFS fcntls on fs root or Ifile */
1250 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1251 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1252 return ufs_fcntl(v);
1253 }
1254
1255 /* Avoid locking a draining lock */
1256 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1257 return ESHUTDOWN;
1258 }
1259
1260 fs = VTOI(ap->a_vp)->i_lfs;
1261 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1262
1263 switch (ap->a_command) {
1264 case LFCNSEGWAITALL:
1265 case LFCNSEGWAITALL_COMPAT:
1266 fsidp = NULL;
1267 /* FALLSTHROUGH */
1268 case LFCNSEGWAIT:
1269 case LFCNSEGWAIT_COMPAT:
1270 tvp = (struct timeval *)ap->a_data;
1271 simple_lock(&fs->lfs_interlock);
1272 ++fs->lfs_sleepers;
1273 simple_unlock(&fs->lfs_interlock);
1274 VOP_UNLOCK(ap->a_vp, 0);
1275
1276 error = lfs_segwait(fsidp, tvp);
1277
1278 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1279 simple_lock(&fs->lfs_interlock);
1280 if (--fs->lfs_sleepers == 0)
1281 wakeup(&fs->lfs_sleepers);
1282 simple_unlock(&fs->lfs_interlock);
1283 return error;
1284
1285 case LFCNBMAPV:
1286 case LFCNMARKV:
1287 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1288 return (error);
1289 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1290
1291 blkcnt = blkvp.blkcnt;
1292 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1293 return (EINVAL);
1294 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1295 if ((error = copyin(blkvp.blkiov, blkiov,
1296 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1297 free(blkiov, M_SEGMENT);
1298 return error;
1299 }
1300
1301 simple_lock(&fs->lfs_interlock);
1302 ++fs->lfs_sleepers;
1303 simple_unlock(&fs->lfs_interlock);
1304 VOP_UNLOCK(ap->a_vp, 0);
1305 if (ap->a_command == LFCNBMAPV)
1306 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1307 else /* LFCNMARKV */
1308 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1309 if (error == 0)
1310 error = copyout(blkiov, blkvp.blkiov,
1311 blkcnt * sizeof(BLOCK_INFO));
1312 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1313 simple_lock(&fs->lfs_interlock);
1314 if (--fs->lfs_sleepers == 0)
1315 wakeup(&fs->lfs_sleepers);
1316 simple_unlock(&fs->lfs_interlock);
1317 free(blkiov, M_SEGMENT);
1318 return error;
1319
1320 case LFCNRECLAIM:
1321 /*
1322 * Flush dirops and write Ifile, allowing empty segments
1323 * to be immediately reclaimed.
1324 */
1325 lfs_writer_enter(fs, "pndirop");
1326 off = fs->lfs_offset;
1327 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1328 lfs_flush_dirops(fs);
1329 LFS_CLEANERINFO(cip, fs, bp);
1330 oclean = cip->clean;
1331 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1332 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1333 lfs_segunlock(fs);
1334 lfs_writer_leave(fs);
1335
1336 #ifdef DEBUG
1337 LFS_CLEANERINFO(cip, fs, bp);
1338 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1339 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1340 fs->lfs_offset - off, cip->clean - oclean,
1341 fs->lfs_activesb));
1342 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1343 #endif
1344
1345 return 0;
1346
1347 case LFCNIFILEFH:
1348 /* Return the filehandle of the Ifile */
1349 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1350 return (error);
1351 fhp = (struct fhandle *)ap->a_data;
1352 fhp->fh_fsid = *fsidp;
1353 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1354
1355 default:
1356 return ufs_fcntl(v);
1357 }
1358 return 0;
1359 }
1360
1361 int
1362 lfs_getpages(void *v)
1363 {
1364 struct vop_getpages_args /* {
1365 struct vnode *a_vp;
1366 voff_t a_offset;
1367 struct vm_page **a_m;
1368 int *a_count;
1369 int a_centeridx;
1370 vm_prot_t a_access_type;
1371 int a_advice;
1372 int a_flags;
1373 } */ *ap = v;
1374
1375 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1376 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1377 return EPERM;
1378 }
1379 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1380 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1381 }
1382
1383 /*
1384 * we're relying on the fact that genfs_getpages() always read in
1385 * entire filesystem blocks.
1386 */
1387 return genfs_getpages(v);
1388 }
1389
1390 /*
1391 * Make sure that for all pages in every block in the given range,
1392 * either all are dirty or all are clean. If any of the pages
1393 * we've seen so far are dirty, put the vnode on the paging chain,
1394 * and mark it IN_PAGING.
1395 *
1396 * If checkfirst != 0, don't check all the pages but return at the
1397 * first dirty page.
1398 */
1399 static int
1400 check_dirty(struct lfs *fs, struct vnode *vp,
1401 off_t startoffset, off_t endoffset, off_t blkeof,
1402 int flags, int checkfirst)
1403 {
1404 int by_list;
1405 struct vm_page *curpg = NULL; /* XXX: gcc */
1406 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1407 off_t soff = 0; /* XXX: gcc */
1408 voff_t off;
1409 int i;
1410 int nonexistent;
1411 int any_dirty; /* number of dirty pages */
1412 int dirty; /* number of dirty pages in a block */
1413 int tdirty;
1414 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1415
1416 top:
1417 by_list = (vp->v_uobj.uo_npages <=
1418 ((endoffset - startoffset) >> PAGE_SHIFT) *
1419 UVM_PAGE_HASH_PENALTY);
1420 any_dirty = 0;
1421
1422 if (by_list) {
1423 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1424 } else {
1425 soff = startoffset;
1426 }
1427 while (by_list || soff < MIN(blkeof, endoffset)) {
1428 if (by_list) {
1429 /*
1430 * Find the first page in a block. Skip
1431 * blocks outside our area of interest or beyond
1432 * the end of file.
1433 */
1434 if (pages_per_block > 1) {
1435 while (curpg &&
1436 ((curpg->offset & fs->lfs_bmask) ||
1437 curpg->offset >= vp->v_size ||
1438 curpg->offset >= endoffset))
1439 curpg = TAILQ_NEXT(curpg, listq);
1440 }
1441 if (curpg == NULL)
1442 break;
1443 soff = curpg->offset;
1444 }
1445
1446 /*
1447 * Mark all pages in extended range busy; find out if any
1448 * of them are dirty.
1449 */
1450 nonexistent = dirty = 0;
1451 for (i = 0; i == 0 || i < pages_per_block; i++) {
1452 if (by_list && pages_per_block <= 1) {
1453 pgs[i] = pg = curpg;
1454 } else {
1455 off = soff + (i << PAGE_SHIFT);
1456 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1457 if (pg == NULL) {
1458 ++nonexistent;
1459 continue;
1460 }
1461 }
1462 KASSERT(pg != NULL);
1463 while (pg->flags & PG_BUSY) {
1464 pg->flags |= PG_WANTED;
1465 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1466 "lfsput", 0);
1467 simple_lock(&vp->v_interlock);
1468 if (by_list) {
1469 if (i > 0)
1470 uvm_page_unbusy(pgs, i);
1471 goto top;
1472 }
1473 }
1474 pg->flags |= PG_BUSY;
1475 UVM_PAGE_OWN(pg, "lfs_putpages");
1476
1477 pmap_page_protect(pg, VM_PROT_NONE);
1478 tdirty = (pmap_clear_modify(pg) ||
1479 (pg->flags & PG_CLEAN) == 0);
1480 dirty += tdirty;
1481 }
1482 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1483 if (by_list) {
1484 curpg = TAILQ_NEXT(curpg, listq);
1485 } else {
1486 soff += fs->lfs_bsize;
1487 }
1488 continue;
1489 }
1490
1491 any_dirty += dirty;
1492 KASSERT(nonexistent == 0);
1493
1494 /*
1495 * If any are dirty make all dirty; unbusy them,
1496 * but if we were asked to clean, wire them so that
1497 * the pagedaemon doesn't bother us about them while
1498 * they're on their way to disk.
1499 */
1500 for (i = 0; i == 0 || i < pages_per_block; i++) {
1501 pg = pgs[i];
1502 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1503 if (dirty) {
1504 pg->flags &= ~PG_CLEAN;
1505 if (flags & PGO_FREE) {
1506 /* XXXUBC need better way to update */
1507 simple_lock(&lfs_subsys_lock);
1508 lfs_subsys_pages += MIN(1, pages_per_block);
1509 simple_unlock(&lfs_subsys_lock);
1510 /*
1511 * Wire the page so that
1512 * pdaemon doesn't see it again.
1513 */
1514 uvm_lock_pageq();
1515 uvm_pagewire(pg);
1516 uvm_unlock_pageq();
1517
1518 /* Suspended write flag */
1519 pg->flags |= PG_DELWRI;
1520 }
1521 }
1522 if (pg->flags & PG_WANTED)
1523 wakeup(pg);
1524 pg->flags &= ~(PG_WANTED|PG_BUSY);
1525 UVM_PAGE_OWN(pg, NULL);
1526 }
1527
1528 if (checkfirst && any_dirty)
1529 break;
1530
1531 if (by_list) {
1532 curpg = TAILQ_NEXT(curpg, listq);
1533 } else {
1534 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1535 }
1536 }
1537
1538 /*
1539 * If any pages were dirty, mark this inode as "pageout requested",
1540 * and put it on the paging queue.
1541 * XXXUBC locking (check locking on dchainhd too)
1542 */
1543 #ifdef notyet
1544 if (any_dirty) {
1545 if (!(ip->i_flags & IN_PAGING)) {
1546 ip->i_flags |= IN_PAGING;
1547 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1548 }
1549 }
1550 #endif
1551 return any_dirty;
1552 }
1553
1554 /*
1555 * lfs_putpages functions like genfs_putpages except that
1556 *
1557 * (1) It needs to bounds-check the incoming requests to ensure that
1558 * they are block-aligned; if they are not, expand the range and
1559 * do the right thing in case, e.g., the requested range is clean
1560 * but the expanded range is dirty.
1561 * (2) It needs to explicitly send blocks to be written when it is done.
1562 * VOP_PUTPAGES is not ever called with the seglock held, so
1563 * we simply take the seglock and let lfs_segunlock wait for us.
1564 * XXX Actually we can be called with the seglock held, if we have
1565 * XXX to flush a vnode while lfs_markv is in operation. As of this
1566 * XXX writing we panic in this case.
1567 *
1568 * Assumptions:
1569 *
1570 * (1) The caller does not hold any pages in this vnode busy. If it does,
1571 * there is a danger that when we expand the page range and busy the
1572 * pages we will deadlock.
1573 * (2) We are called with vp->v_interlock held; we must return with it
1574 * released.
1575 * (3) We don't absolutely have to free pages right away, provided that
1576 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1577 * us a request with PGO_FREE, we take the pages out of the paging
1578 * queue and wake up the writer, which will handle freeing them for us.
1579 *
1580 * We ensure that for any filesystem block, all pages for that
1581 * block are either resident or not, even if those pages are higher
1582 * than EOF; that means that we will be getting requests to free
1583 * "unused" pages above EOF all the time, and should ignore them.
1584 *
1585 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1586 */
1587
1588 int
1589 lfs_putpages(void *v)
1590 {
1591 int error;
1592 struct vop_putpages_args /* {
1593 struct vnode *a_vp;
1594 voff_t a_offlo;
1595 voff_t a_offhi;
1596 int a_flags;
1597 } */ *ap = v;
1598 struct vnode *vp;
1599 struct inode *ip;
1600 struct lfs *fs;
1601 struct segment *sp;
1602 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1603 off_t off, max_endoffset;
1604 int s;
1605 boolean_t seglocked, sync, pagedaemon;
1606 struct vm_page *pg;
1607 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1608
1609 vp = ap->a_vp;
1610 ip = VTOI(vp);
1611 fs = ip->i_lfs;
1612 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1613 pagedaemon = (curproc == uvm.pagedaemon_proc);
1614
1615 /* Putpages does nothing for metadata. */
1616 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1617 simple_unlock(&vp->v_interlock);
1618 return 0;
1619 }
1620
1621 /*
1622 * If there are no pages, don't do anything.
1623 */
1624 if (vp->v_uobj.uo_npages == 0) {
1625 s = splbio();
1626 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1627 (vp->v_flag & VONWORKLST)) {
1628 vp->v_flag &= ~VONWORKLST;
1629 LIST_REMOVE(vp, v_synclist);
1630 }
1631 splx(s);
1632 simple_unlock(&vp->v_interlock);
1633 return 0;
1634 }
1635
1636 blkeof = blkroundup(fs, ip->i_size);
1637
1638 /*
1639 * Ignore requests to free pages past EOF but in the same block
1640 * as EOF, unless the request is synchronous. (XXX why sync?)
1641 * XXXUBC Make these pages look "active" so the pagedaemon won't
1642 * XXXUBC bother us with them again.
1643 */
1644 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1645 origoffset = ap->a_offlo;
1646 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1647 pg = uvm_pagelookup(&vp->v_uobj, off);
1648 KASSERT(pg != NULL);
1649 while (pg->flags & PG_BUSY) {
1650 pg->flags |= PG_WANTED;
1651 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1652 "lfsput2", 0);
1653 simple_lock(&vp->v_interlock);
1654 }
1655 uvm_lock_pageq();
1656 uvm_pageactivate(pg);
1657 uvm_unlock_pageq();
1658 }
1659 ap->a_offlo = blkeof;
1660 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1661 simple_unlock(&vp->v_interlock);
1662 return 0;
1663 }
1664 }
1665
1666 /*
1667 * Extend page range to start and end at block boundaries.
1668 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1669 */
1670 origoffset = ap->a_offlo;
1671 origendoffset = ap->a_offhi;
1672 startoffset = origoffset & ~(fs->lfs_bmask);
1673 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1674 << fs->lfs_bshift;
1675
1676 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1677 endoffset = max_endoffset;
1678 origendoffset = endoffset;
1679 } else {
1680 origendoffset = round_page(ap->a_offhi);
1681 endoffset = round_page(blkroundup(fs, origendoffset));
1682 }
1683
1684 KASSERT(startoffset > 0 || endoffset >= startoffset);
1685 if (startoffset == endoffset) {
1686 /* Nothing to do, why were we called? */
1687 simple_unlock(&vp->v_interlock);
1688 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1689 PRId64 "\n", startoffset));
1690 return 0;
1691 }
1692
1693 ap->a_offlo = startoffset;
1694 ap->a_offhi = endoffset;
1695
1696 if (!(ap->a_flags & PGO_CLEANIT))
1697 return genfs_putpages(v);
1698
1699 /*
1700 * If there are more than one page per block, we don't want
1701 * to get caught locking them backwards; so set PGO_BUSYFAIL
1702 * to avoid deadlocks.
1703 */
1704 ap->a_flags |= PGO_BUSYFAIL;
1705
1706 do {
1707 int r;
1708
1709 /* If no pages are dirty, we can just use genfs_putpages. */
1710 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1711 ap->a_flags, 1) != 0)
1712 break;
1713
1714 /*
1715 * Sometimes pages are dirtied between the time that
1716 * we check and the time we try to clean them.
1717 * Instruct lfs_gop_write to return EDEADLK in this case
1718 * so we can write them properly.
1719 */
1720 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1721 r = genfs_putpages(v);
1722 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1723 if (r != EDEADLK)
1724 return r;
1725
1726 /* Start over. */
1727 preempt(1);
1728 simple_lock(&vp->v_interlock);
1729 } while(1);
1730
1731 /*
1732 * Dirty and asked to clean.
1733 *
1734 * Pagedaemon can't actually write LFS pages; wake up
1735 * the writer to take care of that. The writer will
1736 * notice the pager inode queue and act on that.
1737 */
1738 if (pagedaemon) {
1739 ++fs->lfs_pdflush;
1740 wakeup(&lfs_writer_daemon);
1741 simple_unlock(&vp->v_interlock);
1742 return EWOULDBLOCK;
1743 }
1744
1745 /*
1746 * If this is a file created in a recent dirop, we can't flush its
1747 * inode until the dirop is complete. Drain dirops, then flush the
1748 * filesystem (taking care of any other pending dirops while we're
1749 * at it).
1750 */
1751 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1752 (vp->v_flag & VDIROP)) {
1753 int locked;
1754
1755 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1756 lfs_writer_enter(fs, "ppdirop");
1757 locked = VOP_ISLOCKED(vp) && /* XXX */
1758 vp->v_lock.lk_lockholder == curproc->p_pid;
1759 if (locked)
1760 VOP_UNLOCK(vp, 0);
1761 simple_unlock(&vp->v_interlock);
1762
1763 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1764
1765 simple_lock(&vp->v_interlock);
1766 if (locked)
1767 VOP_LOCK(vp, LK_EXCLUSIVE);
1768 lfs_writer_leave(fs);
1769
1770 /* XXX the flush should have taken care of this one too! */
1771 }
1772
1773 /*
1774 * This is it. We are going to write some pages. From here on
1775 * down it's all just mechanics.
1776 *
1777 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1778 */
1779 ap->a_flags &= ~PGO_SYNCIO;
1780
1781 /*
1782 * If we've already got the seglock, flush the node and return.
1783 * The FIP has already been set up for us by lfs_writefile,
1784 * and FIP cleanup and lfs_updatemeta will also be done there,
1785 * unless genfs_putpages returns EDEADLK; then we must flush
1786 * what we have, and correct FIP and segment header accounting.
1787 */
1788
1789 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1790 if (!seglocked) {
1791 simple_unlock(&vp->v_interlock);
1792 /*
1793 * Take the seglock, because we are going to be writing pages.
1794 */
1795 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1796 if (error != 0)
1797 return error;
1798 simple_lock(&vp->v_interlock);
1799 }
1800
1801 /*
1802 * VOP_PUTPAGES should not be called while holding the seglock.
1803 * XXXUBC fix lfs_markv, or do this properly.
1804 */
1805 /* KASSERT(fs->lfs_seglock == 1); */
1806
1807 /*
1808 * We assume we're being called with sp->fip pointing at blank space.
1809 * Account for a new FIP in the segment header, and set sp->vp.
1810 * (This should duplicate the setup at the top of lfs_writefile().)
1811 */
1812 sp = fs->lfs_sp;
1813 if (!seglocked) {
1814 if (sp->seg_bytes_left < fs->lfs_bsize ||
1815 sp->sum_bytes_left < sizeof(struct finfo))
1816 (void) lfs_writeseg(fs, fs->lfs_sp);
1817
1818 sp->sum_bytes_left -= FINFOSIZE;
1819 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1820 }
1821 KASSERT(sp->vp == NULL);
1822 sp->vp = vp;
1823
1824 if (!seglocked) {
1825 if (vp->v_flag & VDIROP)
1826 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1827 }
1828
1829 sp->fip->fi_nblocks = 0;
1830 sp->fip->fi_ino = ip->i_number;
1831 sp->fip->fi_version = ip->i_gen;
1832
1833 /*
1834 * Loop through genfs_putpages until all pages are gathered.
1835 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1836 * Whenever we lose the interlock we have to rerun check_dirty, as
1837 * well.
1838 */
1839 again:
1840 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1841
1842 if ((error = genfs_putpages(v)) == EDEADLK) {
1843 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1844 " EDEADLK [2] ino %d off %x (seg %d)\n",
1845 ip->i_number, fs->lfs_offset,
1846 dtosn(fs, fs->lfs_offset)));
1847 /* If nothing to write, short-circuit */
1848 if (sp->cbpp - sp->bpp > 1) {
1849 /* Write gathered pages */
1850 lfs_updatemeta(sp);
1851 (void) lfs_writeseg(fs, sp);
1852
1853 /*
1854 * Reinitialize brand new FIP and add us to it.
1855 * (This should duplicate the fixup in
1856 * lfs_gatherpages().)
1857 */
1858 KASSERT(sp->vp == vp);
1859 sp->fip->fi_version = ip->i_gen;
1860 sp->fip->fi_ino = ip->i_number;
1861 /* Add us to the new segment summary. */
1862 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1863 sp->sum_bytes_left -= FINFOSIZE;
1864 }
1865
1866 /* Give the write a chance to complete */
1867 preempt(1);
1868
1869 /* We've lost the interlock. Start over. */
1870 simple_lock(&vp->v_interlock);
1871 goto again;
1872 }
1873
1874 KASSERT(sp->vp == vp);
1875 if (!seglocked) {
1876 sp->vp = NULL; /* XXX lfs_gather below will set this */
1877
1878 /* Write indirect blocks as well */
1879 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1880 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1881 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1882
1883 KASSERT(sp->vp == NULL);
1884 sp->vp = vp;
1885 }
1886
1887 /*
1888 * Blocks are now gathered into a segment waiting to be written.
1889 * All that's left to do is update metadata, and write them.
1890 */
1891 lfs_updatemeta(sp);
1892 KASSERT(sp->vp == vp);
1893 sp->vp = NULL;
1894
1895 if (seglocked) {
1896 /* we're called by lfs_writefile. */
1897 return error;
1898 }
1899
1900 /*
1901 * Clean up FIP, since we're done writing this file.
1902 * This should duplicate cleanup at the end of lfs_writefile().
1903 */
1904 if (sp->fip->fi_nblocks != 0) {
1905 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1906 sizeof(int32_t) * sp->fip->fi_nblocks);
1907 sp->start_lbp = &sp->fip->fi_blocks[0];
1908 } else {
1909 sp->sum_bytes_left += FINFOSIZE;
1910 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1911 }
1912 lfs_writeseg(fs, fs->lfs_sp);
1913
1914 /*
1915 * XXX - with the malloc/copy writeseg, the pages are freed by now
1916 * even if we don't wait (e.g. if we hold a nested lock). This
1917 * will not be true if we stop using malloc/copy.
1918 */
1919 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1920 lfs_segunlock(fs);
1921
1922 /*
1923 * Wait for v_numoutput to drop to zero. The seglock should
1924 * take care of this, but there is a slight possibility that
1925 * aiodoned might not have got around to our buffers yet.
1926 */
1927 if (sync) {
1928 int s;
1929
1930 s = splbio();
1931 simple_lock(&global_v_numoutput_slock);
1932 while (vp->v_numoutput > 0) {
1933 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1934 " num %d\n", ip->i_number, vp->v_numoutput));
1935 vp->v_flag |= VBWAIT;
1936 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1937 &global_v_numoutput_slock);
1938 }
1939 simple_unlock(&global_v_numoutput_slock);
1940 splx(s);
1941 }
1942 return error;
1943 }
1944
1945 /*
1946 * Return the last logical file offset that should be written for this file
1947 * if we're doing a write that ends at "size". If writing, we need to know
1948 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1949 * to know about entire blocks.
1950 */
1951 void
1952 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1953 {
1954 struct inode *ip = VTOI(vp);
1955 struct lfs *fs = ip->i_lfs;
1956 daddr_t olbn, nlbn;
1957
1958 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1959 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1960 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1961
1962 olbn = lblkno(fs, ip->i_size);
1963 nlbn = lblkno(fs, size);
1964 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1965 *eobp = fragroundup(fs, size);
1966 } else {
1967 *eobp = blkroundup(fs, size);
1968 }
1969 }
1970
1971 #ifdef DEBUG
1972 void lfs_dump_vop(void *);
1973
1974 void
1975 lfs_dump_vop(void *v)
1976 {
1977 struct vop_putpages_args /* {
1978 struct vnode *a_vp;
1979 voff_t a_offlo;
1980 voff_t a_offhi;
1981 int a_flags;
1982 } */ *ap = v;
1983
1984 #ifdef DDB
1985 vfs_vnode_print(ap->a_vp, 0, printf);
1986 #endif
1987 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
1988 }
1989 #endif
1990
1991 int
1992 lfs_mmap(void *v)
1993 {
1994 struct vop_mmap_args /* {
1995 const struct vnodeop_desc *a_desc;
1996 struct vnode *a_vp;
1997 int a_fflags;
1998 struct ucred *a_cred;
1999 struct proc *a_p;
2000 } */ *ap = v;
2001
2002 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2003 return EOPNOTSUPP;
2004 return ufs_mmap(v);
2005 }
2006