lfs_vnops.c revision 1.143 1 /* $NetBSD: lfs_vnops.c,v 1.143 2005/04/14 00:58:26 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.143 2005/04/14 00:58:26 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/malloc.h>
84 #include <sys/pool.h>
85 #include <sys/signalvar.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/dir.h>
93 #include <ufs/ufs/ufsmount.h>
94 #include <ufs/ufs/ufs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_extern.h>
103
104 extern pid_t lfs_writer_daemon;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_lease_desc, ufs_lease_check }, /* lease */
122 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
123 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
124 { &vop_poll_desc, ufs_poll }, /* poll */
125 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
126 { &vop_revoke_desc, ufs_revoke }, /* revoke */
127 { &vop_mmap_desc, lfs_mmap }, /* mmap */
128 { &vop_fsync_desc, lfs_fsync }, /* fsync */
129 { &vop_seek_desc, ufs_seek }, /* seek */
130 { &vop_remove_desc, lfs_remove }, /* remove */
131 { &vop_link_desc, lfs_link }, /* link */
132 { &vop_rename_desc, lfs_rename }, /* rename */
133 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
134 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
135 { &vop_symlink_desc, lfs_symlink }, /* symlink */
136 { &vop_readdir_desc, ufs_readdir }, /* readdir */
137 { &vop_readlink_desc, ufs_readlink }, /* readlink */
138 { &vop_abortop_desc, ufs_abortop }, /* abortop */
139 { &vop_inactive_desc, lfs_inactive }, /* inactive */
140 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
141 { &vop_lock_desc, ufs_lock }, /* lock */
142 { &vop_unlock_desc, ufs_unlock }, /* unlock */
143 { &vop_bmap_desc, ufs_bmap }, /* bmap */
144 { &vop_strategy_desc, lfs_strategy }, /* strategy */
145 { &vop_print_desc, ufs_print }, /* print */
146 { &vop_islocked_desc, ufs_islocked }, /* islocked */
147 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
148 { &vop_advlock_desc, ufs_advlock }, /* advlock */
149 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
150 { &vop_valloc_desc, lfs_valloc }, /* valloc */
151 { &vop_balloc_desc, lfs_balloc }, /* balloc */
152 { &vop_vfree_desc, lfs_vfree }, /* vfree */
153 { &vop_truncate_desc, lfs_truncate }, /* truncate */
154 { &vop_update_desc, lfs_update }, /* update */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
205 { &vop_valloc_desc, spec_valloc }, /* valloc */
206 { &vop_vfree_desc, lfs_vfree }, /* vfree */
207 { &vop_truncate_desc, spec_truncate }, /* truncate */
208 { &vop_update_desc, lfs_update }, /* update */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
259 { &vop_valloc_desc, fifo_valloc }, /* valloc */
260 { &vop_vfree_desc, lfs_vfree }, /* vfree */
261 { &vop_truncate_desc, fifo_truncate }, /* truncate */
262 { &vop_update_desc, lfs_update }, /* update */
263 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
264 { &vop_putpages_desc, fifo_putpages }, /* putpages */
265 { NULL, NULL }
266 };
267 const struct vnodeopv_desc lfs_fifoop_opv_desc =
268 { &lfs_fifoop_p, lfs_fifoop_entries };
269
270 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
271
272 /*
273 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
274 */
275 void
276 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
277 {
278 LFS_ITIMES(ip, acc, mod, cre);
279 }
280
281 #define LFS_READWRITE
282 #include <ufs/ufs/ufs_readwrite.c>
283 #undef LFS_READWRITE
284
285 /*
286 * Synch an open file.
287 */
288 /* ARGSUSED */
289 int
290 lfs_fsync(void *v)
291 {
292 struct vop_fsync_args /* {
293 struct vnode *a_vp;
294 struct ucred *a_cred;
295 int a_flags;
296 off_t offlo;
297 off_t offhi;
298 struct proc *a_p;
299 } */ *ap = v;
300 struct vnode *vp = ap->a_vp;
301 int error, wait;
302
303 /*
304 * Trickle sync checks for need to do a checkpoint after possible
305 * activity from the pagedaemon.
306 */
307 if (ap->a_flags & FSYNC_LAZY) {
308 simple_lock(&lfs_subsys_lock);
309 wakeup(&lfs_writer_daemon);
310 simple_unlock(&lfs_subsys_lock);
311 return 0;
312 }
313
314 wait = (ap->a_flags & FSYNC_WAIT);
315 simple_lock(&vp->v_interlock);
316 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317 round_page(ap->a_offhi),
318 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319 if (error)
320 return error;
321 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
322 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
323 int l = 0;
324 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
325 ap->a_p->p_ucred, ap->a_p);
326 }
327 if (wait && !VPISEMPTY(vp))
328 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
329
330 return error;
331 }
332
333 /*
334 * Take IN_ADIROP off, then call ufs_inactive.
335 */
336 int
337 lfs_inactive(void *v)
338 {
339 struct vop_inactive_args /* {
340 struct vnode *a_vp;
341 struct proc *a_p;
342 } */ *ap = v;
343
344 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
345
346 lfs_unmark_vnode(ap->a_vp);
347
348 /*
349 * The Ifile is only ever inactivated on unmount.
350 * Streamline this process by not giving it more dirty blocks.
351 */
352 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
353 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
354 VOP_UNLOCK(ap->a_vp, 0);
355 return 0;
356 }
357
358 return ufs_inactive(v);
359 }
360
361 /*
362 * These macros are used to bracket UFS directory ops, so that we can
363 * identify all the pages touched during directory ops which need to
364 * be ordered and flushed atomically, so that they may be recovered.
365 *
366 * Because we have to mark nodes VDIROP in order to prevent
367 * the cache from reclaiming them while a dirop is in progress, we must
368 * also manage the number of nodes so marked (otherwise we can run out).
369 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
370 * is decremented during segment write, when VDIROP is taken off.
371 */
372 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
373 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
374 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
375 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
376 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
377 static int lfs_set_dirop(struct vnode *, struct vnode *);
378
379 static int
380 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
381 {
382 struct lfs *fs;
383 int error;
384
385 KASSERT(VOP_ISLOCKED(dvp));
386 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
387
388 fs = VTOI(dvp)->i_lfs;
389
390 ASSERT_NO_SEGLOCK(fs);
391 /*
392 * LFS_NRESERVE calculates direct and indirect blocks as well
393 * as an inode block; an overestimate in most cases.
394 */
395 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
396 return (error);
397
398 restart:
399 simple_lock(&fs->lfs_interlock);
400 if (fs->lfs_dirops == 0) {
401 simple_unlock(&fs->lfs_interlock);
402 lfs_check(dvp, LFS_UNUSED_LBN, 0);
403 simple_lock(&fs->lfs_interlock);
404 }
405 while (fs->lfs_writer)
406 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
407 &fs->lfs_interlock);
408 simple_lock(&lfs_subsys_lock);
409 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
410 wakeup(&lfs_writer_daemon);
411 simple_unlock(&lfs_subsys_lock);
412 simple_unlock(&fs->lfs_interlock);
413 preempt(1);
414 goto restart;
415 }
416
417 if (lfs_dirvcount > LFS_MAX_DIROP) {
418 simple_unlock(&fs->lfs_interlock);
419 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
420 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
421 if ((error = ltsleep(&lfs_dirvcount,
422 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
423 &lfs_subsys_lock)) != 0) {
424 goto unreserve;
425 }
426 goto restart;
427 }
428 simple_unlock(&lfs_subsys_lock);
429
430 ++fs->lfs_dirops;
431 fs->lfs_doifile = 1;
432 simple_unlock(&fs->lfs_interlock);
433
434 /* Hold a reference so SET_ENDOP will be happy */
435 vref(dvp);
436 if (vp) {
437 vref(vp);
438 MARK_VNODE(vp);
439 }
440
441 MARK_VNODE(dvp);
442 return 0;
443
444 unreserve:
445 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
446 return error;
447 }
448
449 /*
450 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
451 * in getnewvnode(), if we have a stacked filesystem mounted on top
452 * of us.
453 *
454 * NB: this means we have to clear the new vnodes on error. Fortunately
455 * SET_ENDOP is there to do that for us.
456 */
457 static int
458 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
459 {
460 int error;
461 struct lfs *fs;
462
463 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
464 ASSERT_NO_SEGLOCK(fs);
465 if (fs->lfs_ronly)
466 return EROFS;
467 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
468 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
469 dvp, error));
470 return error;
471 }
472 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
473 if (vpp) {
474 ungetnewvnode(*vpp);
475 *vpp = NULL;
476 }
477 return error;
478 }
479 return 0;
480 }
481
482 #define SET_ENDOP_BASE(fs, dvp, str) \
483 do { \
484 simple_lock(&(fs)->lfs_interlock); \
485 --(fs)->lfs_dirops; \
486 if (!(fs)->lfs_dirops) { \
487 if ((fs)->lfs_nadirop) { \
488 panic("SET_ENDOP: %s: no dirops but " \
489 " nadirop=%d", (str), \
490 (fs)->lfs_nadirop); \
491 } \
492 wakeup(&(fs)->lfs_writer); \
493 simple_unlock(&(fs)->lfs_interlock); \
494 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
495 } else \
496 simple_unlock(&(fs)->lfs_interlock); \
497 } while(0)
498 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
499 do { \
500 UNMARK_VNODE(dvp); \
501 if (nvpp && *nvpp) \
502 UNMARK_VNODE(*nvpp); \
503 /* Check for error return to stem vnode leakage */ \
504 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
505 ungetnewvnode(*(nvpp)); \
506 SET_ENDOP_BASE((fs), (dvp), (str)); \
507 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
508 vrele(dvp); \
509 } while(0)
510 #define SET_ENDOP_CREATE_AP(ap, str) \
511 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
512 (ap)->a_vpp, (str))
513 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
514 do { \
515 UNMARK_VNODE(dvp); \
516 if (ovp) \
517 UNMARK_VNODE(ovp); \
518 SET_ENDOP_BASE((fs), (dvp), (str)); \
519 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
520 vrele(dvp); \
521 if (ovp) \
522 vrele(ovp); \
523 } while(0)
524
525 void
526 lfs_mark_vnode(struct vnode *vp)
527 {
528 struct inode *ip = VTOI(vp);
529 struct lfs *fs = ip->i_lfs;
530
531 simple_lock(&fs->lfs_interlock);
532 if (!(ip->i_flag & IN_ADIROP)) {
533 if (!(vp->v_flag & VDIROP)) {
534 (void)lfs_vref(vp);
535 simple_lock(&lfs_subsys_lock);
536 ++lfs_dirvcount;
537 simple_unlock(&lfs_subsys_lock);
538 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
539 vp->v_flag |= VDIROP;
540 }
541 ++fs->lfs_nadirop;
542 ip->i_flag |= IN_ADIROP;
543 } else
544 KASSERT(vp->v_flag & VDIROP);
545 simple_unlock(&fs->lfs_interlock);
546 }
547
548 void
549 lfs_unmark_vnode(struct vnode *vp)
550 {
551 struct inode *ip = VTOI(vp);
552
553 if (ip->i_flag & IN_ADIROP) {
554 KASSERT(vp->v_flag & VDIROP);
555 simple_lock(&ip->i_lfs->lfs_interlock);
556 --ip->i_lfs->lfs_nadirop;
557 simple_unlock(&ip->i_lfs->lfs_interlock);
558 ip->i_flag &= ~IN_ADIROP;
559 }
560 }
561
562 int
563 lfs_symlink(void *v)
564 {
565 struct vop_symlink_args /* {
566 struct vnode *a_dvp;
567 struct vnode **a_vpp;
568 struct componentname *a_cnp;
569 struct vattr *a_vap;
570 char *a_target;
571 } */ *ap = v;
572 int error;
573
574 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
575 vput(ap->a_dvp);
576 return error;
577 }
578 error = ufs_symlink(ap);
579 SET_ENDOP_CREATE_AP(ap, "symlink");
580 return (error);
581 }
582
583 int
584 lfs_mknod(void *v)
585 {
586 struct vop_mknod_args /* {
587 struct vnode *a_dvp;
588 struct vnode **a_vpp;
589 struct componentname *a_cnp;
590 struct vattr *a_vap;
591 } */ *ap = v;
592 struct vattr *vap = ap->a_vap;
593 struct vnode **vpp = ap->a_vpp;
594 struct inode *ip;
595 int error;
596 struct mount *mp;
597 ino_t ino;
598
599 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
600 vput(ap->a_dvp);
601 return error;
602 }
603 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
604 ap->a_dvp, vpp, ap->a_cnp);
605
606 /* Either way we're done with the dirop at this point */
607 SET_ENDOP_CREATE_AP(ap, "mknod");
608
609 if (error)
610 return (error);
611
612 ip = VTOI(*vpp);
613 mp = (*vpp)->v_mount;
614 ino = ip->i_number;
615 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
616 if (vap->va_rdev != VNOVAL) {
617 /*
618 * Want to be able to use this to make badblock
619 * inodes, so don't truncate the dev number.
620 */
621 #if 0
622 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
623 UFS_MPNEEDSWAP((*vpp)->v_mount));
624 #else
625 ip->i_ffs1_rdev = vap->va_rdev;
626 #endif
627 }
628
629 /*
630 * Call fsync to write the vnode so that we don't have to deal with
631 * flushing it when it's marked VDIROP|VXLOCK.
632 *
633 * XXX KS - If we can't flush we also can't call vgone(), so must
634 * return. But, that leaves this vnode in limbo, also not good.
635 * Can this ever happen (barring hardware failure)?
636 */
637 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
638 curproc)) != 0) {
639 panic("lfs_mknod: couldn't fsync (ino %d)", ino);
640 /* return (error); */
641 }
642 /*
643 * Remove vnode so that it will be reloaded by VFS_VGET and
644 * checked to see if it is an alias of an existing entry in
645 * the inode cache.
646 */
647 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
648
649 VOP_UNLOCK(*vpp, 0);
650 lfs_vunref(*vpp);
651 (*vpp)->v_type = VNON;
652 vgone(*vpp);
653 error = VFS_VGET(mp, ino, vpp);
654
655 if (error != 0) {
656 *vpp = NULL;
657 return (error);
658 }
659 return (0);
660 }
661
662 int
663 lfs_create(void *v)
664 {
665 struct vop_create_args /* {
666 struct vnode *a_dvp;
667 struct vnode **a_vpp;
668 struct componentname *a_cnp;
669 struct vattr *a_vap;
670 } */ *ap = v;
671 int error;
672
673 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
674 vput(ap->a_dvp);
675 return error;
676 }
677 error = ufs_create(ap);
678 SET_ENDOP_CREATE_AP(ap, "create");
679 return (error);
680 }
681
682 int
683 lfs_mkdir(void *v)
684 {
685 struct vop_mkdir_args /* {
686 struct vnode *a_dvp;
687 struct vnode **a_vpp;
688 struct componentname *a_cnp;
689 struct vattr *a_vap;
690 } */ *ap = v;
691 int error;
692
693 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
694 vput(ap->a_dvp);
695 return error;
696 }
697 error = ufs_mkdir(ap);
698 SET_ENDOP_CREATE_AP(ap, "mkdir");
699 return (error);
700 }
701
702 int
703 lfs_remove(void *v)
704 {
705 struct vop_remove_args /* {
706 struct vnode *a_dvp;
707 struct vnode *a_vp;
708 struct componentname *a_cnp;
709 } */ *ap = v;
710 struct vnode *dvp, *vp;
711 int error;
712
713 dvp = ap->a_dvp;
714 vp = ap->a_vp;
715 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
716 if (dvp == vp)
717 vrele(vp);
718 else
719 vput(vp);
720 vput(dvp);
721 return error;
722 }
723 error = ufs_remove(ap);
724 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
725 return (error);
726 }
727
728 int
729 lfs_rmdir(void *v)
730 {
731 struct vop_rmdir_args /* {
732 struct vnodeop_desc *a_desc;
733 struct vnode *a_dvp;
734 struct vnode *a_vp;
735 struct componentname *a_cnp;
736 } */ *ap = v;
737 struct vnode *vp;
738 int error;
739
740 vp = ap->a_vp;
741 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
742 vrele(ap->a_dvp);
743 if (ap->a_vp != ap->a_dvp)
744 VOP_UNLOCK(ap->a_dvp, 0);
745 vput(vp);
746 return error;
747 }
748 error = ufs_rmdir(ap);
749 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
750 return (error);
751 }
752
753 int
754 lfs_link(void *v)
755 {
756 struct vop_link_args /* {
757 struct vnode *a_dvp;
758 struct vnode *a_vp;
759 struct componentname *a_cnp;
760 } */ *ap = v;
761 int error;
762 struct vnode **vpp = NULL;
763
764 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
765 vput(ap->a_dvp);
766 return error;
767 }
768 error = ufs_link(ap);
769 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
770 return (error);
771 }
772
773 int
774 lfs_rename(void *v)
775 {
776 struct vop_rename_args /* {
777 struct vnode *a_fdvp;
778 struct vnode *a_fvp;
779 struct componentname *a_fcnp;
780 struct vnode *a_tdvp;
781 struct vnode *a_tvp;
782 struct componentname *a_tcnp;
783 } */ *ap = v;
784 struct vnode *tvp, *fvp, *tdvp, *fdvp;
785 struct componentname *tcnp, *fcnp;
786 int error;
787 struct lfs *fs;
788
789 fs = VTOI(ap->a_fdvp)->i_lfs;
790 tvp = ap->a_tvp;
791 tdvp = ap->a_tdvp;
792 tcnp = ap->a_tcnp;
793 fvp = ap->a_fvp;
794 fdvp = ap->a_fdvp;
795 fcnp = ap->a_fcnp;
796
797 /*
798 * Check for cross-device rename.
799 * If it is, we don't want to set dirops, just error out.
800 * (In particular note that MARK_VNODE(tdvp) will DTWT on
801 * a cross-device rename.)
802 *
803 * Copied from ufs_rename.
804 */
805 if ((fvp->v_mount != tdvp->v_mount) ||
806 (tvp && (fvp->v_mount != tvp->v_mount))) {
807 error = EXDEV;
808 goto errout;
809 }
810
811 /*
812 * Check to make sure we're not renaming a vnode onto itself
813 * (deleting a hard link by renaming one name onto another);
814 * if we are we can't recursively call VOP_REMOVE since that
815 * would leave us with an unaccounted-for number of live dirops.
816 *
817 * Inline the relevant section of ufs_rename here, *before*
818 * calling SET_DIROP_REMOVE.
819 */
820 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
821 (VTOI(tdvp)->i_flags & APPEND))) {
822 error = EPERM;
823 goto errout;
824 }
825 if (fvp == tvp) {
826 if (fvp->v_type == VDIR) {
827 error = EINVAL;
828 goto errout;
829 }
830
831 /* Release destination completely. */
832 VOP_ABORTOP(tdvp, tcnp);
833 vput(tdvp);
834 vput(tvp);
835
836 /* Delete source. */
837 vrele(fvp);
838 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
839 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
840 fcnp->cn_nameiop = DELETE;
841 if ((error = relookup(fdvp, &fvp, fcnp))){
842 /* relookup blew away fdvp */
843 return (error);
844 }
845 return (VOP_REMOVE(fdvp, fvp, fcnp));
846 }
847
848 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
849 goto errout;
850 MARK_VNODE(fdvp);
851 MARK_VNODE(fvp);
852
853 error = ufs_rename(ap);
854 UNMARK_VNODE(fdvp);
855 UNMARK_VNODE(fvp);
856 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
857 return (error);
858
859 errout:
860 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
861 if (tdvp == tvp)
862 vrele(tdvp);
863 else
864 vput(tdvp);
865 if (tvp)
866 vput(tvp);
867 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
868 vrele(fdvp);
869 vrele(fvp);
870 return (error);
871 }
872
873 /* XXX hack to avoid calling ITIMES in getattr */
874 int
875 lfs_getattr(void *v)
876 {
877 struct vop_getattr_args /* {
878 struct vnode *a_vp;
879 struct vattr *a_vap;
880 struct ucred *a_cred;
881 struct proc *a_p;
882 } */ *ap = v;
883 struct vnode *vp = ap->a_vp;
884 struct inode *ip = VTOI(vp);
885 struct vattr *vap = ap->a_vap;
886 struct lfs *fs = ip->i_lfs;
887 /*
888 * Copy from inode table
889 */
890 vap->va_fsid = ip->i_dev;
891 vap->va_fileid = ip->i_number;
892 vap->va_mode = ip->i_mode & ~IFMT;
893 vap->va_nlink = ip->i_nlink;
894 vap->va_uid = ip->i_uid;
895 vap->va_gid = ip->i_gid;
896 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
897 vap->va_size = vp->v_size;
898 vap->va_atime.tv_sec = ip->i_ffs1_atime;
899 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
900 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
901 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
902 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
903 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
904 vap->va_flags = ip->i_flags;
905 vap->va_gen = ip->i_gen;
906 /* this doesn't belong here */
907 if (vp->v_type == VBLK)
908 vap->va_blocksize = BLKDEV_IOSIZE;
909 else if (vp->v_type == VCHR)
910 vap->va_blocksize = MAXBSIZE;
911 else
912 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
913 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
914 vap->va_type = vp->v_type;
915 vap->va_filerev = ip->i_modrev;
916 return (0);
917 }
918
919 /*
920 * Check to make sure the inode blocks won't choke the buffer
921 * cache, then call ufs_setattr as usual.
922 */
923 int
924 lfs_setattr(void *v)
925 {
926 struct vop_getattr_args /* {
927 struct vnode *a_vp;
928 struct vattr *a_vap;
929 struct ucred *a_cred;
930 struct proc *a_p;
931 } */ *ap = v;
932 struct vnode *vp = ap->a_vp;
933
934 lfs_check(vp, LFS_UNUSED_LBN, 0);
935 return ufs_setattr(v);
936 }
937
938 /*
939 * Close called
940 *
941 * XXX -- we were using ufs_close, but since it updates the
942 * times on the inode, we might need to bump the uinodes
943 * count.
944 */
945 /* ARGSUSED */
946 int
947 lfs_close(void *v)
948 {
949 struct vop_close_args /* {
950 struct vnode *a_vp;
951 int a_fflag;
952 struct ucred *a_cred;
953 struct proc *a_p;
954 } */ *ap = v;
955 struct vnode *vp = ap->a_vp;
956 struct inode *ip = VTOI(vp);
957 struct timespec ts;
958
959 if (vp == ip->i_lfs->lfs_ivnode &&
960 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
961 return 0;
962
963 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
964 TIMEVAL_TO_TIMESPEC(&time, &ts);
965 LFS_ITIMES(ip, &ts, &ts, &ts);
966 }
967 return (0);
968 }
969
970 /*
971 * Close wrapper for special devices.
972 *
973 * Update the times on the inode then do device close.
974 */
975 int
976 lfsspec_close(void *v)
977 {
978 struct vop_close_args /* {
979 struct vnode *a_vp;
980 int a_fflag;
981 struct ucred *a_cred;
982 struct proc *a_p;
983 } */ *ap = v;
984 struct vnode *vp;
985 struct inode *ip;
986 struct timespec ts;
987
988 vp = ap->a_vp;
989 ip = VTOI(vp);
990 if (vp->v_usecount > 1) {
991 TIMEVAL_TO_TIMESPEC(&time, &ts);
992 LFS_ITIMES(ip, &ts, &ts, &ts);
993 }
994 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
995 }
996
997 /*
998 * Close wrapper for fifo's.
999 *
1000 * Update the times on the inode then do device close.
1001 */
1002 int
1003 lfsfifo_close(void *v)
1004 {
1005 struct vop_close_args /* {
1006 struct vnode *a_vp;
1007 int a_fflag;
1008 struct ucred *a_cred;
1009 struct proc *a_p;
1010 } */ *ap = v;
1011 struct vnode *vp;
1012 struct inode *ip;
1013 struct timespec ts;
1014
1015 vp = ap->a_vp;
1016 ip = VTOI(vp);
1017 if (ap->a_vp->v_usecount > 1) {
1018 TIMEVAL_TO_TIMESPEC(&time, &ts);
1019 LFS_ITIMES(ip, &ts, &ts, &ts);
1020 }
1021 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1022 }
1023
1024 /*
1025 * Reclaim an inode so that it can be used for other purposes.
1026 */
1027
1028 int
1029 lfs_reclaim(void *v)
1030 {
1031 struct vop_reclaim_args /* {
1032 struct vnode *a_vp;
1033 struct proc *a_p;
1034 } */ *ap = v;
1035 struct vnode *vp = ap->a_vp;
1036 struct inode *ip = VTOI(vp);
1037 int error;
1038
1039 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1040
1041 LFS_CLR_UINO(ip, IN_ALLMOD);
1042 if ((error = ufs_reclaim(vp, ap->a_p)))
1043 return (error);
1044 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1045 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1046 ip->inode_ext.lfs = NULL;
1047 pool_put(&lfs_inode_pool, vp->v_data);
1048 vp->v_data = NULL;
1049 return (0);
1050 }
1051
1052 /*
1053 * Read a block from a storage device.
1054 * In order to avoid reading blocks that are in the process of being
1055 * written by the cleaner---and hence are not mutexed by the normal
1056 * buffer cache / page cache mechanisms---check for collisions before
1057 * reading.
1058 *
1059 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1060 * the active cleaner test.
1061 *
1062 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1063 */
1064 int
1065 lfs_strategy(void *v)
1066 {
1067 struct vop_strategy_args /* {
1068 struct vnode *a_vp;
1069 struct buf *a_bp;
1070 } */ *ap = v;
1071 struct buf *bp;
1072 struct lfs *fs;
1073 struct vnode *vp;
1074 struct inode *ip;
1075 daddr_t tbn;
1076 int i, sn, error, slept;
1077
1078 bp = ap->a_bp;
1079 vp = ap->a_vp;
1080 ip = VTOI(vp);
1081 fs = ip->i_lfs;
1082
1083 /* lfs uses its strategy routine only for read */
1084 KASSERT(bp->b_flags & B_READ);
1085
1086 if (vp->v_type == VBLK || vp->v_type == VCHR)
1087 panic("lfs_strategy: spec");
1088 KASSERT(bp->b_bcount != 0);
1089 if (bp->b_blkno == bp->b_lblkno) {
1090 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1091 NULL);
1092 if (error) {
1093 bp->b_error = error;
1094 bp->b_flags |= B_ERROR;
1095 biodone(bp);
1096 return (error);
1097 }
1098 if ((long)bp->b_blkno == -1) /* no valid data */
1099 clrbuf(bp);
1100 }
1101 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1102 biodone(bp);
1103 return (0);
1104 }
1105
1106 slept = 1;
1107 simple_lock(&fs->lfs_interlock);
1108 while (slept && fs->lfs_seglock) {
1109 simple_unlock(&fs->lfs_interlock);
1110 /*
1111 * Look through list of intervals.
1112 * There will only be intervals to look through
1113 * if the cleaner holds the seglock.
1114 * Since the cleaner is synchronous, we can trust
1115 * the list of intervals to be current.
1116 */
1117 tbn = dbtofsb(fs, bp->b_blkno);
1118 sn = dtosn(fs, tbn);
1119 slept = 0;
1120 for (i = 0; i < fs->lfs_cleanind; i++) {
1121 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1122 tbn >= fs->lfs_cleanint[i]) {
1123 DLOG((DLOG_CLEAN,
1124 "lfs_strategy: ino %d lbn %" PRId64
1125 " ind %d sn %d fsb %" PRIx32
1126 " given sn %d fsb %" PRIx64 "\n",
1127 ip->i_number, bp->b_lblkno, i,
1128 dtosn(fs, fs->lfs_cleanint[i]),
1129 fs->lfs_cleanint[i], sn, tbn));
1130 DLOG((DLOG_CLEAN,
1131 "lfs_strategy: sleeping on ino %d lbn %"
1132 PRId64 "\n", ip->i_number, bp->b_lblkno));
1133 simple_lock(&fs->lfs_interlock);
1134 if (fs->lfs_seglock)
1135 ltsleep(&fs->lfs_seglock,
1136 (PRIBIO + 1) | PNORELOCK,
1137 "lfs_strategy", 0,
1138 &fs->lfs_interlock);
1139 /* Things may be different now; start over. */
1140 slept = 1;
1141 break;
1142 }
1143 }
1144 simple_lock(&fs->lfs_interlock);
1145 }
1146 simple_unlock(&fs->lfs_interlock);
1147
1148 vp = ip->i_devvp;
1149 VOP_STRATEGY(vp, bp);
1150 return (0);
1151 }
1152
1153 static void
1154 lfs_flush_dirops(struct lfs *fs)
1155 {
1156 struct inode *ip, *nip;
1157 struct vnode *vp;
1158 extern int lfs_dostats;
1159 struct segment *sp;
1160 int needunlock;
1161
1162 ASSERT_NO_SEGLOCK(fs);
1163
1164 if (fs->lfs_ronly)
1165 return;
1166
1167 simple_lock(&fs->lfs_interlock);
1168 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1169 simple_unlock(&fs->lfs_interlock);
1170 return;
1171 } else
1172 simple_unlock(&fs->lfs_interlock);
1173
1174 if (lfs_dostats)
1175 ++lfs_stats.flush_invoked;
1176
1177 /*
1178 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1179 * Technically this is a checkpoint (the on-disk state is valid)
1180 * even though we are leaving out all the file data.
1181 */
1182 lfs_imtime(fs);
1183 lfs_seglock(fs, SEGM_CKP);
1184 sp = fs->lfs_sp;
1185
1186 /*
1187 * lfs_writevnodes, optimized to get dirops out of the way.
1188 * Only write dirops, and don't flush files' pages, only
1189 * blocks from the directories.
1190 *
1191 * We don't need to vref these files because they are
1192 * dirops and so hold an extra reference until the
1193 * segunlock clears them of that status.
1194 *
1195 * We don't need to check for IN_ADIROP because we know that
1196 * no dirops are active.
1197 *
1198 */
1199 simple_lock(&fs->lfs_interlock);
1200 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1201 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1202 simple_unlock(&fs->lfs_interlock);
1203 vp = ITOV(ip);
1204
1205 /*
1206 * All writes to directories come from dirops; all
1207 * writes to files' direct blocks go through the page
1208 * cache, which we're not touching. Reads to files
1209 * and/or directories will not be affected by writing
1210 * directory blocks inodes and file inodes. So we don't
1211 * really need to lock. If we don't lock, though,
1212 * make sure that we don't clear IN_MODIFIED
1213 * unnecessarily.
1214 */
1215 if (vp->v_flag & VXLOCK)
1216 continue;
1217 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1218 needunlock = 1;
1219 } else {
1220 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1221 VTOI(vp)->i_number));
1222 needunlock = 0;
1223 }
1224 if (vp->v_type != VREG &&
1225 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1226 lfs_writefile(fs, sp, vp);
1227 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1228 !(ip->i_flag & IN_ALLMOD)) {
1229 LFS_SET_UINO(ip, IN_MODIFIED);
1230 }
1231 }
1232 (void) lfs_writeinode(fs, sp, ip);
1233 if (needunlock)
1234 VOP_UNLOCK(vp, 0);
1235 else
1236 LFS_SET_UINO(ip, IN_MODIFIED);
1237 simple_lock(&fs->lfs_interlock);
1238 }
1239 simple_unlock(&fs->lfs_interlock);
1240 /* We've written all the dirops there are */
1241 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1242 (void) lfs_writeseg(fs, sp);
1243 lfs_segunlock(fs);
1244 }
1245
1246 /*
1247 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1248 */
1249 int
1250 lfs_fcntl(void *v)
1251 {
1252 struct vop_fcntl_args /* {
1253 struct vnode *a_vp;
1254 u_long a_command;
1255 caddr_t a_data;
1256 int a_fflag;
1257 struct ucred *a_cred;
1258 struct proc *a_p;
1259 } */ *ap = v;
1260 struct timeval *tvp;
1261 BLOCK_INFO *blkiov;
1262 CLEANERINFO *cip;
1263 int blkcnt, error, oclean;
1264 struct lfs_fcntl_markv blkvp;
1265 fsid_t *fsidp;
1266 struct lfs *fs;
1267 struct buf *bp;
1268 fhandle_t *fhp;
1269 daddr_t off;
1270
1271 /* Only respect LFS fcntls on fs root or Ifile */
1272 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1273 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1274 return ufs_fcntl(v);
1275 }
1276
1277 /* Avoid locking a draining lock */
1278 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1279 return ESHUTDOWN;
1280 }
1281
1282 fs = VTOI(ap->a_vp)->i_lfs;
1283 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1284
1285 switch (ap->a_command) {
1286 case LFCNSEGWAITALL:
1287 case LFCNSEGWAITALL_COMPAT:
1288 fsidp = NULL;
1289 /* FALLSTHROUGH */
1290 case LFCNSEGWAIT:
1291 case LFCNSEGWAIT_COMPAT:
1292 tvp = (struct timeval *)ap->a_data;
1293 simple_lock(&fs->lfs_interlock);
1294 ++fs->lfs_sleepers;
1295 simple_unlock(&fs->lfs_interlock);
1296 VOP_UNLOCK(ap->a_vp, 0);
1297
1298 error = lfs_segwait(fsidp, tvp);
1299
1300 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1301 simple_lock(&fs->lfs_interlock);
1302 if (--fs->lfs_sleepers == 0)
1303 wakeup(&fs->lfs_sleepers);
1304 simple_unlock(&fs->lfs_interlock);
1305 return error;
1306
1307 case LFCNBMAPV:
1308 case LFCNMARKV:
1309 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1310 return (error);
1311 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1312
1313 blkcnt = blkvp.blkcnt;
1314 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1315 return (EINVAL);
1316 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1317 if ((error = copyin(blkvp.blkiov, blkiov,
1318 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1319 free(blkiov, M_SEGMENT);
1320 return error;
1321 }
1322
1323 simple_lock(&fs->lfs_interlock);
1324 ++fs->lfs_sleepers;
1325 simple_unlock(&fs->lfs_interlock);
1326 VOP_UNLOCK(ap->a_vp, 0);
1327 if (ap->a_command == LFCNBMAPV)
1328 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1329 else /* LFCNMARKV */
1330 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1331 if (error == 0)
1332 error = copyout(blkiov, blkvp.blkiov,
1333 blkcnt * sizeof(BLOCK_INFO));
1334 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1335 simple_lock(&fs->lfs_interlock);
1336 if (--fs->lfs_sleepers == 0)
1337 wakeup(&fs->lfs_sleepers);
1338 simple_unlock(&fs->lfs_interlock);
1339 free(blkiov, M_SEGMENT);
1340 return error;
1341
1342 case LFCNRECLAIM:
1343 /*
1344 * Flush dirops and write Ifile, allowing empty segments
1345 * to be immediately reclaimed.
1346 */
1347 VOP_UNLOCK(ap->a_vp, 0);
1348 lfs_writer_enter(fs, "pndirop");
1349 off = fs->lfs_offset;
1350 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1351 lfs_flush_dirops(fs);
1352 LFS_CLEANERINFO(cip, fs, bp);
1353 oclean = cip->clean;
1354 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1355 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1356 lfs_segunlock(fs);
1357 lfs_writer_leave(fs);
1358
1359 #ifdef DEBUG
1360 LFS_CLEANERINFO(cip, fs, bp);
1361 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1362 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1363 fs->lfs_offset - off, cip->clean - oclean,
1364 fs->lfs_activesb));
1365 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1366 #endif
1367
1368 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1369 return 0;
1370
1371 case LFCNIFILEFH:
1372 /* Return the filehandle of the Ifile */
1373 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1374 return (error);
1375 fhp = (struct fhandle *)ap->a_data;
1376 fhp->fh_fsid = *fsidp;
1377 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1378
1379 default:
1380 return ufs_fcntl(v);
1381 }
1382 return 0;
1383 }
1384
1385 int
1386 lfs_getpages(void *v)
1387 {
1388 struct vop_getpages_args /* {
1389 struct vnode *a_vp;
1390 voff_t a_offset;
1391 struct vm_page **a_m;
1392 int *a_count;
1393 int a_centeridx;
1394 vm_prot_t a_access_type;
1395 int a_advice;
1396 int a_flags;
1397 } */ *ap = v;
1398
1399 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1400 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1401 return EPERM;
1402 }
1403 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1404 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1405 }
1406
1407 /*
1408 * we're relying on the fact that genfs_getpages() always read in
1409 * entire filesystem blocks.
1410 */
1411 return genfs_getpages(v);
1412 }
1413
1414 /*
1415 * Make sure that for all pages in every block in the given range,
1416 * either all are dirty or all are clean. If any of the pages
1417 * we've seen so far are dirty, put the vnode on the paging chain,
1418 * and mark it IN_PAGING.
1419 *
1420 * If checkfirst != 0, don't check all the pages but return at the
1421 * first dirty page.
1422 */
1423 static int
1424 check_dirty(struct lfs *fs, struct vnode *vp,
1425 off_t startoffset, off_t endoffset, off_t blkeof,
1426 int flags, int checkfirst)
1427 {
1428 int by_list;
1429 struct vm_page *curpg = NULL; /* XXX: gcc */
1430 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1431 off_t soff = 0; /* XXX: gcc */
1432 voff_t off;
1433 int i;
1434 int nonexistent;
1435 int any_dirty; /* number of dirty pages */
1436 int dirty; /* number of dirty pages in a block */
1437 int tdirty;
1438 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1439
1440 ASSERT_MAYBE_SEGLOCK(fs);
1441 top:
1442 by_list = (vp->v_uobj.uo_npages <=
1443 ((endoffset - startoffset) >> PAGE_SHIFT) *
1444 UVM_PAGE_HASH_PENALTY);
1445 any_dirty = 0;
1446
1447 if (by_list) {
1448 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1449 } else {
1450 soff = startoffset;
1451 }
1452 while (by_list || soff < MIN(blkeof, endoffset)) {
1453 if (by_list) {
1454 /*
1455 * Find the first page in a block. Skip
1456 * blocks outside our area of interest or beyond
1457 * the end of file.
1458 */
1459 if (pages_per_block > 1) {
1460 while (curpg &&
1461 ((curpg->offset & fs->lfs_bmask) ||
1462 curpg->offset >= vp->v_size ||
1463 curpg->offset >= endoffset))
1464 curpg = TAILQ_NEXT(curpg, listq);
1465 }
1466 if (curpg == NULL)
1467 break;
1468 soff = curpg->offset;
1469 }
1470
1471 /*
1472 * Mark all pages in extended range busy; find out if any
1473 * of them are dirty.
1474 */
1475 nonexistent = dirty = 0;
1476 for (i = 0; i == 0 || i < pages_per_block; i++) {
1477 if (by_list && pages_per_block <= 1) {
1478 pgs[i] = pg = curpg;
1479 } else {
1480 off = soff + (i << PAGE_SHIFT);
1481 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1482 if (pg == NULL) {
1483 ++nonexistent;
1484 continue;
1485 }
1486 }
1487 KASSERT(pg != NULL);
1488 while (pg->flags & PG_BUSY) {
1489 pg->flags |= PG_WANTED;
1490 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1491 "lfsput", 0);
1492 simple_lock(&vp->v_interlock);
1493 if (by_list) {
1494 if (i > 0)
1495 uvm_page_unbusy(pgs, i);
1496 goto top;
1497 }
1498 }
1499 pg->flags |= PG_BUSY;
1500 UVM_PAGE_OWN(pg, "lfs_putpages");
1501
1502 pmap_page_protect(pg, VM_PROT_NONE);
1503 tdirty = (pmap_clear_modify(pg) ||
1504 (pg->flags & PG_CLEAN) == 0);
1505 dirty += tdirty;
1506 }
1507 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1508 if (by_list) {
1509 curpg = TAILQ_NEXT(curpg, listq);
1510 } else {
1511 soff += fs->lfs_bsize;
1512 }
1513 continue;
1514 }
1515
1516 any_dirty += dirty;
1517 KASSERT(nonexistent == 0);
1518
1519 /*
1520 * If any are dirty make all dirty; unbusy them,
1521 * but if we were asked to clean, wire them so that
1522 * the pagedaemon doesn't bother us about them while
1523 * they're on their way to disk.
1524 */
1525 for (i = 0; i == 0 || i < pages_per_block; i++) {
1526 pg = pgs[i];
1527 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1528 if (dirty) {
1529 pg->flags &= ~PG_CLEAN;
1530 if (flags & PGO_FREE) {
1531 /* XXXUBC need better way to update */
1532 simple_lock(&lfs_subsys_lock);
1533 lfs_subsys_pages += MIN(1, pages_per_block);
1534 simple_unlock(&lfs_subsys_lock);
1535 /*
1536 * Wire the page so that
1537 * pdaemon doesn't see it again.
1538 */
1539 uvm_lock_pageq();
1540 uvm_pagewire(pg);
1541 uvm_unlock_pageq();
1542
1543 /* Suspended write flag */
1544 pg->flags |= PG_DELWRI;
1545 }
1546 }
1547 if (pg->flags & PG_WANTED)
1548 wakeup(pg);
1549 pg->flags &= ~(PG_WANTED|PG_BUSY);
1550 UVM_PAGE_OWN(pg, NULL);
1551 }
1552
1553 if (checkfirst && any_dirty)
1554 break;
1555
1556 if (by_list) {
1557 curpg = TAILQ_NEXT(curpg, listq);
1558 } else {
1559 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1560 }
1561 }
1562
1563 /*
1564 * If any pages were dirty, mark this inode as "pageout requested",
1565 * and put it on the paging queue.
1566 * XXXUBC locking (check locking on dchainhd too)
1567 */
1568 #ifdef notyet
1569 if (any_dirty) {
1570 if (!(ip->i_flags & IN_PAGING)) {
1571 ip->i_flags |= IN_PAGING;
1572 simple_lock(&fs->lfs_interlock);
1573 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1574 simple_unlock(&fs->lfs_interlock);
1575 }
1576 }
1577 #endif
1578 return any_dirty;
1579 }
1580
1581 /*
1582 * lfs_putpages functions like genfs_putpages except that
1583 *
1584 * (1) It needs to bounds-check the incoming requests to ensure that
1585 * they are block-aligned; if they are not, expand the range and
1586 * do the right thing in case, e.g., the requested range is clean
1587 * but the expanded range is dirty.
1588 * (2) It needs to explicitly send blocks to be written when it is done.
1589 * VOP_PUTPAGES is not ever called with the seglock held, so
1590 * we simply take the seglock and let lfs_segunlock wait for us.
1591 * XXX Actually we can be called with the seglock held, if we have
1592 * XXX to flush a vnode while lfs_markv is in operation. As of this
1593 * XXX writing we panic in this case.
1594 *
1595 * Assumptions:
1596 *
1597 * (1) The caller does not hold any pages in this vnode busy. If it does,
1598 * there is a danger that when we expand the page range and busy the
1599 * pages we will deadlock.
1600 * (2) We are called with vp->v_interlock held; we must return with it
1601 * released.
1602 * (3) We don't absolutely have to free pages right away, provided that
1603 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1604 * us a request with PGO_FREE, we take the pages out of the paging
1605 * queue and wake up the writer, which will handle freeing them for us.
1606 *
1607 * We ensure that for any filesystem block, all pages for that
1608 * block are either resident or not, even if those pages are higher
1609 * than EOF; that means that we will be getting requests to free
1610 * "unused" pages above EOF all the time, and should ignore them.
1611 *
1612 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1613 */
1614
1615 int
1616 lfs_putpages(void *v)
1617 {
1618 int error;
1619 struct vop_putpages_args /* {
1620 struct vnode *a_vp;
1621 voff_t a_offlo;
1622 voff_t a_offhi;
1623 int a_flags;
1624 } */ *ap = v;
1625 struct vnode *vp;
1626 struct inode *ip;
1627 struct lfs *fs;
1628 struct segment *sp;
1629 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1630 off_t off, max_endoffset;
1631 int s;
1632 boolean_t seglocked, sync, pagedaemon;
1633 struct vm_page *pg;
1634 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1635
1636 vp = ap->a_vp;
1637 ip = VTOI(vp);
1638 fs = ip->i_lfs;
1639 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1640 pagedaemon = (curproc == uvm.pagedaemon_proc);
1641
1642 /* Putpages does nothing for metadata. */
1643 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1644 simple_unlock(&vp->v_interlock);
1645 return 0;
1646 }
1647
1648 /*
1649 * If there are no pages, don't do anything.
1650 */
1651 if (vp->v_uobj.uo_npages == 0) {
1652 s = splbio();
1653 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1654 (vp->v_flag & VONWORKLST)) {
1655 vp->v_flag &= ~VONWORKLST;
1656 LIST_REMOVE(vp, v_synclist);
1657 }
1658 splx(s);
1659 simple_unlock(&vp->v_interlock);
1660 return 0;
1661 }
1662
1663 blkeof = blkroundup(fs, ip->i_size);
1664
1665 /*
1666 * Ignore requests to free pages past EOF but in the same block
1667 * as EOF, unless the request is synchronous. (XXX why sync?)
1668 * XXXUBC Make these pages look "active" so the pagedaemon won't
1669 * XXXUBC bother us with them again.
1670 */
1671 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1672 origoffset = ap->a_offlo;
1673 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1674 pg = uvm_pagelookup(&vp->v_uobj, off);
1675 KASSERT(pg != NULL);
1676 while (pg->flags & PG_BUSY) {
1677 pg->flags |= PG_WANTED;
1678 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1679 "lfsput2", 0);
1680 simple_lock(&vp->v_interlock);
1681 }
1682 uvm_lock_pageq();
1683 uvm_pageactivate(pg);
1684 uvm_unlock_pageq();
1685 }
1686 ap->a_offlo = blkeof;
1687 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1688 simple_unlock(&vp->v_interlock);
1689 return 0;
1690 }
1691 }
1692
1693 /*
1694 * Extend page range to start and end at block boundaries.
1695 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1696 */
1697 origoffset = ap->a_offlo;
1698 origendoffset = ap->a_offhi;
1699 startoffset = origoffset & ~(fs->lfs_bmask);
1700 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1701 << fs->lfs_bshift;
1702
1703 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1704 endoffset = max_endoffset;
1705 origendoffset = endoffset;
1706 } else {
1707 origendoffset = round_page(ap->a_offhi);
1708 endoffset = round_page(blkroundup(fs, origendoffset));
1709 }
1710
1711 KASSERT(startoffset > 0 || endoffset >= startoffset);
1712 if (startoffset == endoffset) {
1713 /* Nothing to do, why were we called? */
1714 simple_unlock(&vp->v_interlock);
1715 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1716 PRId64 "\n", startoffset));
1717 return 0;
1718 }
1719
1720 ap->a_offlo = startoffset;
1721 ap->a_offhi = endoffset;
1722
1723 if (!(ap->a_flags & PGO_CLEANIT))
1724 return genfs_putpages(v);
1725
1726 /*
1727 * If there are more than one page per block, we don't want
1728 * to get caught locking them backwards; so set PGO_BUSYFAIL
1729 * to avoid deadlocks.
1730 */
1731 ap->a_flags |= PGO_BUSYFAIL;
1732
1733 do {
1734 int r;
1735
1736 /* If no pages are dirty, we can just use genfs_putpages. */
1737 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1738 ap->a_flags, 1) != 0)
1739 break;
1740
1741 /*
1742 * Sometimes pages are dirtied between the time that
1743 * we check and the time we try to clean them.
1744 * Instruct lfs_gop_write to return EDEADLK in this case
1745 * so we can write them properly.
1746 */
1747 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1748 r = genfs_putpages(v);
1749 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1750 if (r != EDEADLK)
1751 return r;
1752
1753 /* Start over. */
1754 preempt(1);
1755 simple_lock(&vp->v_interlock);
1756 } while(1);
1757
1758 /*
1759 * Dirty and asked to clean.
1760 *
1761 * Pagedaemon can't actually write LFS pages; wake up
1762 * the writer to take care of that. The writer will
1763 * notice the pager inode queue and act on that.
1764 */
1765 if (pagedaemon) {
1766 simple_lock(&fs->lfs_interlock);
1767 ++fs->lfs_pdflush;
1768 simple_unlock(&fs->lfs_interlock);
1769 wakeup(&lfs_writer_daemon);
1770 simple_unlock(&vp->v_interlock);
1771 return EWOULDBLOCK;
1772 }
1773
1774 /*
1775 * If this is a file created in a recent dirop, we can't flush its
1776 * inode until the dirop is complete. Drain dirops, then flush the
1777 * filesystem (taking care of any other pending dirops while we're
1778 * at it).
1779 */
1780 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1781 (vp->v_flag & VDIROP)) {
1782 int locked;
1783
1784 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1785 locked = VOP_ISLOCKED(vp) && /* XXX */
1786 vp->v_lock.lk_lockholder == curproc->p_pid;
1787 simple_unlock(&vp->v_interlock);
1788 lfs_writer_enter(fs, "ppdirop");
1789 if (locked)
1790 VOP_UNLOCK(vp, 0);
1791
1792 simple_lock(&fs->lfs_interlock);
1793 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1794 simple_unlock(&fs->lfs_interlock);
1795
1796 simple_lock(&vp->v_interlock);
1797 if (locked)
1798 VOP_LOCK(vp, LK_EXCLUSIVE);
1799 lfs_writer_leave(fs);
1800
1801 /* XXX the flush should have taken care of this one too! */
1802 }
1803
1804 /*
1805 * This is it. We are going to write some pages. From here on
1806 * down it's all just mechanics.
1807 *
1808 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1809 */
1810 ap->a_flags &= ~PGO_SYNCIO;
1811
1812 /*
1813 * If we've already got the seglock, flush the node and return.
1814 * The FIP has already been set up for us by lfs_writefile,
1815 * and FIP cleanup and lfs_updatemeta will also be done there,
1816 * unless genfs_putpages returns EDEADLK; then we must flush
1817 * what we have, and correct FIP and segment header accounting.
1818 */
1819
1820 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1821 if (!seglocked) {
1822 simple_unlock(&vp->v_interlock);
1823 /*
1824 * Take the seglock, because we are going to be writing pages.
1825 */
1826 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1827 if (error != 0)
1828 return error;
1829 simple_lock(&vp->v_interlock);
1830 }
1831
1832 /*
1833 * VOP_PUTPAGES should not be called while holding the seglock.
1834 * XXXUBC fix lfs_markv, or do this properly.
1835 */
1836 #ifdef notyet
1837 KASSERT(fs->lfs_seglock == 1);
1838 #endif /* notyet */
1839
1840 /*
1841 * We assume we're being called with sp->fip pointing at blank space.
1842 * Account for a new FIP in the segment header, and set sp->vp.
1843 * (This should duplicate the setup at the top of lfs_writefile().)
1844 */
1845 sp = fs->lfs_sp;
1846 if (!seglocked) {
1847 if (sp->seg_bytes_left < fs->lfs_bsize ||
1848 sp->sum_bytes_left < sizeof(struct finfo))
1849 (void) lfs_writeseg(fs, fs->lfs_sp);
1850
1851 sp->sum_bytes_left -= FINFOSIZE;
1852 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1853 }
1854 KASSERT(sp->vp == NULL);
1855 sp->vp = vp;
1856
1857 if (!seglocked) {
1858 if (vp->v_flag & VDIROP)
1859 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1860 }
1861
1862 sp->fip->fi_nblocks = 0;
1863 sp->fip->fi_ino = ip->i_number;
1864 sp->fip->fi_version = ip->i_gen;
1865
1866 /*
1867 * Loop through genfs_putpages until all pages are gathered.
1868 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1869 * Whenever we lose the interlock we have to rerun check_dirty, as
1870 * well.
1871 */
1872 again:
1873 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1874
1875 if ((error = genfs_putpages(v)) == EDEADLK) {
1876 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1877 " EDEADLK [2] ino %d off %x (seg %d)\n",
1878 ip->i_number, fs->lfs_offset,
1879 dtosn(fs, fs->lfs_offset)));
1880 /* If nothing to write, short-circuit */
1881 if (sp->cbpp - sp->bpp > 1) {
1882 /* Write gathered pages */
1883 lfs_updatemeta(sp);
1884 (void) lfs_writeseg(fs, sp);
1885
1886 /*
1887 * Reinitialize brand new FIP and add us to it.
1888 * (This should duplicate the fixup in
1889 * lfs_gatherpages().)
1890 */
1891 KASSERT(sp->vp == vp);
1892 sp->fip->fi_version = ip->i_gen;
1893 sp->fip->fi_ino = ip->i_number;
1894 /* Add us to the new segment summary. */
1895 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1896 sp->sum_bytes_left -= FINFOSIZE;
1897 }
1898
1899 /* Give the write a chance to complete */
1900 preempt(1);
1901
1902 /* We've lost the interlock. Start over. */
1903 simple_lock(&vp->v_interlock);
1904 goto again;
1905 }
1906
1907 KASSERT(sp->vp == vp);
1908 if (!seglocked) {
1909 sp->vp = NULL; /* XXX lfs_gather below will set this */
1910
1911 /* Write indirect blocks as well */
1912 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1913 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1914 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1915
1916 KASSERT(sp->vp == NULL);
1917 sp->vp = vp;
1918 }
1919
1920 /*
1921 * Blocks are now gathered into a segment waiting to be written.
1922 * All that's left to do is update metadata, and write them.
1923 */
1924 lfs_updatemeta(sp);
1925 KASSERT(sp->vp == vp);
1926 sp->vp = NULL;
1927
1928 if (seglocked) {
1929 /* we're called by lfs_writefile. */
1930 return error;
1931 }
1932
1933 /*
1934 * Clean up FIP, since we're done writing this file.
1935 * This should duplicate cleanup at the end of lfs_writefile().
1936 */
1937 if (sp->fip->fi_nblocks != 0) {
1938 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1939 sizeof(int32_t) * sp->fip->fi_nblocks);
1940 sp->start_lbp = &sp->fip->fi_blocks[0];
1941 } else {
1942 sp->sum_bytes_left += FINFOSIZE;
1943 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1944 }
1945 lfs_writeseg(fs, fs->lfs_sp);
1946
1947 /*
1948 * XXX - with the malloc/copy writeseg, the pages are freed by now
1949 * even if we don't wait (e.g. if we hold a nested lock). This
1950 * will not be true if we stop using malloc/copy.
1951 */
1952 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1953 lfs_segunlock(fs);
1954
1955 /*
1956 * Wait for v_numoutput to drop to zero. The seglock should
1957 * take care of this, but there is a slight possibility that
1958 * aiodoned might not have got around to our buffers yet.
1959 */
1960 if (sync) {
1961 int s;
1962
1963 s = splbio();
1964 simple_lock(&global_v_numoutput_slock);
1965 while (vp->v_numoutput > 0) {
1966 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1967 " num %d\n", ip->i_number, vp->v_numoutput));
1968 vp->v_flag |= VBWAIT;
1969 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1970 &global_v_numoutput_slock);
1971 }
1972 simple_unlock(&global_v_numoutput_slock);
1973 splx(s);
1974 }
1975 return error;
1976 }
1977
1978 /*
1979 * Return the last logical file offset that should be written for this file
1980 * if we're doing a write that ends at "size". If writing, we need to know
1981 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1982 * to know about entire blocks.
1983 */
1984 void
1985 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1986 {
1987 struct inode *ip = VTOI(vp);
1988 struct lfs *fs = ip->i_lfs;
1989 daddr_t olbn, nlbn;
1990
1991 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1992 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1993 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1994
1995 olbn = lblkno(fs, ip->i_size);
1996 nlbn = lblkno(fs, size);
1997 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1998 *eobp = fragroundup(fs, size);
1999 } else {
2000 *eobp = blkroundup(fs, size);
2001 }
2002 }
2003
2004 #ifdef DEBUG
2005 void lfs_dump_vop(void *);
2006
2007 void
2008 lfs_dump_vop(void *v)
2009 {
2010 struct vop_putpages_args /* {
2011 struct vnode *a_vp;
2012 voff_t a_offlo;
2013 voff_t a_offhi;
2014 int a_flags;
2015 } */ *ap = v;
2016
2017 #ifdef DDB
2018 vfs_vnode_print(ap->a_vp, 0, printf);
2019 #endif
2020 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2021 }
2022 #endif
2023
2024 int
2025 lfs_mmap(void *v)
2026 {
2027 struct vop_mmap_args /* {
2028 const struct vnodeop_desc *a_desc;
2029 struct vnode *a_vp;
2030 int a_fflags;
2031 struct ucred *a_cred;
2032 struct proc *a_p;
2033 } */ *ap = v;
2034
2035 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2036 return EOPNOTSUPP;
2037 return ufs_mmap(v);
2038 }
2039