lfs_vnops.c revision 1.152.2.8 1 /* $NetBSD: lfs_vnops.c,v 1.152.2.8 2008/02/04 09:25:06 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.152.2.8 2008/02/04 09:25:06 yamt Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
129 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
130 { &vop_poll_desc, ufs_poll }, /* poll */
131 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
132 { &vop_revoke_desc, ufs_revoke }, /* revoke */
133 { &vop_mmap_desc, lfs_mmap }, /* mmap */
134 { &vop_fsync_desc, lfs_fsync }, /* fsync */
135 { &vop_seek_desc, ufs_seek }, /* seek */
136 { &vop_remove_desc, lfs_remove }, /* remove */
137 { &vop_link_desc, lfs_link }, /* link */
138 { &vop_rename_desc, lfs_rename }, /* rename */
139 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
140 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
141 { &vop_symlink_desc, lfs_symlink }, /* symlink */
142 { &vop_readdir_desc, ufs_readdir }, /* readdir */
143 { &vop_readlink_desc, ufs_readlink }, /* readlink */
144 { &vop_abortop_desc, ufs_abortop }, /* abortop */
145 { &vop_inactive_desc, lfs_inactive }, /* inactive */
146 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
147 { &vop_lock_desc, ufs_lock }, /* lock */
148 { &vop_unlock_desc, ufs_unlock }, /* unlock */
149 { &vop_bmap_desc, ufs_bmap }, /* bmap */
150 { &vop_strategy_desc, lfs_strategy }, /* strategy */
151 { &vop_print_desc, ufs_print }, /* print */
152 { &vop_islocked_desc, ufs_islocked }, /* islocked */
153 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
154 { &vop_advlock_desc, ufs_advlock }, /* advlock */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
177 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
178 { &vop_poll_desc, spec_poll }, /* poll */
179 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
180 { &vop_revoke_desc, spec_revoke }, /* revoke */
181 { &vop_mmap_desc, spec_mmap }, /* mmap */
182 { &vop_fsync_desc, spec_fsync }, /* fsync */
183 { &vop_seek_desc, spec_seek }, /* seek */
184 { &vop_remove_desc, spec_remove }, /* remove */
185 { &vop_link_desc, spec_link }, /* link */
186 { &vop_rename_desc, spec_rename }, /* rename */
187 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
188 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
189 { &vop_symlink_desc, spec_symlink }, /* symlink */
190 { &vop_readdir_desc, spec_readdir }, /* readdir */
191 { &vop_readlink_desc, spec_readlink }, /* readlink */
192 { &vop_abortop_desc, spec_abortop }, /* abortop */
193 { &vop_inactive_desc, lfs_inactive }, /* inactive */
194 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
195 { &vop_lock_desc, ufs_lock }, /* lock */
196 { &vop_unlock_desc, ufs_unlock }, /* unlock */
197 { &vop_bmap_desc, spec_bmap }, /* bmap */
198 { &vop_strategy_desc, spec_strategy }, /* strategy */
199 { &vop_print_desc, ufs_print }, /* print */
200 { &vop_islocked_desc, ufs_islocked }, /* islocked */
201 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
202 { &vop_advlock_desc, spec_advlock }, /* advlock */
203 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
204 { &vop_getpages_desc, spec_getpages }, /* getpages */
205 { &vop_putpages_desc, spec_putpages }, /* putpages */
206 { NULL, NULL }
207 };
208 const struct vnodeopv_desc lfs_specop_opv_desc =
209 { &lfs_specop_p, lfs_specop_entries };
210
211 int (**lfs_fifoop_p)(void *);
212 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
213 { &vop_default_desc, vn_default_error },
214 { &vop_lookup_desc, fifo_lookup }, /* lookup */
215 { &vop_create_desc, fifo_create }, /* create */
216 { &vop_mknod_desc, fifo_mknod }, /* mknod */
217 { &vop_open_desc, fifo_open }, /* open */
218 { &vop_close_desc, lfsfifo_close }, /* close */
219 { &vop_access_desc, ufs_access }, /* access */
220 { &vop_getattr_desc, lfs_getattr }, /* getattr */
221 { &vop_setattr_desc, lfs_setattr }, /* setattr */
222 { &vop_read_desc, ufsfifo_read }, /* read */
223 { &vop_write_desc, ufsfifo_write }, /* write */
224 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
225 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
226 { &vop_poll_desc, fifo_poll }, /* poll */
227 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
228 { &vop_revoke_desc, fifo_revoke }, /* revoke */
229 { &vop_mmap_desc, fifo_mmap }, /* mmap */
230 { &vop_fsync_desc, fifo_fsync }, /* fsync */
231 { &vop_seek_desc, fifo_seek }, /* seek */
232 { &vop_remove_desc, fifo_remove }, /* remove */
233 { &vop_link_desc, fifo_link }, /* link */
234 { &vop_rename_desc, fifo_rename }, /* rename */
235 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
236 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
237 { &vop_symlink_desc, fifo_symlink }, /* symlink */
238 { &vop_readdir_desc, fifo_readdir }, /* readdir */
239 { &vop_readlink_desc, fifo_readlink }, /* readlink */
240 { &vop_abortop_desc, fifo_abortop }, /* abortop */
241 { &vop_inactive_desc, lfs_inactive }, /* inactive */
242 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
243 { &vop_lock_desc, ufs_lock }, /* lock */
244 { &vop_unlock_desc, ufs_unlock }, /* unlock */
245 { &vop_bmap_desc, fifo_bmap }, /* bmap */
246 { &vop_strategy_desc, fifo_strategy }, /* strategy */
247 { &vop_print_desc, ufs_print }, /* print */
248 { &vop_islocked_desc, ufs_islocked }, /* islocked */
249 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
250 { &vop_advlock_desc, fifo_advlock }, /* advlock */
251 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
252 { &vop_putpages_desc, fifo_putpages }, /* putpages */
253 { NULL, NULL }
254 };
255 const struct vnodeopv_desc lfs_fifoop_opv_desc =
256 { &lfs_fifoop_p, lfs_fifoop_entries };
257
258 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
259
260 #define LFS_READWRITE
261 #include <ufs/ufs/ufs_readwrite.c>
262 #undef LFS_READWRITE
263
264 /*
265 * Synch an open file.
266 */
267 /* ARGSUSED */
268 int
269 lfs_fsync(void *v)
270 {
271 struct vop_fsync_args /* {
272 struct vnode *a_vp;
273 kauth_cred_t a_cred;
274 int a_flags;
275 off_t offlo;
276 off_t offhi;
277 } */ *ap = v;
278 struct vnode *vp = ap->a_vp;
279 int error, wait;
280 struct inode *ip = VTOI(vp);
281 struct lfs *fs = ip->i_lfs;
282
283 /* If we're mounted read-only, don't try to sync. */
284 if (fs->lfs_ronly)
285 return 0;
286
287 /*
288 * Trickle sync simply adds this vnode to the pager list, as if
289 * the pagedaemon had requested a pageout.
290 */
291 if (ap->a_flags & FSYNC_LAZY) {
292 if (lfs_ignore_lazy_sync == 0) {
293 mutex_enter(&lfs_lock);
294 if (!(ip->i_flags & IN_PAGING)) {
295 ip->i_flags |= IN_PAGING;
296 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
297 i_lfs_pchain);
298 }
299 wakeup(&lfs_writer_daemon);
300 mutex_exit(&lfs_lock);
301 }
302 return 0;
303 }
304
305 /*
306 * If a vnode is bring cleaned, flush it out before we try to
307 * reuse it. This prevents the cleaner from writing files twice
308 * in the same partial segment, causing an accounting underflow.
309 */
310 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
311 lfs_vflush(vp);
312 }
313
314 wait = (ap->a_flags & FSYNC_WAIT);
315 do {
316 mutex_enter(&vp->v_interlock);
317 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
318 round_page(ap->a_offhi),
319 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
320 if (error == EAGAIN) {
321 mutex_enter(&lfs_lock);
322 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
323 hz / 100 + 1, &lfs_lock);
324 mutex_exit(&lfs_lock);
325 }
326 } while (error == EAGAIN);
327 if (error)
328 return error;
329
330 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
331 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
332
333 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
334 int l = 0;
335 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
336 curlwp->l_cred);
337 }
338 if (wait && !VPISEMPTY(vp))
339 LFS_SET_UINO(ip, IN_MODIFIED);
340
341 return error;
342 }
343
344 /*
345 * Take IN_ADIROP off, then call ufs_inactive.
346 */
347 int
348 lfs_inactive(void *v)
349 {
350 struct vop_inactive_args /* {
351 struct vnode *a_vp;
352 } */ *ap = v;
353
354 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
355
356 lfs_unmark_vnode(ap->a_vp);
357
358 /*
359 * The Ifile is only ever inactivated on unmount.
360 * Streamline this process by not giving it more dirty blocks.
361 */
362 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
363 mutex_enter(&lfs_lock);
364 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
365 mutex_exit(&lfs_lock);
366 VOP_UNLOCK(ap->a_vp, 0);
367 return 0;
368 }
369
370 return ufs_inactive(v);
371 }
372
373 /*
374 * These macros are used to bracket UFS directory ops, so that we can
375 * identify all the pages touched during directory ops which need to
376 * be ordered and flushed atomically, so that they may be recovered.
377 *
378 * Because we have to mark nodes VU_DIROP in order to prevent
379 * the cache from reclaiming them while a dirop is in progress, we must
380 * also manage the number of nodes so marked (otherwise we can run out).
381 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
382 * is decremented during segment write, when VU_DIROP is taken off.
383 */
384 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
385 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
386 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
387 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
388 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
389 static int lfs_set_dirop(struct vnode *, struct vnode *);
390
391 static int
392 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
393 {
394 struct lfs *fs;
395 int error;
396
397 KASSERT(VOP_ISLOCKED(dvp));
398 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
399
400 fs = VTOI(dvp)->i_lfs;
401
402 ASSERT_NO_SEGLOCK(fs);
403 /*
404 * LFS_NRESERVE calculates direct and indirect blocks as well
405 * as an inode block; an overestimate in most cases.
406 */
407 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
408 return (error);
409
410 restart:
411 mutex_enter(&lfs_lock);
412 if (fs->lfs_dirops == 0) {
413 mutex_exit(&lfs_lock);
414 lfs_check(dvp, LFS_UNUSED_LBN, 0);
415 mutex_enter(&lfs_lock);
416 }
417 while (fs->lfs_writer) {
418 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
419 "lfs_sdirop", 0, &lfs_lock);
420 if (error == EINTR) {
421 mutex_exit(&lfs_lock);
422 goto unreserve;
423 }
424 }
425 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
426 wakeup(&lfs_writer_daemon);
427 mutex_exit(&lfs_lock);
428 preempt();
429 goto restart;
430 }
431
432 if (lfs_dirvcount > LFS_MAX_DIROP) {
433 mutex_exit(&lfs_lock);
434 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
435 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
436 if ((error = mtsleep(&lfs_dirvcount,
437 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
438 &lfs_lock)) != 0) {
439 goto unreserve;
440 }
441 goto restart;
442 }
443
444 ++fs->lfs_dirops;
445 fs->lfs_doifile = 1;
446 mutex_exit(&lfs_lock);
447
448 /* Hold a reference so SET_ENDOP will be happy */
449 vref(dvp);
450 if (vp) {
451 vref(vp);
452 MARK_VNODE(vp);
453 }
454
455 MARK_VNODE(dvp);
456 return 0;
457
458 unreserve:
459 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
460 return error;
461 }
462
463 /*
464 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
465 * in getnewvnode(), if we have a stacked filesystem mounted on top
466 * of us.
467 *
468 * NB: this means we have to clear the new vnodes on error. Fortunately
469 * SET_ENDOP is there to do that for us.
470 */
471 static int
472 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
473 {
474 int error;
475 struct lfs *fs;
476
477 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
478 ASSERT_NO_SEGLOCK(fs);
479 if (fs->lfs_ronly)
480 return EROFS;
481 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
482 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
483 dvp, error));
484 return error;
485 }
486 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
487 if (vpp) {
488 ungetnewvnode(*vpp);
489 *vpp = NULL;
490 }
491 return error;
492 }
493 return 0;
494 }
495
496 #define SET_ENDOP_BASE(fs, dvp, str) \
497 do { \
498 mutex_enter(&lfs_lock); \
499 --(fs)->lfs_dirops; \
500 if (!(fs)->lfs_dirops) { \
501 if ((fs)->lfs_nadirop) { \
502 panic("SET_ENDOP: %s: no dirops but " \
503 " nadirop=%d", (str), \
504 (fs)->lfs_nadirop); \
505 } \
506 wakeup(&(fs)->lfs_writer); \
507 mutex_exit(&lfs_lock); \
508 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
509 } else \
510 mutex_exit(&lfs_lock); \
511 } while(0)
512 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
513 do { \
514 UNMARK_VNODE(dvp); \
515 if (nvpp && *nvpp) \
516 UNMARK_VNODE(*nvpp); \
517 /* Check for error return to stem vnode leakage */ \
518 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
519 ungetnewvnode(*(nvpp)); \
520 SET_ENDOP_BASE((fs), (dvp), (str)); \
521 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
522 vrele(dvp); \
523 } while(0)
524 #define SET_ENDOP_CREATE_AP(ap, str) \
525 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
526 (ap)->a_vpp, (str))
527 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
528 do { \
529 UNMARK_VNODE(dvp); \
530 if (ovp) \
531 UNMARK_VNODE(ovp); \
532 SET_ENDOP_BASE((fs), (dvp), (str)); \
533 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
534 vrele(dvp); \
535 if (ovp) \
536 vrele(ovp); \
537 } while(0)
538
539 void
540 lfs_mark_vnode(struct vnode *vp)
541 {
542 struct inode *ip = VTOI(vp);
543 struct lfs *fs = ip->i_lfs;
544
545 mutex_enter(&lfs_lock);
546 if (!(ip->i_flag & IN_ADIROP)) {
547 if (!(vp->v_uflag & VU_DIROP)) {
548 mutex_enter(&vp->v_interlock);
549 (void)lfs_vref(vp);
550 ++lfs_dirvcount;
551 ++fs->lfs_dirvcount;
552 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
553 vp->v_uflag |= VU_DIROP;
554 }
555 ++fs->lfs_nadirop;
556 ip->i_flag |= IN_ADIROP;
557 } else
558 KASSERT(vp->v_uflag & VU_DIROP);
559 mutex_exit(&lfs_lock);
560 }
561
562 void
563 lfs_unmark_vnode(struct vnode *vp)
564 {
565 struct inode *ip = VTOI(vp);
566
567 if (ip && (ip->i_flag & IN_ADIROP)) {
568 KASSERT(vp->v_uflag & VU_DIROP);
569 mutex_enter(&lfs_lock);
570 --ip->i_lfs->lfs_nadirop;
571 mutex_exit(&lfs_lock);
572 ip->i_flag &= ~IN_ADIROP;
573 }
574 }
575
576 int
577 lfs_symlink(void *v)
578 {
579 struct vop_symlink_args /* {
580 struct vnode *a_dvp;
581 struct vnode **a_vpp;
582 struct componentname *a_cnp;
583 struct vattr *a_vap;
584 char *a_target;
585 } */ *ap = v;
586 int error;
587
588 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
589 vput(ap->a_dvp);
590 return error;
591 }
592 error = ufs_symlink(ap);
593 SET_ENDOP_CREATE_AP(ap, "symlink");
594 return (error);
595 }
596
597 int
598 lfs_mknod(void *v)
599 {
600 struct vop_mknod_args /* {
601 struct vnode *a_dvp;
602 struct vnode **a_vpp;
603 struct componentname *a_cnp;
604 struct vattr *a_vap;
605 } */ *ap = v;
606 struct vattr *vap = ap->a_vap;
607 struct vnode **vpp = ap->a_vpp;
608 struct inode *ip;
609 int error;
610 struct mount *mp;
611 ino_t ino;
612
613 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
614 vput(ap->a_dvp);
615 return error;
616 }
617 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
618 ap->a_dvp, vpp, ap->a_cnp);
619
620 /* Either way we're done with the dirop at this point */
621 SET_ENDOP_CREATE_AP(ap, "mknod");
622
623 if (error)
624 return (error);
625
626 ip = VTOI(*vpp);
627 mp = (*vpp)->v_mount;
628 ino = ip->i_number;
629 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
630 if (vap->va_rdev != VNOVAL) {
631 /*
632 * Want to be able to use this to make badblock
633 * inodes, so don't truncate the dev number.
634 */
635 #if 0
636 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
637 UFS_MPNEEDSWAP((*vpp)->v_mount));
638 #else
639 ip->i_ffs1_rdev = vap->va_rdev;
640 #endif
641 }
642
643 /*
644 * Call fsync to write the vnode so that we don't have to deal with
645 * flushing it when it's marked VU_DIROP|VI_XLOCK.
646 *
647 * XXX KS - If we can't flush we also can't call vgone(), so must
648 * return. But, that leaves this vnode in limbo, also not good.
649 * Can this ever happen (barring hardware failure)?
650 */
651 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
652 panic("lfs_mknod: couldn't fsync (ino %llu)",
653 (unsigned long long)ino);
654 /* return (error); */
655 }
656 /*
657 * Remove vnode so that it will be reloaded by VFS_VGET and
658 * checked to see if it is an alias of an existing entry in
659 * the inode cache.
660 */
661 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
662
663 VOP_UNLOCK(*vpp, 0);
664 (*vpp)->v_type = VNON;
665 vgone(*vpp);
666 error = VFS_VGET(mp, ino, vpp);
667
668 if (error != 0) {
669 *vpp = NULL;
670 return (error);
671 }
672 return (0);
673 }
674
675 int
676 lfs_create(void *v)
677 {
678 struct vop_create_args /* {
679 struct vnode *a_dvp;
680 struct vnode **a_vpp;
681 struct componentname *a_cnp;
682 struct vattr *a_vap;
683 } */ *ap = v;
684 int error;
685
686 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
687 vput(ap->a_dvp);
688 return error;
689 }
690 error = ufs_create(ap);
691 SET_ENDOP_CREATE_AP(ap, "create");
692 return (error);
693 }
694
695 int
696 lfs_mkdir(void *v)
697 {
698 struct vop_mkdir_args /* {
699 struct vnode *a_dvp;
700 struct vnode **a_vpp;
701 struct componentname *a_cnp;
702 struct vattr *a_vap;
703 } */ *ap = v;
704 int error;
705
706 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
707 vput(ap->a_dvp);
708 return error;
709 }
710 error = ufs_mkdir(ap);
711 SET_ENDOP_CREATE_AP(ap, "mkdir");
712 return (error);
713 }
714
715 int
716 lfs_remove(void *v)
717 {
718 struct vop_remove_args /* {
719 struct vnode *a_dvp;
720 struct vnode *a_vp;
721 struct componentname *a_cnp;
722 } */ *ap = v;
723 struct vnode *dvp, *vp;
724 struct inode *ip;
725 int error;
726
727 dvp = ap->a_dvp;
728 vp = ap->a_vp;
729 ip = VTOI(vp);
730 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
731 if (dvp == vp)
732 vrele(vp);
733 else
734 vput(vp);
735 vput(dvp);
736 return error;
737 }
738 error = ufs_remove(ap);
739 if (ip->i_nlink == 0)
740 lfs_orphan(ip->i_lfs, ip->i_number);
741 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
742 return (error);
743 }
744
745 int
746 lfs_rmdir(void *v)
747 {
748 struct vop_rmdir_args /* {
749 struct vnodeop_desc *a_desc;
750 struct vnode *a_dvp;
751 struct vnode *a_vp;
752 struct componentname *a_cnp;
753 } */ *ap = v;
754 struct vnode *vp;
755 struct inode *ip;
756 int error;
757
758 vp = ap->a_vp;
759 ip = VTOI(vp);
760 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
761 if (ap->a_dvp == vp)
762 vrele(ap->a_dvp);
763 else
764 vput(ap->a_dvp);
765 vput(vp);
766 return error;
767 }
768 error = ufs_rmdir(ap);
769 if (ip->i_nlink == 0)
770 lfs_orphan(ip->i_lfs, ip->i_number);
771 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
772 return (error);
773 }
774
775 int
776 lfs_link(void *v)
777 {
778 struct vop_link_args /* {
779 struct vnode *a_dvp;
780 struct vnode *a_vp;
781 struct componentname *a_cnp;
782 } */ *ap = v;
783 int error;
784 struct vnode **vpp = NULL;
785
786 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
787 vput(ap->a_dvp);
788 return error;
789 }
790 error = ufs_link(ap);
791 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
792 return (error);
793 }
794
795 int
796 lfs_rename(void *v)
797 {
798 struct vop_rename_args /* {
799 struct vnode *a_fdvp;
800 struct vnode *a_fvp;
801 struct componentname *a_fcnp;
802 struct vnode *a_tdvp;
803 struct vnode *a_tvp;
804 struct componentname *a_tcnp;
805 } */ *ap = v;
806 struct vnode *tvp, *fvp, *tdvp, *fdvp;
807 struct componentname *tcnp, *fcnp;
808 int error;
809 struct lfs *fs;
810
811 fs = VTOI(ap->a_fdvp)->i_lfs;
812 tvp = ap->a_tvp;
813 tdvp = ap->a_tdvp;
814 tcnp = ap->a_tcnp;
815 fvp = ap->a_fvp;
816 fdvp = ap->a_fdvp;
817 fcnp = ap->a_fcnp;
818
819 /*
820 * Check for cross-device rename.
821 * If it is, we don't want to set dirops, just error out.
822 * (In particular note that MARK_VNODE(tdvp) will DTWT on
823 * a cross-device rename.)
824 *
825 * Copied from ufs_rename.
826 */
827 if ((fvp->v_mount != tdvp->v_mount) ||
828 (tvp && (fvp->v_mount != tvp->v_mount))) {
829 error = EXDEV;
830 goto errout;
831 }
832
833 /*
834 * Check to make sure we're not renaming a vnode onto itself
835 * (deleting a hard link by renaming one name onto another);
836 * if we are we can't recursively call VOP_REMOVE since that
837 * would leave us with an unaccounted-for number of live dirops.
838 *
839 * Inline the relevant section of ufs_rename here, *before*
840 * calling SET_DIROP_REMOVE.
841 */
842 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
843 (VTOI(tdvp)->i_flags & APPEND))) {
844 error = EPERM;
845 goto errout;
846 }
847 if (fvp == tvp) {
848 if (fvp->v_type == VDIR) {
849 error = EINVAL;
850 goto errout;
851 }
852
853 /* Release destination completely. */
854 VOP_ABORTOP(tdvp, tcnp);
855 vput(tdvp);
856 vput(tvp);
857
858 /* Delete source. */
859 vrele(fvp);
860 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
861 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
862 fcnp->cn_nameiop = DELETE;
863 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
864 if ((error = relookup(fdvp, &fvp, fcnp))) {
865 vput(fdvp);
866 return (error);
867 }
868 return (VOP_REMOVE(fdvp, fvp, fcnp));
869 }
870
871 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
872 goto errout;
873 MARK_VNODE(fdvp);
874 MARK_VNODE(fvp);
875
876 error = ufs_rename(ap);
877 UNMARK_VNODE(fdvp);
878 UNMARK_VNODE(fvp);
879 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
880 return (error);
881
882 errout:
883 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
884 if (tdvp == tvp)
885 vrele(tdvp);
886 else
887 vput(tdvp);
888 if (tvp)
889 vput(tvp);
890 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
891 vrele(fdvp);
892 vrele(fvp);
893 return (error);
894 }
895
896 /* XXX hack to avoid calling ITIMES in getattr */
897 int
898 lfs_getattr(void *v)
899 {
900 struct vop_getattr_args /* {
901 struct vnode *a_vp;
902 struct vattr *a_vap;
903 kauth_cred_t a_cred;
904 } */ *ap = v;
905 struct vnode *vp = ap->a_vp;
906 struct inode *ip = VTOI(vp);
907 struct vattr *vap = ap->a_vap;
908 struct lfs *fs = ip->i_lfs;
909 /*
910 * Copy from inode table
911 */
912 vap->va_fsid = ip->i_dev;
913 vap->va_fileid = ip->i_number;
914 vap->va_mode = ip->i_mode & ~IFMT;
915 vap->va_nlink = ip->i_nlink;
916 vap->va_uid = ip->i_uid;
917 vap->va_gid = ip->i_gid;
918 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
919 vap->va_size = vp->v_size;
920 vap->va_atime.tv_sec = ip->i_ffs1_atime;
921 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
922 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
923 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
924 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
925 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
926 vap->va_flags = ip->i_flags;
927 vap->va_gen = ip->i_gen;
928 /* this doesn't belong here */
929 if (vp->v_type == VBLK)
930 vap->va_blocksize = BLKDEV_IOSIZE;
931 else if (vp->v_type == VCHR)
932 vap->va_blocksize = MAXBSIZE;
933 else
934 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
935 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
936 vap->va_type = vp->v_type;
937 vap->va_filerev = ip->i_modrev;
938 return (0);
939 }
940
941 /*
942 * Check to make sure the inode blocks won't choke the buffer
943 * cache, then call ufs_setattr as usual.
944 */
945 int
946 lfs_setattr(void *v)
947 {
948 struct vop_setattr_args /* {
949 struct vnode *a_vp;
950 struct vattr *a_vap;
951 kauth_cred_t a_cred;
952 } */ *ap = v;
953 struct vnode *vp = ap->a_vp;
954
955 lfs_check(vp, LFS_UNUSED_LBN, 0);
956 return ufs_setattr(v);
957 }
958
959 /*
960 * Release the block we hold on lfs_newseg wrapping. Called on file close,
961 * or explicitly from LFCNWRAPGO. Called with the interlock held.
962 */
963 static int
964 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
965 {
966 if (fs->lfs_stoplwp != curlwp)
967 return EBUSY;
968
969 fs->lfs_stoplwp = NULL;
970 cv_signal(&fs->lfs_stopcv);
971
972 KASSERT(fs->lfs_nowrap > 0);
973 if (fs->lfs_nowrap <= 0) {
974 return 0;
975 }
976
977 if (--fs->lfs_nowrap == 0) {
978 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
979 wakeup(&fs->lfs_wrappass);
980 lfs_wakeup_cleaner(fs);
981 }
982 if (waitfor) {
983 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
984 0, &lfs_lock);
985 }
986
987 return 0;
988 }
989
990 /*
991 * Close called
992 */
993 /* ARGSUSED */
994 int
995 lfs_close(void *v)
996 {
997 struct vop_close_args /* {
998 struct vnode *a_vp;
999 int a_fflag;
1000 kauth_cred_t a_cred;
1001 } */ *ap = v;
1002 struct vnode *vp = ap->a_vp;
1003 struct inode *ip = VTOI(vp);
1004 struct lfs *fs = ip->i_lfs;
1005
1006 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1007 fs->lfs_stoplwp == curlwp) {
1008 mutex_enter(&lfs_lock);
1009 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1010 lfs_wrapgo(fs, ip, 0);
1011 mutex_exit(&lfs_lock);
1012 }
1013
1014 if (vp == ip->i_lfs->lfs_ivnode &&
1015 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1016 return 0;
1017
1018 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1019 LFS_ITIMES(ip, NULL, NULL, NULL);
1020 }
1021 return (0);
1022 }
1023
1024 /*
1025 * Close wrapper for special devices.
1026 *
1027 * Update the times on the inode then do device close.
1028 */
1029 int
1030 lfsspec_close(void *v)
1031 {
1032 struct vop_close_args /* {
1033 struct vnode *a_vp;
1034 int a_fflag;
1035 kauth_cred_t a_cred;
1036 } */ *ap = v;
1037 struct vnode *vp;
1038 struct inode *ip;
1039
1040 vp = ap->a_vp;
1041 ip = VTOI(vp);
1042 if (vp->v_usecount > 1) {
1043 LFS_ITIMES(ip, NULL, NULL, NULL);
1044 }
1045 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1046 }
1047
1048 /*
1049 * Close wrapper for fifo's.
1050 *
1051 * Update the times on the inode then do device close.
1052 */
1053 int
1054 lfsfifo_close(void *v)
1055 {
1056 struct vop_close_args /* {
1057 struct vnode *a_vp;
1058 int a_fflag;
1059 kauth_cred_ a_cred;
1060 } */ *ap = v;
1061 struct vnode *vp;
1062 struct inode *ip;
1063
1064 vp = ap->a_vp;
1065 ip = VTOI(vp);
1066 if (ap->a_vp->v_usecount > 1) {
1067 LFS_ITIMES(ip, NULL, NULL, NULL);
1068 }
1069 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1070 }
1071
1072 /*
1073 * Reclaim an inode so that it can be used for other purposes.
1074 */
1075
1076 int
1077 lfs_reclaim(void *v)
1078 {
1079 struct vop_reclaim_args /* {
1080 struct vnode *a_vp;
1081 } */ *ap = v;
1082 struct vnode *vp = ap->a_vp;
1083 struct inode *ip = VTOI(vp);
1084 struct lfs *fs = ip->i_lfs;
1085 int error;
1086
1087 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1088
1089 mutex_enter(&lfs_lock);
1090 LFS_CLR_UINO(ip, IN_ALLMOD);
1091 mutex_exit(&lfs_lock);
1092 if ((error = ufs_reclaim(vp)))
1093 return (error);
1094
1095 /*
1096 * Take us off the paging and/or dirop queues if we were on them.
1097 * We shouldn't be on them.
1098 */
1099 mutex_enter(&lfs_lock);
1100 if (ip->i_flags & IN_PAGING) {
1101 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1102 fs->lfs_fsmnt);
1103 ip->i_flags &= ~IN_PAGING;
1104 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1105 }
1106 if (vp->v_uflag & VU_DIROP) {
1107 panic("reclaimed vnode is VU_DIROP");
1108 vp->v_uflag &= ~VU_DIROP;
1109 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1110 }
1111 mutex_exit(&lfs_lock);
1112
1113 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1114 lfs_deregister_all(vp);
1115 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1116 ip->inode_ext.lfs = NULL;
1117 genfs_node_destroy(vp);
1118 pool_put(&lfs_inode_pool, vp->v_data);
1119 vp->v_data = NULL;
1120 return (0);
1121 }
1122
1123 /*
1124 * Read a block from a storage device.
1125 * In order to avoid reading blocks that are in the process of being
1126 * written by the cleaner---and hence are not mutexed by the normal
1127 * buffer cache / page cache mechanisms---check for collisions before
1128 * reading.
1129 *
1130 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1131 * the active cleaner test.
1132 *
1133 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1134 */
1135 int
1136 lfs_strategy(void *v)
1137 {
1138 struct vop_strategy_args /* {
1139 struct vnode *a_vp;
1140 struct buf *a_bp;
1141 } */ *ap = v;
1142 struct buf *bp;
1143 struct lfs *fs;
1144 struct vnode *vp;
1145 struct inode *ip;
1146 daddr_t tbn;
1147 int i, sn, error, slept;
1148
1149 bp = ap->a_bp;
1150 vp = ap->a_vp;
1151 ip = VTOI(vp);
1152 fs = ip->i_lfs;
1153
1154 /* lfs uses its strategy routine only for read */
1155 KASSERT(bp->b_flags & B_READ);
1156
1157 if (vp->v_type == VBLK || vp->v_type == VCHR)
1158 panic("lfs_strategy: spec");
1159 KASSERT(bp->b_bcount != 0);
1160 if (bp->b_blkno == bp->b_lblkno) {
1161 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1162 NULL);
1163 if (error) {
1164 bp->b_error = error;
1165 bp->b_resid = bp->b_bcount;
1166 biodone(bp);
1167 return (error);
1168 }
1169 if ((long)bp->b_blkno == -1) /* no valid data */
1170 clrbuf(bp);
1171 }
1172 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1173 bp->b_resid = bp->b_bcount;
1174 biodone(bp);
1175 return (0);
1176 }
1177
1178 slept = 1;
1179 mutex_enter(&lfs_lock);
1180 while (slept && fs->lfs_seglock) {
1181 mutex_exit(&lfs_lock);
1182 /*
1183 * Look through list of intervals.
1184 * There will only be intervals to look through
1185 * if the cleaner holds the seglock.
1186 * Since the cleaner is synchronous, we can trust
1187 * the list of intervals to be current.
1188 */
1189 tbn = dbtofsb(fs, bp->b_blkno);
1190 sn = dtosn(fs, tbn);
1191 slept = 0;
1192 for (i = 0; i < fs->lfs_cleanind; i++) {
1193 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1194 tbn >= fs->lfs_cleanint[i]) {
1195 DLOG((DLOG_CLEAN,
1196 "lfs_strategy: ino %d lbn %" PRId64
1197 " ind %d sn %d fsb %" PRIx32
1198 " given sn %d fsb %" PRIx64 "\n",
1199 ip->i_number, bp->b_lblkno, i,
1200 dtosn(fs, fs->lfs_cleanint[i]),
1201 fs->lfs_cleanint[i], sn, tbn));
1202 DLOG((DLOG_CLEAN,
1203 "lfs_strategy: sleeping on ino %d lbn %"
1204 PRId64 "\n", ip->i_number, bp->b_lblkno));
1205 mutex_enter(&lfs_lock);
1206 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1207 /* Cleaner can't wait for itself */
1208 mtsleep(&fs->lfs_iocount,
1209 (PRIBIO + 1) | PNORELOCK,
1210 "clean2", 0,
1211 &lfs_lock);
1212 slept = 1;
1213 break;
1214 } else if (fs->lfs_seglock) {
1215 mtsleep(&fs->lfs_seglock,
1216 (PRIBIO + 1) | PNORELOCK,
1217 "clean1", 0,
1218 &lfs_lock);
1219 slept = 1;
1220 break;
1221 }
1222 mutex_exit(&lfs_lock);
1223 }
1224 }
1225 mutex_enter(&lfs_lock);
1226 }
1227 mutex_exit(&lfs_lock);
1228
1229 vp = ip->i_devvp;
1230 VOP_STRATEGY(vp, bp);
1231 return (0);
1232 }
1233
1234 void
1235 lfs_flush_dirops(struct lfs *fs)
1236 {
1237 struct inode *ip, *nip;
1238 struct vnode *vp;
1239 extern int lfs_dostats;
1240 struct segment *sp;
1241 int waslocked;
1242
1243 ASSERT_MAYBE_SEGLOCK(fs);
1244 KASSERT(fs->lfs_nadirop == 0);
1245
1246 if (fs->lfs_ronly)
1247 return;
1248
1249 mutex_enter(&lfs_lock);
1250 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1251 mutex_exit(&lfs_lock);
1252 return;
1253 } else
1254 mutex_exit(&lfs_lock);
1255
1256 if (lfs_dostats)
1257 ++lfs_stats.flush_invoked;
1258
1259 /*
1260 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1261 * Technically this is a checkpoint (the on-disk state is valid)
1262 * even though we are leaving out all the file data.
1263 */
1264 lfs_imtime(fs);
1265 lfs_seglock(fs, SEGM_CKP);
1266 sp = fs->lfs_sp;
1267
1268 /*
1269 * lfs_writevnodes, optimized to get dirops out of the way.
1270 * Only write dirops, and don't flush files' pages, only
1271 * blocks from the directories.
1272 *
1273 * We don't need to vref these files because they are
1274 * dirops and so hold an extra reference until the
1275 * segunlock clears them of that status.
1276 *
1277 * We don't need to check for IN_ADIROP because we know that
1278 * no dirops are active.
1279 *
1280 */
1281 mutex_enter(&lfs_lock);
1282 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1283 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1284 mutex_exit(&lfs_lock);
1285 vp = ITOV(ip);
1286
1287 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1288
1289 /*
1290 * All writes to directories come from dirops; all
1291 * writes to files' direct blocks go through the page
1292 * cache, which we're not touching. Reads to files
1293 * and/or directories will not be affected by writing
1294 * directory blocks inodes and file inodes. So we don't
1295 * really need to lock. If we don't lock, though,
1296 * make sure that we don't clear IN_MODIFIED
1297 * unnecessarily.
1298 */
1299 if (vp->v_iflag & VI_XLOCK) {
1300 mutex_enter(&lfs_lock);
1301 continue;
1302 }
1303 waslocked = VOP_ISLOCKED(vp);
1304 if (vp->v_type != VREG &&
1305 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1306 lfs_writefile(fs, sp, vp);
1307 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1308 !(ip->i_flag & IN_ALLMOD)) {
1309 mutex_enter(&lfs_lock);
1310 LFS_SET_UINO(ip, IN_MODIFIED);
1311 mutex_exit(&lfs_lock);
1312 }
1313 }
1314 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1315 (void) lfs_writeinode(fs, sp, ip);
1316 mutex_enter(&lfs_lock);
1317 if (waslocked == LK_EXCLOTHER)
1318 LFS_SET_UINO(ip, IN_MODIFIED);
1319 }
1320 mutex_exit(&lfs_lock);
1321 /* We've written all the dirops there are */
1322 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1323 lfs_finalize_fs_seguse(fs);
1324 (void) lfs_writeseg(fs, sp);
1325 lfs_segunlock(fs);
1326 }
1327
1328 /*
1329 * Flush all vnodes for which the pagedaemon has requested pageouts.
1330 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1331 * has just run, this would be an error). If we have to skip a vnode
1332 * for any reason, just skip it; if we have to wait for the cleaner,
1333 * abort. The writer daemon will call us again later.
1334 */
1335 void
1336 lfs_flush_pchain(struct lfs *fs)
1337 {
1338 struct inode *ip, *nip;
1339 struct vnode *vp;
1340 extern int lfs_dostats;
1341 struct segment *sp;
1342 int error;
1343
1344 ASSERT_NO_SEGLOCK(fs);
1345
1346 if (fs->lfs_ronly)
1347 return;
1348
1349 mutex_enter(&lfs_lock);
1350 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1351 mutex_exit(&lfs_lock);
1352 return;
1353 } else
1354 mutex_exit(&lfs_lock);
1355
1356 /* Get dirops out of the way */
1357 lfs_flush_dirops(fs);
1358
1359 if (lfs_dostats)
1360 ++lfs_stats.flush_invoked;
1361
1362 /*
1363 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1364 */
1365 lfs_imtime(fs);
1366 lfs_seglock(fs, 0);
1367 sp = fs->lfs_sp;
1368
1369 /*
1370 * lfs_writevnodes, optimized to clear pageout requests.
1371 * Only write non-dirop files that are in the pageout queue.
1372 * We're very conservative about what we write; we want to be
1373 * fast and async.
1374 */
1375 mutex_enter(&lfs_lock);
1376 top:
1377 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1378 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1379 vp = ITOV(ip);
1380
1381 if (!(ip->i_flags & IN_PAGING))
1382 goto top;
1383
1384 mutex_enter(&vp->v_interlock);
1385 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1386 mutex_exit(&vp->v_interlock);
1387 continue;
1388 }
1389 if (vp->v_type != VREG) {
1390 mutex_exit(&vp->v_interlock);
1391 continue;
1392 }
1393 if (lfs_vref(vp))
1394 continue;
1395 mutex_exit(&lfs_lock);
1396
1397 if (VOP_ISLOCKED(vp)) {
1398 lfs_vunref(vp);
1399 mutex_enter(&lfs_lock);
1400 continue;
1401 }
1402
1403 error = lfs_writefile(fs, sp, vp);
1404 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1405 !(ip->i_flag & IN_ALLMOD)) {
1406 mutex_enter(&lfs_lock);
1407 LFS_SET_UINO(ip, IN_MODIFIED);
1408 mutex_exit(&lfs_lock);
1409 }
1410 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1411 (void) lfs_writeinode(fs, sp, ip);
1412
1413 lfs_vunref(vp);
1414
1415 if (error == EAGAIN) {
1416 lfs_writeseg(fs, sp);
1417 mutex_enter(&lfs_lock);
1418 break;
1419 }
1420 mutex_enter(&lfs_lock);
1421 }
1422 mutex_exit(&lfs_lock);
1423 (void) lfs_writeseg(fs, sp);
1424 lfs_segunlock(fs);
1425 }
1426
1427 /*
1428 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1429 */
1430 int
1431 lfs_fcntl(void *v)
1432 {
1433 struct vop_fcntl_args /* {
1434 struct vnode *a_vp;
1435 u_long a_command;
1436 void * a_data;
1437 int a_fflag;
1438 kauth_cred_t a_cred;
1439 } */ *ap = v;
1440 struct timeval *tvp;
1441 BLOCK_INFO *blkiov;
1442 CLEANERINFO *cip;
1443 SEGUSE *sup;
1444 int blkcnt, error, oclean;
1445 size_t fh_size;
1446 struct lfs_fcntl_markv blkvp;
1447 struct lwp *l;
1448 fsid_t *fsidp;
1449 struct lfs *fs;
1450 struct buf *bp;
1451 fhandle_t *fhp;
1452 daddr_t off;
1453
1454 /* Only respect LFS fcntls on fs root or Ifile */
1455 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1456 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1457 return ufs_fcntl(v);
1458 }
1459
1460 /* Avoid locking a draining lock */
1461 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1462 return ESHUTDOWN;
1463 }
1464
1465 /* LFS control and monitoring fcntls are available only to root */
1466 l = curlwp;
1467 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1468 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1469 NULL)) != 0)
1470 return (error);
1471
1472 fs = VTOI(ap->a_vp)->i_lfs;
1473 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1474
1475 error = 0;
1476 switch (ap->a_command) {
1477 case LFCNSEGWAITALL:
1478 case LFCNSEGWAITALL_COMPAT:
1479 fsidp = NULL;
1480 /* FALLSTHROUGH */
1481 case LFCNSEGWAIT:
1482 case LFCNSEGWAIT_COMPAT:
1483 tvp = (struct timeval *)ap->a_data;
1484 mutex_enter(&lfs_lock);
1485 ++fs->lfs_sleepers;
1486 mutex_exit(&lfs_lock);
1487
1488 error = lfs_segwait(fsidp, tvp);
1489
1490 mutex_enter(&lfs_lock);
1491 if (--fs->lfs_sleepers == 0)
1492 wakeup(&fs->lfs_sleepers);
1493 mutex_exit(&lfs_lock);
1494 return error;
1495
1496 case LFCNBMAPV:
1497 case LFCNMARKV:
1498 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1499
1500 blkcnt = blkvp.blkcnt;
1501 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1502 return (EINVAL);
1503 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1504 if ((error = copyin(blkvp.blkiov, blkiov,
1505 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1506 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1507 return error;
1508 }
1509
1510 mutex_enter(&lfs_lock);
1511 ++fs->lfs_sleepers;
1512 mutex_exit(&lfs_lock);
1513 if (ap->a_command == LFCNBMAPV)
1514 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1515 else /* LFCNMARKV */
1516 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1517 if (error == 0)
1518 error = copyout(blkiov, blkvp.blkiov,
1519 blkcnt * sizeof(BLOCK_INFO));
1520 mutex_enter(&lfs_lock);
1521 if (--fs->lfs_sleepers == 0)
1522 wakeup(&fs->lfs_sleepers);
1523 mutex_exit(&lfs_lock);
1524 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1525 return error;
1526
1527 case LFCNRECLAIM:
1528 /*
1529 * Flush dirops and write Ifile, allowing empty segments
1530 * to be immediately reclaimed.
1531 */
1532 lfs_writer_enter(fs, "pndirop");
1533 off = fs->lfs_offset;
1534 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1535 lfs_flush_dirops(fs);
1536 LFS_CLEANERINFO(cip, fs, bp);
1537 oclean = cip->clean;
1538 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1539 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1540 fs->lfs_sp->seg_flags |= SEGM_PROT;
1541 lfs_segunlock(fs);
1542 lfs_writer_leave(fs);
1543
1544 #ifdef DEBUG
1545 LFS_CLEANERINFO(cip, fs, bp);
1546 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1547 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1548 fs->lfs_offset - off, cip->clean - oclean,
1549 fs->lfs_activesb));
1550 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1551 #endif
1552
1553 return 0;
1554
1555 #ifdef COMPAT_30
1556 case LFCNIFILEFH_COMPAT:
1557 /* Return the filehandle of the Ifile */
1558 if ((error = kauth_authorize_generic(l->l_cred,
1559 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1560 return (error);
1561 fhp = (struct fhandle *)ap->a_data;
1562 fhp->fh_fsid = *fsidp;
1563 fh_size = 16; /* former VFS_MAXFIDSIZ */
1564 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1565 #endif
1566
1567 case LFCNIFILEFH_COMPAT2:
1568 case LFCNIFILEFH:
1569 /* Return the filehandle of the Ifile */
1570 fhp = (struct fhandle *)ap->a_data;
1571 fhp->fh_fsid = *fsidp;
1572 fh_size = sizeof(struct lfs_fhandle) -
1573 offsetof(fhandle_t, fh_fid);
1574 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1575
1576 case LFCNREWIND:
1577 /* Move lfs_offset to the lowest-numbered segment */
1578 return lfs_rewind(fs, *(int *)ap->a_data);
1579
1580 case LFCNINVAL:
1581 /* Mark a segment SEGUSE_INVAL */
1582 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1583 if (sup->su_nbytes > 0) {
1584 brelse(bp, 0);
1585 lfs_unset_inval_all(fs);
1586 return EBUSY;
1587 }
1588 sup->su_flags |= SEGUSE_INVAL;
1589 VOP_BWRITE(bp);
1590 return 0;
1591
1592 case LFCNRESIZE:
1593 /* Resize the filesystem */
1594 return lfs_resize_fs(fs, *(int *)ap->a_data);
1595
1596 case LFCNWRAPSTOP:
1597 case LFCNWRAPSTOP_COMPAT:
1598 /*
1599 * Hold lfs_newseg at segment 0; if requested, sleep until
1600 * the filesystem wraps around. To support external agents
1601 * (dump, fsck-based regression test) that need to look at
1602 * a snapshot of the filesystem, without necessarily
1603 * requiring that all fs activity stops.
1604 */
1605 if (fs->lfs_stoplwp == curlwp)
1606 return EALREADY;
1607
1608 mutex_enter(&lfs_lock);
1609 while (fs->lfs_stoplwp != NULL)
1610 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1611 fs->lfs_stoplwp = curlwp;
1612 if (fs->lfs_nowrap == 0)
1613 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1614 ++fs->lfs_nowrap;
1615 if (*(int *)ap->a_data == 1 ||
1616 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1617 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1618 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1619 "segwrap", 0, &lfs_lock);
1620 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1621 if (error) {
1622 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1623 }
1624 }
1625 mutex_exit(&lfs_lock);
1626 return 0;
1627
1628 case LFCNWRAPGO:
1629 case LFCNWRAPGO_COMPAT:
1630 /*
1631 * Having done its work, the agent wakes up the writer.
1632 * If the argument is 1, it sleeps until a new segment
1633 * is selected.
1634 */
1635 mutex_enter(&lfs_lock);
1636 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1637 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1638 *((int *)ap->a_data)));
1639 mutex_exit(&lfs_lock);
1640 return error;
1641
1642 case LFCNWRAPPASS:
1643 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1644 return EALREADY;
1645 mutex_enter(&lfs_lock);
1646 if (fs->lfs_stoplwp != curlwp) {
1647 mutex_exit(&lfs_lock);
1648 return EALREADY;
1649 }
1650 if (fs->lfs_nowrap == 0) {
1651 mutex_exit(&lfs_lock);
1652 return EBUSY;
1653 }
1654 fs->lfs_wrappass = 1;
1655 wakeup(&fs->lfs_wrappass);
1656 /* Wait for the log to wrap, if asked */
1657 if (*(int *)ap->a_data) {
1658 mutex_enter(&ap->a_vp->v_interlock);
1659 lfs_vref(ap->a_vp);
1660 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1661 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1662 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1663 "segwrap", 0, &lfs_lock);
1664 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1665 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1666 lfs_vunref(ap->a_vp);
1667 }
1668 mutex_exit(&lfs_lock);
1669 return error;
1670
1671 case LFCNWRAPSTATUS:
1672 mutex_enter(&lfs_lock);
1673 *(int *)ap->a_data = fs->lfs_wrapstatus;
1674 mutex_exit(&lfs_lock);
1675 return 0;
1676
1677 default:
1678 return ufs_fcntl(v);
1679 }
1680 return 0;
1681 }
1682
1683 int
1684 lfs_getpages(void *v)
1685 {
1686 struct vop_getpages_args /* {
1687 struct vnode *a_vp;
1688 voff_t a_offset;
1689 struct vm_page **a_m;
1690 int *a_count;
1691 int a_centeridx;
1692 vm_prot_t a_access_type;
1693 int a_advice;
1694 int a_flags;
1695 } */ *ap = v;
1696
1697 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1698 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1699 return EPERM;
1700 }
1701 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1702 mutex_enter(&lfs_lock);
1703 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1704 mutex_exit(&lfs_lock);
1705 }
1706
1707 /*
1708 * we're relying on the fact that genfs_getpages() always read in
1709 * entire filesystem blocks.
1710 */
1711 return genfs_getpages(v);
1712 }
1713
1714 /*
1715 * Wait for a page to become unbusy, possibly printing diagnostic messages
1716 * as well.
1717 *
1718 * Called with vp->v_interlock held; return with it held.
1719 */
1720 static void
1721 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1722 {
1723 if ((pg->flags & PG_BUSY) == 0)
1724 return; /* Nothing to wait for! */
1725
1726 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1727 static struct vm_page *lastpg;
1728
1729 if (label != NULL && pg != lastpg) {
1730 if (pg->owner_tag) {
1731 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1732 curproc->p_pid, curlwp->l_lid, label,
1733 pg, pg->owner, pg->lowner, pg->owner_tag);
1734 } else {
1735 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1736 curproc->p_pid, curlwp->l_lid, label, pg);
1737 }
1738 }
1739 lastpg = pg;
1740 #endif
1741
1742 pg->flags |= PG_WANTED;
1743 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1744 mutex_enter(&vp->v_interlock);
1745 }
1746
1747 /*
1748 * This routine is called by lfs_putpages() when it can't complete the
1749 * write because a page is busy. This means that either (1) someone,
1750 * possibly the pagedaemon, is looking at this page, and will give it up
1751 * presently; or (2) we ourselves are holding the page busy in the
1752 * process of being written (either gathered or actually on its way to
1753 * disk). We don't need to give up the segment lock, but we might need
1754 * to call lfs_writeseg() to expedite the page's journey to disk.
1755 *
1756 * Called with vp->v_interlock held; return with it held.
1757 */
1758 /* #define BUSYWAIT */
1759 static void
1760 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1761 int seglocked, const char *label)
1762 {
1763 #ifndef BUSYWAIT
1764 struct inode *ip = VTOI(vp);
1765 struct segment *sp = fs->lfs_sp;
1766 int count = 0;
1767
1768 if (pg == NULL)
1769 return;
1770
1771 while (pg->flags & PG_BUSY) {
1772 mutex_exit(&vp->v_interlock);
1773 if (sp->cbpp - sp->bpp > 1) {
1774 /* Write gathered pages */
1775 lfs_updatemeta(sp);
1776 lfs_release_finfo(fs);
1777 (void) lfs_writeseg(fs, sp);
1778
1779 /*
1780 * Reinitialize FIP
1781 */
1782 KASSERT(sp->vp == vp);
1783 lfs_acquire_finfo(fs, ip->i_number,
1784 ip->i_gen);
1785 }
1786 ++count;
1787 mutex_enter(&vp->v_interlock);
1788 wait_for_page(vp, pg, label);
1789 }
1790 if (label != NULL && count > 1)
1791 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1792 label, (count > 0 ? "looping, " : ""), count);
1793 #else
1794 preempt(1);
1795 #endif
1796 }
1797
1798 /*
1799 * Make sure that for all pages in every block in the given range,
1800 * either all are dirty or all are clean. If any of the pages
1801 * we've seen so far are dirty, put the vnode on the paging chain,
1802 * and mark it IN_PAGING.
1803 *
1804 * If checkfirst != 0, don't check all the pages but return at the
1805 * first dirty page.
1806 */
1807 static int
1808 check_dirty(struct lfs *fs, struct vnode *vp,
1809 off_t startoffset, off_t endoffset, off_t blkeof,
1810 int flags, int checkfirst, struct vm_page **pgp)
1811 {
1812 int by_list;
1813 struct vm_page *curpg = NULL; /* XXX: gcc */
1814 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1815 off_t soff = 0; /* XXX: gcc */
1816 voff_t off;
1817 int i;
1818 int nonexistent;
1819 int any_dirty; /* number of dirty pages */
1820 int dirty; /* number of dirty pages in a block */
1821 int tdirty;
1822 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1823 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1824
1825 ASSERT_MAYBE_SEGLOCK(fs);
1826 top:
1827 by_list = (vp->v_uobj.uo_npages <=
1828 ((endoffset - startoffset) >> PAGE_SHIFT) *
1829 UVM_PAGE_HASH_PENALTY);
1830 any_dirty = 0;
1831
1832 if (by_list) {
1833 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1834 } else {
1835 soff = startoffset;
1836 }
1837 while (by_list || soff < MIN(blkeof, endoffset)) {
1838 if (by_list) {
1839 /*
1840 * Find the first page in a block. Skip
1841 * blocks outside our area of interest or beyond
1842 * the end of file.
1843 */
1844 if (pages_per_block > 1) {
1845 while (curpg &&
1846 ((curpg->offset & fs->lfs_bmask) ||
1847 curpg->offset >= vp->v_size ||
1848 curpg->offset >= endoffset))
1849 curpg = TAILQ_NEXT(curpg, listq);
1850 }
1851 if (curpg == NULL)
1852 break;
1853 soff = curpg->offset;
1854 }
1855
1856 /*
1857 * Mark all pages in extended range busy; find out if any
1858 * of them are dirty.
1859 */
1860 nonexistent = dirty = 0;
1861 for (i = 0; i == 0 || i < pages_per_block; i++) {
1862 if (by_list && pages_per_block <= 1) {
1863 pgs[i] = pg = curpg;
1864 } else {
1865 off = soff + (i << PAGE_SHIFT);
1866 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1867 if (pg == NULL) {
1868 ++nonexistent;
1869 continue;
1870 }
1871 }
1872 KASSERT(pg != NULL);
1873
1874 /*
1875 * If we're holding the segment lock, we can deadlock
1876 * against a process that has our page and is waiting
1877 * for the cleaner, while the cleaner waits for the
1878 * segment lock. Just bail in that case.
1879 */
1880 if ((pg->flags & PG_BUSY) &&
1881 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1882 if (i > 0)
1883 uvm_page_unbusy(pgs, i);
1884 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1885 if (pgp)
1886 *pgp = pg;
1887 return -1;
1888 }
1889
1890 while (pg->flags & PG_BUSY) {
1891 wait_for_page(vp, pg, NULL);
1892 if (i > 0)
1893 uvm_page_unbusy(pgs, i);
1894 goto top;
1895 }
1896 pg->flags |= PG_BUSY;
1897 UVM_PAGE_OWN(pg, "lfs_putpages");
1898
1899 pmap_page_protect(pg, VM_PROT_NONE);
1900 tdirty = (pmap_clear_modify(pg) ||
1901 (pg->flags & PG_CLEAN) == 0);
1902 dirty += tdirty;
1903 }
1904 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1905 if (by_list) {
1906 curpg = TAILQ_NEXT(curpg, listq);
1907 } else {
1908 soff += fs->lfs_bsize;
1909 }
1910 continue;
1911 }
1912
1913 any_dirty += dirty;
1914 KASSERT(nonexistent == 0);
1915
1916 /*
1917 * If any are dirty make all dirty; unbusy them,
1918 * but if we were asked to clean, wire them so that
1919 * the pagedaemon doesn't bother us about them while
1920 * they're on their way to disk.
1921 */
1922 for (i = 0; i == 0 || i < pages_per_block; i++) {
1923 pg = pgs[i];
1924 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1925 if (dirty) {
1926 pg->flags &= ~PG_CLEAN;
1927 if (flags & PGO_FREE) {
1928 /*
1929 * Wire the page so that
1930 * pdaemon doesn't see it again.
1931 */
1932 mutex_enter(&uvm_pageqlock);
1933 uvm_pagewire(pg);
1934 mutex_exit(&uvm_pageqlock);
1935
1936 /* Suspended write flag */
1937 pg->flags |= PG_DELWRI;
1938 }
1939 }
1940 if (pg->flags & PG_WANTED)
1941 wakeup(pg);
1942 pg->flags &= ~(PG_WANTED|PG_BUSY);
1943 UVM_PAGE_OWN(pg, NULL);
1944 }
1945
1946 if (checkfirst && any_dirty)
1947 break;
1948
1949 if (by_list) {
1950 curpg = TAILQ_NEXT(curpg, listq);
1951 } else {
1952 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1953 }
1954 }
1955
1956 return any_dirty;
1957 }
1958
1959 /*
1960 * lfs_putpages functions like genfs_putpages except that
1961 *
1962 * (1) It needs to bounds-check the incoming requests to ensure that
1963 * they are block-aligned; if they are not, expand the range and
1964 * do the right thing in case, e.g., the requested range is clean
1965 * but the expanded range is dirty.
1966 *
1967 * (2) It needs to explicitly send blocks to be written when it is done.
1968 * If VOP_PUTPAGES is called without the seglock held, we simply take
1969 * the seglock and let lfs_segunlock wait for us.
1970 * XXX There might be a bad situation if we have to flush a vnode while
1971 * XXX lfs_markv is in operation. As of this writing we panic in this
1972 * XXX case.
1973 *
1974 * Assumptions:
1975 *
1976 * (1) The caller does not hold any pages in this vnode busy. If it does,
1977 * there is a danger that when we expand the page range and busy the
1978 * pages we will deadlock.
1979 *
1980 * (2) We are called with vp->v_interlock held; we must return with it
1981 * released.
1982 *
1983 * (3) We don't absolutely have to free pages right away, provided that
1984 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1985 * us a request with PGO_FREE, we take the pages out of the paging
1986 * queue and wake up the writer, which will handle freeing them for us.
1987 *
1988 * We ensure that for any filesystem block, all pages for that
1989 * block are either resident or not, even if those pages are higher
1990 * than EOF; that means that we will be getting requests to free
1991 * "unused" pages above EOF all the time, and should ignore them.
1992 *
1993 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1994 * into has been set up for us by lfs_writefile. If not, we will
1995 * have to handle allocating and/or freeing an finfo entry.
1996 *
1997 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1998 */
1999
2000 /* How many times to loop before we should start to worry */
2001 #define TOOMANY 4
2002
2003 int
2004 lfs_putpages(void *v)
2005 {
2006 int error;
2007 struct vop_putpages_args /* {
2008 struct vnode *a_vp;
2009 voff_t a_offlo;
2010 voff_t a_offhi;
2011 int a_flags;
2012 } */ *ap = v;
2013 struct vnode *vp;
2014 struct inode *ip;
2015 struct lfs *fs;
2016 struct segment *sp;
2017 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2018 off_t off, max_endoffset;
2019 bool seglocked, sync, pagedaemon;
2020 struct vm_page *pg, *busypg;
2021 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2022 #ifdef DEBUG
2023 int debug_n_again, debug_n_dirtyclean;
2024 #endif
2025
2026 vp = ap->a_vp;
2027 ip = VTOI(vp);
2028 fs = ip->i_lfs;
2029 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2030 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2031
2032 /* Putpages does nothing for metadata. */
2033 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2034 mutex_exit(&vp->v_interlock);
2035 return 0;
2036 }
2037
2038 /*
2039 * If there are no pages, don't do anything.
2040 */
2041 if (vp->v_uobj.uo_npages == 0) {
2042 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2043 (vp->v_iflag & VI_ONWORKLST) &&
2044 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2045 vp->v_iflag &= ~VI_WRMAPDIRTY;
2046 vn_syncer_remove_from_worklist(vp);
2047 }
2048 mutex_exit(&vp->v_interlock);
2049
2050 /* Remove us from paging queue, if we were on it */
2051 mutex_enter(&lfs_lock);
2052 if (ip->i_flags & IN_PAGING) {
2053 ip->i_flags &= ~IN_PAGING;
2054 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2055 }
2056 mutex_exit(&lfs_lock);
2057 return 0;
2058 }
2059
2060 blkeof = blkroundup(fs, ip->i_size);
2061
2062 /*
2063 * Ignore requests to free pages past EOF but in the same block
2064 * as EOF, unless the request is synchronous. (If the request is
2065 * sync, it comes from lfs_truncate.)
2066 * XXXUBC Make these pages look "active" so the pagedaemon won't
2067 * XXXUBC bother us with them again.
2068 */
2069 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2070 origoffset = ap->a_offlo;
2071 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2072 pg = uvm_pagelookup(&vp->v_uobj, off);
2073 KASSERT(pg != NULL);
2074 while (pg->flags & PG_BUSY) {
2075 pg->flags |= PG_WANTED;
2076 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2077 "lfsput2", 0);
2078 mutex_enter(&vp->v_interlock);
2079 }
2080 mutex_enter(&uvm_pageqlock);
2081 uvm_pageactivate(pg);
2082 mutex_exit(&uvm_pageqlock);
2083 }
2084 ap->a_offlo = blkeof;
2085 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2086 mutex_exit(&vp->v_interlock);
2087 return 0;
2088 }
2089 }
2090
2091 /*
2092 * Extend page range to start and end at block boundaries.
2093 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2094 */
2095 origoffset = ap->a_offlo;
2096 origendoffset = ap->a_offhi;
2097 startoffset = origoffset & ~(fs->lfs_bmask);
2098 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2099 << fs->lfs_bshift;
2100
2101 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2102 endoffset = max_endoffset;
2103 origendoffset = endoffset;
2104 } else {
2105 origendoffset = round_page(ap->a_offhi);
2106 endoffset = round_page(blkroundup(fs, origendoffset));
2107 }
2108
2109 KASSERT(startoffset > 0 || endoffset >= startoffset);
2110 if (startoffset == endoffset) {
2111 /* Nothing to do, why were we called? */
2112 mutex_exit(&vp->v_interlock);
2113 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2114 PRId64 "\n", startoffset));
2115 return 0;
2116 }
2117
2118 ap->a_offlo = startoffset;
2119 ap->a_offhi = endoffset;
2120
2121 /*
2122 * If not cleaning, just send the pages through genfs_putpages
2123 * to be returned to the pool.
2124 */
2125 if (!(ap->a_flags & PGO_CLEANIT))
2126 return genfs_putpages(v);
2127
2128 /* Set PGO_BUSYFAIL to avoid deadlocks */
2129 ap->a_flags |= PGO_BUSYFAIL;
2130
2131 /*
2132 * Likewise, if we are asked to clean but the pages are not
2133 * dirty, we can just free them using genfs_putpages.
2134 */
2135 #ifdef DEBUG
2136 debug_n_dirtyclean = 0;
2137 #endif
2138 do {
2139 int r;
2140
2141 /* Count the number of dirty pages */
2142 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2143 ap->a_flags, 1, NULL);
2144 if (r < 0) {
2145 /* Pages are busy with another process */
2146 mutex_exit(&vp->v_interlock);
2147 return EDEADLK;
2148 }
2149 if (r > 0) /* Some pages are dirty */
2150 break;
2151
2152 /*
2153 * Sometimes pages are dirtied between the time that
2154 * we check and the time we try to clean them.
2155 * Instruct lfs_gop_write to return EDEADLK in this case
2156 * so we can write them properly.
2157 */
2158 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2159 r = genfs_do_putpages(vp, startoffset, endoffset,
2160 ap->a_flags, &busypg);
2161 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2162 if (r != EDEADLK)
2163 return r;
2164
2165 /* One of the pages was busy. Start over. */
2166 mutex_enter(&vp->v_interlock);
2167 wait_for_page(vp, busypg, "dirtyclean");
2168 #ifdef DEBUG
2169 ++debug_n_dirtyclean;
2170 #endif
2171 } while(1);
2172
2173 #ifdef DEBUG
2174 if (debug_n_dirtyclean > TOOMANY)
2175 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2176 debug_n_dirtyclean);
2177 #endif
2178
2179 /*
2180 * Dirty and asked to clean.
2181 *
2182 * Pagedaemon can't actually write LFS pages; wake up
2183 * the writer to take care of that. The writer will
2184 * notice the pager inode queue and act on that.
2185 */
2186 if (pagedaemon) {
2187 mutex_enter(&lfs_lock);
2188 if (!(ip->i_flags & IN_PAGING)) {
2189 ip->i_flags |= IN_PAGING;
2190 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2191 }
2192 wakeup(&lfs_writer_daemon);
2193 mutex_exit(&lfs_lock);
2194 mutex_exit(&vp->v_interlock);
2195 preempt();
2196 return EWOULDBLOCK;
2197 }
2198
2199 /*
2200 * If this is a file created in a recent dirop, we can't flush its
2201 * inode until the dirop is complete. Drain dirops, then flush the
2202 * filesystem (taking care of any other pending dirops while we're
2203 * at it).
2204 */
2205 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2206 (vp->v_uflag & VU_DIROP)) {
2207 int locked;
2208
2209 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2210 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2211 mutex_exit(&vp->v_interlock);
2212 lfs_writer_enter(fs, "ppdirop");
2213 if (locked)
2214 VOP_UNLOCK(vp, 0); /* XXX why? */
2215
2216 mutex_enter(&lfs_lock);
2217 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2218 mutex_exit(&lfs_lock);
2219
2220 mutex_enter(&vp->v_interlock);
2221 if (locked) {
2222 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2223 mutex_enter(&vp->v_interlock);
2224 }
2225 lfs_writer_leave(fs);
2226
2227 /* XXX the flush should have taken care of this one too! */
2228 }
2229
2230 /*
2231 * This is it. We are going to write some pages. From here on
2232 * down it's all just mechanics.
2233 *
2234 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2235 */
2236 ap->a_flags &= ~PGO_SYNCIO;
2237
2238 /*
2239 * If we've already got the seglock, flush the node and return.
2240 * The FIP has already been set up for us by lfs_writefile,
2241 * and FIP cleanup and lfs_updatemeta will also be done there,
2242 * unless genfs_putpages returns EDEADLK; then we must flush
2243 * what we have, and correct FIP and segment header accounting.
2244 */
2245 get_seglock:
2246 /*
2247 * If we are not called with the segment locked, lock it.
2248 * Account for a new FIP in the segment header, and set sp->vp.
2249 * (This should duplicate the setup at the top of lfs_writefile().)
2250 */
2251 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2252 if (!seglocked) {
2253 mutex_exit(&vp->v_interlock);
2254 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2255 if (error != 0)
2256 return error;
2257 mutex_enter(&vp->v_interlock);
2258 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2259 }
2260 sp = fs->lfs_sp;
2261 KASSERT(sp->vp == NULL);
2262 sp->vp = vp;
2263
2264 /*
2265 * Ensure that the partial segment is marked SS_DIROP if this
2266 * vnode is a DIROP.
2267 */
2268 if (!seglocked && vp->v_uflag & VU_DIROP)
2269 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2270
2271 /*
2272 * Loop over genfs_putpages until all pages are gathered.
2273 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2274 * Whenever we lose the interlock we have to rerun check_dirty, as
2275 * well, since more pages might have been dirtied in our absence.
2276 */
2277 #ifdef DEBUG
2278 debug_n_again = 0;
2279 #endif
2280 do {
2281 busypg = NULL;
2282 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2283 ap->a_flags, 0, &busypg) < 0) {
2284 mutex_exit(&vp->v_interlock);
2285
2286 mutex_enter(&vp->v_interlock);
2287 write_and_wait(fs, vp, busypg, seglocked, NULL);
2288 if (!seglocked) {
2289 lfs_release_finfo(fs);
2290 lfs_segunlock(fs);
2291 }
2292 sp->vp = NULL;
2293 goto get_seglock;
2294 }
2295
2296 busypg = NULL;
2297 error = genfs_do_putpages(vp, startoffset, endoffset,
2298 ap->a_flags, &busypg);
2299
2300 if (error == EDEADLK || error == EAGAIN) {
2301 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2302 " %d ino %d off %x (seg %d)\n", error,
2303 ip->i_number, fs->lfs_offset,
2304 dtosn(fs, fs->lfs_offset)));
2305
2306 mutex_enter(&vp->v_interlock);
2307 write_and_wait(fs, vp, busypg, seglocked, "again");
2308 }
2309 #ifdef DEBUG
2310 ++debug_n_again;
2311 #endif
2312 } while (error == EDEADLK);
2313 #ifdef DEBUG
2314 if (debug_n_again > TOOMANY)
2315 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2316 #endif
2317
2318 KASSERT(sp != NULL && sp->vp == vp);
2319 if (!seglocked) {
2320 sp->vp = NULL;
2321
2322 /* Write indirect blocks as well */
2323 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2324 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2325 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2326
2327 KASSERT(sp->vp == NULL);
2328 sp->vp = vp;
2329 }
2330
2331 /*
2332 * Blocks are now gathered into a segment waiting to be written.
2333 * All that's left to do is update metadata, and write them.
2334 */
2335 lfs_updatemeta(sp);
2336 KASSERT(sp->vp == vp);
2337 sp->vp = NULL;
2338
2339 /*
2340 * If we were called from lfs_writefile, we don't need to clean up
2341 * the FIP or unlock the segment lock. We're done.
2342 */
2343 if (seglocked)
2344 return error;
2345
2346 /* Clean up FIP and send it to disk. */
2347 lfs_release_finfo(fs);
2348 lfs_writeseg(fs, fs->lfs_sp);
2349
2350 /*
2351 * Remove us from paging queue if we wrote all our pages.
2352 */
2353 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2354 mutex_enter(&lfs_lock);
2355 if (ip->i_flags & IN_PAGING) {
2356 ip->i_flags &= ~IN_PAGING;
2357 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2358 }
2359 mutex_exit(&lfs_lock);
2360 }
2361
2362 /*
2363 * XXX - with the malloc/copy writeseg, the pages are freed by now
2364 * even if we don't wait (e.g. if we hold a nested lock). This
2365 * will not be true if we stop using malloc/copy.
2366 */
2367 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2368 lfs_segunlock(fs);
2369
2370 /*
2371 * Wait for v_numoutput to drop to zero. The seglock should
2372 * take care of this, but there is a slight possibility that
2373 * aiodoned might not have got around to our buffers yet.
2374 */
2375 if (sync) {
2376 mutex_enter(&vp->v_interlock);
2377 while (vp->v_numoutput > 0) {
2378 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2379 " num %d\n", ip->i_number, vp->v_numoutput));
2380 cv_wait(&vp->v_cv, &vp->v_interlock);
2381 }
2382 mutex_exit(&vp->v_interlock);
2383 }
2384 return error;
2385 }
2386
2387 /*
2388 * Return the last logical file offset that should be written for this file
2389 * if we're doing a write that ends at "size". If writing, we need to know
2390 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2391 * to know about entire blocks.
2392 */
2393 void
2394 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2395 {
2396 struct inode *ip = VTOI(vp);
2397 struct lfs *fs = ip->i_lfs;
2398 daddr_t olbn, nlbn;
2399
2400 olbn = lblkno(fs, ip->i_size);
2401 nlbn = lblkno(fs, size);
2402 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2403 *eobp = fragroundup(fs, size);
2404 } else {
2405 *eobp = blkroundup(fs, size);
2406 }
2407 }
2408
2409 #ifdef DEBUG
2410 void lfs_dump_vop(void *);
2411
2412 void
2413 lfs_dump_vop(void *v)
2414 {
2415 struct vop_putpages_args /* {
2416 struct vnode *a_vp;
2417 voff_t a_offlo;
2418 voff_t a_offhi;
2419 int a_flags;
2420 } */ *ap = v;
2421
2422 #ifdef DDB
2423 vfs_vnode_print(ap->a_vp, 0, printf);
2424 #endif
2425 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2426 }
2427 #endif
2428
2429 int
2430 lfs_mmap(void *v)
2431 {
2432 struct vop_mmap_args /* {
2433 const struct vnodeop_desc *a_desc;
2434 struct vnode *a_vp;
2435 vm_prot_t a_prot;
2436 kauth_cred_t a_cred;
2437 } */ *ap = v;
2438
2439 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2440 return EOPNOTSUPP;
2441 return ufs_mmap(v);
2442 }
2443