lfs_vnops.c revision 1.153 1 /* $NetBSD: lfs_vnops.c,v 1.153 2005/08/19 02:04:09 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.153 2005/08/19 02:04:09 christos Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
149 { &vop_valloc_desc, lfs_valloc }, /* valloc */
150 { &vop_balloc_desc, lfs_balloc }, /* balloc */
151 { &vop_vfree_desc, lfs_vfree }, /* vfree */
152 { &vop_truncate_desc, lfs_truncate }, /* truncate */
153 { &vop_update_desc, lfs_update }, /* update */
154 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
155 { &vop_getpages_desc, lfs_getpages }, /* getpages */
156 { &vop_putpages_desc, lfs_putpages }, /* putpages */
157 { NULL, NULL }
158 };
159 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
160 { &lfs_vnodeop_p, lfs_vnodeop_entries };
161
162 int (**lfs_specop_p)(void *);
163 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
164 { &vop_default_desc, vn_default_error },
165 { &vop_lookup_desc, spec_lookup }, /* lookup */
166 { &vop_create_desc, spec_create }, /* create */
167 { &vop_mknod_desc, spec_mknod }, /* mknod */
168 { &vop_open_desc, spec_open }, /* open */
169 { &vop_close_desc, lfsspec_close }, /* close */
170 { &vop_access_desc, ufs_access }, /* access */
171 { &vop_getattr_desc, lfs_getattr }, /* getattr */
172 { &vop_setattr_desc, lfs_setattr }, /* setattr */
173 { &vop_read_desc, ufsspec_read }, /* read */
174 { &vop_write_desc, ufsspec_write }, /* write */
175 { &vop_lease_desc, spec_lease_check }, /* lease */
176 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
177 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
178 { &vop_poll_desc, spec_poll }, /* poll */
179 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
180 { &vop_revoke_desc, spec_revoke }, /* revoke */
181 { &vop_mmap_desc, spec_mmap }, /* mmap */
182 { &vop_fsync_desc, spec_fsync }, /* fsync */
183 { &vop_seek_desc, spec_seek }, /* seek */
184 { &vop_remove_desc, spec_remove }, /* remove */
185 { &vop_link_desc, spec_link }, /* link */
186 { &vop_rename_desc, spec_rename }, /* rename */
187 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
188 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
189 { &vop_symlink_desc, spec_symlink }, /* symlink */
190 { &vop_readdir_desc, spec_readdir }, /* readdir */
191 { &vop_readlink_desc, spec_readlink }, /* readlink */
192 { &vop_abortop_desc, spec_abortop }, /* abortop */
193 { &vop_inactive_desc, lfs_inactive }, /* inactive */
194 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
195 { &vop_lock_desc, ufs_lock }, /* lock */
196 { &vop_unlock_desc, ufs_unlock }, /* unlock */
197 { &vop_bmap_desc, spec_bmap }, /* bmap */
198 { &vop_strategy_desc, spec_strategy }, /* strategy */
199 { &vop_print_desc, ufs_print }, /* print */
200 { &vop_islocked_desc, ufs_islocked }, /* islocked */
201 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
202 { &vop_advlock_desc, spec_advlock }, /* advlock */
203 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
204 { &vop_valloc_desc, spec_valloc }, /* valloc */
205 { &vop_vfree_desc, lfs_vfree }, /* vfree */
206 { &vop_truncate_desc, spec_truncate }, /* truncate */
207 { &vop_update_desc, lfs_update }, /* update */
208 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
209 { &vop_getpages_desc, spec_getpages }, /* getpages */
210 { &vop_putpages_desc, spec_putpages }, /* putpages */
211 { NULL, NULL }
212 };
213 const struct vnodeopv_desc lfs_specop_opv_desc =
214 { &lfs_specop_p, lfs_specop_entries };
215
216 int (**lfs_fifoop_p)(void *);
217 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
218 { &vop_default_desc, vn_default_error },
219 { &vop_lookup_desc, fifo_lookup }, /* lookup */
220 { &vop_create_desc, fifo_create }, /* create */
221 { &vop_mknod_desc, fifo_mknod }, /* mknod */
222 { &vop_open_desc, fifo_open }, /* open */
223 { &vop_close_desc, lfsfifo_close }, /* close */
224 { &vop_access_desc, ufs_access }, /* access */
225 { &vop_getattr_desc, lfs_getattr }, /* getattr */
226 { &vop_setattr_desc, lfs_setattr }, /* setattr */
227 { &vop_read_desc, ufsfifo_read }, /* read */
228 { &vop_write_desc, ufsfifo_write }, /* write */
229 { &vop_lease_desc, fifo_lease_check }, /* lease */
230 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
231 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
232 { &vop_poll_desc, fifo_poll }, /* poll */
233 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
234 { &vop_revoke_desc, fifo_revoke }, /* revoke */
235 { &vop_mmap_desc, fifo_mmap }, /* mmap */
236 { &vop_fsync_desc, fifo_fsync }, /* fsync */
237 { &vop_seek_desc, fifo_seek }, /* seek */
238 { &vop_remove_desc, fifo_remove }, /* remove */
239 { &vop_link_desc, fifo_link }, /* link */
240 { &vop_rename_desc, fifo_rename }, /* rename */
241 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
242 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
243 { &vop_symlink_desc, fifo_symlink }, /* symlink */
244 { &vop_readdir_desc, fifo_readdir }, /* readdir */
245 { &vop_readlink_desc, fifo_readlink }, /* readlink */
246 { &vop_abortop_desc, fifo_abortop }, /* abortop */
247 { &vop_inactive_desc, lfs_inactive }, /* inactive */
248 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
249 { &vop_lock_desc, ufs_lock }, /* lock */
250 { &vop_unlock_desc, ufs_unlock }, /* unlock */
251 { &vop_bmap_desc, fifo_bmap }, /* bmap */
252 { &vop_strategy_desc, fifo_strategy }, /* strategy */
253 { &vop_print_desc, ufs_print }, /* print */
254 { &vop_islocked_desc, ufs_islocked }, /* islocked */
255 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
256 { &vop_advlock_desc, fifo_advlock }, /* advlock */
257 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
258 { &vop_valloc_desc, fifo_valloc }, /* valloc */
259 { &vop_vfree_desc, lfs_vfree }, /* vfree */
260 { &vop_truncate_desc, fifo_truncate }, /* truncate */
261 { &vop_update_desc, lfs_update }, /* update */
262 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
263 { &vop_putpages_desc, fifo_putpages }, /* putpages */
264 { NULL, NULL }
265 };
266 const struct vnodeopv_desc lfs_fifoop_opv_desc =
267 { &lfs_fifoop_p, lfs_fifoop_entries };
268
269 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
270
271 /*
272 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
273 */
274 void
275 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
276 {
277 LFS_ITIMES(ip, acc, mod, cre);
278 }
279
280 #define LFS_READWRITE
281 #include <ufs/ufs/ufs_readwrite.c>
282 #undef LFS_READWRITE
283
284 /*
285 * Synch an open file.
286 */
287 /* ARGSUSED */
288 int
289 lfs_fsync(void *v)
290 {
291 struct vop_fsync_args /* {
292 struct vnode *a_vp;
293 struct ucred *a_cred;
294 int a_flags;
295 off_t offlo;
296 off_t offhi;
297 struct proc *a_p;
298 } */ *ap = v;
299 struct vnode *vp = ap->a_vp;
300 int error, wait;
301
302 /*
303 * Trickle sync checks for need to do a checkpoint after possible
304 * activity from the pagedaemon.
305 */
306 if (ap->a_flags & FSYNC_LAZY) {
307 simple_lock(&lfs_subsys_lock);
308 wakeup(&lfs_writer_daemon);
309 simple_unlock(&lfs_subsys_lock);
310 return 0;
311 }
312
313 wait = (ap->a_flags & FSYNC_WAIT);
314 simple_lock(&vp->v_interlock);
315 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
316 round_page(ap->a_offhi),
317 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
318 if (error)
319 return error;
320 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
321 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
322 int l = 0;
323 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
324 ap->a_p->p_ucred, ap->a_p);
325 }
326 if (wait && !VPISEMPTY(vp))
327 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
328
329 return error;
330 }
331
332 /*
333 * Take IN_ADIROP off, then call ufs_inactive.
334 */
335 int
336 lfs_inactive(void *v)
337 {
338 struct vop_inactive_args /* {
339 struct vnode *a_vp;
340 struct proc *a_p;
341 } */ *ap = v;
342
343 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
344
345 lfs_unmark_vnode(ap->a_vp);
346
347 /*
348 * The Ifile is only ever inactivated on unmount.
349 * Streamline this process by not giving it more dirty blocks.
350 */
351 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
352 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
353 VOP_UNLOCK(ap->a_vp, 0);
354 return 0;
355 }
356
357 return ufs_inactive(v);
358 }
359
360 /*
361 * These macros are used to bracket UFS directory ops, so that we can
362 * identify all the pages touched during directory ops which need to
363 * be ordered and flushed atomically, so that they may be recovered.
364 *
365 * Because we have to mark nodes VDIROP in order to prevent
366 * the cache from reclaiming them while a dirop is in progress, we must
367 * also manage the number of nodes so marked (otherwise we can run out).
368 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
369 * is decremented during segment write, when VDIROP is taken off.
370 */
371 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
372 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
373 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
374 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
375 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
376 static int lfs_set_dirop(struct vnode *, struct vnode *);
377
378 static int
379 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
380 {
381 struct lfs *fs;
382 int error;
383
384 KASSERT(VOP_ISLOCKED(dvp));
385 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
386
387 fs = VTOI(dvp)->i_lfs;
388
389 ASSERT_NO_SEGLOCK(fs);
390 /*
391 * LFS_NRESERVE calculates direct and indirect blocks as well
392 * as an inode block; an overestimate in most cases.
393 */
394 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
395 return (error);
396
397 restart:
398 simple_lock(&fs->lfs_interlock);
399 if (fs->lfs_dirops == 0) {
400 simple_unlock(&fs->lfs_interlock);
401 lfs_check(dvp, LFS_UNUSED_LBN, 0);
402 simple_lock(&fs->lfs_interlock);
403 }
404 while (fs->lfs_writer)
405 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
406 &fs->lfs_interlock);
407 simple_lock(&lfs_subsys_lock);
408 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
409 wakeup(&lfs_writer_daemon);
410 simple_unlock(&lfs_subsys_lock);
411 simple_unlock(&fs->lfs_interlock);
412 preempt(1);
413 goto restart;
414 }
415
416 if (lfs_dirvcount > LFS_MAX_DIROP) {
417 simple_unlock(&fs->lfs_interlock);
418 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
419 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
420 if ((error = ltsleep(&lfs_dirvcount,
421 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
422 &lfs_subsys_lock)) != 0) {
423 goto unreserve;
424 }
425 goto restart;
426 }
427 simple_unlock(&lfs_subsys_lock);
428
429 ++fs->lfs_dirops;
430 fs->lfs_doifile = 1;
431 simple_unlock(&fs->lfs_interlock);
432
433 /* Hold a reference so SET_ENDOP will be happy */
434 vref(dvp);
435 if (vp) {
436 vref(vp);
437 MARK_VNODE(vp);
438 }
439
440 MARK_VNODE(dvp);
441 return 0;
442
443 unreserve:
444 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
445 return error;
446 }
447
448 /*
449 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
450 * in getnewvnode(), if we have a stacked filesystem mounted on top
451 * of us.
452 *
453 * NB: this means we have to clear the new vnodes on error. Fortunately
454 * SET_ENDOP is there to do that for us.
455 */
456 static int
457 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
458 {
459 int error;
460 struct lfs *fs;
461
462 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
463 ASSERT_NO_SEGLOCK(fs);
464 if (fs->lfs_ronly)
465 return EROFS;
466 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
467 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
468 dvp, error));
469 return error;
470 }
471 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
472 if (vpp) {
473 ungetnewvnode(*vpp);
474 *vpp = NULL;
475 }
476 return error;
477 }
478 return 0;
479 }
480
481 #define SET_ENDOP_BASE(fs, dvp, str) \
482 do { \
483 simple_lock(&(fs)->lfs_interlock); \
484 --(fs)->lfs_dirops; \
485 if (!(fs)->lfs_dirops) { \
486 if ((fs)->lfs_nadirop) { \
487 panic("SET_ENDOP: %s: no dirops but " \
488 " nadirop=%d", (str), \
489 (fs)->lfs_nadirop); \
490 } \
491 wakeup(&(fs)->lfs_writer); \
492 simple_unlock(&(fs)->lfs_interlock); \
493 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
494 } else \
495 simple_unlock(&(fs)->lfs_interlock); \
496 } while(0)
497 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
498 do { \
499 UNMARK_VNODE(dvp); \
500 if (nvpp && *nvpp) \
501 UNMARK_VNODE(*nvpp); \
502 /* Check for error return to stem vnode leakage */ \
503 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
504 ungetnewvnode(*(nvpp)); \
505 SET_ENDOP_BASE((fs), (dvp), (str)); \
506 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
507 vrele(dvp); \
508 } while(0)
509 #define SET_ENDOP_CREATE_AP(ap, str) \
510 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
511 (ap)->a_vpp, (str))
512 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
513 do { \
514 UNMARK_VNODE(dvp); \
515 if (ovp) \
516 UNMARK_VNODE(ovp); \
517 SET_ENDOP_BASE((fs), (dvp), (str)); \
518 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
519 vrele(dvp); \
520 if (ovp) \
521 vrele(ovp); \
522 } while(0)
523
524 void
525 lfs_mark_vnode(struct vnode *vp)
526 {
527 struct inode *ip = VTOI(vp);
528 struct lfs *fs = ip->i_lfs;
529
530 simple_lock(&fs->lfs_interlock);
531 if (!(ip->i_flag & IN_ADIROP)) {
532 if (!(vp->v_flag & VDIROP)) {
533 (void)lfs_vref(vp);
534 simple_lock(&lfs_subsys_lock);
535 ++lfs_dirvcount;
536 simple_unlock(&lfs_subsys_lock);
537 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
538 vp->v_flag |= VDIROP;
539 }
540 ++fs->lfs_nadirop;
541 ip->i_flag |= IN_ADIROP;
542 } else
543 KASSERT(vp->v_flag & VDIROP);
544 simple_unlock(&fs->lfs_interlock);
545 }
546
547 void
548 lfs_unmark_vnode(struct vnode *vp)
549 {
550 struct inode *ip = VTOI(vp);
551
552 if (ip && (ip->i_flag & IN_ADIROP)) {
553 KASSERT(vp->v_flag & VDIROP);
554 simple_lock(&ip->i_lfs->lfs_interlock);
555 --ip->i_lfs->lfs_nadirop;
556 simple_unlock(&ip->i_lfs->lfs_interlock);
557 ip->i_flag &= ~IN_ADIROP;
558 }
559 }
560
561 int
562 lfs_symlink(void *v)
563 {
564 struct vop_symlink_args /* {
565 struct vnode *a_dvp;
566 struct vnode **a_vpp;
567 struct componentname *a_cnp;
568 struct vattr *a_vap;
569 char *a_target;
570 } */ *ap = v;
571 int error;
572
573 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
574 vput(ap->a_dvp);
575 return error;
576 }
577 error = ufs_symlink(ap);
578 SET_ENDOP_CREATE_AP(ap, "symlink");
579 return (error);
580 }
581
582 int
583 lfs_mknod(void *v)
584 {
585 struct vop_mknod_args /* {
586 struct vnode *a_dvp;
587 struct vnode **a_vpp;
588 struct componentname *a_cnp;
589 struct vattr *a_vap;
590 } */ *ap = v;
591 struct vattr *vap = ap->a_vap;
592 struct vnode **vpp = ap->a_vpp;
593 struct inode *ip;
594 int error;
595 struct mount *mp;
596 ino_t ino;
597
598 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
599 vput(ap->a_dvp);
600 return error;
601 }
602 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
603 ap->a_dvp, vpp, ap->a_cnp);
604
605 /* Either way we're done with the dirop at this point */
606 SET_ENDOP_CREATE_AP(ap, "mknod");
607
608 if (error)
609 return (error);
610
611 ip = VTOI(*vpp);
612 mp = (*vpp)->v_mount;
613 ino = ip->i_number;
614 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
615 if (vap->va_rdev != VNOVAL) {
616 /*
617 * Want to be able to use this to make badblock
618 * inodes, so don't truncate the dev number.
619 */
620 #if 0
621 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
622 UFS_MPNEEDSWAP((*vpp)->v_mount));
623 #else
624 ip->i_ffs1_rdev = vap->va_rdev;
625 #endif
626 }
627
628 /*
629 * Call fsync to write the vnode so that we don't have to deal with
630 * flushing it when it's marked VDIROP|VXLOCK.
631 *
632 * XXX KS - If we can't flush we also can't call vgone(), so must
633 * return. But, that leaves this vnode in limbo, also not good.
634 * Can this ever happen (barring hardware failure)?
635 */
636 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
637 curproc)) != 0) {
638 panic("lfs_mknod: couldn't fsync (ino %llu)",
639 (unsigned long long)ino);
640 /* return (error); */
641 }
642 /*
643 * Remove vnode so that it will be reloaded by VFS_VGET and
644 * checked to see if it is an alias of an existing entry in
645 * the inode cache.
646 */
647 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
648
649 VOP_UNLOCK(*vpp, 0);
650 lfs_vunref(*vpp);
651 (*vpp)->v_type = VNON;
652 vgone(*vpp);
653 error = VFS_VGET(mp, ino, vpp);
654
655 if (error != 0) {
656 *vpp = NULL;
657 return (error);
658 }
659 return (0);
660 }
661
662 int
663 lfs_create(void *v)
664 {
665 struct vop_create_args /* {
666 struct vnode *a_dvp;
667 struct vnode **a_vpp;
668 struct componentname *a_cnp;
669 struct vattr *a_vap;
670 } */ *ap = v;
671 int error;
672
673 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
674 vput(ap->a_dvp);
675 return error;
676 }
677 error = ufs_create(ap);
678 SET_ENDOP_CREATE_AP(ap, "create");
679 return (error);
680 }
681
682 int
683 lfs_mkdir(void *v)
684 {
685 struct vop_mkdir_args /* {
686 struct vnode *a_dvp;
687 struct vnode **a_vpp;
688 struct componentname *a_cnp;
689 struct vattr *a_vap;
690 } */ *ap = v;
691 int error;
692
693 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
694 vput(ap->a_dvp);
695 return error;
696 }
697 error = ufs_mkdir(ap);
698 SET_ENDOP_CREATE_AP(ap, "mkdir");
699 return (error);
700 }
701
702 int
703 lfs_remove(void *v)
704 {
705 struct vop_remove_args /* {
706 struct vnode *a_dvp;
707 struct vnode *a_vp;
708 struct componentname *a_cnp;
709 } */ *ap = v;
710 struct vnode *dvp, *vp;
711 int error;
712
713 dvp = ap->a_dvp;
714 vp = ap->a_vp;
715 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
716 if (dvp == vp)
717 vrele(vp);
718 else
719 vput(vp);
720 vput(dvp);
721 return error;
722 }
723 error = ufs_remove(ap);
724 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
725 return (error);
726 }
727
728 int
729 lfs_rmdir(void *v)
730 {
731 struct vop_rmdir_args /* {
732 struct vnodeop_desc *a_desc;
733 struct vnode *a_dvp;
734 struct vnode *a_vp;
735 struct componentname *a_cnp;
736 } */ *ap = v;
737 struct vnode *vp;
738 int error;
739
740 vp = ap->a_vp;
741 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
742 vrele(ap->a_dvp);
743 if (ap->a_vp != ap->a_dvp)
744 VOP_UNLOCK(ap->a_dvp, 0);
745 vput(vp);
746 return error;
747 }
748 error = ufs_rmdir(ap);
749 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
750 return (error);
751 }
752
753 int
754 lfs_link(void *v)
755 {
756 struct vop_link_args /* {
757 struct vnode *a_dvp;
758 struct vnode *a_vp;
759 struct componentname *a_cnp;
760 } */ *ap = v;
761 int error;
762 struct vnode **vpp = NULL;
763
764 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
765 vput(ap->a_dvp);
766 return error;
767 }
768 error = ufs_link(ap);
769 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
770 return (error);
771 }
772
773 int
774 lfs_rename(void *v)
775 {
776 struct vop_rename_args /* {
777 struct vnode *a_fdvp;
778 struct vnode *a_fvp;
779 struct componentname *a_fcnp;
780 struct vnode *a_tdvp;
781 struct vnode *a_tvp;
782 struct componentname *a_tcnp;
783 } */ *ap = v;
784 struct vnode *tvp, *fvp, *tdvp, *fdvp;
785 struct componentname *tcnp, *fcnp;
786 int error;
787 struct lfs *fs;
788
789 fs = VTOI(ap->a_fdvp)->i_lfs;
790 tvp = ap->a_tvp;
791 tdvp = ap->a_tdvp;
792 tcnp = ap->a_tcnp;
793 fvp = ap->a_fvp;
794 fdvp = ap->a_fdvp;
795 fcnp = ap->a_fcnp;
796
797 /*
798 * Check for cross-device rename.
799 * If it is, we don't want to set dirops, just error out.
800 * (In particular note that MARK_VNODE(tdvp) will DTWT on
801 * a cross-device rename.)
802 *
803 * Copied from ufs_rename.
804 */
805 if ((fvp->v_mount != tdvp->v_mount) ||
806 (tvp && (fvp->v_mount != tvp->v_mount))) {
807 error = EXDEV;
808 goto errout;
809 }
810
811 /*
812 * Check to make sure we're not renaming a vnode onto itself
813 * (deleting a hard link by renaming one name onto another);
814 * if we are we can't recursively call VOP_REMOVE since that
815 * would leave us with an unaccounted-for number of live dirops.
816 *
817 * Inline the relevant section of ufs_rename here, *before*
818 * calling SET_DIROP_REMOVE.
819 */
820 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
821 (VTOI(tdvp)->i_flags & APPEND))) {
822 error = EPERM;
823 goto errout;
824 }
825 if (fvp == tvp) {
826 if (fvp->v_type == VDIR) {
827 error = EINVAL;
828 goto errout;
829 }
830
831 /* Release destination completely. */
832 VOP_ABORTOP(tdvp, tcnp);
833 vput(tdvp);
834 vput(tvp);
835
836 /* Delete source. */
837 vrele(fvp);
838 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
839 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
840 fcnp->cn_nameiop = DELETE;
841 if ((error = relookup(fdvp, &fvp, fcnp))){
842 /* relookup blew away fdvp */
843 return (error);
844 }
845 return (VOP_REMOVE(fdvp, fvp, fcnp));
846 }
847
848 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
849 goto errout;
850 MARK_VNODE(fdvp);
851 MARK_VNODE(fvp);
852
853 error = ufs_rename(ap);
854 UNMARK_VNODE(fdvp);
855 UNMARK_VNODE(fvp);
856 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
857 return (error);
858
859 errout:
860 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
861 if (tdvp == tvp)
862 vrele(tdvp);
863 else
864 vput(tdvp);
865 if (tvp)
866 vput(tvp);
867 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
868 vrele(fdvp);
869 vrele(fvp);
870 return (error);
871 }
872
873 /* XXX hack to avoid calling ITIMES in getattr */
874 int
875 lfs_getattr(void *v)
876 {
877 struct vop_getattr_args /* {
878 struct vnode *a_vp;
879 struct vattr *a_vap;
880 struct ucred *a_cred;
881 struct proc *a_p;
882 } */ *ap = v;
883 struct vnode *vp = ap->a_vp;
884 struct inode *ip = VTOI(vp);
885 struct vattr *vap = ap->a_vap;
886 struct lfs *fs = ip->i_lfs;
887 /*
888 * Copy from inode table
889 */
890 vap->va_fsid = ip->i_dev;
891 vap->va_fileid = ip->i_number;
892 vap->va_mode = ip->i_mode & ~IFMT;
893 vap->va_nlink = ip->i_nlink;
894 vap->va_uid = ip->i_uid;
895 vap->va_gid = ip->i_gid;
896 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
897 vap->va_size = vp->v_size;
898 vap->va_atime.tv_sec = ip->i_ffs1_atime;
899 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
900 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
901 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
902 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
903 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
904 vap->va_flags = ip->i_flags;
905 vap->va_gen = ip->i_gen;
906 /* this doesn't belong here */
907 if (vp->v_type == VBLK)
908 vap->va_blocksize = BLKDEV_IOSIZE;
909 else if (vp->v_type == VCHR)
910 vap->va_blocksize = MAXBSIZE;
911 else
912 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
913 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
914 vap->va_type = vp->v_type;
915 vap->va_filerev = ip->i_modrev;
916 return (0);
917 }
918
919 /*
920 * Check to make sure the inode blocks won't choke the buffer
921 * cache, then call ufs_setattr as usual.
922 */
923 int
924 lfs_setattr(void *v)
925 {
926 struct vop_setattr_args /* {
927 struct vnode *a_vp;
928 struct vattr *a_vap;
929 struct ucred *a_cred;
930 struct proc *a_p;
931 } */ *ap = v;
932 struct vnode *vp = ap->a_vp;
933
934 lfs_check(vp, LFS_UNUSED_LBN, 0);
935 return ufs_setattr(v);
936 }
937
938 /*
939 * Close called
940 *
941 * XXX -- we were using ufs_close, but since it updates the
942 * times on the inode, we might need to bump the uinodes
943 * count.
944 */
945 /* ARGSUSED */
946 int
947 lfs_close(void *v)
948 {
949 struct vop_close_args /* {
950 struct vnode *a_vp;
951 int a_fflag;
952 struct ucred *a_cred;
953 struct proc *a_p;
954 } */ *ap = v;
955 struct vnode *vp = ap->a_vp;
956 struct inode *ip = VTOI(vp);
957 struct timespec ts;
958
959 if (vp == ip->i_lfs->lfs_ivnode &&
960 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
961 return 0;
962
963 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
964 TIMEVAL_TO_TIMESPEC(&time, &ts);
965 LFS_ITIMES(ip, &ts, &ts, &ts);
966 }
967 return (0);
968 }
969
970 /*
971 * Close wrapper for special devices.
972 *
973 * Update the times on the inode then do device close.
974 */
975 int
976 lfsspec_close(void *v)
977 {
978 struct vop_close_args /* {
979 struct vnode *a_vp;
980 int a_fflag;
981 struct ucred *a_cred;
982 struct proc *a_p;
983 } */ *ap = v;
984 struct vnode *vp;
985 struct inode *ip;
986 struct timespec ts;
987
988 vp = ap->a_vp;
989 ip = VTOI(vp);
990 if (vp->v_usecount > 1) {
991 TIMEVAL_TO_TIMESPEC(&time, &ts);
992 LFS_ITIMES(ip, &ts, &ts, &ts);
993 }
994 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
995 }
996
997 /*
998 * Close wrapper for fifo's.
999 *
1000 * Update the times on the inode then do device close.
1001 */
1002 int
1003 lfsfifo_close(void *v)
1004 {
1005 struct vop_close_args /* {
1006 struct vnode *a_vp;
1007 int a_fflag;
1008 struct ucred *a_cred;
1009 struct proc *a_p;
1010 } */ *ap = v;
1011 struct vnode *vp;
1012 struct inode *ip;
1013 struct timespec ts;
1014
1015 vp = ap->a_vp;
1016 ip = VTOI(vp);
1017 if (ap->a_vp->v_usecount > 1) {
1018 TIMEVAL_TO_TIMESPEC(&time, &ts);
1019 LFS_ITIMES(ip, &ts, &ts, &ts);
1020 }
1021 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1022 }
1023
1024 /*
1025 * Reclaim an inode so that it can be used for other purposes.
1026 */
1027
1028 int
1029 lfs_reclaim(void *v)
1030 {
1031 struct vop_reclaim_args /* {
1032 struct vnode *a_vp;
1033 struct proc *a_p;
1034 } */ *ap = v;
1035 struct vnode *vp = ap->a_vp;
1036 struct inode *ip = VTOI(vp);
1037 int error;
1038
1039 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1040
1041 LFS_CLR_UINO(ip, IN_ALLMOD);
1042 if ((error = ufs_reclaim(vp, ap->a_p)))
1043 return (error);
1044 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1045 lfs_deregister_all(vp);
1046 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1047 ip->inode_ext.lfs = NULL;
1048 pool_put(&lfs_inode_pool, vp->v_data);
1049 vp->v_data = NULL;
1050 return (0);
1051 }
1052
1053 /*
1054 * Read a block from a storage device.
1055 * In order to avoid reading blocks that are in the process of being
1056 * written by the cleaner---and hence are not mutexed by the normal
1057 * buffer cache / page cache mechanisms---check for collisions before
1058 * reading.
1059 *
1060 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1061 * the active cleaner test.
1062 *
1063 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1064 */
1065 int
1066 lfs_strategy(void *v)
1067 {
1068 struct vop_strategy_args /* {
1069 struct vnode *a_vp;
1070 struct buf *a_bp;
1071 } */ *ap = v;
1072 struct buf *bp;
1073 struct lfs *fs;
1074 struct vnode *vp;
1075 struct inode *ip;
1076 daddr_t tbn;
1077 int i, sn, error, slept;
1078
1079 bp = ap->a_bp;
1080 vp = ap->a_vp;
1081 ip = VTOI(vp);
1082 fs = ip->i_lfs;
1083
1084 /* lfs uses its strategy routine only for read */
1085 KASSERT(bp->b_flags & B_READ);
1086
1087 if (vp->v_type == VBLK || vp->v_type == VCHR)
1088 panic("lfs_strategy: spec");
1089 KASSERT(bp->b_bcount != 0);
1090 if (bp->b_blkno == bp->b_lblkno) {
1091 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1092 NULL);
1093 if (error) {
1094 bp->b_error = error;
1095 bp->b_flags |= B_ERROR;
1096 biodone(bp);
1097 return (error);
1098 }
1099 if ((long)bp->b_blkno == -1) /* no valid data */
1100 clrbuf(bp);
1101 }
1102 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1103 biodone(bp);
1104 return (0);
1105 }
1106
1107 slept = 1;
1108 simple_lock(&fs->lfs_interlock);
1109 while (slept && fs->lfs_seglock) {
1110 simple_unlock(&fs->lfs_interlock);
1111 /*
1112 * Look through list of intervals.
1113 * There will only be intervals to look through
1114 * if the cleaner holds the seglock.
1115 * Since the cleaner is synchronous, we can trust
1116 * the list of intervals to be current.
1117 */
1118 tbn = dbtofsb(fs, bp->b_blkno);
1119 sn = dtosn(fs, tbn);
1120 slept = 0;
1121 for (i = 0; i < fs->lfs_cleanind; i++) {
1122 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1123 tbn >= fs->lfs_cleanint[i]) {
1124 DLOG((DLOG_CLEAN,
1125 "lfs_strategy: ino %d lbn %" PRId64
1126 " ind %d sn %d fsb %" PRIx32
1127 " given sn %d fsb %" PRIx64 "\n",
1128 ip->i_number, bp->b_lblkno, i,
1129 dtosn(fs, fs->lfs_cleanint[i]),
1130 fs->lfs_cleanint[i], sn, tbn));
1131 DLOG((DLOG_CLEAN,
1132 "lfs_strategy: sleeping on ino %d lbn %"
1133 PRId64 "\n", ip->i_number, bp->b_lblkno));
1134 simple_lock(&fs->lfs_interlock);
1135 if (fs->lfs_seglock)
1136 ltsleep(&fs->lfs_seglock,
1137 (PRIBIO + 1) | PNORELOCK,
1138 "lfs_strategy", 0,
1139 &fs->lfs_interlock);
1140 /* Things may be different now; start over. */
1141 slept = 1;
1142 break;
1143 }
1144 }
1145 simple_lock(&fs->lfs_interlock);
1146 }
1147 simple_unlock(&fs->lfs_interlock);
1148
1149 vp = ip->i_devvp;
1150 VOP_STRATEGY(vp, bp);
1151 return (0);
1152 }
1153
1154 static void
1155 lfs_flush_dirops(struct lfs *fs)
1156 {
1157 struct inode *ip, *nip;
1158 struct vnode *vp;
1159 extern int lfs_dostats;
1160 struct segment *sp;
1161 int needunlock;
1162
1163 ASSERT_NO_SEGLOCK(fs);
1164
1165 if (fs->lfs_ronly)
1166 return;
1167
1168 simple_lock(&fs->lfs_interlock);
1169 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1170 simple_unlock(&fs->lfs_interlock);
1171 return;
1172 } else
1173 simple_unlock(&fs->lfs_interlock);
1174
1175 if (lfs_dostats)
1176 ++lfs_stats.flush_invoked;
1177
1178 /*
1179 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1180 * Technically this is a checkpoint (the on-disk state is valid)
1181 * even though we are leaving out all the file data.
1182 */
1183 lfs_imtime(fs);
1184 lfs_seglock(fs, SEGM_CKP);
1185 sp = fs->lfs_sp;
1186
1187 /*
1188 * lfs_writevnodes, optimized to get dirops out of the way.
1189 * Only write dirops, and don't flush files' pages, only
1190 * blocks from the directories.
1191 *
1192 * We don't need to vref these files because they are
1193 * dirops and so hold an extra reference until the
1194 * segunlock clears them of that status.
1195 *
1196 * We don't need to check for IN_ADIROP because we know that
1197 * no dirops are active.
1198 *
1199 */
1200 simple_lock(&fs->lfs_interlock);
1201 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1202 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1203 simple_unlock(&fs->lfs_interlock);
1204 vp = ITOV(ip);
1205
1206 /*
1207 * All writes to directories come from dirops; all
1208 * writes to files' direct blocks go through the page
1209 * cache, which we're not touching. Reads to files
1210 * and/or directories will not be affected by writing
1211 * directory blocks inodes and file inodes. So we don't
1212 * really need to lock. If we don't lock, though,
1213 * make sure that we don't clear IN_MODIFIED
1214 * unnecessarily.
1215 */
1216 if (vp->v_flag & VXLOCK)
1217 continue;
1218 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1219 needunlock = 1;
1220 } else {
1221 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1222 VTOI(vp)->i_number));
1223 needunlock = 0;
1224 }
1225 if (vp->v_type != VREG &&
1226 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1227 lfs_writefile(fs, sp, vp);
1228 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1229 !(ip->i_flag & IN_ALLMOD)) {
1230 LFS_SET_UINO(ip, IN_MODIFIED);
1231 }
1232 }
1233 (void) lfs_writeinode(fs, sp, ip);
1234 if (needunlock)
1235 VOP_UNLOCK(vp, 0);
1236 else
1237 LFS_SET_UINO(ip, IN_MODIFIED);
1238 simple_lock(&fs->lfs_interlock);
1239 }
1240 simple_unlock(&fs->lfs_interlock);
1241 /* We've written all the dirops there are */
1242 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1243 (void) lfs_writeseg(fs, sp);
1244 lfs_segunlock(fs);
1245 }
1246
1247 /*
1248 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1249 */
1250 int
1251 lfs_fcntl(void *v)
1252 {
1253 struct vop_fcntl_args /* {
1254 struct vnode *a_vp;
1255 u_long a_command;
1256 caddr_t a_data;
1257 int a_fflag;
1258 struct ucred *a_cred;
1259 struct proc *a_p;
1260 } */ *ap = v;
1261 struct timeval *tvp;
1262 BLOCK_INFO *blkiov;
1263 CLEANERINFO *cip;
1264 SEGUSE *sup;
1265 int blkcnt, error, oclean;
1266 struct lfs_fcntl_markv blkvp;
1267 fsid_t *fsidp;
1268 struct lfs *fs;
1269 struct buf *bp;
1270 fhandle_t *fhp;
1271 daddr_t off;
1272
1273 /* Only respect LFS fcntls on fs root or Ifile */
1274 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1275 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1276 return ufs_fcntl(v);
1277 }
1278
1279 /* Avoid locking a draining lock */
1280 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1281 return ESHUTDOWN;
1282 }
1283
1284 fs = VTOI(ap->a_vp)->i_lfs;
1285 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1286
1287 switch (ap->a_command) {
1288 case LFCNSEGWAITALL:
1289 case LFCNSEGWAITALL_COMPAT:
1290 fsidp = NULL;
1291 /* FALLSTHROUGH */
1292 case LFCNSEGWAIT:
1293 case LFCNSEGWAIT_COMPAT:
1294 tvp = (struct timeval *)ap->a_data;
1295 simple_lock(&fs->lfs_interlock);
1296 ++fs->lfs_sleepers;
1297 simple_unlock(&fs->lfs_interlock);
1298 VOP_UNLOCK(ap->a_vp, 0);
1299
1300 error = lfs_segwait(fsidp, tvp);
1301
1302 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1303 simple_lock(&fs->lfs_interlock);
1304 if (--fs->lfs_sleepers == 0)
1305 wakeup(&fs->lfs_sleepers);
1306 simple_unlock(&fs->lfs_interlock);
1307 return error;
1308
1309 case LFCNBMAPV:
1310 case LFCNMARKV:
1311 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1312 return (error);
1313 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1314
1315 blkcnt = blkvp.blkcnt;
1316 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1317 return (EINVAL);
1318 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1319 if ((error = copyin(blkvp.blkiov, blkiov,
1320 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1321 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1322 return error;
1323 }
1324
1325 simple_lock(&fs->lfs_interlock);
1326 ++fs->lfs_sleepers;
1327 simple_unlock(&fs->lfs_interlock);
1328 VOP_UNLOCK(ap->a_vp, 0);
1329 if (ap->a_command == LFCNBMAPV)
1330 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1331 else /* LFCNMARKV */
1332 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1333 if (error == 0)
1334 error = copyout(blkiov, blkvp.blkiov,
1335 blkcnt * sizeof(BLOCK_INFO));
1336 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1337 simple_lock(&fs->lfs_interlock);
1338 if (--fs->lfs_sleepers == 0)
1339 wakeup(&fs->lfs_sleepers);
1340 simple_unlock(&fs->lfs_interlock);
1341 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1342 return error;
1343
1344 case LFCNRECLAIM:
1345 /*
1346 * Flush dirops and write Ifile, allowing empty segments
1347 * to be immediately reclaimed.
1348 */
1349 VOP_UNLOCK(ap->a_vp, 0);
1350 lfs_writer_enter(fs, "pndirop");
1351 off = fs->lfs_offset;
1352 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1353 lfs_flush_dirops(fs);
1354 LFS_CLEANERINFO(cip, fs, bp);
1355 oclean = cip->clean;
1356 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1357 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1358 lfs_segunlock(fs);
1359 lfs_writer_leave(fs);
1360
1361 #ifdef DEBUG
1362 LFS_CLEANERINFO(cip, fs, bp);
1363 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1364 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1365 fs->lfs_offset - off, cip->clean - oclean,
1366 fs->lfs_activesb));
1367 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1368 #endif
1369
1370 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1371 return 0;
1372
1373 case LFCNIFILEFH:
1374 /* Return the filehandle of the Ifile */
1375 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1376 return (error);
1377 fhp = (struct fhandle *)ap->a_data;
1378 fhp->fh_fsid = *fsidp;
1379 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1380
1381 case LFCNREWIND:
1382 /* Move lfs_offset to the lowest-numbered segment */
1383 return lfs_rewind(fs, *(int *)ap->a_data);
1384
1385 case LFCNINVAL:
1386 /* Mark a segment SEGUSE_INVAL */
1387 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1388 if (sup->su_nbytes > 0) {
1389 brelse(bp);
1390 lfs_unset_inval_all(fs);
1391 return EBUSY;
1392 }
1393 sup->su_flags |= SEGUSE_INVAL;
1394 VOP_BWRITE(bp);
1395 return 0;
1396
1397 case LFCNRESIZE:
1398 /* Resize the filesystem */
1399 return lfs_resize_fs(fs, *(int *)ap->a_data);
1400
1401 default:
1402 return ufs_fcntl(v);
1403 }
1404 return 0;
1405 }
1406
1407 int
1408 lfs_getpages(void *v)
1409 {
1410 struct vop_getpages_args /* {
1411 struct vnode *a_vp;
1412 voff_t a_offset;
1413 struct vm_page **a_m;
1414 int *a_count;
1415 int a_centeridx;
1416 vm_prot_t a_access_type;
1417 int a_advice;
1418 int a_flags;
1419 } */ *ap = v;
1420
1421 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1422 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1423 return EPERM;
1424 }
1425 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1426 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1427 }
1428
1429 /*
1430 * we're relying on the fact that genfs_getpages() always read in
1431 * entire filesystem blocks.
1432 */
1433 return genfs_getpages(v);
1434 }
1435
1436 /*
1437 * Make sure that for all pages in every block in the given range,
1438 * either all are dirty or all are clean. If any of the pages
1439 * we've seen so far are dirty, put the vnode on the paging chain,
1440 * and mark it IN_PAGING.
1441 *
1442 * If checkfirst != 0, don't check all the pages but return at the
1443 * first dirty page.
1444 */
1445 static int
1446 check_dirty(struct lfs *fs, struct vnode *vp,
1447 off_t startoffset, off_t endoffset, off_t blkeof,
1448 int flags, int checkfirst)
1449 {
1450 int by_list;
1451 struct vm_page *curpg = NULL; /* XXX: gcc */
1452 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1453 off_t soff = 0; /* XXX: gcc */
1454 voff_t off;
1455 int i;
1456 int nonexistent;
1457 int any_dirty; /* number of dirty pages */
1458 int dirty; /* number of dirty pages in a block */
1459 int tdirty;
1460 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1461
1462 ASSERT_MAYBE_SEGLOCK(fs);
1463 top:
1464 by_list = (vp->v_uobj.uo_npages <=
1465 ((endoffset - startoffset) >> PAGE_SHIFT) *
1466 UVM_PAGE_HASH_PENALTY);
1467 any_dirty = 0;
1468
1469 if (by_list) {
1470 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1471 } else {
1472 soff = startoffset;
1473 }
1474 while (by_list || soff < MIN(blkeof, endoffset)) {
1475 if (by_list) {
1476 /*
1477 * Find the first page in a block. Skip
1478 * blocks outside our area of interest or beyond
1479 * the end of file.
1480 */
1481 if (pages_per_block > 1) {
1482 while (curpg &&
1483 ((curpg->offset & fs->lfs_bmask) ||
1484 curpg->offset >= vp->v_size ||
1485 curpg->offset >= endoffset))
1486 curpg = TAILQ_NEXT(curpg, listq);
1487 }
1488 if (curpg == NULL)
1489 break;
1490 soff = curpg->offset;
1491 }
1492
1493 /*
1494 * Mark all pages in extended range busy; find out if any
1495 * of them are dirty.
1496 */
1497 nonexistent = dirty = 0;
1498 for (i = 0; i == 0 || i < pages_per_block; i++) {
1499 if (by_list && pages_per_block <= 1) {
1500 pgs[i] = pg = curpg;
1501 } else {
1502 off = soff + (i << PAGE_SHIFT);
1503 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1504 if (pg == NULL) {
1505 ++nonexistent;
1506 continue;
1507 }
1508 }
1509 KASSERT(pg != NULL);
1510 while (pg->flags & PG_BUSY) {
1511 pg->flags |= PG_WANTED;
1512 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1513 "lfsput", 0);
1514 simple_lock(&vp->v_interlock);
1515 if (by_list) {
1516 if (i > 0)
1517 uvm_page_unbusy(pgs, i);
1518 goto top;
1519 }
1520 }
1521 pg->flags |= PG_BUSY;
1522 UVM_PAGE_OWN(pg, "lfs_putpages");
1523
1524 pmap_page_protect(pg, VM_PROT_NONE);
1525 tdirty = (pmap_clear_modify(pg) ||
1526 (pg->flags & PG_CLEAN) == 0);
1527 dirty += tdirty;
1528 }
1529 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1530 if (by_list) {
1531 curpg = TAILQ_NEXT(curpg, listq);
1532 } else {
1533 soff += fs->lfs_bsize;
1534 }
1535 continue;
1536 }
1537
1538 any_dirty += dirty;
1539 KASSERT(nonexistent == 0);
1540
1541 /*
1542 * If any are dirty make all dirty; unbusy them,
1543 * but if we were asked to clean, wire them so that
1544 * the pagedaemon doesn't bother us about them while
1545 * they're on their way to disk.
1546 */
1547 for (i = 0; i == 0 || i < pages_per_block; i++) {
1548 pg = pgs[i];
1549 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1550 if (dirty) {
1551 pg->flags &= ~PG_CLEAN;
1552 if (flags & PGO_FREE) {
1553 /*
1554 * Wire the page so that
1555 * pdaemon doesn't see it again.
1556 */
1557 uvm_lock_pageq();
1558 uvm_pagewire(pg);
1559 uvm_unlock_pageq();
1560
1561 /* Suspended write flag */
1562 pg->flags |= PG_DELWRI;
1563 }
1564 }
1565 if (pg->flags & PG_WANTED)
1566 wakeup(pg);
1567 pg->flags &= ~(PG_WANTED|PG_BUSY);
1568 UVM_PAGE_OWN(pg, NULL);
1569 }
1570
1571 if (checkfirst && any_dirty)
1572 break;
1573
1574 if (by_list) {
1575 curpg = TAILQ_NEXT(curpg, listq);
1576 } else {
1577 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1578 }
1579 }
1580
1581 /*
1582 * If any pages were dirty, mark this inode as "pageout requested",
1583 * and put it on the paging queue.
1584 * XXXUBC locking (check locking on dchainhd too)
1585 */
1586 #ifdef notyet
1587 if (any_dirty) {
1588 if (!(ip->i_flags & IN_PAGING)) {
1589 ip->i_flags |= IN_PAGING;
1590 simple_lock(&fs->lfs_interlock);
1591 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1592 simple_unlock(&fs->lfs_interlock);
1593 }
1594 }
1595 #endif
1596 return any_dirty;
1597 }
1598
1599 /*
1600 * lfs_putpages functions like genfs_putpages except that
1601 *
1602 * (1) It needs to bounds-check the incoming requests to ensure that
1603 * they are block-aligned; if they are not, expand the range and
1604 * do the right thing in case, e.g., the requested range is clean
1605 * but the expanded range is dirty.
1606 * (2) It needs to explicitly send blocks to be written when it is done.
1607 * VOP_PUTPAGES is not ever called with the seglock held, so
1608 * we simply take the seglock and let lfs_segunlock wait for us.
1609 * XXX Actually we can be called with the seglock held, if we have
1610 * XXX to flush a vnode while lfs_markv is in operation. As of this
1611 * XXX writing we panic in this case.
1612 *
1613 * Assumptions:
1614 *
1615 * (1) The caller does not hold any pages in this vnode busy. If it does,
1616 * there is a danger that when we expand the page range and busy the
1617 * pages we will deadlock.
1618 * (2) We are called with vp->v_interlock held; we must return with it
1619 * released.
1620 * (3) We don't absolutely have to free pages right away, provided that
1621 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1622 * us a request with PGO_FREE, we take the pages out of the paging
1623 * queue and wake up the writer, which will handle freeing them for us.
1624 *
1625 * We ensure that for any filesystem block, all pages for that
1626 * block are either resident or not, even if those pages are higher
1627 * than EOF; that means that we will be getting requests to free
1628 * "unused" pages above EOF all the time, and should ignore them.
1629 *
1630 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1631 */
1632
1633 int
1634 lfs_putpages(void *v)
1635 {
1636 int error;
1637 struct vop_putpages_args /* {
1638 struct vnode *a_vp;
1639 voff_t a_offlo;
1640 voff_t a_offhi;
1641 int a_flags;
1642 } */ *ap = v;
1643 struct vnode *vp;
1644 struct inode *ip;
1645 struct lfs *fs;
1646 struct segment *sp;
1647 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1648 off_t off, max_endoffset;
1649 int s;
1650 boolean_t seglocked, sync, pagedaemon;
1651 struct vm_page *pg;
1652 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1653
1654 vp = ap->a_vp;
1655 ip = VTOI(vp);
1656 fs = ip->i_lfs;
1657 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1658 pagedaemon = (curproc == uvm.pagedaemon_proc);
1659
1660 /* Putpages does nothing for metadata. */
1661 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1662 simple_unlock(&vp->v_interlock);
1663 return 0;
1664 }
1665
1666 /*
1667 * If there are no pages, don't do anything.
1668 */
1669 if (vp->v_uobj.uo_npages == 0) {
1670 s = splbio();
1671 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1672 (vp->v_flag & VONWORKLST)) {
1673 vp->v_flag &= ~VONWORKLST;
1674 LIST_REMOVE(vp, v_synclist);
1675 }
1676 splx(s);
1677 simple_unlock(&vp->v_interlock);
1678 return 0;
1679 }
1680
1681 blkeof = blkroundup(fs, ip->i_size);
1682
1683 /*
1684 * Ignore requests to free pages past EOF but in the same block
1685 * as EOF, unless the request is synchronous. (XXX why sync?)
1686 * XXXUBC Make these pages look "active" so the pagedaemon won't
1687 * XXXUBC bother us with them again.
1688 */
1689 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1690 origoffset = ap->a_offlo;
1691 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1692 pg = uvm_pagelookup(&vp->v_uobj, off);
1693 KASSERT(pg != NULL);
1694 while (pg->flags & PG_BUSY) {
1695 pg->flags |= PG_WANTED;
1696 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1697 "lfsput2", 0);
1698 simple_lock(&vp->v_interlock);
1699 }
1700 uvm_lock_pageq();
1701 uvm_pageactivate(pg);
1702 uvm_unlock_pageq();
1703 }
1704 ap->a_offlo = blkeof;
1705 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1706 simple_unlock(&vp->v_interlock);
1707 return 0;
1708 }
1709 }
1710
1711 /*
1712 * Extend page range to start and end at block boundaries.
1713 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1714 */
1715 origoffset = ap->a_offlo;
1716 origendoffset = ap->a_offhi;
1717 startoffset = origoffset & ~(fs->lfs_bmask);
1718 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1719 << fs->lfs_bshift;
1720
1721 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1722 endoffset = max_endoffset;
1723 origendoffset = endoffset;
1724 } else {
1725 origendoffset = round_page(ap->a_offhi);
1726 endoffset = round_page(blkroundup(fs, origendoffset));
1727 }
1728
1729 KASSERT(startoffset > 0 || endoffset >= startoffset);
1730 if (startoffset == endoffset) {
1731 /* Nothing to do, why were we called? */
1732 simple_unlock(&vp->v_interlock);
1733 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1734 PRId64 "\n", startoffset));
1735 return 0;
1736 }
1737
1738 ap->a_offlo = startoffset;
1739 ap->a_offhi = endoffset;
1740
1741 if (!(ap->a_flags & PGO_CLEANIT))
1742 return genfs_putpages(v);
1743
1744 /*
1745 * If there are more than one page per block, we don't want
1746 * to get caught locking them backwards; so set PGO_BUSYFAIL
1747 * to avoid deadlocks.
1748 */
1749 ap->a_flags |= PGO_BUSYFAIL;
1750
1751 do {
1752 int r;
1753
1754 /* If no pages are dirty, we can just use genfs_putpages. */
1755 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1756 ap->a_flags, 1) != 0)
1757 break;
1758
1759 /*
1760 * Sometimes pages are dirtied between the time that
1761 * we check and the time we try to clean them.
1762 * Instruct lfs_gop_write to return EDEADLK in this case
1763 * so we can write them properly.
1764 */
1765 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1766 r = genfs_putpages(v);
1767 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1768 if (r != EDEADLK)
1769 return r;
1770
1771 /* Start over. */
1772 preempt(1);
1773 simple_lock(&vp->v_interlock);
1774 } while(1);
1775
1776 /*
1777 * Dirty and asked to clean.
1778 *
1779 * Pagedaemon can't actually write LFS pages; wake up
1780 * the writer to take care of that. The writer will
1781 * notice the pager inode queue and act on that.
1782 */
1783 if (pagedaemon) {
1784 simple_lock(&fs->lfs_interlock);
1785 ++fs->lfs_pdflush;
1786 simple_unlock(&fs->lfs_interlock);
1787 wakeup(&lfs_writer_daemon);
1788 simple_unlock(&vp->v_interlock);
1789 return EWOULDBLOCK;
1790 }
1791
1792 /*
1793 * If this is a file created in a recent dirop, we can't flush its
1794 * inode until the dirop is complete. Drain dirops, then flush the
1795 * filesystem (taking care of any other pending dirops while we're
1796 * at it).
1797 */
1798 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1799 (vp->v_flag & VDIROP)) {
1800 int locked;
1801
1802 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1803 locked = VOP_ISLOCKED(vp) && /* XXX */
1804 vp->v_lock.lk_lockholder == curproc->p_pid;
1805 simple_unlock(&vp->v_interlock);
1806 lfs_writer_enter(fs, "ppdirop");
1807 if (locked)
1808 VOP_UNLOCK(vp, 0);
1809
1810 simple_lock(&fs->lfs_interlock);
1811 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1812 simple_unlock(&fs->lfs_interlock);
1813
1814 simple_lock(&vp->v_interlock);
1815 if (locked) {
1816 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1817 simple_lock(&vp->v_interlock);
1818 }
1819 lfs_writer_leave(fs);
1820
1821 /* XXX the flush should have taken care of this one too! */
1822 }
1823
1824 /*
1825 * This is it. We are going to write some pages. From here on
1826 * down it's all just mechanics.
1827 *
1828 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1829 */
1830 ap->a_flags &= ~PGO_SYNCIO;
1831
1832 /*
1833 * If we've already got the seglock, flush the node and return.
1834 * The FIP has already been set up for us by lfs_writefile,
1835 * and FIP cleanup and lfs_updatemeta will also be done there,
1836 * unless genfs_putpages returns EDEADLK; then we must flush
1837 * what we have, and correct FIP and segment header accounting.
1838 */
1839
1840 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1841 if (!seglocked) {
1842 simple_unlock(&vp->v_interlock);
1843 /*
1844 * Take the seglock, because we are going to be writing pages.
1845 */
1846 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1847 if (error != 0)
1848 return error;
1849 simple_lock(&vp->v_interlock);
1850 }
1851
1852 /*
1853 * VOP_PUTPAGES should not be called while holding the seglock.
1854 * XXXUBC fix lfs_markv, or do this properly.
1855 */
1856 #ifdef notyet
1857 KASSERT(fs->lfs_seglock == 1);
1858 #endif /* notyet */
1859
1860 /*
1861 * We assume we're being called with sp->fip pointing at blank space.
1862 * Account for a new FIP in the segment header, and set sp->vp.
1863 * (This should duplicate the setup at the top of lfs_writefile().)
1864 */
1865 sp = fs->lfs_sp;
1866 if (!seglocked) {
1867 if (sp->seg_bytes_left < fs->lfs_bsize ||
1868 sp->sum_bytes_left < sizeof(struct finfo))
1869 (void) lfs_writeseg(fs, fs->lfs_sp);
1870
1871 sp->sum_bytes_left -= FINFOSIZE;
1872 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1873 }
1874 KASSERT(sp->vp == NULL);
1875 sp->vp = vp;
1876
1877 if (!seglocked) {
1878 if (vp->v_flag & VDIROP)
1879 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1880 }
1881
1882 sp->fip->fi_nblocks = 0;
1883 sp->fip->fi_ino = ip->i_number;
1884 sp->fip->fi_version = ip->i_gen;
1885
1886 /*
1887 * Loop through genfs_putpages until all pages are gathered.
1888 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1889 * Whenever we lose the interlock we have to rerun check_dirty, as
1890 * well.
1891 */
1892 again:
1893 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1894
1895 if ((error = genfs_putpages(v)) == EDEADLK) {
1896 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1897 " EDEADLK [2] ino %d off %x (seg %d)\n",
1898 ip->i_number, fs->lfs_offset,
1899 dtosn(fs, fs->lfs_offset)));
1900 /* If nothing to write, short-circuit */
1901 if (sp->cbpp - sp->bpp > 1) {
1902 /* Write gathered pages */
1903 lfs_updatemeta(sp);
1904 (void) lfs_writeseg(fs, sp);
1905
1906 /*
1907 * Reinitialize brand new FIP and add us to it.
1908 * (This should duplicate the fixup in
1909 * lfs_gatherpages().)
1910 */
1911 KASSERT(sp->vp == vp);
1912 sp->fip->fi_version = ip->i_gen;
1913 sp->fip->fi_ino = ip->i_number;
1914 /* Add us to the new segment summary. */
1915 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1916 sp->sum_bytes_left -= FINFOSIZE;
1917 }
1918
1919 /* Give the write a chance to complete */
1920 preempt(1);
1921
1922 /* We've lost the interlock. Start over. */
1923 simple_lock(&vp->v_interlock);
1924 goto again;
1925 }
1926
1927 KASSERT(sp->vp == vp);
1928 if (!seglocked) {
1929 sp->vp = NULL; /* XXX lfs_gather below will set this */
1930
1931 /* Write indirect blocks as well */
1932 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1933 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1934 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1935
1936 KASSERT(sp->vp == NULL);
1937 sp->vp = vp;
1938 }
1939
1940 /*
1941 * Blocks are now gathered into a segment waiting to be written.
1942 * All that's left to do is update metadata, and write them.
1943 */
1944 lfs_updatemeta(sp);
1945 KASSERT(sp->vp == vp);
1946 sp->vp = NULL;
1947
1948 if (seglocked) {
1949 /* we're called by lfs_writefile. */
1950 return error;
1951 }
1952
1953 /*
1954 * Clean up FIP, since we're done writing this file.
1955 * This should duplicate cleanup at the end of lfs_writefile().
1956 */
1957 if (sp->fip->fi_nblocks != 0) {
1958 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1959 sizeof(int32_t) * sp->fip->fi_nblocks);
1960 sp->start_lbp = &sp->fip->fi_blocks[0];
1961 } else {
1962 sp->sum_bytes_left += FINFOSIZE;
1963 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1964 }
1965 lfs_writeseg(fs, fs->lfs_sp);
1966
1967 /*
1968 * XXX - with the malloc/copy writeseg, the pages are freed by now
1969 * even if we don't wait (e.g. if we hold a nested lock). This
1970 * will not be true if we stop using malloc/copy.
1971 */
1972 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1973 lfs_segunlock(fs);
1974
1975 /*
1976 * Wait for v_numoutput to drop to zero. The seglock should
1977 * take care of this, but there is a slight possibility that
1978 * aiodoned might not have got around to our buffers yet.
1979 */
1980 if (sync) {
1981 s = splbio();
1982 simple_lock(&global_v_numoutput_slock);
1983 while (vp->v_numoutput > 0) {
1984 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1985 " num %d\n", ip->i_number, vp->v_numoutput));
1986 vp->v_flag |= VBWAIT;
1987 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1988 &global_v_numoutput_slock);
1989 }
1990 simple_unlock(&global_v_numoutput_slock);
1991 splx(s);
1992 }
1993 return error;
1994 }
1995
1996 /*
1997 * Return the last logical file offset that should be written for this file
1998 * if we're doing a write that ends at "size". If writing, we need to know
1999 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2000 * to know about entire blocks.
2001 */
2002 void
2003 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2004 {
2005 struct inode *ip = VTOI(vp);
2006 struct lfs *fs = ip->i_lfs;
2007 daddr_t olbn, nlbn;
2008
2009 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
2010 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
2011 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
2012
2013 olbn = lblkno(fs, ip->i_size);
2014 nlbn = lblkno(fs, size);
2015 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2016 *eobp = fragroundup(fs, size);
2017 } else {
2018 *eobp = blkroundup(fs, size);
2019 }
2020 }
2021
2022 #ifdef DEBUG
2023 void lfs_dump_vop(void *);
2024
2025 void
2026 lfs_dump_vop(void *v)
2027 {
2028 struct vop_putpages_args /* {
2029 struct vnode *a_vp;
2030 voff_t a_offlo;
2031 voff_t a_offhi;
2032 int a_flags;
2033 } */ *ap = v;
2034
2035 #ifdef DDB
2036 vfs_vnode_print(ap->a_vp, 0, printf);
2037 #endif
2038 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2039 }
2040 #endif
2041
2042 int
2043 lfs_mmap(void *v)
2044 {
2045 struct vop_mmap_args /* {
2046 const struct vnodeop_desc *a_desc;
2047 struct vnode *a_vp;
2048 int a_fflags;
2049 struct ucred *a_cred;
2050 struct proc *a_p;
2051 } */ *ap = v;
2052
2053 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2054 return EOPNOTSUPP;
2055 return ufs_mmap(v);
2056 }
2057