lfs_vnops.c revision 1.155 1 /* $NetBSD: lfs_vnops.c,v 1.155 2005/09/13 04:13:26 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.155 2005/09/13 04:13:26 christos Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
149 { &vop_valloc_desc, lfs_valloc }, /* valloc */
150 { &vop_balloc_desc, lfs_balloc }, /* balloc */
151 { &vop_vfree_desc, lfs_vfree }, /* vfree */
152 { &vop_truncate_desc, lfs_truncate }, /* truncate */
153 { &vop_update_desc, lfs_update }, /* update */
154 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
155 { &vop_getpages_desc, lfs_getpages }, /* getpages */
156 { &vop_putpages_desc, lfs_putpages }, /* putpages */
157 { NULL, NULL }
158 };
159 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
160 { &lfs_vnodeop_p, lfs_vnodeop_entries };
161
162 int (**lfs_specop_p)(void *);
163 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
164 { &vop_default_desc, vn_default_error },
165 { &vop_lookup_desc, spec_lookup }, /* lookup */
166 { &vop_create_desc, spec_create }, /* create */
167 { &vop_mknod_desc, spec_mknod }, /* mknod */
168 { &vop_open_desc, spec_open }, /* open */
169 { &vop_close_desc, lfsspec_close }, /* close */
170 { &vop_access_desc, ufs_access }, /* access */
171 { &vop_getattr_desc, lfs_getattr }, /* getattr */
172 { &vop_setattr_desc, lfs_setattr }, /* setattr */
173 { &vop_read_desc, ufsspec_read }, /* read */
174 { &vop_write_desc, ufsspec_write }, /* write */
175 { &vop_lease_desc, spec_lease_check }, /* lease */
176 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
177 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
178 { &vop_poll_desc, spec_poll }, /* poll */
179 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
180 { &vop_revoke_desc, spec_revoke }, /* revoke */
181 { &vop_mmap_desc, spec_mmap }, /* mmap */
182 { &vop_fsync_desc, spec_fsync }, /* fsync */
183 { &vop_seek_desc, spec_seek }, /* seek */
184 { &vop_remove_desc, spec_remove }, /* remove */
185 { &vop_link_desc, spec_link }, /* link */
186 { &vop_rename_desc, spec_rename }, /* rename */
187 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
188 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
189 { &vop_symlink_desc, spec_symlink }, /* symlink */
190 { &vop_readdir_desc, spec_readdir }, /* readdir */
191 { &vop_readlink_desc, spec_readlink }, /* readlink */
192 { &vop_abortop_desc, spec_abortop }, /* abortop */
193 { &vop_inactive_desc, lfs_inactive }, /* inactive */
194 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
195 { &vop_lock_desc, ufs_lock }, /* lock */
196 { &vop_unlock_desc, ufs_unlock }, /* unlock */
197 { &vop_bmap_desc, spec_bmap }, /* bmap */
198 { &vop_strategy_desc, spec_strategy }, /* strategy */
199 { &vop_print_desc, ufs_print }, /* print */
200 { &vop_islocked_desc, ufs_islocked }, /* islocked */
201 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
202 { &vop_advlock_desc, spec_advlock }, /* advlock */
203 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
204 { &vop_valloc_desc, spec_valloc }, /* valloc */
205 { &vop_vfree_desc, lfs_vfree }, /* vfree */
206 { &vop_truncate_desc, spec_truncate }, /* truncate */
207 { &vop_update_desc, lfs_update }, /* update */
208 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
209 { &vop_getpages_desc, spec_getpages }, /* getpages */
210 { &vop_putpages_desc, spec_putpages }, /* putpages */
211 { NULL, NULL }
212 };
213 const struct vnodeopv_desc lfs_specop_opv_desc =
214 { &lfs_specop_p, lfs_specop_entries };
215
216 int (**lfs_fifoop_p)(void *);
217 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
218 { &vop_default_desc, vn_default_error },
219 { &vop_lookup_desc, fifo_lookup }, /* lookup */
220 { &vop_create_desc, fifo_create }, /* create */
221 { &vop_mknod_desc, fifo_mknod }, /* mknod */
222 { &vop_open_desc, fifo_open }, /* open */
223 { &vop_close_desc, lfsfifo_close }, /* close */
224 { &vop_access_desc, ufs_access }, /* access */
225 { &vop_getattr_desc, lfs_getattr }, /* getattr */
226 { &vop_setattr_desc, lfs_setattr }, /* setattr */
227 { &vop_read_desc, ufsfifo_read }, /* read */
228 { &vop_write_desc, ufsfifo_write }, /* write */
229 { &vop_lease_desc, fifo_lease_check }, /* lease */
230 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
231 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
232 { &vop_poll_desc, fifo_poll }, /* poll */
233 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
234 { &vop_revoke_desc, fifo_revoke }, /* revoke */
235 { &vop_mmap_desc, fifo_mmap }, /* mmap */
236 { &vop_fsync_desc, fifo_fsync }, /* fsync */
237 { &vop_seek_desc, fifo_seek }, /* seek */
238 { &vop_remove_desc, fifo_remove }, /* remove */
239 { &vop_link_desc, fifo_link }, /* link */
240 { &vop_rename_desc, fifo_rename }, /* rename */
241 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
242 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
243 { &vop_symlink_desc, fifo_symlink }, /* symlink */
244 { &vop_readdir_desc, fifo_readdir }, /* readdir */
245 { &vop_readlink_desc, fifo_readlink }, /* readlink */
246 { &vop_abortop_desc, fifo_abortop }, /* abortop */
247 { &vop_inactive_desc, lfs_inactive }, /* inactive */
248 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
249 { &vop_lock_desc, ufs_lock }, /* lock */
250 { &vop_unlock_desc, ufs_unlock }, /* unlock */
251 { &vop_bmap_desc, fifo_bmap }, /* bmap */
252 { &vop_strategy_desc, fifo_strategy }, /* strategy */
253 { &vop_print_desc, ufs_print }, /* print */
254 { &vop_islocked_desc, ufs_islocked }, /* islocked */
255 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
256 { &vop_advlock_desc, fifo_advlock }, /* advlock */
257 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
258 { &vop_valloc_desc, fifo_valloc }, /* valloc */
259 { &vop_vfree_desc, lfs_vfree }, /* vfree */
260 { &vop_truncate_desc, fifo_truncate }, /* truncate */
261 { &vop_update_desc, lfs_update }, /* update */
262 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
263 { &vop_putpages_desc, fifo_putpages }, /* putpages */
264 { NULL, NULL }
265 };
266 const struct vnodeopv_desc lfs_fifoop_opv_desc =
267 { &lfs_fifoop_p, lfs_fifoop_entries };
268
269 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
270
271 #define LFS_READWRITE
272 #include <ufs/ufs/ufs_readwrite.c>
273 #undef LFS_READWRITE
274
275 /*
276 * Synch an open file.
277 */
278 /* ARGSUSED */
279 int
280 lfs_fsync(void *v)
281 {
282 struct vop_fsync_args /* {
283 struct vnode *a_vp;
284 struct ucred *a_cred;
285 int a_flags;
286 off_t offlo;
287 off_t offhi;
288 struct proc *a_p;
289 } */ *ap = v;
290 struct vnode *vp = ap->a_vp;
291 int error, wait;
292
293 /*
294 * Trickle sync checks for need to do a checkpoint after possible
295 * activity from the pagedaemon.
296 */
297 if (ap->a_flags & FSYNC_LAZY) {
298 simple_lock(&lfs_subsys_lock);
299 wakeup(&lfs_writer_daemon);
300 simple_unlock(&lfs_subsys_lock);
301 return 0;
302 }
303
304 wait = (ap->a_flags & FSYNC_WAIT);
305 simple_lock(&vp->v_interlock);
306 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
307 round_page(ap->a_offhi),
308 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
309 if (error)
310 return error;
311 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
312 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
313 int l = 0;
314 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
315 ap->a_p->p_ucred, ap->a_p);
316 }
317 if (wait && !VPISEMPTY(vp))
318 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
319
320 return error;
321 }
322
323 /*
324 * Take IN_ADIROP off, then call ufs_inactive.
325 */
326 int
327 lfs_inactive(void *v)
328 {
329 struct vop_inactive_args /* {
330 struct vnode *a_vp;
331 struct proc *a_p;
332 } */ *ap = v;
333
334 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
335
336 lfs_unmark_vnode(ap->a_vp);
337
338 /*
339 * The Ifile is only ever inactivated on unmount.
340 * Streamline this process by not giving it more dirty blocks.
341 */
342 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
343 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
344 VOP_UNLOCK(ap->a_vp, 0);
345 return 0;
346 }
347
348 return ufs_inactive(v);
349 }
350
351 /*
352 * These macros are used to bracket UFS directory ops, so that we can
353 * identify all the pages touched during directory ops which need to
354 * be ordered and flushed atomically, so that they may be recovered.
355 *
356 * Because we have to mark nodes VDIROP in order to prevent
357 * the cache from reclaiming them while a dirop is in progress, we must
358 * also manage the number of nodes so marked (otherwise we can run out).
359 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
360 * is decremented during segment write, when VDIROP is taken off.
361 */
362 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
363 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
364 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
365 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
366 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
367 static int lfs_set_dirop(struct vnode *, struct vnode *);
368
369 static int
370 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
371 {
372 struct lfs *fs;
373 int error;
374
375 KASSERT(VOP_ISLOCKED(dvp));
376 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
377
378 fs = VTOI(dvp)->i_lfs;
379
380 ASSERT_NO_SEGLOCK(fs);
381 /*
382 * LFS_NRESERVE calculates direct and indirect blocks as well
383 * as an inode block; an overestimate in most cases.
384 */
385 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
386 return (error);
387
388 restart:
389 simple_lock(&fs->lfs_interlock);
390 if (fs->lfs_dirops == 0) {
391 simple_unlock(&fs->lfs_interlock);
392 lfs_check(dvp, LFS_UNUSED_LBN, 0);
393 simple_lock(&fs->lfs_interlock);
394 }
395 while (fs->lfs_writer)
396 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
397 &fs->lfs_interlock);
398 simple_lock(&lfs_subsys_lock);
399 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
400 wakeup(&lfs_writer_daemon);
401 simple_unlock(&lfs_subsys_lock);
402 simple_unlock(&fs->lfs_interlock);
403 preempt(1);
404 goto restart;
405 }
406
407 if (lfs_dirvcount > LFS_MAX_DIROP) {
408 simple_unlock(&fs->lfs_interlock);
409 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
410 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
411 if ((error = ltsleep(&lfs_dirvcount,
412 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
413 &lfs_subsys_lock)) != 0) {
414 goto unreserve;
415 }
416 goto restart;
417 }
418 simple_unlock(&lfs_subsys_lock);
419
420 ++fs->lfs_dirops;
421 fs->lfs_doifile = 1;
422 simple_unlock(&fs->lfs_interlock);
423
424 /* Hold a reference so SET_ENDOP will be happy */
425 vref(dvp);
426 if (vp) {
427 vref(vp);
428 MARK_VNODE(vp);
429 }
430
431 MARK_VNODE(dvp);
432 return 0;
433
434 unreserve:
435 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
436 return error;
437 }
438
439 /*
440 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
441 * in getnewvnode(), if we have a stacked filesystem mounted on top
442 * of us.
443 *
444 * NB: this means we have to clear the new vnodes on error. Fortunately
445 * SET_ENDOP is there to do that for us.
446 */
447 static int
448 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
449 {
450 int error;
451 struct lfs *fs;
452
453 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
454 ASSERT_NO_SEGLOCK(fs);
455 if (fs->lfs_ronly)
456 return EROFS;
457 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
458 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
459 dvp, error));
460 return error;
461 }
462 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
463 if (vpp) {
464 ungetnewvnode(*vpp);
465 *vpp = NULL;
466 }
467 return error;
468 }
469 return 0;
470 }
471
472 #define SET_ENDOP_BASE(fs, dvp, str) \
473 do { \
474 simple_lock(&(fs)->lfs_interlock); \
475 --(fs)->lfs_dirops; \
476 if (!(fs)->lfs_dirops) { \
477 if ((fs)->lfs_nadirop) { \
478 panic("SET_ENDOP: %s: no dirops but " \
479 " nadirop=%d", (str), \
480 (fs)->lfs_nadirop); \
481 } \
482 wakeup(&(fs)->lfs_writer); \
483 simple_unlock(&(fs)->lfs_interlock); \
484 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
485 } else \
486 simple_unlock(&(fs)->lfs_interlock); \
487 } while(0)
488 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
489 do { \
490 UNMARK_VNODE(dvp); \
491 if (nvpp && *nvpp) \
492 UNMARK_VNODE(*nvpp); \
493 /* Check for error return to stem vnode leakage */ \
494 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
495 ungetnewvnode(*(nvpp)); \
496 SET_ENDOP_BASE((fs), (dvp), (str)); \
497 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
498 vrele(dvp); \
499 } while(0)
500 #define SET_ENDOP_CREATE_AP(ap, str) \
501 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
502 (ap)->a_vpp, (str))
503 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
504 do { \
505 UNMARK_VNODE(dvp); \
506 if (ovp) \
507 UNMARK_VNODE(ovp); \
508 SET_ENDOP_BASE((fs), (dvp), (str)); \
509 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
510 vrele(dvp); \
511 if (ovp) \
512 vrele(ovp); \
513 } while(0)
514
515 void
516 lfs_mark_vnode(struct vnode *vp)
517 {
518 struct inode *ip = VTOI(vp);
519 struct lfs *fs = ip->i_lfs;
520
521 simple_lock(&fs->lfs_interlock);
522 if (!(ip->i_flag & IN_ADIROP)) {
523 if (!(vp->v_flag & VDIROP)) {
524 (void)lfs_vref(vp);
525 simple_lock(&lfs_subsys_lock);
526 ++lfs_dirvcount;
527 simple_unlock(&lfs_subsys_lock);
528 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
529 vp->v_flag |= VDIROP;
530 }
531 ++fs->lfs_nadirop;
532 ip->i_flag |= IN_ADIROP;
533 } else
534 KASSERT(vp->v_flag & VDIROP);
535 simple_unlock(&fs->lfs_interlock);
536 }
537
538 void
539 lfs_unmark_vnode(struct vnode *vp)
540 {
541 struct inode *ip = VTOI(vp);
542
543 if (ip && (ip->i_flag & IN_ADIROP)) {
544 KASSERT(vp->v_flag & VDIROP);
545 simple_lock(&ip->i_lfs->lfs_interlock);
546 --ip->i_lfs->lfs_nadirop;
547 simple_unlock(&ip->i_lfs->lfs_interlock);
548 ip->i_flag &= ~IN_ADIROP;
549 }
550 }
551
552 int
553 lfs_symlink(void *v)
554 {
555 struct vop_symlink_args /* {
556 struct vnode *a_dvp;
557 struct vnode **a_vpp;
558 struct componentname *a_cnp;
559 struct vattr *a_vap;
560 char *a_target;
561 } */ *ap = v;
562 int error;
563
564 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
565 vput(ap->a_dvp);
566 return error;
567 }
568 error = ufs_symlink(ap);
569 SET_ENDOP_CREATE_AP(ap, "symlink");
570 return (error);
571 }
572
573 int
574 lfs_mknod(void *v)
575 {
576 struct vop_mknod_args /* {
577 struct vnode *a_dvp;
578 struct vnode **a_vpp;
579 struct componentname *a_cnp;
580 struct vattr *a_vap;
581 } */ *ap = v;
582 struct vattr *vap = ap->a_vap;
583 struct vnode **vpp = ap->a_vpp;
584 struct inode *ip;
585 int error;
586 struct mount *mp;
587 ino_t ino;
588
589 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
590 vput(ap->a_dvp);
591 return error;
592 }
593 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
594 ap->a_dvp, vpp, ap->a_cnp);
595
596 /* Either way we're done with the dirop at this point */
597 SET_ENDOP_CREATE_AP(ap, "mknod");
598
599 if (error)
600 return (error);
601
602 ip = VTOI(*vpp);
603 mp = (*vpp)->v_mount;
604 ino = ip->i_number;
605 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
606 if (vap->va_rdev != VNOVAL) {
607 /*
608 * Want to be able to use this to make badblock
609 * inodes, so don't truncate the dev number.
610 */
611 #if 0
612 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
613 UFS_MPNEEDSWAP((*vpp)->v_mount));
614 #else
615 ip->i_ffs1_rdev = vap->va_rdev;
616 #endif
617 }
618
619 /*
620 * Call fsync to write the vnode so that we don't have to deal with
621 * flushing it when it's marked VDIROP|VXLOCK.
622 *
623 * XXX KS - If we can't flush we also can't call vgone(), so must
624 * return. But, that leaves this vnode in limbo, also not good.
625 * Can this ever happen (barring hardware failure)?
626 */
627 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
628 curproc)) != 0) {
629 panic("lfs_mknod: couldn't fsync (ino %llu)",
630 (unsigned long long)ino);
631 /* return (error); */
632 }
633 /*
634 * Remove vnode so that it will be reloaded by VFS_VGET and
635 * checked to see if it is an alias of an existing entry in
636 * the inode cache.
637 */
638 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
639
640 VOP_UNLOCK(*vpp, 0);
641 lfs_vunref(*vpp);
642 (*vpp)->v_type = VNON;
643 vgone(*vpp);
644 error = VFS_VGET(mp, ino, vpp);
645
646 if (error != 0) {
647 *vpp = NULL;
648 return (error);
649 }
650 return (0);
651 }
652
653 int
654 lfs_create(void *v)
655 {
656 struct vop_create_args /* {
657 struct vnode *a_dvp;
658 struct vnode **a_vpp;
659 struct componentname *a_cnp;
660 struct vattr *a_vap;
661 } */ *ap = v;
662 int error;
663
664 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
665 vput(ap->a_dvp);
666 return error;
667 }
668 error = ufs_create(ap);
669 SET_ENDOP_CREATE_AP(ap, "create");
670 return (error);
671 }
672
673 int
674 lfs_mkdir(void *v)
675 {
676 struct vop_mkdir_args /* {
677 struct vnode *a_dvp;
678 struct vnode **a_vpp;
679 struct componentname *a_cnp;
680 struct vattr *a_vap;
681 } */ *ap = v;
682 int error;
683
684 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
685 vput(ap->a_dvp);
686 return error;
687 }
688 error = ufs_mkdir(ap);
689 SET_ENDOP_CREATE_AP(ap, "mkdir");
690 return (error);
691 }
692
693 int
694 lfs_remove(void *v)
695 {
696 struct vop_remove_args /* {
697 struct vnode *a_dvp;
698 struct vnode *a_vp;
699 struct componentname *a_cnp;
700 } */ *ap = v;
701 struct vnode *dvp, *vp;
702 int error;
703
704 dvp = ap->a_dvp;
705 vp = ap->a_vp;
706 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
707 if (dvp == vp)
708 vrele(vp);
709 else
710 vput(vp);
711 vput(dvp);
712 return error;
713 }
714 error = ufs_remove(ap);
715 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
716 return (error);
717 }
718
719 int
720 lfs_rmdir(void *v)
721 {
722 struct vop_rmdir_args /* {
723 struct vnodeop_desc *a_desc;
724 struct vnode *a_dvp;
725 struct vnode *a_vp;
726 struct componentname *a_cnp;
727 } */ *ap = v;
728 struct vnode *vp;
729 int error;
730
731 vp = ap->a_vp;
732 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
733 vrele(ap->a_dvp);
734 if (ap->a_vp != ap->a_dvp)
735 VOP_UNLOCK(ap->a_dvp, 0);
736 vput(vp);
737 return error;
738 }
739 error = ufs_rmdir(ap);
740 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
741 return (error);
742 }
743
744 int
745 lfs_link(void *v)
746 {
747 struct vop_link_args /* {
748 struct vnode *a_dvp;
749 struct vnode *a_vp;
750 struct componentname *a_cnp;
751 } */ *ap = v;
752 int error;
753 struct vnode **vpp = NULL;
754
755 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
756 vput(ap->a_dvp);
757 return error;
758 }
759 error = ufs_link(ap);
760 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
761 return (error);
762 }
763
764 int
765 lfs_rename(void *v)
766 {
767 struct vop_rename_args /* {
768 struct vnode *a_fdvp;
769 struct vnode *a_fvp;
770 struct componentname *a_fcnp;
771 struct vnode *a_tdvp;
772 struct vnode *a_tvp;
773 struct componentname *a_tcnp;
774 } */ *ap = v;
775 struct vnode *tvp, *fvp, *tdvp, *fdvp;
776 struct componentname *tcnp, *fcnp;
777 int error;
778 struct lfs *fs;
779
780 fs = VTOI(ap->a_fdvp)->i_lfs;
781 tvp = ap->a_tvp;
782 tdvp = ap->a_tdvp;
783 tcnp = ap->a_tcnp;
784 fvp = ap->a_fvp;
785 fdvp = ap->a_fdvp;
786 fcnp = ap->a_fcnp;
787
788 /*
789 * Check for cross-device rename.
790 * If it is, we don't want to set dirops, just error out.
791 * (In particular note that MARK_VNODE(tdvp) will DTWT on
792 * a cross-device rename.)
793 *
794 * Copied from ufs_rename.
795 */
796 if ((fvp->v_mount != tdvp->v_mount) ||
797 (tvp && (fvp->v_mount != tvp->v_mount))) {
798 error = EXDEV;
799 goto errout;
800 }
801
802 /*
803 * Check to make sure we're not renaming a vnode onto itself
804 * (deleting a hard link by renaming one name onto another);
805 * if we are we can't recursively call VOP_REMOVE since that
806 * would leave us with an unaccounted-for number of live dirops.
807 *
808 * Inline the relevant section of ufs_rename here, *before*
809 * calling SET_DIROP_REMOVE.
810 */
811 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
812 (VTOI(tdvp)->i_flags & APPEND))) {
813 error = EPERM;
814 goto errout;
815 }
816 if (fvp == tvp) {
817 if (fvp->v_type == VDIR) {
818 error = EINVAL;
819 goto errout;
820 }
821
822 /* Release destination completely. */
823 VOP_ABORTOP(tdvp, tcnp);
824 vput(tdvp);
825 vput(tvp);
826
827 /* Delete source. */
828 vrele(fvp);
829 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
830 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
831 fcnp->cn_nameiop = DELETE;
832 if ((error = relookup(fdvp, &fvp, fcnp))){
833 /* relookup blew away fdvp */
834 return (error);
835 }
836 return (VOP_REMOVE(fdvp, fvp, fcnp));
837 }
838
839 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
840 goto errout;
841 MARK_VNODE(fdvp);
842 MARK_VNODE(fvp);
843
844 error = ufs_rename(ap);
845 UNMARK_VNODE(fdvp);
846 UNMARK_VNODE(fvp);
847 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
848 return (error);
849
850 errout:
851 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
852 if (tdvp == tvp)
853 vrele(tdvp);
854 else
855 vput(tdvp);
856 if (tvp)
857 vput(tvp);
858 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
859 vrele(fdvp);
860 vrele(fvp);
861 return (error);
862 }
863
864 /* XXX hack to avoid calling ITIMES in getattr */
865 int
866 lfs_getattr(void *v)
867 {
868 struct vop_getattr_args /* {
869 struct vnode *a_vp;
870 struct vattr *a_vap;
871 struct ucred *a_cred;
872 struct proc *a_p;
873 } */ *ap = v;
874 struct vnode *vp = ap->a_vp;
875 struct inode *ip = VTOI(vp);
876 struct vattr *vap = ap->a_vap;
877 struct lfs *fs = ip->i_lfs;
878 /*
879 * Copy from inode table
880 */
881 vap->va_fsid = ip->i_dev;
882 vap->va_fileid = ip->i_number;
883 vap->va_mode = ip->i_mode & ~IFMT;
884 vap->va_nlink = ip->i_nlink;
885 vap->va_uid = ip->i_uid;
886 vap->va_gid = ip->i_gid;
887 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
888 vap->va_size = vp->v_size;
889 vap->va_atime.tv_sec = ip->i_ffs1_atime;
890 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
891 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
892 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
893 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
894 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
895 vap->va_flags = ip->i_flags;
896 vap->va_gen = ip->i_gen;
897 /* this doesn't belong here */
898 if (vp->v_type == VBLK)
899 vap->va_blocksize = BLKDEV_IOSIZE;
900 else if (vp->v_type == VCHR)
901 vap->va_blocksize = MAXBSIZE;
902 else
903 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
904 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
905 vap->va_type = vp->v_type;
906 vap->va_filerev = ip->i_modrev;
907 return (0);
908 }
909
910 /*
911 * Check to make sure the inode blocks won't choke the buffer
912 * cache, then call ufs_setattr as usual.
913 */
914 int
915 lfs_setattr(void *v)
916 {
917 struct vop_setattr_args /* {
918 struct vnode *a_vp;
919 struct vattr *a_vap;
920 struct ucred *a_cred;
921 struct proc *a_p;
922 } */ *ap = v;
923 struct vnode *vp = ap->a_vp;
924
925 lfs_check(vp, LFS_UNUSED_LBN, 0);
926 return ufs_setattr(v);
927 }
928
929 /*
930 * Close called
931 *
932 * XXX -- we were using ufs_close, but since it updates the
933 * times on the inode, we might need to bump the uinodes
934 * count.
935 */
936 /* ARGSUSED */
937 int
938 lfs_close(void *v)
939 {
940 struct vop_close_args /* {
941 struct vnode *a_vp;
942 int a_fflag;
943 struct ucred *a_cred;
944 struct proc *a_p;
945 } */ *ap = v;
946 struct vnode *vp = ap->a_vp;
947 struct inode *ip = VTOI(vp);
948
949 if (vp == ip->i_lfs->lfs_ivnode &&
950 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
951 return 0;
952
953 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
954 LFS_ITIMES(ip, NULL, NULL, NULL);
955 }
956 return (0);
957 }
958
959 /*
960 * Close wrapper for special devices.
961 *
962 * Update the times on the inode then do device close.
963 */
964 int
965 lfsspec_close(void *v)
966 {
967 struct vop_close_args /* {
968 struct vnode *a_vp;
969 int a_fflag;
970 struct ucred *a_cred;
971 struct proc *a_p;
972 } */ *ap = v;
973 struct vnode *vp;
974 struct inode *ip;
975
976 vp = ap->a_vp;
977 ip = VTOI(vp);
978 if (vp->v_usecount > 1) {
979 LFS_ITIMES(ip, NULL, NULL, NULL);
980 }
981 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
982 }
983
984 /*
985 * Close wrapper for fifo's.
986 *
987 * Update the times on the inode then do device close.
988 */
989 int
990 lfsfifo_close(void *v)
991 {
992 struct vop_close_args /* {
993 struct vnode *a_vp;
994 int a_fflag;
995 struct ucred *a_cred;
996 struct proc *a_p;
997 } */ *ap = v;
998 struct vnode *vp;
999 struct inode *ip;
1000
1001 vp = ap->a_vp;
1002 ip = VTOI(vp);
1003 if (ap->a_vp->v_usecount > 1) {
1004 LFS_ITIMES(ip, NULL, NULL, NULL);
1005 }
1006 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1007 }
1008
1009 /*
1010 * Reclaim an inode so that it can be used for other purposes.
1011 */
1012
1013 int
1014 lfs_reclaim(void *v)
1015 {
1016 struct vop_reclaim_args /* {
1017 struct vnode *a_vp;
1018 struct proc *a_p;
1019 } */ *ap = v;
1020 struct vnode *vp = ap->a_vp;
1021 struct inode *ip = VTOI(vp);
1022 int error;
1023
1024 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1025
1026 LFS_CLR_UINO(ip, IN_ALLMOD);
1027 if ((error = ufs_reclaim(vp, ap->a_p)))
1028 return (error);
1029 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1030 lfs_deregister_all(vp);
1031 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1032 ip->inode_ext.lfs = NULL;
1033 pool_put(&lfs_inode_pool, vp->v_data);
1034 vp->v_data = NULL;
1035 return (0);
1036 }
1037
1038 /*
1039 * Read a block from a storage device.
1040 * In order to avoid reading blocks that are in the process of being
1041 * written by the cleaner---and hence are not mutexed by the normal
1042 * buffer cache / page cache mechanisms---check for collisions before
1043 * reading.
1044 *
1045 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1046 * the active cleaner test.
1047 *
1048 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1049 */
1050 int
1051 lfs_strategy(void *v)
1052 {
1053 struct vop_strategy_args /* {
1054 struct vnode *a_vp;
1055 struct buf *a_bp;
1056 } */ *ap = v;
1057 struct buf *bp;
1058 struct lfs *fs;
1059 struct vnode *vp;
1060 struct inode *ip;
1061 daddr_t tbn;
1062 int i, sn, error, slept;
1063
1064 bp = ap->a_bp;
1065 vp = ap->a_vp;
1066 ip = VTOI(vp);
1067 fs = ip->i_lfs;
1068
1069 /* lfs uses its strategy routine only for read */
1070 KASSERT(bp->b_flags & B_READ);
1071
1072 if (vp->v_type == VBLK || vp->v_type == VCHR)
1073 panic("lfs_strategy: spec");
1074 KASSERT(bp->b_bcount != 0);
1075 if (bp->b_blkno == bp->b_lblkno) {
1076 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1077 NULL);
1078 if (error) {
1079 bp->b_error = error;
1080 bp->b_flags |= B_ERROR;
1081 biodone(bp);
1082 return (error);
1083 }
1084 if ((long)bp->b_blkno == -1) /* no valid data */
1085 clrbuf(bp);
1086 }
1087 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1088 biodone(bp);
1089 return (0);
1090 }
1091
1092 slept = 1;
1093 simple_lock(&fs->lfs_interlock);
1094 while (slept && fs->lfs_seglock) {
1095 simple_unlock(&fs->lfs_interlock);
1096 /*
1097 * Look through list of intervals.
1098 * There will only be intervals to look through
1099 * if the cleaner holds the seglock.
1100 * Since the cleaner is synchronous, we can trust
1101 * the list of intervals to be current.
1102 */
1103 tbn = dbtofsb(fs, bp->b_blkno);
1104 sn = dtosn(fs, tbn);
1105 slept = 0;
1106 for (i = 0; i < fs->lfs_cleanind; i++) {
1107 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1108 tbn >= fs->lfs_cleanint[i]) {
1109 DLOG((DLOG_CLEAN,
1110 "lfs_strategy: ino %d lbn %" PRId64
1111 " ind %d sn %d fsb %" PRIx32
1112 " given sn %d fsb %" PRIx64 "\n",
1113 ip->i_number, bp->b_lblkno, i,
1114 dtosn(fs, fs->lfs_cleanint[i]),
1115 fs->lfs_cleanint[i], sn, tbn));
1116 DLOG((DLOG_CLEAN,
1117 "lfs_strategy: sleeping on ino %d lbn %"
1118 PRId64 "\n", ip->i_number, bp->b_lblkno));
1119 simple_lock(&fs->lfs_interlock);
1120 if (fs->lfs_seglock)
1121 ltsleep(&fs->lfs_seglock,
1122 (PRIBIO + 1) | PNORELOCK,
1123 "lfs_strategy", 0,
1124 &fs->lfs_interlock);
1125 /* Things may be different now; start over. */
1126 slept = 1;
1127 break;
1128 }
1129 }
1130 simple_lock(&fs->lfs_interlock);
1131 }
1132 simple_unlock(&fs->lfs_interlock);
1133
1134 vp = ip->i_devvp;
1135 VOP_STRATEGY(vp, bp);
1136 return (0);
1137 }
1138
1139 static void
1140 lfs_flush_dirops(struct lfs *fs)
1141 {
1142 struct inode *ip, *nip;
1143 struct vnode *vp;
1144 extern int lfs_dostats;
1145 struct segment *sp;
1146 int needunlock;
1147
1148 ASSERT_NO_SEGLOCK(fs);
1149
1150 if (fs->lfs_ronly)
1151 return;
1152
1153 simple_lock(&fs->lfs_interlock);
1154 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1155 simple_unlock(&fs->lfs_interlock);
1156 return;
1157 } else
1158 simple_unlock(&fs->lfs_interlock);
1159
1160 if (lfs_dostats)
1161 ++lfs_stats.flush_invoked;
1162
1163 /*
1164 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1165 * Technically this is a checkpoint (the on-disk state is valid)
1166 * even though we are leaving out all the file data.
1167 */
1168 lfs_imtime(fs);
1169 lfs_seglock(fs, SEGM_CKP);
1170 sp = fs->lfs_sp;
1171
1172 /*
1173 * lfs_writevnodes, optimized to get dirops out of the way.
1174 * Only write dirops, and don't flush files' pages, only
1175 * blocks from the directories.
1176 *
1177 * We don't need to vref these files because they are
1178 * dirops and so hold an extra reference until the
1179 * segunlock clears them of that status.
1180 *
1181 * We don't need to check for IN_ADIROP because we know that
1182 * no dirops are active.
1183 *
1184 */
1185 simple_lock(&fs->lfs_interlock);
1186 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1187 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1188 simple_unlock(&fs->lfs_interlock);
1189 vp = ITOV(ip);
1190
1191 /*
1192 * All writes to directories come from dirops; all
1193 * writes to files' direct blocks go through the page
1194 * cache, which we're not touching. Reads to files
1195 * and/or directories will not be affected by writing
1196 * directory blocks inodes and file inodes. So we don't
1197 * really need to lock. If we don't lock, though,
1198 * make sure that we don't clear IN_MODIFIED
1199 * unnecessarily.
1200 */
1201 if (vp->v_flag & VXLOCK)
1202 continue;
1203 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1204 needunlock = 1;
1205 } else {
1206 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1207 VTOI(vp)->i_number));
1208 needunlock = 0;
1209 }
1210 if (vp->v_type != VREG &&
1211 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1212 lfs_writefile(fs, sp, vp);
1213 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1214 !(ip->i_flag & IN_ALLMOD)) {
1215 LFS_SET_UINO(ip, IN_MODIFIED);
1216 }
1217 }
1218 (void) lfs_writeinode(fs, sp, ip);
1219 if (needunlock)
1220 VOP_UNLOCK(vp, 0);
1221 else
1222 LFS_SET_UINO(ip, IN_MODIFIED);
1223 simple_lock(&fs->lfs_interlock);
1224 }
1225 simple_unlock(&fs->lfs_interlock);
1226 /* We've written all the dirops there are */
1227 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1228 (void) lfs_writeseg(fs, sp);
1229 lfs_segunlock(fs);
1230 }
1231
1232 /*
1233 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1234 */
1235 int
1236 lfs_fcntl(void *v)
1237 {
1238 struct vop_fcntl_args /* {
1239 struct vnode *a_vp;
1240 u_long a_command;
1241 caddr_t a_data;
1242 int a_fflag;
1243 struct ucred *a_cred;
1244 struct proc *a_p;
1245 } */ *ap = v;
1246 struct timeval *tvp;
1247 BLOCK_INFO *blkiov;
1248 CLEANERINFO *cip;
1249 SEGUSE *sup;
1250 int blkcnt, error, oclean;
1251 struct lfs_fcntl_markv blkvp;
1252 fsid_t *fsidp;
1253 struct lfs *fs;
1254 struct buf *bp;
1255 fhandle_t *fhp;
1256 daddr_t off;
1257
1258 /* Only respect LFS fcntls on fs root or Ifile */
1259 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1260 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1261 return ufs_fcntl(v);
1262 }
1263
1264 /* Avoid locking a draining lock */
1265 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1266 return ESHUTDOWN;
1267 }
1268
1269 fs = VTOI(ap->a_vp)->i_lfs;
1270 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1271
1272 switch (ap->a_command) {
1273 case LFCNSEGWAITALL:
1274 case LFCNSEGWAITALL_COMPAT:
1275 fsidp = NULL;
1276 /* FALLSTHROUGH */
1277 case LFCNSEGWAIT:
1278 case LFCNSEGWAIT_COMPAT:
1279 tvp = (struct timeval *)ap->a_data;
1280 simple_lock(&fs->lfs_interlock);
1281 ++fs->lfs_sleepers;
1282 simple_unlock(&fs->lfs_interlock);
1283 VOP_UNLOCK(ap->a_vp, 0);
1284
1285 error = lfs_segwait(fsidp, tvp);
1286
1287 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1288 simple_lock(&fs->lfs_interlock);
1289 if (--fs->lfs_sleepers == 0)
1290 wakeup(&fs->lfs_sleepers);
1291 simple_unlock(&fs->lfs_interlock);
1292 return error;
1293
1294 case LFCNBMAPV:
1295 case LFCNMARKV:
1296 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1297 return (error);
1298 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1299
1300 blkcnt = blkvp.blkcnt;
1301 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1302 return (EINVAL);
1303 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1304 if ((error = copyin(blkvp.blkiov, blkiov,
1305 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1306 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1307 return error;
1308 }
1309
1310 simple_lock(&fs->lfs_interlock);
1311 ++fs->lfs_sleepers;
1312 simple_unlock(&fs->lfs_interlock);
1313 VOP_UNLOCK(ap->a_vp, 0);
1314 if (ap->a_command == LFCNBMAPV)
1315 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1316 else /* LFCNMARKV */
1317 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1318 if (error == 0)
1319 error = copyout(blkiov, blkvp.blkiov,
1320 blkcnt * sizeof(BLOCK_INFO));
1321 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1322 simple_lock(&fs->lfs_interlock);
1323 if (--fs->lfs_sleepers == 0)
1324 wakeup(&fs->lfs_sleepers);
1325 simple_unlock(&fs->lfs_interlock);
1326 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1327 return error;
1328
1329 case LFCNRECLAIM:
1330 /*
1331 * Flush dirops and write Ifile, allowing empty segments
1332 * to be immediately reclaimed.
1333 */
1334 VOP_UNLOCK(ap->a_vp, 0);
1335 lfs_writer_enter(fs, "pndirop");
1336 off = fs->lfs_offset;
1337 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1338 lfs_flush_dirops(fs);
1339 LFS_CLEANERINFO(cip, fs, bp);
1340 oclean = cip->clean;
1341 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1342 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1343 lfs_segunlock(fs);
1344 lfs_writer_leave(fs);
1345
1346 #ifdef DEBUG
1347 LFS_CLEANERINFO(cip, fs, bp);
1348 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1349 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1350 fs->lfs_offset - off, cip->clean - oclean,
1351 fs->lfs_activesb));
1352 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1353 #endif
1354
1355 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1356 return 0;
1357
1358 case LFCNIFILEFH:
1359 /* Return the filehandle of the Ifile */
1360 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1361 return (error);
1362 fhp = (struct fhandle *)ap->a_data;
1363 fhp->fh_fsid = *fsidp;
1364 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1365
1366 case LFCNREWIND:
1367 /* Move lfs_offset to the lowest-numbered segment */
1368 return lfs_rewind(fs, *(int *)ap->a_data);
1369
1370 case LFCNINVAL:
1371 /* Mark a segment SEGUSE_INVAL */
1372 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1373 if (sup->su_nbytes > 0) {
1374 brelse(bp);
1375 lfs_unset_inval_all(fs);
1376 return EBUSY;
1377 }
1378 sup->su_flags |= SEGUSE_INVAL;
1379 VOP_BWRITE(bp);
1380 return 0;
1381
1382 case LFCNRESIZE:
1383 /* Resize the filesystem */
1384 return lfs_resize_fs(fs, *(int *)ap->a_data);
1385
1386 default:
1387 return ufs_fcntl(v);
1388 }
1389 return 0;
1390 }
1391
1392 int
1393 lfs_getpages(void *v)
1394 {
1395 struct vop_getpages_args /* {
1396 struct vnode *a_vp;
1397 voff_t a_offset;
1398 struct vm_page **a_m;
1399 int *a_count;
1400 int a_centeridx;
1401 vm_prot_t a_access_type;
1402 int a_advice;
1403 int a_flags;
1404 } */ *ap = v;
1405
1406 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1407 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1408 return EPERM;
1409 }
1410 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1411 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1412 }
1413
1414 /*
1415 * we're relying on the fact that genfs_getpages() always read in
1416 * entire filesystem blocks.
1417 */
1418 return genfs_getpages(v);
1419 }
1420
1421 /*
1422 * Make sure that for all pages in every block in the given range,
1423 * either all are dirty or all are clean. If any of the pages
1424 * we've seen so far are dirty, put the vnode on the paging chain,
1425 * and mark it IN_PAGING.
1426 *
1427 * If checkfirst != 0, don't check all the pages but return at the
1428 * first dirty page.
1429 */
1430 static int
1431 check_dirty(struct lfs *fs, struct vnode *vp,
1432 off_t startoffset, off_t endoffset, off_t blkeof,
1433 int flags, int checkfirst)
1434 {
1435 int by_list;
1436 struct vm_page *curpg = NULL; /* XXX: gcc */
1437 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1438 off_t soff = 0; /* XXX: gcc */
1439 voff_t off;
1440 int i;
1441 int nonexistent;
1442 int any_dirty; /* number of dirty pages */
1443 int dirty; /* number of dirty pages in a block */
1444 int tdirty;
1445 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1446
1447 ASSERT_MAYBE_SEGLOCK(fs);
1448 top:
1449 by_list = (vp->v_uobj.uo_npages <=
1450 ((endoffset - startoffset) >> PAGE_SHIFT) *
1451 UVM_PAGE_HASH_PENALTY);
1452 any_dirty = 0;
1453
1454 if (by_list) {
1455 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1456 } else {
1457 soff = startoffset;
1458 }
1459 while (by_list || soff < MIN(blkeof, endoffset)) {
1460 if (by_list) {
1461 /*
1462 * Find the first page in a block. Skip
1463 * blocks outside our area of interest or beyond
1464 * the end of file.
1465 */
1466 if (pages_per_block > 1) {
1467 while (curpg &&
1468 ((curpg->offset & fs->lfs_bmask) ||
1469 curpg->offset >= vp->v_size ||
1470 curpg->offset >= endoffset))
1471 curpg = TAILQ_NEXT(curpg, listq);
1472 }
1473 if (curpg == NULL)
1474 break;
1475 soff = curpg->offset;
1476 }
1477
1478 /*
1479 * Mark all pages in extended range busy; find out if any
1480 * of them are dirty.
1481 */
1482 nonexistent = dirty = 0;
1483 for (i = 0; i == 0 || i < pages_per_block; i++) {
1484 if (by_list && pages_per_block <= 1) {
1485 pgs[i] = pg = curpg;
1486 } else {
1487 off = soff + (i << PAGE_SHIFT);
1488 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1489 if (pg == NULL) {
1490 ++nonexistent;
1491 continue;
1492 }
1493 }
1494 KASSERT(pg != NULL);
1495 while (pg->flags & PG_BUSY) {
1496 pg->flags |= PG_WANTED;
1497 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1498 "lfsput", 0);
1499 simple_lock(&vp->v_interlock);
1500 if (by_list) {
1501 if (i > 0)
1502 uvm_page_unbusy(pgs, i);
1503 goto top;
1504 }
1505 }
1506 pg->flags |= PG_BUSY;
1507 UVM_PAGE_OWN(pg, "lfs_putpages");
1508
1509 pmap_page_protect(pg, VM_PROT_NONE);
1510 tdirty = (pmap_clear_modify(pg) ||
1511 (pg->flags & PG_CLEAN) == 0);
1512 dirty += tdirty;
1513 }
1514 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1515 if (by_list) {
1516 curpg = TAILQ_NEXT(curpg, listq);
1517 } else {
1518 soff += fs->lfs_bsize;
1519 }
1520 continue;
1521 }
1522
1523 any_dirty += dirty;
1524 KASSERT(nonexistent == 0);
1525
1526 /*
1527 * If any are dirty make all dirty; unbusy them,
1528 * but if we were asked to clean, wire them so that
1529 * the pagedaemon doesn't bother us about them while
1530 * they're on their way to disk.
1531 */
1532 for (i = 0; i == 0 || i < pages_per_block; i++) {
1533 pg = pgs[i];
1534 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1535 if (dirty) {
1536 pg->flags &= ~PG_CLEAN;
1537 if (flags & PGO_FREE) {
1538 /*
1539 * Wire the page so that
1540 * pdaemon doesn't see it again.
1541 */
1542 uvm_lock_pageq();
1543 uvm_pagewire(pg);
1544 uvm_unlock_pageq();
1545
1546 /* Suspended write flag */
1547 pg->flags |= PG_DELWRI;
1548 }
1549 }
1550 if (pg->flags & PG_WANTED)
1551 wakeup(pg);
1552 pg->flags &= ~(PG_WANTED|PG_BUSY);
1553 UVM_PAGE_OWN(pg, NULL);
1554 }
1555
1556 if (checkfirst && any_dirty)
1557 break;
1558
1559 if (by_list) {
1560 curpg = TAILQ_NEXT(curpg, listq);
1561 } else {
1562 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1563 }
1564 }
1565
1566 /*
1567 * If any pages were dirty, mark this inode as "pageout requested",
1568 * and put it on the paging queue.
1569 * XXXUBC locking (check locking on dchainhd too)
1570 */
1571 #ifdef notyet
1572 if (any_dirty) {
1573 if (!(ip->i_flags & IN_PAGING)) {
1574 ip->i_flags |= IN_PAGING;
1575 simple_lock(&fs->lfs_interlock);
1576 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1577 simple_unlock(&fs->lfs_interlock);
1578 }
1579 }
1580 #endif
1581 return any_dirty;
1582 }
1583
1584 /*
1585 * lfs_putpages functions like genfs_putpages except that
1586 *
1587 * (1) It needs to bounds-check the incoming requests to ensure that
1588 * they are block-aligned; if they are not, expand the range and
1589 * do the right thing in case, e.g., the requested range is clean
1590 * but the expanded range is dirty.
1591 * (2) It needs to explicitly send blocks to be written when it is done.
1592 * VOP_PUTPAGES is not ever called with the seglock held, so
1593 * we simply take the seglock and let lfs_segunlock wait for us.
1594 * XXX Actually we can be called with the seglock held, if we have
1595 * XXX to flush a vnode while lfs_markv is in operation. As of this
1596 * XXX writing we panic in this case.
1597 *
1598 * Assumptions:
1599 *
1600 * (1) The caller does not hold any pages in this vnode busy. If it does,
1601 * there is a danger that when we expand the page range and busy the
1602 * pages we will deadlock.
1603 * (2) We are called with vp->v_interlock held; we must return with it
1604 * released.
1605 * (3) We don't absolutely have to free pages right away, provided that
1606 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1607 * us a request with PGO_FREE, we take the pages out of the paging
1608 * queue and wake up the writer, which will handle freeing them for us.
1609 *
1610 * We ensure that for any filesystem block, all pages for that
1611 * block are either resident or not, even if those pages are higher
1612 * than EOF; that means that we will be getting requests to free
1613 * "unused" pages above EOF all the time, and should ignore them.
1614 *
1615 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1616 */
1617
1618 int
1619 lfs_putpages(void *v)
1620 {
1621 int error;
1622 struct vop_putpages_args /* {
1623 struct vnode *a_vp;
1624 voff_t a_offlo;
1625 voff_t a_offhi;
1626 int a_flags;
1627 } */ *ap = v;
1628 struct vnode *vp;
1629 struct inode *ip;
1630 struct lfs *fs;
1631 struct segment *sp;
1632 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1633 off_t off, max_endoffset;
1634 int s;
1635 boolean_t seglocked, sync, pagedaemon;
1636 struct vm_page *pg;
1637 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1638
1639 vp = ap->a_vp;
1640 ip = VTOI(vp);
1641 fs = ip->i_lfs;
1642 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1643 pagedaemon = (curproc == uvm.pagedaemon_proc);
1644
1645 /* Putpages does nothing for metadata. */
1646 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1647 simple_unlock(&vp->v_interlock);
1648 return 0;
1649 }
1650
1651 /*
1652 * If there are no pages, don't do anything.
1653 */
1654 if (vp->v_uobj.uo_npages == 0) {
1655 s = splbio();
1656 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1657 (vp->v_flag & VONWORKLST)) {
1658 vp->v_flag &= ~VONWORKLST;
1659 LIST_REMOVE(vp, v_synclist);
1660 }
1661 splx(s);
1662 simple_unlock(&vp->v_interlock);
1663 return 0;
1664 }
1665
1666 blkeof = blkroundup(fs, ip->i_size);
1667
1668 /*
1669 * Ignore requests to free pages past EOF but in the same block
1670 * as EOF, unless the request is synchronous. (XXX why sync?)
1671 * XXXUBC Make these pages look "active" so the pagedaemon won't
1672 * XXXUBC bother us with them again.
1673 */
1674 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1675 origoffset = ap->a_offlo;
1676 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1677 pg = uvm_pagelookup(&vp->v_uobj, off);
1678 KASSERT(pg != NULL);
1679 while (pg->flags & PG_BUSY) {
1680 pg->flags |= PG_WANTED;
1681 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1682 "lfsput2", 0);
1683 simple_lock(&vp->v_interlock);
1684 }
1685 uvm_lock_pageq();
1686 uvm_pageactivate(pg);
1687 uvm_unlock_pageq();
1688 }
1689 ap->a_offlo = blkeof;
1690 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1691 simple_unlock(&vp->v_interlock);
1692 return 0;
1693 }
1694 }
1695
1696 /*
1697 * Extend page range to start and end at block boundaries.
1698 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1699 */
1700 origoffset = ap->a_offlo;
1701 origendoffset = ap->a_offhi;
1702 startoffset = origoffset & ~(fs->lfs_bmask);
1703 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1704 << fs->lfs_bshift;
1705
1706 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1707 endoffset = max_endoffset;
1708 origendoffset = endoffset;
1709 } else {
1710 origendoffset = round_page(ap->a_offhi);
1711 endoffset = round_page(blkroundup(fs, origendoffset));
1712 }
1713
1714 KASSERT(startoffset > 0 || endoffset >= startoffset);
1715 if (startoffset == endoffset) {
1716 /* Nothing to do, why were we called? */
1717 simple_unlock(&vp->v_interlock);
1718 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1719 PRId64 "\n", startoffset));
1720 return 0;
1721 }
1722
1723 ap->a_offlo = startoffset;
1724 ap->a_offhi = endoffset;
1725
1726 if (!(ap->a_flags & PGO_CLEANIT))
1727 return genfs_putpages(v);
1728
1729 /*
1730 * If there are more than one page per block, we don't want
1731 * to get caught locking them backwards; so set PGO_BUSYFAIL
1732 * to avoid deadlocks.
1733 */
1734 ap->a_flags |= PGO_BUSYFAIL;
1735
1736 do {
1737 int r;
1738
1739 /* If no pages are dirty, we can just use genfs_putpages. */
1740 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1741 ap->a_flags, 1) != 0)
1742 break;
1743
1744 /*
1745 * Sometimes pages are dirtied between the time that
1746 * we check and the time we try to clean them.
1747 * Instruct lfs_gop_write to return EDEADLK in this case
1748 * so we can write them properly.
1749 */
1750 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1751 r = genfs_putpages(v);
1752 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1753 if (r != EDEADLK)
1754 return r;
1755
1756 /* Start over. */
1757 preempt(1);
1758 simple_lock(&vp->v_interlock);
1759 } while(1);
1760
1761 /*
1762 * Dirty and asked to clean.
1763 *
1764 * Pagedaemon can't actually write LFS pages; wake up
1765 * the writer to take care of that. The writer will
1766 * notice the pager inode queue and act on that.
1767 */
1768 if (pagedaemon) {
1769 simple_lock(&fs->lfs_interlock);
1770 ++fs->lfs_pdflush;
1771 simple_unlock(&fs->lfs_interlock);
1772 wakeup(&lfs_writer_daemon);
1773 simple_unlock(&vp->v_interlock);
1774 return EWOULDBLOCK;
1775 }
1776
1777 /*
1778 * If this is a file created in a recent dirop, we can't flush its
1779 * inode until the dirop is complete. Drain dirops, then flush the
1780 * filesystem (taking care of any other pending dirops while we're
1781 * at it).
1782 */
1783 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1784 (vp->v_flag & VDIROP)) {
1785 int locked;
1786
1787 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1788 locked = VOP_ISLOCKED(vp) && /* XXX */
1789 vp->v_lock.lk_lockholder == curproc->p_pid;
1790 simple_unlock(&vp->v_interlock);
1791 lfs_writer_enter(fs, "ppdirop");
1792 if (locked)
1793 VOP_UNLOCK(vp, 0);
1794
1795 simple_lock(&fs->lfs_interlock);
1796 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1797 simple_unlock(&fs->lfs_interlock);
1798
1799 simple_lock(&vp->v_interlock);
1800 if (locked) {
1801 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1802 simple_lock(&vp->v_interlock);
1803 }
1804 lfs_writer_leave(fs);
1805
1806 /* XXX the flush should have taken care of this one too! */
1807 }
1808
1809 /*
1810 * This is it. We are going to write some pages. From here on
1811 * down it's all just mechanics.
1812 *
1813 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1814 */
1815 ap->a_flags &= ~PGO_SYNCIO;
1816
1817 /*
1818 * If we've already got the seglock, flush the node and return.
1819 * The FIP has already been set up for us by lfs_writefile,
1820 * and FIP cleanup and lfs_updatemeta will also be done there,
1821 * unless genfs_putpages returns EDEADLK; then we must flush
1822 * what we have, and correct FIP and segment header accounting.
1823 */
1824
1825 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1826 if (!seglocked) {
1827 simple_unlock(&vp->v_interlock);
1828 /*
1829 * Take the seglock, because we are going to be writing pages.
1830 */
1831 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1832 if (error != 0)
1833 return error;
1834 simple_lock(&vp->v_interlock);
1835 }
1836
1837 /*
1838 * VOP_PUTPAGES should not be called while holding the seglock.
1839 * XXXUBC fix lfs_markv, or do this properly.
1840 */
1841 #ifdef notyet
1842 KASSERT(fs->lfs_seglock == 1);
1843 #endif /* notyet */
1844
1845 /*
1846 * We assume we're being called with sp->fip pointing at blank space.
1847 * Account for a new FIP in the segment header, and set sp->vp.
1848 * (This should duplicate the setup at the top of lfs_writefile().)
1849 */
1850 sp = fs->lfs_sp;
1851 if (!seglocked) {
1852 if (sp->seg_bytes_left < fs->lfs_bsize ||
1853 sp->sum_bytes_left < sizeof(struct finfo))
1854 (void) lfs_writeseg(fs, fs->lfs_sp);
1855
1856 sp->sum_bytes_left -= FINFOSIZE;
1857 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1858 }
1859 KASSERT(sp->vp == NULL);
1860 sp->vp = vp;
1861
1862 if (!seglocked) {
1863 if (vp->v_flag & VDIROP)
1864 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1865 }
1866
1867 sp->fip->fi_nblocks = 0;
1868 sp->fip->fi_ino = ip->i_number;
1869 sp->fip->fi_version = ip->i_gen;
1870
1871 /*
1872 * Loop through genfs_putpages until all pages are gathered.
1873 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1874 * Whenever we lose the interlock we have to rerun check_dirty, as
1875 * well.
1876 */
1877 again:
1878 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1879
1880 if ((error = genfs_putpages(v)) == EDEADLK) {
1881 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1882 " EDEADLK [2] ino %d off %x (seg %d)\n",
1883 ip->i_number, fs->lfs_offset,
1884 dtosn(fs, fs->lfs_offset)));
1885 /* If nothing to write, short-circuit */
1886 if (sp->cbpp - sp->bpp > 1) {
1887 /* Write gathered pages */
1888 lfs_updatemeta(sp);
1889 (void) lfs_writeseg(fs, sp);
1890
1891 /*
1892 * Reinitialize brand new FIP and add us to it.
1893 * (This should duplicate the fixup in
1894 * lfs_gatherpages().)
1895 */
1896 KASSERT(sp->vp == vp);
1897 sp->fip->fi_version = ip->i_gen;
1898 sp->fip->fi_ino = ip->i_number;
1899 /* Add us to the new segment summary. */
1900 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1901 sp->sum_bytes_left -= FINFOSIZE;
1902 }
1903
1904 /* Give the write a chance to complete */
1905 preempt(1);
1906
1907 /* We've lost the interlock. Start over. */
1908 simple_lock(&vp->v_interlock);
1909 goto again;
1910 }
1911
1912 KASSERT(sp->vp == vp);
1913 if (!seglocked) {
1914 sp->vp = NULL; /* XXX lfs_gather below will set this */
1915
1916 /* Write indirect blocks as well */
1917 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1918 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1919 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1920
1921 KASSERT(sp->vp == NULL);
1922 sp->vp = vp;
1923 }
1924
1925 /*
1926 * Blocks are now gathered into a segment waiting to be written.
1927 * All that's left to do is update metadata, and write them.
1928 */
1929 lfs_updatemeta(sp);
1930 KASSERT(sp->vp == vp);
1931 sp->vp = NULL;
1932
1933 if (seglocked) {
1934 /* we're called by lfs_writefile. */
1935 return error;
1936 }
1937
1938 /*
1939 * Clean up FIP, since we're done writing this file.
1940 * This should duplicate cleanup at the end of lfs_writefile().
1941 */
1942 if (sp->fip->fi_nblocks != 0) {
1943 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1944 sizeof(int32_t) * sp->fip->fi_nblocks);
1945 sp->start_lbp = &sp->fip->fi_blocks[0];
1946 } else {
1947 sp->sum_bytes_left += FINFOSIZE;
1948 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1949 }
1950 lfs_writeseg(fs, fs->lfs_sp);
1951
1952 /*
1953 * XXX - with the malloc/copy writeseg, the pages are freed by now
1954 * even if we don't wait (e.g. if we hold a nested lock). This
1955 * will not be true if we stop using malloc/copy.
1956 */
1957 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1958 lfs_segunlock(fs);
1959
1960 /*
1961 * Wait for v_numoutput to drop to zero. The seglock should
1962 * take care of this, but there is a slight possibility that
1963 * aiodoned might not have got around to our buffers yet.
1964 */
1965 if (sync) {
1966 s = splbio();
1967 simple_lock(&global_v_numoutput_slock);
1968 while (vp->v_numoutput > 0) {
1969 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1970 " num %d\n", ip->i_number, vp->v_numoutput));
1971 vp->v_flag |= VBWAIT;
1972 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1973 &global_v_numoutput_slock);
1974 }
1975 simple_unlock(&global_v_numoutput_slock);
1976 splx(s);
1977 }
1978 return error;
1979 }
1980
1981 /*
1982 * Return the last logical file offset that should be written for this file
1983 * if we're doing a write that ends at "size". If writing, we need to know
1984 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1985 * to know about entire blocks.
1986 */
1987 void
1988 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1989 {
1990 struct inode *ip = VTOI(vp);
1991 struct lfs *fs = ip->i_lfs;
1992 daddr_t olbn, nlbn;
1993
1994 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1995 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1996 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1997
1998 olbn = lblkno(fs, ip->i_size);
1999 nlbn = lblkno(fs, size);
2000 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2001 *eobp = fragroundup(fs, size);
2002 } else {
2003 *eobp = blkroundup(fs, size);
2004 }
2005 }
2006
2007 #ifdef DEBUG
2008 void lfs_dump_vop(void *);
2009
2010 void
2011 lfs_dump_vop(void *v)
2012 {
2013 struct vop_putpages_args /* {
2014 struct vnode *a_vp;
2015 voff_t a_offlo;
2016 voff_t a_offhi;
2017 int a_flags;
2018 } */ *ap = v;
2019
2020 #ifdef DDB
2021 vfs_vnode_print(ap->a_vp, 0, printf);
2022 #endif
2023 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2024 }
2025 #endif
2026
2027 int
2028 lfs_mmap(void *v)
2029 {
2030 struct vop_mmap_args /* {
2031 const struct vnodeop_desc *a_desc;
2032 struct vnode *a_vp;
2033 int a_fflags;
2034 struct ucred *a_cred;
2035 struct proc *a_p;
2036 } */ *ap = v;
2037
2038 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2039 return EOPNOTSUPP;
2040 return ufs_mmap(v);
2041 }
2042