lfs_vnops.c revision 1.156 1 /* $NetBSD: lfs_vnops.c,v 1.156 2005/11/02 12:39:14 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.156 2005/11/02 12:39:14 yamt Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_lease_desc, spec_lease_check }, /* lease */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
201 };
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
204
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, fifo_lookup }, /* lookup */
209 { &vop_create_desc, fifo_create }, /* create */
210 { &vop_mknod_desc, fifo_mknod }, /* mknod */
211 { &vop_open_desc, fifo_open }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_lease_desc, fifo_lease_check }, /* lease */
219 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
220 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
221 { &vop_poll_desc, fifo_poll }, /* poll */
222 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
223 { &vop_revoke_desc, fifo_revoke }, /* revoke */
224 { &vop_mmap_desc, fifo_mmap }, /* mmap */
225 { &vop_fsync_desc, fifo_fsync }, /* fsync */
226 { &vop_seek_desc, fifo_seek }, /* seek */
227 { &vop_remove_desc, fifo_remove }, /* remove */
228 { &vop_link_desc, fifo_link }, /* link */
229 { &vop_rename_desc, fifo_rename }, /* rename */
230 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
231 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
232 { &vop_symlink_desc, fifo_symlink }, /* symlink */
233 { &vop_readdir_desc, fifo_readdir }, /* readdir */
234 { &vop_readlink_desc, fifo_readlink }, /* readlink */
235 { &vop_abortop_desc, fifo_abortop }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ufs_lock }, /* lock */
239 { &vop_unlock_desc, ufs_unlock }, /* unlock */
240 { &vop_bmap_desc, fifo_bmap }, /* bmap */
241 { &vop_strategy_desc, fifo_strategy }, /* strategy */
242 { &vop_print_desc, ufs_print }, /* print */
243 { &vop_islocked_desc, ufs_islocked }, /* islocked */
244 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
245 { &vop_advlock_desc, fifo_advlock }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, fifo_putpages }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
254
255 #define LFS_READWRITE
256 #include <ufs/ufs/ufs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 struct ucred *a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 struct proc *a_p;
273 } */ *ap = v;
274 struct vnode *vp = ap->a_vp;
275 int error, wait;
276
277 /*
278 * Trickle sync checks for need to do a checkpoint after possible
279 * activity from the pagedaemon.
280 */
281 if (ap->a_flags & FSYNC_LAZY) {
282 simple_lock(&lfs_subsys_lock);
283 wakeup(&lfs_writer_daemon);
284 simple_unlock(&lfs_subsys_lock);
285 return 0;
286 }
287
288 wait = (ap->a_flags & FSYNC_WAIT);
289 simple_lock(&vp->v_interlock);
290 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
291 round_page(ap->a_offhi),
292 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
293 if (error)
294 return error;
295 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
296 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
297 int l = 0;
298 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
299 ap->a_p->p_ucred, ap->a_p);
300 }
301 if (wait && !VPISEMPTY(vp))
302 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
303
304 return error;
305 }
306
307 /*
308 * Take IN_ADIROP off, then call ufs_inactive.
309 */
310 int
311 lfs_inactive(void *v)
312 {
313 struct vop_inactive_args /* {
314 struct vnode *a_vp;
315 struct proc *a_p;
316 } */ *ap = v;
317
318 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
319
320 lfs_unmark_vnode(ap->a_vp);
321
322 /*
323 * The Ifile is only ever inactivated on unmount.
324 * Streamline this process by not giving it more dirty blocks.
325 */
326 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
327 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
328 VOP_UNLOCK(ap->a_vp, 0);
329 return 0;
330 }
331
332 return ufs_inactive(v);
333 }
334
335 /*
336 * These macros are used to bracket UFS directory ops, so that we can
337 * identify all the pages touched during directory ops which need to
338 * be ordered and flushed atomically, so that they may be recovered.
339 *
340 * Because we have to mark nodes VDIROP in order to prevent
341 * the cache from reclaiming them while a dirop is in progress, we must
342 * also manage the number of nodes so marked (otherwise we can run out).
343 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
344 * is decremented during segment write, when VDIROP is taken off.
345 */
346 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
347 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
348 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
349 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
350 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
351 static int lfs_set_dirop(struct vnode *, struct vnode *);
352
353 static int
354 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
355 {
356 struct lfs *fs;
357 int error;
358
359 KASSERT(VOP_ISLOCKED(dvp));
360 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
361
362 fs = VTOI(dvp)->i_lfs;
363
364 ASSERT_NO_SEGLOCK(fs);
365 /*
366 * LFS_NRESERVE calculates direct and indirect blocks as well
367 * as an inode block; an overestimate in most cases.
368 */
369 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
370 return (error);
371
372 restart:
373 simple_lock(&fs->lfs_interlock);
374 if (fs->lfs_dirops == 0) {
375 simple_unlock(&fs->lfs_interlock);
376 lfs_check(dvp, LFS_UNUSED_LBN, 0);
377 simple_lock(&fs->lfs_interlock);
378 }
379 while (fs->lfs_writer)
380 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
381 &fs->lfs_interlock);
382 simple_lock(&lfs_subsys_lock);
383 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
384 wakeup(&lfs_writer_daemon);
385 simple_unlock(&lfs_subsys_lock);
386 simple_unlock(&fs->lfs_interlock);
387 preempt(1);
388 goto restart;
389 }
390
391 if (lfs_dirvcount > LFS_MAX_DIROP) {
392 simple_unlock(&fs->lfs_interlock);
393 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
394 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
395 if ((error = ltsleep(&lfs_dirvcount,
396 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
397 &lfs_subsys_lock)) != 0) {
398 goto unreserve;
399 }
400 goto restart;
401 }
402 simple_unlock(&lfs_subsys_lock);
403
404 ++fs->lfs_dirops;
405 fs->lfs_doifile = 1;
406 simple_unlock(&fs->lfs_interlock);
407
408 /* Hold a reference so SET_ENDOP will be happy */
409 vref(dvp);
410 if (vp) {
411 vref(vp);
412 MARK_VNODE(vp);
413 }
414
415 MARK_VNODE(dvp);
416 return 0;
417
418 unreserve:
419 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
420 return error;
421 }
422
423 /*
424 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
425 * in getnewvnode(), if we have a stacked filesystem mounted on top
426 * of us.
427 *
428 * NB: this means we have to clear the new vnodes on error. Fortunately
429 * SET_ENDOP is there to do that for us.
430 */
431 static int
432 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
433 {
434 int error;
435 struct lfs *fs;
436
437 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
438 ASSERT_NO_SEGLOCK(fs);
439 if (fs->lfs_ronly)
440 return EROFS;
441 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
442 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
443 dvp, error));
444 return error;
445 }
446 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
447 if (vpp) {
448 ungetnewvnode(*vpp);
449 *vpp = NULL;
450 }
451 return error;
452 }
453 return 0;
454 }
455
456 #define SET_ENDOP_BASE(fs, dvp, str) \
457 do { \
458 simple_lock(&(fs)->lfs_interlock); \
459 --(fs)->lfs_dirops; \
460 if (!(fs)->lfs_dirops) { \
461 if ((fs)->lfs_nadirop) { \
462 panic("SET_ENDOP: %s: no dirops but " \
463 " nadirop=%d", (str), \
464 (fs)->lfs_nadirop); \
465 } \
466 wakeup(&(fs)->lfs_writer); \
467 simple_unlock(&(fs)->lfs_interlock); \
468 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
469 } else \
470 simple_unlock(&(fs)->lfs_interlock); \
471 } while(0)
472 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
473 do { \
474 UNMARK_VNODE(dvp); \
475 if (nvpp && *nvpp) \
476 UNMARK_VNODE(*nvpp); \
477 /* Check for error return to stem vnode leakage */ \
478 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
479 ungetnewvnode(*(nvpp)); \
480 SET_ENDOP_BASE((fs), (dvp), (str)); \
481 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
482 vrele(dvp); \
483 } while(0)
484 #define SET_ENDOP_CREATE_AP(ap, str) \
485 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
486 (ap)->a_vpp, (str))
487 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
488 do { \
489 UNMARK_VNODE(dvp); \
490 if (ovp) \
491 UNMARK_VNODE(ovp); \
492 SET_ENDOP_BASE((fs), (dvp), (str)); \
493 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
494 vrele(dvp); \
495 if (ovp) \
496 vrele(ovp); \
497 } while(0)
498
499 void
500 lfs_mark_vnode(struct vnode *vp)
501 {
502 struct inode *ip = VTOI(vp);
503 struct lfs *fs = ip->i_lfs;
504
505 simple_lock(&fs->lfs_interlock);
506 if (!(ip->i_flag & IN_ADIROP)) {
507 if (!(vp->v_flag & VDIROP)) {
508 (void)lfs_vref(vp);
509 simple_lock(&lfs_subsys_lock);
510 ++lfs_dirvcount;
511 simple_unlock(&lfs_subsys_lock);
512 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
513 vp->v_flag |= VDIROP;
514 }
515 ++fs->lfs_nadirop;
516 ip->i_flag |= IN_ADIROP;
517 } else
518 KASSERT(vp->v_flag & VDIROP);
519 simple_unlock(&fs->lfs_interlock);
520 }
521
522 void
523 lfs_unmark_vnode(struct vnode *vp)
524 {
525 struct inode *ip = VTOI(vp);
526
527 if (ip && (ip->i_flag & IN_ADIROP)) {
528 KASSERT(vp->v_flag & VDIROP);
529 simple_lock(&ip->i_lfs->lfs_interlock);
530 --ip->i_lfs->lfs_nadirop;
531 simple_unlock(&ip->i_lfs->lfs_interlock);
532 ip->i_flag &= ~IN_ADIROP;
533 }
534 }
535
536 int
537 lfs_symlink(void *v)
538 {
539 struct vop_symlink_args /* {
540 struct vnode *a_dvp;
541 struct vnode **a_vpp;
542 struct componentname *a_cnp;
543 struct vattr *a_vap;
544 char *a_target;
545 } */ *ap = v;
546 int error;
547
548 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
549 vput(ap->a_dvp);
550 return error;
551 }
552 error = ufs_symlink(ap);
553 SET_ENDOP_CREATE_AP(ap, "symlink");
554 return (error);
555 }
556
557 int
558 lfs_mknod(void *v)
559 {
560 struct vop_mknod_args /* {
561 struct vnode *a_dvp;
562 struct vnode **a_vpp;
563 struct componentname *a_cnp;
564 struct vattr *a_vap;
565 } */ *ap = v;
566 struct vattr *vap = ap->a_vap;
567 struct vnode **vpp = ap->a_vpp;
568 struct inode *ip;
569 int error;
570 struct mount *mp;
571 ino_t ino;
572
573 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
574 vput(ap->a_dvp);
575 return error;
576 }
577 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
578 ap->a_dvp, vpp, ap->a_cnp);
579
580 /* Either way we're done with the dirop at this point */
581 SET_ENDOP_CREATE_AP(ap, "mknod");
582
583 if (error)
584 return (error);
585
586 ip = VTOI(*vpp);
587 mp = (*vpp)->v_mount;
588 ino = ip->i_number;
589 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
590 if (vap->va_rdev != VNOVAL) {
591 /*
592 * Want to be able to use this to make badblock
593 * inodes, so don't truncate the dev number.
594 */
595 #if 0
596 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
597 UFS_MPNEEDSWAP((*vpp)->v_mount));
598 #else
599 ip->i_ffs1_rdev = vap->va_rdev;
600 #endif
601 }
602
603 /*
604 * Call fsync to write the vnode so that we don't have to deal with
605 * flushing it when it's marked VDIROP|VXLOCK.
606 *
607 * XXX KS - If we can't flush we also can't call vgone(), so must
608 * return. But, that leaves this vnode in limbo, also not good.
609 * Can this ever happen (barring hardware failure)?
610 */
611 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
612 curproc)) != 0) {
613 panic("lfs_mknod: couldn't fsync (ino %llu)",
614 (unsigned long long)ino);
615 /* return (error); */
616 }
617 /*
618 * Remove vnode so that it will be reloaded by VFS_VGET and
619 * checked to see if it is an alias of an existing entry in
620 * the inode cache.
621 */
622 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
623
624 VOP_UNLOCK(*vpp, 0);
625 lfs_vunref(*vpp);
626 (*vpp)->v_type = VNON;
627 vgone(*vpp);
628 error = VFS_VGET(mp, ino, vpp);
629
630 if (error != 0) {
631 *vpp = NULL;
632 return (error);
633 }
634 return (0);
635 }
636
637 int
638 lfs_create(void *v)
639 {
640 struct vop_create_args /* {
641 struct vnode *a_dvp;
642 struct vnode **a_vpp;
643 struct componentname *a_cnp;
644 struct vattr *a_vap;
645 } */ *ap = v;
646 int error;
647
648 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
649 vput(ap->a_dvp);
650 return error;
651 }
652 error = ufs_create(ap);
653 SET_ENDOP_CREATE_AP(ap, "create");
654 return (error);
655 }
656
657 int
658 lfs_mkdir(void *v)
659 {
660 struct vop_mkdir_args /* {
661 struct vnode *a_dvp;
662 struct vnode **a_vpp;
663 struct componentname *a_cnp;
664 struct vattr *a_vap;
665 } */ *ap = v;
666 int error;
667
668 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
669 vput(ap->a_dvp);
670 return error;
671 }
672 error = ufs_mkdir(ap);
673 SET_ENDOP_CREATE_AP(ap, "mkdir");
674 return (error);
675 }
676
677 int
678 lfs_remove(void *v)
679 {
680 struct vop_remove_args /* {
681 struct vnode *a_dvp;
682 struct vnode *a_vp;
683 struct componentname *a_cnp;
684 } */ *ap = v;
685 struct vnode *dvp, *vp;
686 int error;
687
688 dvp = ap->a_dvp;
689 vp = ap->a_vp;
690 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
691 if (dvp == vp)
692 vrele(vp);
693 else
694 vput(vp);
695 vput(dvp);
696 return error;
697 }
698 error = ufs_remove(ap);
699 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
700 return (error);
701 }
702
703 int
704 lfs_rmdir(void *v)
705 {
706 struct vop_rmdir_args /* {
707 struct vnodeop_desc *a_desc;
708 struct vnode *a_dvp;
709 struct vnode *a_vp;
710 struct componentname *a_cnp;
711 } */ *ap = v;
712 struct vnode *vp;
713 int error;
714
715 vp = ap->a_vp;
716 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
717 vrele(ap->a_dvp);
718 if (ap->a_vp != ap->a_dvp)
719 VOP_UNLOCK(ap->a_dvp, 0);
720 vput(vp);
721 return error;
722 }
723 error = ufs_rmdir(ap);
724 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
725 return (error);
726 }
727
728 int
729 lfs_link(void *v)
730 {
731 struct vop_link_args /* {
732 struct vnode *a_dvp;
733 struct vnode *a_vp;
734 struct componentname *a_cnp;
735 } */ *ap = v;
736 int error;
737 struct vnode **vpp = NULL;
738
739 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
740 vput(ap->a_dvp);
741 return error;
742 }
743 error = ufs_link(ap);
744 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
745 return (error);
746 }
747
748 int
749 lfs_rename(void *v)
750 {
751 struct vop_rename_args /* {
752 struct vnode *a_fdvp;
753 struct vnode *a_fvp;
754 struct componentname *a_fcnp;
755 struct vnode *a_tdvp;
756 struct vnode *a_tvp;
757 struct componentname *a_tcnp;
758 } */ *ap = v;
759 struct vnode *tvp, *fvp, *tdvp, *fdvp;
760 struct componentname *tcnp, *fcnp;
761 int error;
762 struct lfs *fs;
763
764 fs = VTOI(ap->a_fdvp)->i_lfs;
765 tvp = ap->a_tvp;
766 tdvp = ap->a_tdvp;
767 tcnp = ap->a_tcnp;
768 fvp = ap->a_fvp;
769 fdvp = ap->a_fdvp;
770 fcnp = ap->a_fcnp;
771
772 /*
773 * Check for cross-device rename.
774 * If it is, we don't want to set dirops, just error out.
775 * (In particular note that MARK_VNODE(tdvp) will DTWT on
776 * a cross-device rename.)
777 *
778 * Copied from ufs_rename.
779 */
780 if ((fvp->v_mount != tdvp->v_mount) ||
781 (tvp && (fvp->v_mount != tvp->v_mount))) {
782 error = EXDEV;
783 goto errout;
784 }
785
786 /*
787 * Check to make sure we're not renaming a vnode onto itself
788 * (deleting a hard link by renaming one name onto another);
789 * if we are we can't recursively call VOP_REMOVE since that
790 * would leave us with an unaccounted-for number of live dirops.
791 *
792 * Inline the relevant section of ufs_rename here, *before*
793 * calling SET_DIROP_REMOVE.
794 */
795 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
796 (VTOI(tdvp)->i_flags & APPEND))) {
797 error = EPERM;
798 goto errout;
799 }
800 if (fvp == tvp) {
801 if (fvp->v_type == VDIR) {
802 error = EINVAL;
803 goto errout;
804 }
805
806 /* Release destination completely. */
807 VOP_ABORTOP(tdvp, tcnp);
808 vput(tdvp);
809 vput(tvp);
810
811 /* Delete source. */
812 vrele(fvp);
813 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
814 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
815 fcnp->cn_nameiop = DELETE;
816 if ((error = relookup(fdvp, &fvp, fcnp))){
817 /* relookup blew away fdvp */
818 return (error);
819 }
820 return (VOP_REMOVE(fdvp, fvp, fcnp));
821 }
822
823 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
824 goto errout;
825 MARK_VNODE(fdvp);
826 MARK_VNODE(fvp);
827
828 error = ufs_rename(ap);
829 UNMARK_VNODE(fdvp);
830 UNMARK_VNODE(fvp);
831 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
832 return (error);
833
834 errout:
835 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
836 if (tdvp == tvp)
837 vrele(tdvp);
838 else
839 vput(tdvp);
840 if (tvp)
841 vput(tvp);
842 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
843 vrele(fdvp);
844 vrele(fvp);
845 return (error);
846 }
847
848 /* XXX hack to avoid calling ITIMES in getattr */
849 int
850 lfs_getattr(void *v)
851 {
852 struct vop_getattr_args /* {
853 struct vnode *a_vp;
854 struct vattr *a_vap;
855 struct ucred *a_cred;
856 struct proc *a_p;
857 } */ *ap = v;
858 struct vnode *vp = ap->a_vp;
859 struct inode *ip = VTOI(vp);
860 struct vattr *vap = ap->a_vap;
861 struct lfs *fs = ip->i_lfs;
862 /*
863 * Copy from inode table
864 */
865 vap->va_fsid = ip->i_dev;
866 vap->va_fileid = ip->i_number;
867 vap->va_mode = ip->i_mode & ~IFMT;
868 vap->va_nlink = ip->i_nlink;
869 vap->va_uid = ip->i_uid;
870 vap->va_gid = ip->i_gid;
871 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
872 vap->va_size = vp->v_size;
873 vap->va_atime.tv_sec = ip->i_ffs1_atime;
874 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
875 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
876 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
877 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
878 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
879 vap->va_flags = ip->i_flags;
880 vap->va_gen = ip->i_gen;
881 /* this doesn't belong here */
882 if (vp->v_type == VBLK)
883 vap->va_blocksize = BLKDEV_IOSIZE;
884 else if (vp->v_type == VCHR)
885 vap->va_blocksize = MAXBSIZE;
886 else
887 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
888 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
889 vap->va_type = vp->v_type;
890 vap->va_filerev = ip->i_modrev;
891 return (0);
892 }
893
894 /*
895 * Check to make sure the inode blocks won't choke the buffer
896 * cache, then call ufs_setattr as usual.
897 */
898 int
899 lfs_setattr(void *v)
900 {
901 struct vop_setattr_args /* {
902 struct vnode *a_vp;
903 struct vattr *a_vap;
904 struct ucred *a_cred;
905 struct proc *a_p;
906 } */ *ap = v;
907 struct vnode *vp = ap->a_vp;
908
909 lfs_check(vp, LFS_UNUSED_LBN, 0);
910 return ufs_setattr(v);
911 }
912
913 /*
914 * Close called
915 *
916 * XXX -- we were using ufs_close, but since it updates the
917 * times on the inode, we might need to bump the uinodes
918 * count.
919 */
920 /* ARGSUSED */
921 int
922 lfs_close(void *v)
923 {
924 struct vop_close_args /* {
925 struct vnode *a_vp;
926 int a_fflag;
927 struct ucred *a_cred;
928 struct proc *a_p;
929 } */ *ap = v;
930 struct vnode *vp = ap->a_vp;
931 struct inode *ip = VTOI(vp);
932
933 if (vp == ip->i_lfs->lfs_ivnode &&
934 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
935 return 0;
936
937 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
938 LFS_ITIMES(ip, NULL, NULL, NULL);
939 }
940 return (0);
941 }
942
943 /*
944 * Close wrapper for special devices.
945 *
946 * Update the times on the inode then do device close.
947 */
948 int
949 lfsspec_close(void *v)
950 {
951 struct vop_close_args /* {
952 struct vnode *a_vp;
953 int a_fflag;
954 struct ucred *a_cred;
955 struct proc *a_p;
956 } */ *ap = v;
957 struct vnode *vp;
958 struct inode *ip;
959
960 vp = ap->a_vp;
961 ip = VTOI(vp);
962 if (vp->v_usecount > 1) {
963 LFS_ITIMES(ip, NULL, NULL, NULL);
964 }
965 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
966 }
967
968 /*
969 * Close wrapper for fifo's.
970 *
971 * Update the times on the inode then do device close.
972 */
973 int
974 lfsfifo_close(void *v)
975 {
976 struct vop_close_args /* {
977 struct vnode *a_vp;
978 int a_fflag;
979 struct ucred *a_cred;
980 struct proc *a_p;
981 } */ *ap = v;
982 struct vnode *vp;
983 struct inode *ip;
984
985 vp = ap->a_vp;
986 ip = VTOI(vp);
987 if (ap->a_vp->v_usecount > 1) {
988 LFS_ITIMES(ip, NULL, NULL, NULL);
989 }
990 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
991 }
992
993 /*
994 * Reclaim an inode so that it can be used for other purposes.
995 */
996
997 int
998 lfs_reclaim(void *v)
999 {
1000 struct vop_reclaim_args /* {
1001 struct vnode *a_vp;
1002 struct proc *a_p;
1003 } */ *ap = v;
1004 struct vnode *vp = ap->a_vp;
1005 struct inode *ip = VTOI(vp);
1006 int error;
1007
1008 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1009
1010 LFS_CLR_UINO(ip, IN_ALLMOD);
1011 if ((error = ufs_reclaim(vp, ap->a_p)))
1012 return (error);
1013 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1014 lfs_deregister_all(vp);
1015 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1016 ip->inode_ext.lfs = NULL;
1017 pool_put(&lfs_inode_pool, vp->v_data);
1018 vp->v_data = NULL;
1019 return (0);
1020 }
1021
1022 /*
1023 * Read a block from a storage device.
1024 * In order to avoid reading blocks that are in the process of being
1025 * written by the cleaner---and hence are not mutexed by the normal
1026 * buffer cache / page cache mechanisms---check for collisions before
1027 * reading.
1028 *
1029 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1030 * the active cleaner test.
1031 *
1032 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1033 */
1034 int
1035 lfs_strategy(void *v)
1036 {
1037 struct vop_strategy_args /* {
1038 struct vnode *a_vp;
1039 struct buf *a_bp;
1040 } */ *ap = v;
1041 struct buf *bp;
1042 struct lfs *fs;
1043 struct vnode *vp;
1044 struct inode *ip;
1045 daddr_t tbn;
1046 int i, sn, error, slept;
1047
1048 bp = ap->a_bp;
1049 vp = ap->a_vp;
1050 ip = VTOI(vp);
1051 fs = ip->i_lfs;
1052
1053 /* lfs uses its strategy routine only for read */
1054 KASSERT(bp->b_flags & B_READ);
1055
1056 if (vp->v_type == VBLK || vp->v_type == VCHR)
1057 panic("lfs_strategy: spec");
1058 KASSERT(bp->b_bcount != 0);
1059 if (bp->b_blkno == bp->b_lblkno) {
1060 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1061 NULL);
1062 if (error) {
1063 bp->b_error = error;
1064 bp->b_flags |= B_ERROR;
1065 biodone(bp);
1066 return (error);
1067 }
1068 if ((long)bp->b_blkno == -1) /* no valid data */
1069 clrbuf(bp);
1070 }
1071 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1072 biodone(bp);
1073 return (0);
1074 }
1075
1076 slept = 1;
1077 simple_lock(&fs->lfs_interlock);
1078 while (slept && fs->lfs_seglock) {
1079 simple_unlock(&fs->lfs_interlock);
1080 /*
1081 * Look through list of intervals.
1082 * There will only be intervals to look through
1083 * if the cleaner holds the seglock.
1084 * Since the cleaner is synchronous, we can trust
1085 * the list of intervals to be current.
1086 */
1087 tbn = dbtofsb(fs, bp->b_blkno);
1088 sn = dtosn(fs, tbn);
1089 slept = 0;
1090 for (i = 0; i < fs->lfs_cleanind; i++) {
1091 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1092 tbn >= fs->lfs_cleanint[i]) {
1093 DLOG((DLOG_CLEAN,
1094 "lfs_strategy: ino %d lbn %" PRId64
1095 " ind %d sn %d fsb %" PRIx32
1096 " given sn %d fsb %" PRIx64 "\n",
1097 ip->i_number, bp->b_lblkno, i,
1098 dtosn(fs, fs->lfs_cleanint[i]),
1099 fs->lfs_cleanint[i], sn, tbn));
1100 DLOG((DLOG_CLEAN,
1101 "lfs_strategy: sleeping on ino %d lbn %"
1102 PRId64 "\n", ip->i_number, bp->b_lblkno));
1103 simple_lock(&fs->lfs_interlock);
1104 if (fs->lfs_seglock)
1105 ltsleep(&fs->lfs_seglock,
1106 (PRIBIO + 1) | PNORELOCK,
1107 "lfs_strategy", 0,
1108 &fs->lfs_interlock);
1109 /* Things may be different now; start over. */
1110 slept = 1;
1111 break;
1112 }
1113 }
1114 simple_lock(&fs->lfs_interlock);
1115 }
1116 simple_unlock(&fs->lfs_interlock);
1117
1118 vp = ip->i_devvp;
1119 VOP_STRATEGY(vp, bp);
1120 return (0);
1121 }
1122
1123 static void
1124 lfs_flush_dirops(struct lfs *fs)
1125 {
1126 struct inode *ip, *nip;
1127 struct vnode *vp;
1128 extern int lfs_dostats;
1129 struct segment *sp;
1130 int needunlock;
1131
1132 ASSERT_NO_SEGLOCK(fs);
1133
1134 if (fs->lfs_ronly)
1135 return;
1136
1137 simple_lock(&fs->lfs_interlock);
1138 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1139 simple_unlock(&fs->lfs_interlock);
1140 return;
1141 } else
1142 simple_unlock(&fs->lfs_interlock);
1143
1144 if (lfs_dostats)
1145 ++lfs_stats.flush_invoked;
1146
1147 /*
1148 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1149 * Technically this is a checkpoint (the on-disk state is valid)
1150 * even though we are leaving out all the file data.
1151 */
1152 lfs_imtime(fs);
1153 lfs_seglock(fs, SEGM_CKP);
1154 sp = fs->lfs_sp;
1155
1156 /*
1157 * lfs_writevnodes, optimized to get dirops out of the way.
1158 * Only write dirops, and don't flush files' pages, only
1159 * blocks from the directories.
1160 *
1161 * We don't need to vref these files because they are
1162 * dirops and so hold an extra reference until the
1163 * segunlock clears them of that status.
1164 *
1165 * We don't need to check for IN_ADIROP because we know that
1166 * no dirops are active.
1167 *
1168 */
1169 simple_lock(&fs->lfs_interlock);
1170 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1171 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1172 simple_unlock(&fs->lfs_interlock);
1173 vp = ITOV(ip);
1174
1175 /*
1176 * All writes to directories come from dirops; all
1177 * writes to files' direct blocks go through the page
1178 * cache, which we're not touching. Reads to files
1179 * and/or directories will not be affected by writing
1180 * directory blocks inodes and file inodes. So we don't
1181 * really need to lock. If we don't lock, though,
1182 * make sure that we don't clear IN_MODIFIED
1183 * unnecessarily.
1184 */
1185 if (vp->v_flag & VXLOCK)
1186 continue;
1187 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1188 needunlock = 1;
1189 } else {
1190 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1191 VTOI(vp)->i_number));
1192 needunlock = 0;
1193 }
1194 if (vp->v_type != VREG &&
1195 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1196 lfs_writefile(fs, sp, vp);
1197 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1198 !(ip->i_flag & IN_ALLMOD)) {
1199 LFS_SET_UINO(ip, IN_MODIFIED);
1200 }
1201 }
1202 (void) lfs_writeinode(fs, sp, ip);
1203 if (needunlock)
1204 VOP_UNLOCK(vp, 0);
1205 else
1206 LFS_SET_UINO(ip, IN_MODIFIED);
1207 simple_lock(&fs->lfs_interlock);
1208 }
1209 simple_unlock(&fs->lfs_interlock);
1210 /* We've written all the dirops there are */
1211 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1212 (void) lfs_writeseg(fs, sp);
1213 lfs_segunlock(fs);
1214 }
1215
1216 /*
1217 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1218 */
1219 int
1220 lfs_fcntl(void *v)
1221 {
1222 struct vop_fcntl_args /* {
1223 struct vnode *a_vp;
1224 u_long a_command;
1225 caddr_t a_data;
1226 int a_fflag;
1227 struct ucred *a_cred;
1228 struct proc *a_p;
1229 } */ *ap = v;
1230 struct timeval *tvp;
1231 BLOCK_INFO *blkiov;
1232 CLEANERINFO *cip;
1233 SEGUSE *sup;
1234 int blkcnt, error, oclean;
1235 struct lfs_fcntl_markv blkvp;
1236 fsid_t *fsidp;
1237 struct lfs *fs;
1238 struct buf *bp;
1239 fhandle_t *fhp;
1240 daddr_t off;
1241
1242 /* Only respect LFS fcntls on fs root or Ifile */
1243 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1244 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1245 return ufs_fcntl(v);
1246 }
1247
1248 /* Avoid locking a draining lock */
1249 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1250 return ESHUTDOWN;
1251 }
1252
1253 fs = VTOI(ap->a_vp)->i_lfs;
1254 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1255
1256 switch (ap->a_command) {
1257 case LFCNSEGWAITALL:
1258 case LFCNSEGWAITALL_COMPAT:
1259 fsidp = NULL;
1260 /* FALLSTHROUGH */
1261 case LFCNSEGWAIT:
1262 case LFCNSEGWAIT_COMPAT:
1263 tvp = (struct timeval *)ap->a_data;
1264 simple_lock(&fs->lfs_interlock);
1265 ++fs->lfs_sleepers;
1266 simple_unlock(&fs->lfs_interlock);
1267 VOP_UNLOCK(ap->a_vp, 0);
1268
1269 error = lfs_segwait(fsidp, tvp);
1270
1271 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1272 simple_lock(&fs->lfs_interlock);
1273 if (--fs->lfs_sleepers == 0)
1274 wakeup(&fs->lfs_sleepers);
1275 simple_unlock(&fs->lfs_interlock);
1276 return error;
1277
1278 case LFCNBMAPV:
1279 case LFCNMARKV:
1280 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1281 return (error);
1282 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1283
1284 blkcnt = blkvp.blkcnt;
1285 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1286 return (EINVAL);
1287 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1288 if ((error = copyin(blkvp.blkiov, blkiov,
1289 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1290 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1291 return error;
1292 }
1293
1294 simple_lock(&fs->lfs_interlock);
1295 ++fs->lfs_sleepers;
1296 simple_unlock(&fs->lfs_interlock);
1297 VOP_UNLOCK(ap->a_vp, 0);
1298 if (ap->a_command == LFCNBMAPV)
1299 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1300 else /* LFCNMARKV */
1301 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1302 if (error == 0)
1303 error = copyout(blkiov, blkvp.blkiov,
1304 blkcnt * sizeof(BLOCK_INFO));
1305 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1306 simple_lock(&fs->lfs_interlock);
1307 if (--fs->lfs_sleepers == 0)
1308 wakeup(&fs->lfs_sleepers);
1309 simple_unlock(&fs->lfs_interlock);
1310 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1311 return error;
1312
1313 case LFCNRECLAIM:
1314 /*
1315 * Flush dirops and write Ifile, allowing empty segments
1316 * to be immediately reclaimed.
1317 */
1318 VOP_UNLOCK(ap->a_vp, 0);
1319 lfs_writer_enter(fs, "pndirop");
1320 off = fs->lfs_offset;
1321 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1322 lfs_flush_dirops(fs);
1323 LFS_CLEANERINFO(cip, fs, bp);
1324 oclean = cip->clean;
1325 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1326 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1327 lfs_segunlock(fs);
1328 lfs_writer_leave(fs);
1329
1330 #ifdef DEBUG
1331 LFS_CLEANERINFO(cip, fs, bp);
1332 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1333 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1334 fs->lfs_offset - off, cip->clean - oclean,
1335 fs->lfs_activesb));
1336 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1337 #endif
1338
1339 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1340 return 0;
1341
1342 case LFCNIFILEFH:
1343 /* Return the filehandle of the Ifile */
1344 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1345 return (error);
1346 fhp = (struct fhandle *)ap->a_data;
1347 fhp->fh_fsid = *fsidp;
1348 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1349
1350 case LFCNREWIND:
1351 /* Move lfs_offset to the lowest-numbered segment */
1352 return lfs_rewind(fs, *(int *)ap->a_data);
1353
1354 case LFCNINVAL:
1355 /* Mark a segment SEGUSE_INVAL */
1356 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1357 if (sup->su_nbytes > 0) {
1358 brelse(bp);
1359 lfs_unset_inval_all(fs);
1360 return EBUSY;
1361 }
1362 sup->su_flags |= SEGUSE_INVAL;
1363 VOP_BWRITE(bp);
1364 return 0;
1365
1366 case LFCNRESIZE:
1367 /* Resize the filesystem */
1368 return lfs_resize_fs(fs, *(int *)ap->a_data);
1369
1370 default:
1371 return ufs_fcntl(v);
1372 }
1373 return 0;
1374 }
1375
1376 int
1377 lfs_getpages(void *v)
1378 {
1379 struct vop_getpages_args /* {
1380 struct vnode *a_vp;
1381 voff_t a_offset;
1382 struct vm_page **a_m;
1383 int *a_count;
1384 int a_centeridx;
1385 vm_prot_t a_access_type;
1386 int a_advice;
1387 int a_flags;
1388 } */ *ap = v;
1389
1390 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1391 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1392 return EPERM;
1393 }
1394 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1395 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1396 }
1397
1398 /*
1399 * we're relying on the fact that genfs_getpages() always read in
1400 * entire filesystem blocks.
1401 */
1402 return genfs_getpages(v);
1403 }
1404
1405 /*
1406 * Make sure that for all pages in every block in the given range,
1407 * either all are dirty or all are clean. If any of the pages
1408 * we've seen so far are dirty, put the vnode on the paging chain,
1409 * and mark it IN_PAGING.
1410 *
1411 * If checkfirst != 0, don't check all the pages but return at the
1412 * first dirty page.
1413 */
1414 static int
1415 check_dirty(struct lfs *fs, struct vnode *vp,
1416 off_t startoffset, off_t endoffset, off_t blkeof,
1417 int flags, int checkfirst)
1418 {
1419 int by_list;
1420 struct vm_page *curpg = NULL; /* XXX: gcc */
1421 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1422 off_t soff = 0; /* XXX: gcc */
1423 voff_t off;
1424 int i;
1425 int nonexistent;
1426 int any_dirty; /* number of dirty pages */
1427 int dirty; /* number of dirty pages in a block */
1428 int tdirty;
1429 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1430
1431 ASSERT_MAYBE_SEGLOCK(fs);
1432 top:
1433 by_list = (vp->v_uobj.uo_npages <=
1434 ((endoffset - startoffset) >> PAGE_SHIFT) *
1435 UVM_PAGE_HASH_PENALTY);
1436 any_dirty = 0;
1437
1438 if (by_list) {
1439 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1440 } else {
1441 soff = startoffset;
1442 }
1443 while (by_list || soff < MIN(blkeof, endoffset)) {
1444 if (by_list) {
1445 /*
1446 * Find the first page in a block. Skip
1447 * blocks outside our area of interest or beyond
1448 * the end of file.
1449 */
1450 if (pages_per_block > 1) {
1451 while (curpg &&
1452 ((curpg->offset & fs->lfs_bmask) ||
1453 curpg->offset >= vp->v_size ||
1454 curpg->offset >= endoffset))
1455 curpg = TAILQ_NEXT(curpg, listq);
1456 }
1457 if (curpg == NULL)
1458 break;
1459 soff = curpg->offset;
1460 }
1461
1462 /*
1463 * Mark all pages in extended range busy; find out if any
1464 * of them are dirty.
1465 */
1466 nonexistent = dirty = 0;
1467 for (i = 0; i == 0 || i < pages_per_block; i++) {
1468 if (by_list && pages_per_block <= 1) {
1469 pgs[i] = pg = curpg;
1470 } else {
1471 off = soff + (i << PAGE_SHIFT);
1472 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1473 if (pg == NULL) {
1474 ++nonexistent;
1475 continue;
1476 }
1477 }
1478 KASSERT(pg != NULL);
1479 while (pg->flags & PG_BUSY) {
1480 pg->flags |= PG_WANTED;
1481 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1482 "lfsput", 0);
1483 simple_lock(&vp->v_interlock);
1484 if (by_list) {
1485 if (i > 0)
1486 uvm_page_unbusy(pgs, i);
1487 goto top;
1488 }
1489 }
1490 pg->flags |= PG_BUSY;
1491 UVM_PAGE_OWN(pg, "lfs_putpages");
1492
1493 pmap_page_protect(pg, VM_PROT_NONE);
1494 tdirty = (pmap_clear_modify(pg) ||
1495 (pg->flags & PG_CLEAN) == 0);
1496 dirty += tdirty;
1497 }
1498 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1499 if (by_list) {
1500 curpg = TAILQ_NEXT(curpg, listq);
1501 } else {
1502 soff += fs->lfs_bsize;
1503 }
1504 continue;
1505 }
1506
1507 any_dirty += dirty;
1508 KASSERT(nonexistent == 0);
1509
1510 /*
1511 * If any are dirty make all dirty; unbusy them,
1512 * but if we were asked to clean, wire them so that
1513 * the pagedaemon doesn't bother us about them while
1514 * they're on their way to disk.
1515 */
1516 for (i = 0; i == 0 || i < pages_per_block; i++) {
1517 pg = pgs[i];
1518 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1519 if (dirty) {
1520 pg->flags &= ~PG_CLEAN;
1521 if (flags & PGO_FREE) {
1522 /*
1523 * Wire the page so that
1524 * pdaemon doesn't see it again.
1525 */
1526 uvm_lock_pageq();
1527 uvm_pagewire(pg);
1528 uvm_unlock_pageq();
1529
1530 /* Suspended write flag */
1531 pg->flags |= PG_DELWRI;
1532 }
1533 }
1534 if (pg->flags & PG_WANTED)
1535 wakeup(pg);
1536 pg->flags &= ~(PG_WANTED|PG_BUSY);
1537 UVM_PAGE_OWN(pg, NULL);
1538 }
1539
1540 if (checkfirst && any_dirty)
1541 break;
1542
1543 if (by_list) {
1544 curpg = TAILQ_NEXT(curpg, listq);
1545 } else {
1546 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1547 }
1548 }
1549
1550 /*
1551 * If any pages were dirty, mark this inode as "pageout requested",
1552 * and put it on the paging queue.
1553 * XXXUBC locking (check locking on dchainhd too)
1554 */
1555 #ifdef notyet
1556 if (any_dirty) {
1557 if (!(ip->i_flags & IN_PAGING)) {
1558 ip->i_flags |= IN_PAGING;
1559 simple_lock(&fs->lfs_interlock);
1560 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1561 simple_unlock(&fs->lfs_interlock);
1562 }
1563 }
1564 #endif
1565 return any_dirty;
1566 }
1567
1568 /*
1569 * lfs_putpages functions like genfs_putpages except that
1570 *
1571 * (1) It needs to bounds-check the incoming requests to ensure that
1572 * they are block-aligned; if they are not, expand the range and
1573 * do the right thing in case, e.g., the requested range is clean
1574 * but the expanded range is dirty.
1575 * (2) It needs to explicitly send blocks to be written when it is done.
1576 * VOP_PUTPAGES is not ever called with the seglock held, so
1577 * we simply take the seglock and let lfs_segunlock wait for us.
1578 * XXX Actually we can be called with the seglock held, if we have
1579 * XXX to flush a vnode while lfs_markv is in operation. As of this
1580 * XXX writing we panic in this case.
1581 *
1582 * Assumptions:
1583 *
1584 * (1) The caller does not hold any pages in this vnode busy. If it does,
1585 * there is a danger that when we expand the page range and busy the
1586 * pages we will deadlock.
1587 * (2) We are called with vp->v_interlock held; we must return with it
1588 * released.
1589 * (3) We don't absolutely have to free pages right away, provided that
1590 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1591 * us a request with PGO_FREE, we take the pages out of the paging
1592 * queue and wake up the writer, which will handle freeing them for us.
1593 *
1594 * We ensure that for any filesystem block, all pages for that
1595 * block are either resident or not, even if those pages are higher
1596 * than EOF; that means that we will be getting requests to free
1597 * "unused" pages above EOF all the time, and should ignore them.
1598 *
1599 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1600 */
1601
1602 int
1603 lfs_putpages(void *v)
1604 {
1605 int error;
1606 struct vop_putpages_args /* {
1607 struct vnode *a_vp;
1608 voff_t a_offlo;
1609 voff_t a_offhi;
1610 int a_flags;
1611 } */ *ap = v;
1612 struct vnode *vp;
1613 struct inode *ip;
1614 struct lfs *fs;
1615 struct segment *sp;
1616 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1617 off_t off, max_endoffset;
1618 int s;
1619 boolean_t seglocked, sync, pagedaemon;
1620 struct vm_page *pg;
1621 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1622
1623 vp = ap->a_vp;
1624 ip = VTOI(vp);
1625 fs = ip->i_lfs;
1626 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1627 pagedaemon = (curproc == uvm.pagedaemon_proc);
1628
1629 /* Putpages does nothing for metadata. */
1630 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1631 simple_unlock(&vp->v_interlock);
1632 return 0;
1633 }
1634
1635 /*
1636 * If there are no pages, don't do anything.
1637 */
1638 if (vp->v_uobj.uo_npages == 0) {
1639 s = splbio();
1640 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1641 (vp->v_flag & VONWORKLST)) {
1642 vp->v_flag &= ~VONWORKLST;
1643 LIST_REMOVE(vp, v_synclist);
1644 }
1645 splx(s);
1646 simple_unlock(&vp->v_interlock);
1647 return 0;
1648 }
1649
1650 blkeof = blkroundup(fs, ip->i_size);
1651
1652 /*
1653 * Ignore requests to free pages past EOF but in the same block
1654 * as EOF, unless the request is synchronous. (XXX why sync?)
1655 * XXXUBC Make these pages look "active" so the pagedaemon won't
1656 * XXXUBC bother us with them again.
1657 */
1658 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1659 origoffset = ap->a_offlo;
1660 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1661 pg = uvm_pagelookup(&vp->v_uobj, off);
1662 KASSERT(pg != NULL);
1663 while (pg->flags & PG_BUSY) {
1664 pg->flags |= PG_WANTED;
1665 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1666 "lfsput2", 0);
1667 simple_lock(&vp->v_interlock);
1668 }
1669 uvm_lock_pageq();
1670 uvm_pageactivate(pg);
1671 uvm_unlock_pageq();
1672 }
1673 ap->a_offlo = blkeof;
1674 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1675 simple_unlock(&vp->v_interlock);
1676 return 0;
1677 }
1678 }
1679
1680 /*
1681 * Extend page range to start and end at block boundaries.
1682 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1683 */
1684 origoffset = ap->a_offlo;
1685 origendoffset = ap->a_offhi;
1686 startoffset = origoffset & ~(fs->lfs_bmask);
1687 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1688 << fs->lfs_bshift;
1689
1690 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1691 endoffset = max_endoffset;
1692 origendoffset = endoffset;
1693 } else {
1694 origendoffset = round_page(ap->a_offhi);
1695 endoffset = round_page(blkroundup(fs, origendoffset));
1696 }
1697
1698 KASSERT(startoffset > 0 || endoffset >= startoffset);
1699 if (startoffset == endoffset) {
1700 /* Nothing to do, why were we called? */
1701 simple_unlock(&vp->v_interlock);
1702 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1703 PRId64 "\n", startoffset));
1704 return 0;
1705 }
1706
1707 ap->a_offlo = startoffset;
1708 ap->a_offhi = endoffset;
1709
1710 if (!(ap->a_flags & PGO_CLEANIT))
1711 return genfs_putpages(v);
1712
1713 /*
1714 * If there are more than one page per block, we don't want
1715 * to get caught locking them backwards; so set PGO_BUSYFAIL
1716 * to avoid deadlocks.
1717 */
1718 ap->a_flags |= PGO_BUSYFAIL;
1719
1720 do {
1721 int r;
1722
1723 /* If no pages are dirty, we can just use genfs_putpages. */
1724 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
1725 ap->a_flags, 1) != 0)
1726 break;
1727
1728 /*
1729 * Sometimes pages are dirtied between the time that
1730 * we check and the time we try to clean them.
1731 * Instruct lfs_gop_write to return EDEADLK in this case
1732 * so we can write them properly.
1733 */
1734 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1735 r = genfs_putpages(v);
1736 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1737 if (r != EDEADLK)
1738 return r;
1739
1740 /* Start over. */
1741 preempt(1);
1742 simple_lock(&vp->v_interlock);
1743 } while(1);
1744
1745 /*
1746 * Dirty and asked to clean.
1747 *
1748 * Pagedaemon can't actually write LFS pages; wake up
1749 * the writer to take care of that. The writer will
1750 * notice the pager inode queue and act on that.
1751 */
1752 if (pagedaemon) {
1753 simple_lock(&fs->lfs_interlock);
1754 ++fs->lfs_pdflush;
1755 simple_unlock(&fs->lfs_interlock);
1756 wakeup(&lfs_writer_daemon);
1757 simple_unlock(&vp->v_interlock);
1758 return EWOULDBLOCK;
1759 }
1760
1761 /*
1762 * If this is a file created in a recent dirop, we can't flush its
1763 * inode until the dirop is complete. Drain dirops, then flush the
1764 * filesystem (taking care of any other pending dirops while we're
1765 * at it).
1766 */
1767 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1768 (vp->v_flag & VDIROP)) {
1769 int locked;
1770
1771 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1772 locked = VOP_ISLOCKED(vp) && /* XXX */
1773 vp->v_lock.lk_lockholder == curproc->p_pid;
1774 simple_unlock(&vp->v_interlock);
1775 lfs_writer_enter(fs, "ppdirop");
1776 if (locked)
1777 VOP_UNLOCK(vp, 0);
1778
1779 simple_lock(&fs->lfs_interlock);
1780 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1781 simple_unlock(&fs->lfs_interlock);
1782
1783 simple_lock(&vp->v_interlock);
1784 if (locked) {
1785 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1786 simple_lock(&vp->v_interlock);
1787 }
1788 lfs_writer_leave(fs);
1789
1790 /* XXX the flush should have taken care of this one too! */
1791 }
1792
1793 /*
1794 * This is it. We are going to write some pages. From here on
1795 * down it's all just mechanics.
1796 *
1797 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1798 */
1799 ap->a_flags &= ~PGO_SYNCIO;
1800
1801 /*
1802 * If we've already got the seglock, flush the node and return.
1803 * The FIP has already been set up for us by lfs_writefile,
1804 * and FIP cleanup and lfs_updatemeta will also be done there,
1805 * unless genfs_putpages returns EDEADLK; then we must flush
1806 * what we have, and correct FIP and segment header accounting.
1807 */
1808
1809 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1810 if (!seglocked) {
1811 simple_unlock(&vp->v_interlock);
1812 /*
1813 * Take the seglock, because we are going to be writing pages.
1814 */
1815 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1816 if (error != 0)
1817 return error;
1818 simple_lock(&vp->v_interlock);
1819 }
1820
1821 /*
1822 * VOP_PUTPAGES should not be called while holding the seglock.
1823 * XXXUBC fix lfs_markv, or do this properly.
1824 */
1825 #ifdef notyet
1826 KASSERT(fs->lfs_seglock == 1);
1827 #endif /* notyet */
1828
1829 /*
1830 * We assume we're being called with sp->fip pointing at blank space.
1831 * Account for a new FIP in the segment header, and set sp->vp.
1832 * (This should duplicate the setup at the top of lfs_writefile().)
1833 */
1834 sp = fs->lfs_sp;
1835 if (!seglocked) {
1836 if (sp->seg_bytes_left < fs->lfs_bsize ||
1837 sp->sum_bytes_left < sizeof(struct finfo))
1838 (void) lfs_writeseg(fs, fs->lfs_sp);
1839
1840 sp->sum_bytes_left -= FINFOSIZE;
1841 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1842 }
1843 KASSERT(sp->vp == NULL);
1844 sp->vp = vp;
1845
1846 if (!seglocked) {
1847 if (vp->v_flag & VDIROP)
1848 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1849 }
1850
1851 sp->fip->fi_nblocks = 0;
1852 sp->fip->fi_ino = ip->i_number;
1853 sp->fip->fi_version = ip->i_gen;
1854
1855 /*
1856 * Loop through genfs_putpages until all pages are gathered.
1857 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1858 * Whenever we lose the interlock we have to rerun check_dirty, as
1859 * well.
1860 */
1861 again:
1862 check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0);
1863
1864 if ((error = genfs_putpages(v)) == EDEADLK) {
1865 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
1866 " EDEADLK [2] ino %d off %x (seg %d)\n",
1867 ip->i_number, fs->lfs_offset,
1868 dtosn(fs, fs->lfs_offset)));
1869 /* If nothing to write, short-circuit */
1870 if (sp->cbpp - sp->bpp > 1) {
1871 /* Write gathered pages */
1872 lfs_updatemeta(sp);
1873 (void) lfs_writeseg(fs, sp);
1874
1875 /*
1876 * Reinitialize brand new FIP and add us to it.
1877 * (This should duplicate the fixup in
1878 * lfs_gatherpages().)
1879 */
1880 KASSERT(sp->vp == vp);
1881 sp->fip->fi_version = ip->i_gen;
1882 sp->fip->fi_ino = ip->i_number;
1883 /* Add us to the new segment summary. */
1884 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1885 sp->sum_bytes_left -= FINFOSIZE;
1886 }
1887
1888 /* Give the write a chance to complete */
1889 preempt(1);
1890
1891 /* We've lost the interlock. Start over. */
1892 simple_lock(&vp->v_interlock);
1893 goto again;
1894 }
1895
1896 KASSERT(sp->vp == vp);
1897 if (!seglocked) {
1898 sp->vp = NULL; /* XXX lfs_gather below will set this */
1899
1900 /* Write indirect blocks as well */
1901 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
1902 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
1903 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
1904
1905 KASSERT(sp->vp == NULL);
1906 sp->vp = vp;
1907 }
1908
1909 /*
1910 * Blocks are now gathered into a segment waiting to be written.
1911 * All that's left to do is update metadata, and write them.
1912 */
1913 lfs_updatemeta(sp);
1914 KASSERT(sp->vp == vp);
1915 sp->vp = NULL;
1916
1917 if (seglocked) {
1918 /* we're called by lfs_writefile. */
1919 return error;
1920 }
1921
1922 /*
1923 * Clean up FIP, since we're done writing this file.
1924 * This should duplicate cleanup at the end of lfs_writefile().
1925 */
1926 if (sp->fip->fi_nblocks != 0) {
1927 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
1928 sizeof(int32_t) * sp->fip->fi_nblocks);
1929 sp->start_lbp = &sp->fip->fi_blocks[0];
1930 } else {
1931 sp->sum_bytes_left += FINFOSIZE;
1932 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1933 }
1934 lfs_writeseg(fs, fs->lfs_sp);
1935
1936 /*
1937 * XXX - with the malloc/copy writeseg, the pages are freed by now
1938 * even if we don't wait (e.g. if we hold a nested lock). This
1939 * will not be true if we stop using malloc/copy.
1940 */
1941 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1942 lfs_segunlock(fs);
1943
1944 /*
1945 * Wait for v_numoutput to drop to zero. The seglock should
1946 * take care of this, but there is a slight possibility that
1947 * aiodoned might not have got around to our buffers yet.
1948 */
1949 if (sync) {
1950 s = splbio();
1951 simple_lock(&global_v_numoutput_slock);
1952 while (vp->v_numoutput > 0) {
1953 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
1954 " num %d\n", ip->i_number, vp->v_numoutput));
1955 vp->v_flag |= VBWAIT;
1956 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1957 &global_v_numoutput_slock);
1958 }
1959 simple_unlock(&global_v_numoutput_slock);
1960 splx(s);
1961 }
1962 return error;
1963 }
1964
1965 /*
1966 * Return the last logical file offset that should be written for this file
1967 * if we're doing a write that ends at "size". If writing, we need to know
1968 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1969 * to know about entire blocks.
1970 */
1971 void
1972 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1973 {
1974 struct inode *ip = VTOI(vp);
1975 struct lfs *fs = ip->i_lfs;
1976 daddr_t olbn, nlbn;
1977
1978 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1979 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1980 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1981
1982 olbn = lblkno(fs, ip->i_size);
1983 nlbn = lblkno(fs, size);
1984 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
1985 *eobp = fragroundup(fs, size);
1986 } else {
1987 *eobp = blkroundup(fs, size);
1988 }
1989 }
1990
1991 #ifdef DEBUG
1992 void lfs_dump_vop(void *);
1993
1994 void
1995 lfs_dump_vop(void *v)
1996 {
1997 struct vop_putpages_args /* {
1998 struct vnode *a_vp;
1999 voff_t a_offlo;
2000 voff_t a_offhi;
2001 int a_flags;
2002 } */ *ap = v;
2003
2004 #ifdef DDB
2005 vfs_vnode_print(ap->a_vp, 0, printf);
2006 #endif
2007 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2008 }
2009 #endif
2010
2011 int
2012 lfs_mmap(void *v)
2013 {
2014 struct vop_mmap_args /* {
2015 const struct vnodeop_desc *a_desc;
2016 struct vnode *a_vp;
2017 int a_fflags;
2018 struct ucred *a_cred;
2019 struct proc *a_p;
2020 } */ *ap = v;
2021
2022 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2023 return EOPNOTSUPP;
2024 return ufs_mmap(v);
2025 }
2026