Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.157.10.5
      1 /*	$NetBSD: lfs_vnops.c,v 1.157.10.5 2006/05/11 23:32:03 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.157.10.5 2006/05/11 23:32:03 elad Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/resourcevar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/file.h>
     78 #include <sys/stat.h>
     79 #include <sys/buf.h>
     80 #include <sys/proc.h>
     81 #include <sys/mount.h>
     82 #include <sys/vnode.h>
     83 #include <sys/pool.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/kauth.h>
     86 
     87 #include <miscfs/fifofs/fifo.h>
     88 #include <miscfs/genfs/genfs.h>
     89 #include <miscfs/specfs/specdev.h>
     90 
     91 #include <ufs/ufs/inode.h>
     92 #include <ufs/ufs/dir.h>
     93 #include <ufs/ufs/ufsmount.h>
     94 #include <ufs/ufs/ufs_extern.h>
     95 
     96 #include <uvm/uvm.h>
     97 #include <uvm/uvm_pmap.h>
     98 #include <uvm/uvm_stat.h>
     99 #include <uvm/uvm_pager.h>
    100 
    101 #include <ufs/lfs/lfs.h>
    102 #include <ufs/lfs/lfs_extern.h>
    103 
    104 extern pid_t lfs_writer_daemon;
    105 
    106 /* Global vfs data structures for lfs. */
    107 int (**lfs_vnodeop_p)(void *);
    108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    109 	{ &vop_default_desc, vn_default_error },
    110 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    111 	{ &vop_create_desc, lfs_create },		/* create */
    112 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    113 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    114 	{ &vop_open_desc, ufs_open },			/* open */
    115 	{ &vop_close_desc, lfs_close },			/* close */
    116 	{ &vop_access_desc, ufs_access },		/* access */
    117 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    118 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    119 	{ &vop_read_desc, lfs_read },			/* read */
    120 	{ &vop_write_desc, lfs_write },			/* write */
    121 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    122 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    123 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    124 	{ &vop_poll_desc, ufs_poll },			/* poll */
    125 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    126 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    127 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    128 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    129 	{ &vop_seek_desc, ufs_seek },			/* seek */
    130 	{ &vop_remove_desc, lfs_remove },		/* remove */
    131 	{ &vop_link_desc, lfs_link },			/* link */
    132 	{ &vop_rename_desc, lfs_rename },		/* rename */
    133 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    134 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    135 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    136 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    137 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    138 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    139 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    140 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    141 	{ &vop_lock_desc, ufs_lock },			/* lock */
    142 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    143 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    144 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    145 	{ &vop_print_desc, ufs_print },			/* print */
    146 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    147 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    148 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    149 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    150 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    151 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    152 	{ NULL, NULL }
    153 };
    154 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    155 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    156 
    157 int (**lfs_specop_p)(void *);
    158 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    159 	{ &vop_default_desc, vn_default_error },
    160 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    161 	{ &vop_create_desc, spec_create },		/* create */
    162 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    163 	{ &vop_open_desc, spec_open },			/* open */
    164 	{ &vop_close_desc, lfsspec_close },		/* close */
    165 	{ &vop_access_desc, ufs_access },		/* access */
    166 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    167 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    168 	{ &vop_read_desc, ufsspec_read },		/* read */
    169 	{ &vop_write_desc, ufsspec_write },		/* write */
    170 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    171 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    173 	{ &vop_poll_desc, spec_poll },			/* poll */
    174 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178 	{ &vop_seek_desc, spec_seek },			/* seek */
    179 	{ &vop_remove_desc, spec_remove },		/* remove */
    180 	{ &vop_link_desc, spec_link },			/* link */
    181 	{ &vop_rename_desc, spec_rename },		/* rename */
    182 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190 	{ &vop_lock_desc, ufs_lock },			/* lock */
    191 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    192 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194 	{ &vop_print_desc, ufs_print },			/* print */
    195 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    196 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201 	{ NULL, NULL }
    202 };
    203 const struct vnodeopv_desc lfs_specop_opv_desc =
    204 	{ &lfs_specop_p, lfs_specop_entries };
    205 
    206 int (**lfs_fifoop_p)(void *);
    207 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208 	{ &vop_default_desc, vn_default_error },
    209 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    210 	{ &vop_create_desc, fifo_create },		/* create */
    211 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    212 	{ &vop_open_desc, fifo_open },			/* open */
    213 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214 	{ &vop_access_desc, ufs_access },		/* access */
    215 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217 	{ &vop_read_desc, ufsfifo_read },		/* read */
    218 	{ &vop_write_desc, ufsfifo_write },		/* write */
    219 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    220 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    221 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    222 	{ &vop_poll_desc, fifo_poll },			/* poll */
    223 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    224 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    225 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    226 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    227 	{ &vop_seek_desc, fifo_seek },			/* seek */
    228 	{ &vop_remove_desc, fifo_remove },		/* remove */
    229 	{ &vop_link_desc, fifo_link },			/* link */
    230 	{ &vop_rename_desc, fifo_rename },		/* rename */
    231 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    232 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    233 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    234 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    235 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    236 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    237 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    238 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    239 	{ &vop_lock_desc, ufs_lock },			/* lock */
    240 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    241 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    242 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    243 	{ &vop_print_desc, ufs_print },			/* print */
    244 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    245 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    246 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    247 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    248 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    249 	{ NULL, NULL }
    250 };
    251 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    252 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    253 
    254 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    255 
    256 #define	LFS_READWRITE
    257 #include <ufs/ufs/ufs_readwrite.c>
    258 #undef	LFS_READWRITE
    259 
    260 /*
    261  * Synch an open file.
    262  */
    263 /* ARGSUSED */
    264 int
    265 lfs_fsync(void *v)
    266 {
    267 	struct vop_fsync_args /* {
    268 		struct vnode *a_vp;
    269 		kauth_cred_t a_cred;
    270 		int a_flags;
    271 		off_t offlo;
    272 		off_t offhi;
    273 		struct lwp *a_l;
    274 	} */ *ap = v;
    275 	struct vnode *vp = ap->a_vp;
    276 	int error, wait;
    277 
    278 	/* If we're mounted read-only, don't try to sync. */
    279 	if (VTOI(vp)->i_lfs->lfs_ronly)
    280 		return 0;
    281 
    282 	/*
    283 	 * Trickle sync checks for need to do a checkpoint after possible
    284 	 * activity from the pagedaemon.
    285 	 */
    286 	if (ap->a_flags & FSYNC_LAZY) {
    287 		simple_lock(&lfs_subsys_lock);
    288 		wakeup(&lfs_writer_daemon);
    289 		simple_unlock(&lfs_subsys_lock);
    290 		return 0;
    291 	}
    292 
    293 	wait = (ap->a_flags & FSYNC_WAIT);
    294 	simple_lock(&vp->v_interlock);
    295 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    296 			round_page(ap->a_offhi),
    297 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    298 	if (error)
    299 		return error;
    300 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    301 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    302 		int l = 0;
    303 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    304 				  ap->a_l->l_proc->p_cred, ap->a_l);
    305 	}
    306 	if (wait && !VPISEMPTY(vp))
    307 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    308 
    309 	return error;
    310 }
    311 
    312 /*
    313  * Take IN_ADIROP off, then call ufs_inactive.
    314  */
    315 int
    316 lfs_inactive(void *v)
    317 {
    318 	struct vop_inactive_args /* {
    319 		struct vnode *a_vp;
    320 		struct lwp *a_l;
    321 	} */ *ap = v;
    322 
    323 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    324 
    325 	lfs_unmark_vnode(ap->a_vp);
    326 
    327 	/*
    328 	 * The Ifile is only ever inactivated on unmount.
    329 	 * Streamline this process by not giving it more dirty blocks.
    330 	 */
    331 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    332 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    333 		VOP_UNLOCK(ap->a_vp, 0);
    334 		return 0;
    335 	}
    336 
    337 	return ufs_inactive(v);
    338 }
    339 
    340 /*
    341  * These macros are used to bracket UFS directory ops, so that we can
    342  * identify all the pages touched during directory ops which need to
    343  * be ordered and flushed atomically, so that they may be recovered.
    344  *
    345  * Because we have to mark nodes VDIROP in order to prevent
    346  * the cache from reclaiming them while a dirop is in progress, we must
    347  * also manage the number of nodes so marked (otherwise we can run out).
    348  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    349  * is decremented during segment write, when VDIROP is taken off.
    350  */
    351 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    352 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    353 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    354 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    355 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    356 static int lfs_set_dirop(struct vnode *, struct vnode *);
    357 
    358 static int
    359 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    360 {
    361 	struct lfs *fs;
    362 	int error;
    363 
    364 	KASSERT(VOP_ISLOCKED(dvp));
    365 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    366 
    367 	fs = VTOI(dvp)->i_lfs;
    368 
    369 	ASSERT_NO_SEGLOCK(fs);
    370 	/*
    371 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    372 	 * as an inode block; an overestimate in most cases.
    373 	 */
    374 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    375 		return (error);
    376 
    377     restart:
    378 	simple_lock(&fs->lfs_interlock);
    379 	if (fs->lfs_dirops == 0) {
    380 		simple_unlock(&fs->lfs_interlock);
    381 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    382 		simple_lock(&fs->lfs_interlock);
    383 	}
    384 	while (fs->lfs_writer)
    385 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    386 			&fs->lfs_interlock);
    387 	simple_lock(&lfs_subsys_lock);
    388 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    389 		wakeup(&lfs_writer_daemon);
    390 		simple_unlock(&lfs_subsys_lock);
    391 		simple_unlock(&fs->lfs_interlock);
    392 		preempt(1);
    393 		goto restart;
    394 	}
    395 
    396 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    397 		simple_unlock(&fs->lfs_interlock);
    398 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    399 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    400 		if ((error = ltsleep(&lfs_dirvcount,
    401 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    402 		    &lfs_subsys_lock)) != 0) {
    403 			goto unreserve;
    404 		}
    405 		goto restart;
    406 	}
    407 	simple_unlock(&lfs_subsys_lock);
    408 
    409 	++fs->lfs_dirops;
    410 	fs->lfs_doifile = 1;
    411 	simple_unlock(&fs->lfs_interlock);
    412 
    413 	/* Hold a reference so SET_ENDOP will be happy */
    414 	vref(dvp);
    415 	if (vp) {
    416 		vref(vp);
    417 		MARK_VNODE(vp);
    418 	}
    419 
    420 	MARK_VNODE(dvp);
    421 	return 0;
    422 
    423 unreserve:
    424 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    425 	return error;
    426 }
    427 
    428 /*
    429  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    430  * in getnewvnode(), if we have a stacked filesystem mounted on top
    431  * of us.
    432  *
    433  * NB: this means we have to clear the new vnodes on error.  Fortunately
    434  * SET_ENDOP is there to do that for us.
    435  */
    436 static int
    437 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    438 {
    439 	int error;
    440 	struct lfs *fs;
    441 
    442 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    443 	ASSERT_NO_SEGLOCK(fs);
    444 	if (fs->lfs_ronly)
    445 		return EROFS;
    446 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    447 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    448 		      dvp, error));
    449 		return error;
    450 	}
    451 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    452 		if (vpp) {
    453 			ungetnewvnode(*vpp);
    454 			*vpp = NULL;
    455 		}
    456 		return error;
    457 	}
    458 	return 0;
    459 }
    460 
    461 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    462 	do {								\
    463 		simple_lock(&(fs)->lfs_interlock);			\
    464 		--(fs)->lfs_dirops;					\
    465 		if (!(fs)->lfs_dirops) {				\
    466 			if ((fs)->lfs_nadirop) {			\
    467 				panic("SET_ENDOP: %s: no dirops but "	\
    468 					" nadirop=%d", (str),		\
    469 					(fs)->lfs_nadirop);		\
    470 			}						\
    471 			wakeup(&(fs)->lfs_writer);			\
    472 			simple_unlock(&(fs)->lfs_interlock);		\
    473 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    474 		} else							\
    475 			simple_unlock(&(fs)->lfs_interlock);		\
    476 	} while(0)
    477 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    478 	do {								\
    479 		UNMARK_VNODE(dvp);					\
    480 		if (nvpp && *nvpp)					\
    481 			UNMARK_VNODE(*nvpp);				\
    482 		/* Check for error return to stem vnode leakage */	\
    483 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    484 			ungetnewvnode(*(nvpp));				\
    485 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    486 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    487 		vrele(dvp);						\
    488 	} while(0)
    489 #define SET_ENDOP_CREATE_AP(ap, str)					\
    490 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    491 			 (ap)->a_vpp, (str))
    492 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    493 	do {								\
    494 		UNMARK_VNODE(dvp);					\
    495 		if (ovp)						\
    496 			UNMARK_VNODE(ovp);				\
    497 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    498 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    499 		vrele(dvp);						\
    500 		if (ovp)						\
    501 			vrele(ovp);					\
    502 	} while(0)
    503 
    504 void
    505 lfs_mark_vnode(struct vnode *vp)
    506 {
    507 	struct inode *ip = VTOI(vp);
    508 	struct lfs *fs = ip->i_lfs;
    509 
    510 	simple_lock(&fs->lfs_interlock);
    511 	if (!(ip->i_flag & IN_ADIROP)) {
    512 		if (!(vp->v_flag & VDIROP)) {
    513 			(void)lfs_vref(vp);
    514 			simple_lock(&lfs_subsys_lock);
    515 			++lfs_dirvcount;
    516 			++fs->lfs_dirvcount;
    517 			simple_unlock(&lfs_subsys_lock);
    518 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    519 			vp->v_flag |= VDIROP;
    520 		}
    521 		++fs->lfs_nadirop;
    522 		ip->i_flag |= IN_ADIROP;
    523 	} else
    524 		KASSERT(vp->v_flag & VDIROP);
    525 	simple_unlock(&fs->lfs_interlock);
    526 }
    527 
    528 void
    529 lfs_unmark_vnode(struct vnode *vp)
    530 {
    531 	struct inode *ip = VTOI(vp);
    532 
    533 	if (ip && (ip->i_flag & IN_ADIROP)) {
    534 		KASSERT(vp->v_flag & VDIROP);
    535 		simple_lock(&ip->i_lfs->lfs_interlock);
    536 		--ip->i_lfs->lfs_nadirop;
    537 		simple_unlock(&ip->i_lfs->lfs_interlock);
    538 		ip->i_flag &= ~IN_ADIROP;
    539 	}
    540 }
    541 
    542 int
    543 lfs_symlink(void *v)
    544 {
    545 	struct vop_symlink_args /* {
    546 		struct vnode *a_dvp;
    547 		struct vnode **a_vpp;
    548 		struct componentname *a_cnp;
    549 		struct vattr *a_vap;
    550 		char *a_target;
    551 	} */ *ap = v;
    552 	int error;
    553 
    554 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    555 		vput(ap->a_dvp);
    556 		return error;
    557 	}
    558 	error = ufs_symlink(ap);
    559 	SET_ENDOP_CREATE_AP(ap, "symlink");
    560 	return (error);
    561 }
    562 
    563 int
    564 lfs_mknod(void *v)
    565 {
    566 	struct vop_mknod_args	/* {
    567 		struct vnode *a_dvp;
    568 		struct vnode **a_vpp;
    569 		struct componentname *a_cnp;
    570 		struct vattr *a_vap;
    571 		} */ *ap = v;
    572 	struct vattr *vap = ap->a_vap;
    573 	struct vnode **vpp = ap->a_vpp;
    574 	struct inode *ip;
    575 	int error;
    576 	struct mount	*mp;
    577 	ino_t		ino;
    578 
    579 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    580 		vput(ap->a_dvp);
    581 		return error;
    582 	}
    583 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    584 	    ap->a_dvp, vpp, ap->a_cnp);
    585 
    586 	/* Either way we're done with the dirop at this point */
    587 	SET_ENDOP_CREATE_AP(ap, "mknod");
    588 
    589 	if (error)
    590 		return (error);
    591 
    592 	ip = VTOI(*vpp);
    593 	mp  = (*vpp)->v_mount;
    594 	ino = ip->i_number;
    595 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    596 	if (vap->va_rdev != VNOVAL) {
    597 		/*
    598 		 * Want to be able to use this to make badblock
    599 		 * inodes, so don't truncate the dev number.
    600 		 */
    601 #if 0
    602 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    603 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    604 #else
    605 		ip->i_ffs1_rdev = vap->va_rdev;
    606 #endif
    607 	}
    608 
    609 	/*
    610 	 * Call fsync to write the vnode so that we don't have to deal with
    611 	 * flushing it when it's marked VDIROP|VXLOCK.
    612 	 *
    613 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    614 	 * return.  But, that leaves this vnode in limbo, also not good.
    615 	 * Can this ever happen (barring hardware failure)?
    616 	 */
    617 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    618 	    curlwp)) != 0) {
    619 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    620 		    (unsigned long long)ino);
    621 		/* return (error); */
    622 	}
    623 	/*
    624 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    625 	 * checked to see if it is an alias of an existing entry in
    626 	 * the inode cache.
    627 	 */
    628 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    629 
    630 	VOP_UNLOCK(*vpp, 0);
    631 	lfs_vunref(*vpp);
    632 	(*vpp)->v_type = VNON;
    633 	vgone(*vpp);
    634 	error = VFS_VGET(mp, ino, vpp);
    635 
    636 	if (error != 0) {
    637 		*vpp = NULL;
    638 		return (error);
    639 	}
    640 	return (0);
    641 }
    642 
    643 int
    644 lfs_create(void *v)
    645 {
    646 	struct vop_create_args	/* {
    647 		struct vnode *a_dvp;
    648 		struct vnode **a_vpp;
    649 		struct componentname *a_cnp;
    650 		struct vattr *a_vap;
    651 	} */ *ap = v;
    652 	int error;
    653 
    654 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    655 		vput(ap->a_dvp);
    656 		return error;
    657 	}
    658 	error = ufs_create(ap);
    659 	SET_ENDOP_CREATE_AP(ap, "create");
    660 	return (error);
    661 }
    662 
    663 int
    664 lfs_mkdir(void *v)
    665 {
    666 	struct vop_mkdir_args	/* {
    667 		struct vnode *a_dvp;
    668 		struct vnode **a_vpp;
    669 		struct componentname *a_cnp;
    670 		struct vattr *a_vap;
    671 	} */ *ap = v;
    672 	int error;
    673 
    674 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    675 		vput(ap->a_dvp);
    676 		return error;
    677 	}
    678 	error = ufs_mkdir(ap);
    679 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    680 	return (error);
    681 }
    682 
    683 int
    684 lfs_remove(void *v)
    685 {
    686 	struct vop_remove_args	/* {
    687 		struct vnode *a_dvp;
    688 		struct vnode *a_vp;
    689 		struct componentname *a_cnp;
    690 	} */ *ap = v;
    691 	struct vnode *dvp, *vp;
    692 	int error;
    693 
    694 	dvp = ap->a_dvp;
    695 	vp = ap->a_vp;
    696 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    697 		if (dvp == vp)
    698 			vrele(vp);
    699 		else
    700 			vput(vp);
    701 		vput(dvp);
    702 		return error;
    703 	}
    704 	error = ufs_remove(ap);
    705 	SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
    706 	return (error);
    707 }
    708 
    709 int
    710 lfs_rmdir(void *v)
    711 {
    712 	struct vop_rmdir_args	/* {
    713 		struct vnodeop_desc *a_desc;
    714 		struct vnode *a_dvp;
    715 		struct vnode *a_vp;
    716 		struct componentname *a_cnp;
    717 	} */ *ap = v;
    718 	struct vnode *vp;
    719 	int error;
    720 
    721 	vp = ap->a_vp;
    722 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    723 		vrele(ap->a_dvp);
    724 		if (ap->a_vp != ap->a_dvp)
    725 			VOP_UNLOCK(ap->a_dvp, 0);
    726 		vput(vp);
    727 		return error;
    728 	}
    729 	error = ufs_rmdir(ap);
    730 	SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    731 	return (error);
    732 }
    733 
    734 int
    735 lfs_link(void *v)
    736 {
    737 	struct vop_link_args	/* {
    738 		struct vnode *a_dvp;
    739 		struct vnode *a_vp;
    740 		struct componentname *a_cnp;
    741 	} */ *ap = v;
    742 	int error;
    743 	struct vnode **vpp = NULL;
    744 
    745 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    746 		vput(ap->a_dvp);
    747 		return error;
    748 	}
    749 	error = ufs_link(ap);
    750 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    751 	return (error);
    752 }
    753 
    754 int
    755 lfs_rename(void *v)
    756 {
    757 	struct vop_rename_args	/* {
    758 		struct vnode *a_fdvp;
    759 		struct vnode *a_fvp;
    760 		struct componentname *a_fcnp;
    761 		struct vnode *a_tdvp;
    762 		struct vnode *a_tvp;
    763 		struct componentname *a_tcnp;
    764 	} */ *ap = v;
    765 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    766 	struct componentname *tcnp, *fcnp;
    767 	int error;
    768 	struct lfs *fs;
    769 
    770 	fs = VTOI(ap->a_fdvp)->i_lfs;
    771 	tvp = ap->a_tvp;
    772 	tdvp = ap->a_tdvp;
    773 	tcnp = ap->a_tcnp;
    774 	fvp = ap->a_fvp;
    775 	fdvp = ap->a_fdvp;
    776 	fcnp = ap->a_fcnp;
    777 
    778 	/*
    779 	 * Check for cross-device rename.
    780 	 * If it is, we don't want to set dirops, just error out.
    781 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    782 	 * a cross-device rename.)
    783 	 *
    784 	 * Copied from ufs_rename.
    785 	 */
    786 	if ((fvp->v_mount != tdvp->v_mount) ||
    787 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    788 		error = EXDEV;
    789 		goto errout;
    790 	}
    791 
    792 	/*
    793 	 * Check to make sure we're not renaming a vnode onto itself
    794 	 * (deleting a hard link by renaming one name onto another);
    795 	 * if we are we can't recursively call VOP_REMOVE since that
    796 	 * would leave us with an unaccounted-for number of live dirops.
    797 	 *
    798 	 * Inline the relevant section of ufs_rename here, *before*
    799 	 * calling SET_DIROP_REMOVE.
    800 	 */
    801 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    802 	    (VTOI(tdvp)->i_flags & APPEND))) {
    803 		error = EPERM;
    804 		goto errout;
    805 	}
    806 	if (fvp == tvp) {
    807 		if (fvp->v_type == VDIR) {
    808 			error = EINVAL;
    809 			goto errout;
    810 		}
    811 
    812 		/* Release destination completely. */
    813 		VOP_ABORTOP(tdvp, tcnp);
    814 		vput(tdvp);
    815 		vput(tvp);
    816 
    817 		/* Delete source. */
    818 		vrele(fvp);
    819 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    820 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    821 		fcnp->cn_nameiop = DELETE;
    822 		if ((error = relookup(fdvp, &fvp, fcnp))){
    823 			/* relookup blew away fdvp */
    824 			return (error);
    825 		}
    826 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    827 	}
    828 
    829 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    830 		goto errout;
    831 	MARK_VNODE(fdvp);
    832 	MARK_VNODE(fvp);
    833 
    834 	error = ufs_rename(ap);
    835 	UNMARK_VNODE(fdvp);
    836 	UNMARK_VNODE(fvp);
    837 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    838 	return (error);
    839 
    840     errout:
    841 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    842 	if (tdvp == tvp)
    843 		vrele(tdvp);
    844 	else
    845 		vput(tdvp);
    846 	if (tvp)
    847 		vput(tvp);
    848 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    849 	vrele(fdvp);
    850 	vrele(fvp);
    851 	return (error);
    852 }
    853 
    854 /* XXX hack to avoid calling ITIMES in getattr */
    855 int
    856 lfs_getattr(void *v)
    857 {
    858 	struct vop_getattr_args /* {
    859 		struct vnode *a_vp;
    860 		struct vattr *a_vap;
    861 		kauth_cred_t a_cred;
    862 		struct lwp *a_l;
    863 	} */ *ap = v;
    864 	struct vnode *vp = ap->a_vp;
    865 	struct inode *ip = VTOI(vp);
    866 	struct vattr *vap = ap->a_vap;
    867 	struct lfs *fs = ip->i_lfs;
    868 	/*
    869 	 * Copy from inode table
    870 	 */
    871 	vap->va_fsid = ip->i_dev;
    872 	vap->va_fileid = ip->i_number;
    873 	vap->va_mode = ip->i_mode & ~IFMT;
    874 	vap->va_nlink = ip->i_nlink;
    875 	vap->va_uid = ip->i_uid;
    876 	vap->va_gid = ip->i_gid;
    877 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    878 	vap->va_size = vp->v_size;
    879 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    880 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    881 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    882 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    883 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    884 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    885 	vap->va_flags = ip->i_flags;
    886 	vap->va_gen = ip->i_gen;
    887 	/* this doesn't belong here */
    888 	if (vp->v_type == VBLK)
    889 		vap->va_blocksize = BLKDEV_IOSIZE;
    890 	else if (vp->v_type == VCHR)
    891 		vap->va_blocksize = MAXBSIZE;
    892 	else
    893 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    894 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    895 	vap->va_type = vp->v_type;
    896 	vap->va_filerev = ip->i_modrev;
    897 	return (0);
    898 }
    899 
    900 /*
    901  * Check to make sure the inode blocks won't choke the buffer
    902  * cache, then call ufs_setattr as usual.
    903  */
    904 int
    905 lfs_setattr(void *v)
    906 {
    907 	struct vop_setattr_args /* {
    908 		struct vnode *a_vp;
    909 		struct vattr *a_vap;
    910 		kauth_cred_t a_cred;
    911 		struct lwp *a_l;
    912 	} */ *ap = v;
    913 	struct vnode *vp = ap->a_vp;
    914 
    915 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    916 	return ufs_setattr(v);
    917 }
    918 
    919 /*
    920  * Close called
    921  *
    922  * XXX -- we were using ufs_close, but since it updates the
    923  * times on the inode, we might need to bump the uinodes
    924  * count.
    925  */
    926 /* ARGSUSED */
    927 int
    928 lfs_close(void *v)
    929 {
    930 	struct vop_close_args /* {
    931 		struct vnode *a_vp;
    932 		int  a_fflag;
    933 		kauth_cred_t a_cred;
    934 		struct lwp *a_l;
    935 	} */ *ap = v;
    936 	struct vnode *vp = ap->a_vp;
    937 	struct inode *ip = VTOI(vp);
    938 
    939 	if (vp == ip->i_lfs->lfs_ivnode &&
    940 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    941 		return 0;
    942 
    943 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    944 		LFS_ITIMES(ip, NULL, NULL, NULL);
    945 	}
    946 	return (0);
    947 }
    948 
    949 /*
    950  * Close wrapper for special devices.
    951  *
    952  * Update the times on the inode then do device close.
    953  */
    954 int
    955 lfsspec_close(void *v)
    956 {
    957 	struct vop_close_args /* {
    958 		struct vnode	*a_vp;
    959 		int		a_fflag;
    960 		kauth_cred_t	a_cred;
    961 		struct lwp	*a_l;
    962 	} */ *ap = v;
    963 	struct vnode	*vp;
    964 	struct inode	*ip;
    965 
    966 	vp = ap->a_vp;
    967 	ip = VTOI(vp);
    968 	if (vp->v_usecount > 1) {
    969 		LFS_ITIMES(ip, NULL, NULL, NULL);
    970 	}
    971 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
    972 }
    973 
    974 /*
    975  * Close wrapper for fifo's.
    976  *
    977  * Update the times on the inode then do device close.
    978  */
    979 int
    980 lfsfifo_close(void *v)
    981 {
    982 	struct vop_close_args /* {
    983 		struct vnode	*a_vp;
    984 		int		a_fflag;
    985 		kauth_cred_	a_cred;
    986 		struct lwp	*a_l;
    987 	} */ *ap = v;
    988 	struct vnode	*vp;
    989 	struct inode	*ip;
    990 
    991 	vp = ap->a_vp;
    992 	ip = VTOI(vp);
    993 	if (ap->a_vp->v_usecount > 1) {
    994 		LFS_ITIMES(ip, NULL, NULL, NULL);
    995 	}
    996 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
    997 }
    998 
    999 /*
   1000  * Reclaim an inode so that it can be used for other purposes.
   1001  */
   1002 
   1003 int
   1004 lfs_reclaim(void *v)
   1005 {
   1006 	struct vop_reclaim_args /* {
   1007 		struct vnode *a_vp;
   1008 		struct lwp *a_l;
   1009 	} */ *ap = v;
   1010 	struct vnode *vp = ap->a_vp;
   1011 	struct inode *ip = VTOI(vp);
   1012 	int error;
   1013 
   1014 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1015 
   1016 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1017 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1018 		return (error);
   1019 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1020 	lfs_deregister_all(vp);
   1021 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1022 	ip->inode_ext.lfs = NULL;
   1023 	pool_put(&lfs_inode_pool, vp->v_data);
   1024 	vp->v_data = NULL;
   1025 	return (0);
   1026 }
   1027 
   1028 /*
   1029  * Read a block from a storage device.
   1030  * In order to avoid reading blocks that are in the process of being
   1031  * written by the cleaner---and hence are not mutexed by the normal
   1032  * buffer cache / page cache mechanisms---check for collisions before
   1033  * reading.
   1034  *
   1035  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1036  * the active cleaner test.
   1037  *
   1038  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1039  */
   1040 int
   1041 lfs_strategy(void *v)
   1042 {
   1043 	struct vop_strategy_args /* {
   1044 		struct vnode *a_vp;
   1045 		struct buf *a_bp;
   1046 	} */ *ap = v;
   1047 	struct buf	*bp;
   1048 	struct lfs	*fs;
   1049 	struct vnode	*vp;
   1050 	struct inode	*ip;
   1051 	daddr_t		tbn;
   1052 	int		i, sn, error, slept;
   1053 
   1054 	bp = ap->a_bp;
   1055 	vp = ap->a_vp;
   1056 	ip = VTOI(vp);
   1057 	fs = ip->i_lfs;
   1058 
   1059 	/* lfs uses its strategy routine only for read */
   1060 	KASSERT(bp->b_flags & B_READ);
   1061 
   1062 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1063 		panic("lfs_strategy: spec");
   1064 	KASSERT(bp->b_bcount != 0);
   1065 	if (bp->b_blkno == bp->b_lblkno) {
   1066 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1067 				 NULL);
   1068 		if (error) {
   1069 			bp->b_error = error;
   1070 			bp->b_flags |= B_ERROR;
   1071 			biodone(bp);
   1072 			return (error);
   1073 		}
   1074 		if ((long)bp->b_blkno == -1) /* no valid data */
   1075 			clrbuf(bp);
   1076 	}
   1077 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1078 		biodone(bp);
   1079 		return (0);
   1080 	}
   1081 
   1082 	slept = 1;
   1083 	simple_lock(&fs->lfs_interlock);
   1084 	while (slept && fs->lfs_seglock) {
   1085 		simple_unlock(&fs->lfs_interlock);
   1086 		/*
   1087 		 * Look through list of intervals.
   1088 		 * There will only be intervals to look through
   1089 		 * if the cleaner holds the seglock.
   1090 		 * Since the cleaner is synchronous, we can trust
   1091 		 * the list of intervals to be current.
   1092 		 */
   1093 		tbn = dbtofsb(fs, bp->b_blkno);
   1094 		sn = dtosn(fs, tbn);
   1095 		slept = 0;
   1096 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1097 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1098 			    tbn >= fs->lfs_cleanint[i]) {
   1099 				DLOG((DLOG_CLEAN,
   1100 				      "lfs_strategy: ino %d lbn %" PRId64
   1101 				       " ind %d sn %d fsb %" PRIx32
   1102 				       " given sn %d fsb %" PRIx64 "\n",
   1103 					ip->i_number, bp->b_lblkno, i,
   1104 					dtosn(fs, fs->lfs_cleanint[i]),
   1105 					fs->lfs_cleanint[i], sn, tbn));
   1106 				DLOG((DLOG_CLEAN,
   1107 				      "lfs_strategy: sleeping on ino %d lbn %"
   1108 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1109 				simple_lock(&fs->lfs_interlock);
   1110 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1111 					/* Cleaner can't wait for itself */
   1112 					ltsleep(&fs->lfs_iocount,
   1113 						(PRIBIO + 1) | PNORELOCK,
   1114 						"clean2", 0,
   1115 						&fs->lfs_interlock);
   1116 					slept = 1;
   1117 					break;
   1118 				} else if (fs->lfs_seglock) {
   1119 					ltsleep(&fs->lfs_seglock,
   1120 						(PRIBIO + 1) | PNORELOCK,
   1121 						"clean1", 0,
   1122 						&fs->lfs_interlock);
   1123 					slept = 1;
   1124 					break;
   1125 				}
   1126 				simple_unlock(&fs->lfs_interlock);
   1127 			}
   1128 		}
   1129 		simple_lock(&fs->lfs_interlock);
   1130 	}
   1131 	simple_unlock(&fs->lfs_interlock);
   1132 
   1133 	vp = ip->i_devvp;
   1134 	VOP_STRATEGY(vp, bp);
   1135 	return (0);
   1136 }
   1137 
   1138 void
   1139 lfs_flush_dirops(struct lfs *fs)
   1140 {
   1141 	struct inode *ip, *nip;
   1142 	struct vnode *vp;
   1143 	extern int lfs_dostats;
   1144 	struct segment *sp;
   1145 	int waslocked;
   1146 
   1147 	ASSERT_MAYBE_SEGLOCK(fs);
   1148 	KASSERT(fs->lfs_nadirop == 0);
   1149 
   1150 	if (fs->lfs_ronly)
   1151 		return;
   1152 
   1153 	simple_lock(&fs->lfs_interlock);
   1154 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1155 		simple_unlock(&fs->lfs_interlock);
   1156 		return;
   1157 	} else
   1158 		simple_unlock(&fs->lfs_interlock);
   1159 
   1160 	if (lfs_dostats)
   1161 		++lfs_stats.flush_invoked;
   1162 
   1163 	/*
   1164 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1165 	 * Technically this is a checkpoint (the on-disk state is valid)
   1166 	 * even though we are leaving out all the file data.
   1167 	 */
   1168 	lfs_imtime(fs);
   1169 	lfs_seglock(fs, SEGM_CKP);
   1170 	sp = fs->lfs_sp;
   1171 
   1172 	/*
   1173 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1174 	 * Only write dirops, and don't flush files' pages, only
   1175 	 * blocks from the directories.
   1176 	 *
   1177 	 * We don't need to vref these files because they are
   1178 	 * dirops and so hold an extra reference until the
   1179 	 * segunlock clears them of that status.
   1180 	 *
   1181 	 * We don't need to check for IN_ADIROP because we know that
   1182 	 * no dirops are active.
   1183 	 *
   1184 	 */
   1185 	simple_lock(&fs->lfs_interlock);
   1186 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1187 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1188 		simple_unlock(&fs->lfs_interlock);
   1189 		vp = ITOV(ip);
   1190 
   1191 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1192 
   1193 		/*
   1194 		 * All writes to directories come from dirops; all
   1195 		 * writes to files' direct blocks go through the page
   1196 		 * cache, which we're not touching.  Reads to files
   1197 		 * and/or directories will not be affected by writing
   1198 		 * directory blocks inodes and file inodes.  So we don't
   1199 		 * really need to lock.  If we don't lock, though,
   1200 		 * make sure that we don't clear IN_MODIFIED
   1201 		 * unnecessarily.
   1202 		 */
   1203 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1204 			simple_lock(&fs->lfs_interlock);
   1205 			continue;
   1206 		}
   1207 		waslocked = VOP_ISLOCKED(vp);
   1208 		if (vp->v_type != VREG &&
   1209 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1210 			lfs_writefile(fs, sp, vp);
   1211 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1212 			    !(ip->i_flag & IN_ALLMOD)) {
   1213 				LFS_SET_UINO(ip, IN_MODIFIED);
   1214 			}
   1215 		}
   1216 		(void) lfs_writeinode(fs, sp, ip);
   1217 		if (waslocked)
   1218 			LFS_SET_UINO(ip, IN_MODIFIED);
   1219 		simple_lock(&fs->lfs_interlock);
   1220 	}
   1221 	simple_unlock(&fs->lfs_interlock);
   1222 	/* We've written all the dirops there are */
   1223 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1224 	lfs_finalize_fs_seguse(fs);
   1225 	(void) lfs_writeseg(fs, sp);
   1226 	lfs_segunlock(fs);
   1227 }
   1228 
   1229 /*
   1230  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1231  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1232  * has just run, this would be an error).  If we have to skip a vnode
   1233  * for any reason, just skip it; if we have to wait for the cleaner,
   1234  * abort.  The writer daemon will call us again later.
   1235  */
   1236 void
   1237 lfs_flush_pchain(struct lfs *fs)
   1238 {
   1239 	struct inode *ip, *nip;
   1240 	struct vnode *vp;
   1241 	extern int lfs_dostats;
   1242 	struct segment *sp;
   1243 	int error;
   1244 
   1245 	ASSERT_NO_SEGLOCK(fs);
   1246 
   1247 	if (fs->lfs_ronly)
   1248 		return;
   1249 
   1250 	simple_lock(&fs->lfs_interlock);
   1251 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1252 		simple_unlock(&fs->lfs_interlock);
   1253 		return;
   1254 	} else
   1255 		simple_unlock(&fs->lfs_interlock);
   1256 
   1257 	/* Get dirops out of the way */
   1258 	lfs_flush_dirops(fs);
   1259 
   1260 	if (lfs_dostats)
   1261 		++lfs_stats.flush_invoked;
   1262 
   1263 	/*
   1264 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1265 	 */
   1266 	lfs_imtime(fs);
   1267 	lfs_seglock(fs, 0);
   1268 	sp = fs->lfs_sp;
   1269 
   1270 	/*
   1271 	 * lfs_writevnodes, optimized to clear pageout requests.
   1272 	 * Only write non-dirop files that are in the pageout queue.
   1273 	 * We're very conservative about what we write; we want to be
   1274 	 * fast and async.
   1275 	 */
   1276 	simple_lock(&fs->lfs_interlock);
   1277     top:
   1278 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1279 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1280 		vp = ITOV(ip);
   1281 
   1282 		if (!(ip->i_flags & IN_PAGING))
   1283 			goto top;
   1284 
   1285 		if (vp->v_flag & (VXLOCK|VDIROP))
   1286 			continue;
   1287 		if (vp->v_type != VREG)
   1288 			continue;
   1289 		if (lfs_vref(vp))
   1290 			continue;
   1291 		simple_unlock(&fs->lfs_interlock);
   1292 
   1293 		if (VOP_ISLOCKED(vp)) {
   1294 			lfs_vunref(vp);
   1295 			simple_lock(&fs->lfs_interlock);
   1296 			continue;
   1297 		}
   1298 
   1299 		error = lfs_writefile(fs, sp, vp);
   1300 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1301 		    !(ip->i_flag & IN_ALLMOD)) {
   1302 			LFS_SET_UINO(ip, IN_MODIFIED);
   1303 		}
   1304 		(void) lfs_writeinode(fs, sp, ip);
   1305 
   1306 		lfs_vunref(vp);
   1307 
   1308 		if (error == EAGAIN) {
   1309 			lfs_writeseg(fs, sp);
   1310 			simple_lock(&fs->lfs_interlock);
   1311 			break;
   1312 		}
   1313 		simple_lock(&fs->lfs_interlock);
   1314 	}
   1315 	simple_unlock(&fs->lfs_interlock);
   1316 	(void) lfs_writeseg(fs, sp);
   1317 	lfs_segunlock(fs);
   1318 }
   1319 
   1320 /*
   1321  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1322  */
   1323 int
   1324 lfs_fcntl(void *v)
   1325 {
   1326 	struct vop_fcntl_args /* {
   1327 		struct vnode *a_vp;
   1328 		u_long a_command;
   1329 		caddr_t  a_data;
   1330 		int  a_fflag;
   1331 		kauth_cred_t a_cred;
   1332 		struct lwp *a_l;
   1333 	} */ *ap = v;
   1334 	struct timeval *tvp;
   1335 	BLOCK_INFO *blkiov;
   1336 	CLEANERINFO *cip;
   1337 	SEGUSE *sup;
   1338 	int blkcnt, error, oclean;
   1339 	struct lfs_fcntl_markv blkvp;
   1340 	struct proc *p;
   1341 	fsid_t *fsidp;
   1342 	struct lfs *fs;
   1343 	struct buf *bp;
   1344 	fhandle_t *fhp;
   1345 	daddr_t off;
   1346 
   1347 	/* Only respect LFS fcntls on fs root or Ifile */
   1348 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1349 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1350 		return ufs_fcntl(v);
   1351 	}
   1352 
   1353 	/* Avoid locking a draining lock */
   1354 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1355 		return ESHUTDOWN;
   1356 	}
   1357 
   1358 	p = ap->a_l->l_proc;
   1359 	fs = VTOI(ap->a_vp)->i_lfs;
   1360 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1361 
   1362 	switch (ap->a_command) {
   1363 	    case LFCNSEGWAITALL:
   1364 	    case LFCNSEGWAITALL_COMPAT:
   1365 		fsidp = NULL;
   1366 		/* FALLSTHROUGH */
   1367 	    case LFCNSEGWAIT:
   1368 	    case LFCNSEGWAIT_COMPAT:
   1369 		tvp = (struct timeval *)ap->a_data;
   1370 		simple_lock(&fs->lfs_interlock);
   1371 		++fs->lfs_sleepers;
   1372 		simple_unlock(&fs->lfs_interlock);
   1373 
   1374 		error = lfs_segwait(fsidp, tvp);
   1375 
   1376 		simple_lock(&fs->lfs_interlock);
   1377 		if (--fs->lfs_sleepers == 0)
   1378 			wakeup(&fs->lfs_sleepers);
   1379 		simple_unlock(&fs->lfs_interlock);
   1380 		return error;
   1381 
   1382 	    case LFCNBMAPV:
   1383 	    case LFCNMARKV:
   1384 		if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
   1385 					       &p->p_acflag)) != 0)
   1386 			return (error);
   1387 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1388 
   1389 		blkcnt = blkvp.blkcnt;
   1390 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1391 			return (EINVAL);
   1392 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1393 		if ((error = copyin(blkvp.blkiov, blkiov,
   1394 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1395 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1396 			return error;
   1397 		}
   1398 
   1399 		simple_lock(&fs->lfs_interlock);
   1400 		++fs->lfs_sleepers;
   1401 		simple_unlock(&fs->lfs_interlock);
   1402 		if (ap->a_command == LFCNBMAPV)
   1403 			error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
   1404 		else /* LFCNMARKV */
   1405 			error = lfs_markv(p, fsidp, blkiov, blkcnt);
   1406 		if (error == 0)
   1407 			error = copyout(blkiov, blkvp.blkiov,
   1408 					blkcnt * sizeof(BLOCK_INFO));
   1409 		simple_lock(&fs->lfs_interlock);
   1410 		if (--fs->lfs_sleepers == 0)
   1411 			wakeup(&fs->lfs_sleepers);
   1412 		simple_unlock(&fs->lfs_interlock);
   1413 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1414 		return error;
   1415 
   1416 	    case LFCNRECLAIM:
   1417 		/*
   1418 		 * Flush dirops and write Ifile, allowing empty segments
   1419 		 * to be immediately reclaimed.
   1420 		 */
   1421 		lfs_writer_enter(fs, "pndirop");
   1422 		off = fs->lfs_offset;
   1423 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1424 		lfs_flush_dirops(fs);
   1425 		LFS_CLEANERINFO(cip, fs, bp);
   1426 		oclean = cip->clean;
   1427 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1428 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1429 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1430 		lfs_segunlock(fs);
   1431 		lfs_writer_leave(fs);
   1432 
   1433 #ifdef DEBUG
   1434 		LFS_CLEANERINFO(cip, fs, bp);
   1435 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1436 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1437 		      fs->lfs_offset - off, cip->clean - oclean,
   1438 		      fs->lfs_activesb));
   1439 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1440 #endif
   1441 
   1442 		return 0;
   1443 
   1444 	    case LFCNIFILEFH:
   1445 		/* Return the filehandle of the Ifile */
   1446 		if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
   1447 					       KAUTH_GENERIC_ISSUSER,
   1448 					       &ap->a_l->l_proc->p_acflag)) != 0)
   1449 			return (error);
   1450 		fhp = (struct fhandle *)ap->a_data;
   1451 		fhp->fh_fsid = *fsidp;
   1452 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
   1453 
   1454 	    case LFCNREWIND:
   1455 		/* Move lfs_offset to the lowest-numbered segment */
   1456 		return lfs_rewind(fs, *(int *)ap->a_data);
   1457 
   1458 	    case LFCNINVAL:
   1459 		/* Mark a segment SEGUSE_INVAL */
   1460 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1461 		if (sup->su_nbytes > 0) {
   1462 			brelse(bp);
   1463 			lfs_unset_inval_all(fs);
   1464 			return EBUSY;
   1465 		}
   1466 		sup->su_flags |= SEGUSE_INVAL;
   1467 		VOP_BWRITE(bp);
   1468 		return 0;
   1469 
   1470 	    case LFCNRESIZE:
   1471 		/* Resize the filesystem */
   1472 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1473 
   1474 	    case LFCNWRAPSTOP:
   1475 		/*
   1476 		 * Hold lfs_newseg at segment 0; sleep until the filesystem
   1477 		 * wraps around.  For debugging purposes, so an external
   1478 		 * agent can log every segment in the filesystem as it
   1479 		 * was written, and we can regression-test checkpoint
   1480 		 * validity in the general case.
   1481 		 */
   1482 		simple_lock(&fs->lfs_interlock);
   1483 		fs->lfs_nowrap = 1;
   1484 		error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
   1485 			"segwrap", 0, &fs->lfs_interlock);
   1486 		if (error) {
   1487 			fs->lfs_nowrap = 0;
   1488 			wakeup(&fs->lfs_nowrap);
   1489 		}
   1490 		return 0;
   1491 
   1492 	    case LFCNWRAPGO:
   1493 		/*
   1494 		 * Having done its work, the agent wakes up the writer.
   1495 		 * It sleeps until a new segment is selected.
   1496 		 */
   1497 		simple_lock(&fs->lfs_interlock);
   1498 		fs->lfs_nowrap = 0;
   1499 		wakeup(&fs->lfs_nowrap);
   1500                 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
   1501                         "segment", 0, &fs->lfs_interlock);
   1502 		return 0;
   1503 
   1504 	    default:
   1505 		return ufs_fcntl(v);
   1506 	}
   1507 	return 0;
   1508 }
   1509 
   1510 int
   1511 lfs_getpages(void *v)
   1512 {
   1513 	struct vop_getpages_args /* {
   1514 		struct vnode *a_vp;
   1515 		voff_t a_offset;
   1516 		struct vm_page **a_m;
   1517 		int *a_count;
   1518 		int a_centeridx;
   1519 		vm_prot_t a_access_type;
   1520 		int a_advice;
   1521 		int a_flags;
   1522 	} */ *ap = v;
   1523 
   1524 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1525 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1526 		return EPERM;
   1527 	}
   1528 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1529 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1530 	}
   1531 
   1532 	/*
   1533 	 * we're relying on the fact that genfs_getpages() always read in
   1534 	 * entire filesystem blocks.
   1535 	 */
   1536 	return genfs_getpages(v);
   1537 }
   1538 
   1539 /*
   1540  * Make sure that for all pages in every block in the given range,
   1541  * either all are dirty or all are clean.  If any of the pages
   1542  * we've seen so far are dirty, put the vnode on the paging chain,
   1543  * and mark it IN_PAGING.
   1544  *
   1545  * If checkfirst != 0, don't check all the pages but return at the
   1546  * first dirty page.
   1547  */
   1548 static int
   1549 check_dirty(struct lfs *fs, struct vnode *vp,
   1550 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1551 	    int flags, int checkfirst)
   1552 {
   1553 	int by_list;
   1554 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1555 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1556 	off_t soff = 0; /* XXX: gcc */
   1557 	voff_t off;
   1558 	int i;
   1559 	int nonexistent;
   1560 	int any_dirty;	/* number of dirty pages */
   1561 	int dirty;	/* number of dirty pages in a block */
   1562 	int tdirty;
   1563 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1564 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1565 
   1566 	ASSERT_MAYBE_SEGLOCK(fs);
   1567   top:
   1568 	by_list = (vp->v_uobj.uo_npages <=
   1569 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1570 		   UVM_PAGE_HASH_PENALTY);
   1571 	any_dirty = 0;
   1572 
   1573 	if (by_list) {
   1574 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1575 	} else {
   1576 		soff = startoffset;
   1577 	}
   1578 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1579 		if (by_list) {
   1580 			/*
   1581 			 * Find the first page in a block.  Skip
   1582 			 * blocks outside our area of interest or beyond
   1583 			 * the end of file.
   1584 			 */
   1585 			if (pages_per_block > 1) {
   1586 				while (curpg &&
   1587 				       ((curpg->offset & fs->lfs_bmask) ||
   1588 					curpg->offset >= vp->v_size ||
   1589 					curpg->offset >= endoffset))
   1590 					curpg = TAILQ_NEXT(curpg, listq);
   1591 			}
   1592 			if (curpg == NULL)
   1593 				break;
   1594 			soff = curpg->offset;
   1595 		}
   1596 
   1597 		/*
   1598 		 * Mark all pages in extended range busy; find out if any
   1599 		 * of them are dirty.
   1600 		 */
   1601 		nonexistent = dirty = 0;
   1602 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1603 			if (by_list && pages_per_block <= 1) {
   1604 				pgs[i] = pg = curpg;
   1605 			} else {
   1606 				off = soff + (i << PAGE_SHIFT);
   1607 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1608 				if (pg == NULL) {
   1609 					++nonexistent;
   1610 					continue;
   1611 				}
   1612 			}
   1613 			KASSERT(pg != NULL);
   1614 
   1615 			/*
   1616 			 * If we're holding the segment lock, we can deadlocked
   1617 			 * against a process that has our page and is waiting
   1618 			 * for the cleaner, while the cleaner waits for the
   1619 			 * segment lock.  Just bail in that case.
   1620 			 */
   1621 			if ((pg->flags & PG_BUSY) &&
   1622 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1623 				if (by_list && i > 0)
   1624 					uvm_page_unbusy(pgs, i);
   1625 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1626 				return -1;
   1627 			}
   1628 
   1629 			while (pg->flags & PG_BUSY) {
   1630 				pg->flags |= PG_WANTED;
   1631 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1632 						    "lfsput", 0);
   1633 				simple_lock(&vp->v_interlock);
   1634 				if (by_list) {
   1635 					if (i > 0)
   1636 						uvm_page_unbusy(pgs, i);
   1637 					goto top;
   1638 				}
   1639 			}
   1640 			pg->flags |= PG_BUSY;
   1641 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1642 
   1643 			pmap_page_protect(pg, VM_PROT_NONE);
   1644 			tdirty = (pmap_clear_modify(pg) ||
   1645 				  (pg->flags & PG_CLEAN) == 0);
   1646 			dirty += tdirty;
   1647 		}
   1648 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1649 			if (by_list) {
   1650 				curpg = TAILQ_NEXT(curpg, listq);
   1651 			} else {
   1652 				soff += fs->lfs_bsize;
   1653 			}
   1654 			continue;
   1655 		}
   1656 
   1657 		any_dirty += dirty;
   1658 		KASSERT(nonexistent == 0);
   1659 
   1660 		/*
   1661 		 * If any are dirty make all dirty; unbusy them,
   1662 		 * but if we were asked to clean, wire them so that
   1663 		 * the pagedaemon doesn't bother us about them while
   1664 		 * they're on their way to disk.
   1665 		 */
   1666 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1667 			pg = pgs[i];
   1668 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1669 			if (dirty) {
   1670 				pg->flags &= ~PG_CLEAN;
   1671 				if (flags & PGO_FREE) {
   1672 					/*
   1673 					 * Wire the page so that
   1674 					 * pdaemon doesn't see it again.
   1675 					 */
   1676 					uvm_lock_pageq();
   1677 					uvm_pagewire(pg);
   1678 					uvm_unlock_pageq();
   1679 
   1680 					/* Suspended write flag */
   1681 					pg->flags |= PG_DELWRI;
   1682 				}
   1683 			}
   1684 			if (pg->flags & PG_WANTED)
   1685 				wakeup(pg);
   1686 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1687 			UVM_PAGE_OWN(pg, NULL);
   1688 		}
   1689 
   1690 		if (checkfirst && any_dirty)
   1691 			break;
   1692 
   1693 		if (by_list) {
   1694 			curpg = TAILQ_NEXT(curpg, listq);
   1695 		} else {
   1696 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1697 		}
   1698 	}
   1699 
   1700 	return any_dirty;
   1701 }
   1702 
   1703 /*
   1704  * lfs_putpages functions like genfs_putpages except that
   1705  *
   1706  * (1) It needs to bounds-check the incoming requests to ensure that
   1707  *     they are block-aligned; if they are not, expand the range and
   1708  *     do the right thing in case, e.g., the requested range is clean
   1709  *     but the expanded range is dirty.
   1710  * (2) It needs to explicitly send blocks to be written when it is done.
   1711  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1712  *     we simply take the seglock and let lfs_segunlock wait for us.
   1713  *     XXX Actually we can be called with the seglock held, if we have
   1714  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1715  *     XXX writing we panic in this case.
   1716  *
   1717  * Assumptions:
   1718  *
   1719  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1720  *     there is a danger that when we expand the page range and busy the
   1721  *     pages we will deadlock.
   1722  * (2) We are called with vp->v_interlock held; we must return with it
   1723  *     released.
   1724  * (3) We don't absolutely have to free pages right away, provided that
   1725  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1726  *     us a request with PGO_FREE, we take the pages out of the paging
   1727  *     queue and wake up the writer, which will handle freeing them for us.
   1728  *
   1729  *     We ensure that for any filesystem block, all pages for that
   1730  *     block are either resident or not, even if those pages are higher
   1731  *     than EOF; that means that we will be getting requests to free
   1732  *     "unused" pages above EOF all the time, and should ignore them.
   1733  *
   1734  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1735  */
   1736 
   1737 int
   1738 lfs_putpages(void *v)
   1739 {
   1740 	int error;
   1741 	struct vop_putpages_args /* {
   1742 		struct vnode *a_vp;
   1743 		voff_t a_offlo;
   1744 		voff_t a_offhi;
   1745 		int a_flags;
   1746 	} */ *ap = v;
   1747 	struct vnode *vp;
   1748 	struct inode *ip;
   1749 	struct lfs *fs;
   1750 	struct segment *sp;
   1751 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1752 	off_t off, max_endoffset;
   1753 	int s;
   1754 	boolean_t seglocked, sync, pagedaemon;
   1755 	struct vm_page *pg;
   1756 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1757 
   1758 	vp = ap->a_vp;
   1759 	ip = VTOI(vp);
   1760 	fs = ip->i_lfs;
   1761 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1762 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1763 
   1764 	/* Putpages does nothing for metadata. */
   1765 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1766 		simple_unlock(&vp->v_interlock);
   1767 		return 0;
   1768 	}
   1769 
   1770 	/*
   1771 	 * If there are no pages, don't do anything.
   1772 	 */
   1773 	if (vp->v_uobj.uo_npages == 0) {
   1774 		s = splbio();
   1775 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1776 		    (vp->v_flag & VONWORKLST)) {
   1777 			vp->v_flag &= ~VONWORKLST;
   1778 			LIST_REMOVE(vp, v_synclist);
   1779 		}
   1780 		splx(s);
   1781 		simple_unlock(&vp->v_interlock);
   1782 
   1783 		/* Remove us from paging queue, if we were on it */
   1784 		simple_lock(&fs->lfs_interlock);
   1785 		if (ip->i_flags & IN_PAGING) {
   1786 			ip->i_flags &= ~IN_PAGING;
   1787 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1788 		}
   1789 		simple_unlock(&fs->lfs_interlock);
   1790 		return 0;
   1791 	}
   1792 
   1793 	blkeof = blkroundup(fs, ip->i_size);
   1794 
   1795 	/*
   1796 	 * Ignore requests to free pages past EOF but in the same block
   1797 	 * as EOF, unless the request is synchronous.  (If the request is
   1798 	 * sync, it comes from lfs_truncate.)
   1799 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1800 	 * XXXUBC bother us with them again.
   1801 	 */
   1802 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1803 		origoffset = ap->a_offlo;
   1804 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1805 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1806 			KASSERT(pg != NULL);
   1807 			while (pg->flags & PG_BUSY) {
   1808 				pg->flags |= PG_WANTED;
   1809 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1810 						    "lfsput2", 0);
   1811 				simple_lock(&vp->v_interlock);
   1812 			}
   1813 			uvm_lock_pageq();
   1814 			uvm_pageactivate(pg);
   1815 			uvm_unlock_pageq();
   1816 		}
   1817 		ap->a_offlo = blkeof;
   1818 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1819 			simple_unlock(&vp->v_interlock);
   1820 			return 0;
   1821 		}
   1822 	}
   1823 
   1824 	/*
   1825 	 * Extend page range to start and end at block boundaries.
   1826 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1827 	 */
   1828 	origoffset = ap->a_offlo;
   1829 	origendoffset = ap->a_offhi;
   1830 	startoffset = origoffset & ~(fs->lfs_bmask);
   1831 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1832 					       << fs->lfs_bshift;
   1833 
   1834 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1835 		endoffset = max_endoffset;
   1836 		origendoffset = endoffset;
   1837 	} else {
   1838 		origendoffset = round_page(ap->a_offhi);
   1839 		endoffset = round_page(blkroundup(fs, origendoffset));
   1840 	}
   1841 
   1842 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1843 	if (startoffset == endoffset) {
   1844 		/* Nothing to do, why were we called? */
   1845 		simple_unlock(&vp->v_interlock);
   1846 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1847 		      PRId64 "\n", startoffset));
   1848 		return 0;
   1849 	}
   1850 
   1851 	ap->a_offlo = startoffset;
   1852 	ap->a_offhi = endoffset;
   1853 
   1854 	if (!(ap->a_flags & PGO_CLEANIT))
   1855 		return genfs_putpages(v);
   1856 
   1857 	/*
   1858 	 * If there are more than one page per block, we don't want
   1859 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1860 	 * to avoid deadlocks.
   1861 	 */
   1862 	ap->a_flags |= PGO_BUSYFAIL;
   1863 
   1864 	do {
   1865 		int r;
   1866 
   1867 		/* If no pages are dirty, we can just use genfs_putpages. */
   1868 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   1869 				ap->a_flags, 1);
   1870 		if (r < 0) {
   1871 			simple_unlock(&vp->v_interlock);
   1872 			return EDEADLK;
   1873 		}
   1874 		if (r > 0)
   1875 			break;
   1876 
   1877 		/*
   1878 		 * Sometimes pages are dirtied between the time that
   1879 		 * we check and the time we try to clean them.
   1880 		 * Instruct lfs_gop_write to return EDEADLK in this case
   1881 		 * so we can write them properly.
   1882 		 */
   1883 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   1884 		r = genfs_putpages(v);
   1885 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   1886 		if (r != EDEADLK)
   1887 			return r;
   1888 
   1889 		/* Start over. */
   1890 		preempt(1);
   1891 		simple_lock(&vp->v_interlock);
   1892 	} while(1);
   1893 
   1894 	/*
   1895 	 * Dirty and asked to clean.
   1896 	 *
   1897 	 * Pagedaemon can't actually write LFS pages; wake up
   1898 	 * the writer to take care of that.  The writer will
   1899 	 * notice the pager inode queue and act on that.
   1900 	 */
   1901 	if (pagedaemon) {
   1902 		simple_lock(&fs->lfs_interlock);
   1903 		if (!(ip->i_flags & IN_PAGING)) {
   1904 			ip->i_flags |= IN_PAGING;
   1905 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1906 		}
   1907 		simple_lock(&lfs_subsys_lock);
   1908 		wakeup(&lfs_writer_daemon);
   1909 		simple_unlock(&lfs_subsys_lock);
   1910 		simple_unlock(&fs->lfs_interlock);
   1911 		simple_unlock(&vp->v_interlock);
   1912 		preempt(1);
   1913 		return EWOULDBLOCK;
   1914 	}
   1915 
   1916 	/*
   1917 	 * If this is a file created in a recent dirop, we can't flush its
   1918 	 * inode until the dirop is complete.  Drain dirops, then flush the
   1919 	 * filesystem (taking care of any other pending dirops while we're
   1920 	 * at it).
   1921 	 */
   1922 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   1923 	    (vp->v_flag & VDIROP)) {
   1924 		int locked;
   1925 
   1926 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   1927 		locked = VOP_ISLOCKED(vp) && /* XXX */
   1928 			vp->v_lock.lk_lockholder == curproc->p_pid;
   1929 		simple_unlock(&vp->v_interlock);
   1930 		lfs_writer_enter(fs, "ppdirop");
   1931 		if (locked)
   1932 			VOP_UNLOCK(vp, 0);
   1933 
   1934 		simple_lock(&fs->lfs_interlock);
   1935 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   1936 		simple_unlock(&fs->lfs_interlock);
   1937 
   1938 		simple_lock(&vp->v_interlock);
   1939 		if (locked) {
   1940 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   1941 			simple_lock(&vp->v_interlock);
   1942 		}
   1943 		lfs_writer_leave(fs);
   1944 
   1945 		/* XXX the flush should have taken care of this one too! */
   1946 	}
   1947 
   1948 	/*
   1949 	 * This is it.	We are going to write some pages.  From here on
   1950 	 * down it's all just mechanics.
   1951 	 *
   1952 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   1953 	 */
   1954 	ap->a_flags &= ~PGO_SYNCIO;
   1955 
   1956 	/*
   1957 	 * If we've already got the seglock, flush the node and return.
   1958 	 * The FIP has already been set up for us by lfs_writefile,
   1959 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   1960 	 * unless genfs_putpages returns EDEADLK; then we must flush
   1961 	 * what we have, and correct FIP and segment header accounting.
   1962 	 */
   1963 
   1964 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   1965 	if (!seglocked) {
   1966 		simple_unlock(&vp->v_interlock);
   1967 		/*
   1968 		 * Take the seglock, because we are going to be writing pages.
   1969 		 */
   1970 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   1971 		if (error != 0)
   1972 			return error;
   1973 		simple_lock(&vp->v_interlock);
   1974 	}
   1975 
   1976 	/*
   1977 	 * VOP_PUTPAGES should not be called while holding the seglock.
   1978 	 * XXXUBC fix lfs_markv, or do this properly.
   1979 	 */
   1980 #ifdef notyet
   1981 	KASSERT(fs->lfs_seglock == 1);
   1982 #endif /* notyet */
   1983 
   1984 	/*
   1985 	 * We assume we're being called with sp->fip pointing at blank space.
   1986 	 * Account for a new FIP in the segment header, and set sp->vp.
   1987 	 * (This should duplicate the setup at the top of lfs_writefile().)
   1988 	 */
   1989 	sp = fs->lfs_sp;
   1990 	if (!seglocked) {
   1991 		if (sp->seg_bytes_left < fs->lfs_bsize ||
   1992 		    sp->sum_bytes_left < sizeof(struct finfo))
   1993 			(void) lfs_writeseg(fs, fs->lfs_sp);
   1994 
   1995 		sp->sum_bytes_left -= FINFOSIZE;
   1996 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   1997 	}
   1998 	KASSERT(sp->vp == NULL);
   1999 	sp->vp = vp;
   2000 
   2001 	if (!seglocked) {
   2002 		if (vp->v_flag & VDIROP)
   2003 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2004 	}
   2005 
   2006 	sp->fip->fi_nblocks = 0;
   2007 	sp->fip->fi_ino = ip->i_number;
   2008 	sp->fip->fi_version = ip->i_gen;
   2009 
   2010 	/*
   2011 	 * Loop through genfs_putpages until all pages are gathered.
   2012 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2013 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2014 	 * well.
   2015 	 */
   2016 again:
   2017 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2018 	    ap->a_flags, 0) < 0) {
   2019 		simple_unlock(&vp->v_interlock);
   2020 		sp->vp = NULL;
   2021 		if (!seglocked)
   2022 			lfs_segunlock(fs);
   2023 		return EDEADLK;
   2024 	}
   2025 
   2026 	error = genfs_putpages(v);
   2027 	if (error == EDEADLK || error == EAGAIN) {
   2028 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2029 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2030 		      ip->i_number, fs->lfs_offset,
   2031 		      dtosn(fs, fs->lfs_offset)));
   2032 		/* If nothing to write, short-circuit */
   2033 		if (sp->cbpp - sp->bpp > 1) {
   2034 			/* Write gathered pages */
   2035 			lfs_updatemeta(sp);
   2036 			(void) lfs_writeseg(fs, sp);
   2037 
   2038 			/*
   2039 			 * Reinitialize brand new FIP and add us to it.
   2040 			 * (This should duplicate the fixup in
   2041 			 * lfs_gatherpages().)
   2042 			 */
   2043 			KASSERT(sp->vp == vp);
   2044 			sp->fip->fi_version = ip->i_gen;
   2045 			sp->fip->fi_ino = ip->i_number;
   2046 			/* Add us to the new segment summary. */
   2047 			++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2048 			sp->sum_bytes_left -= FINFOSIZE;
   2049 		}
   2050 
   2051 		/* Give the write a chance to complete */
   2052 		preempt(1);
   2053 
   2054 		/* We've lost the interlock.  Start over. */
   2055 		if (error == EDEADLK) {
   2056 			simple_lock(&vp->v_interlock);
   2057 			goto again;
   2058 		}
   2059 	}
   2060 
   2061 	KASSERT(sp->vp == vp);
   2062 	if (!seglocked) {
   2063 		sp->vp = NULL; /* XXX lfs_gather below will set this */
   2064 
   2065 		/* Write indirect blocks as well */
   2066 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2067 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2068 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2069 
   2070 		KASSERT(sp->vp == NULL);
   2071 		sp->vp = vp;
   2072 	}
   2073 
   2074 	/*
   2075 	 * Blocks are now gathered into a segment waiting to be written.
   2076 	 * All that's left to do is update metadata, and write them.
   2077 	 */
   2078 	lfs_updatemeta(sp);
   2079 	KASSERT(sp->vp == vp);
   2080 	sp->vp = NULL;
   2081 
   2082 	if (seglocked) {
   2083 		/* we're called by lfs_writefile. */
   2084 		return error;
   2085 	}
   2086 
   2087 	/*
   2088 	 * Clean up FIP, since we're done writing this file.
   2089 	 * This should duplicate cleanup at the end of lfs_writefile().
   2090 	 */
   2091 	if (sp->fip->fi_nblocks != 0) {
   2092 		sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
   2093 			sizeof(int32_t) * sp->fip->fi_nblocks);
   2094 		sp->start_lbp = &sp->fip->fi_blocks[0];
   2095 	} else {
   2096 		sp->sum_bytes_left += FINFOSIZE;
   2097 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2098 	}
   2099 	lfs_writeseg(fs, fs->lfs_sp);
   2100 
   2101 	/*
   2102 	 * Remove us from paging queue, since we've now written all our
   2103 	 * pages.
   2104 	 */
   2105 	simple_lock(&fs->lfs_interlock);
   2106 	if (ip->i_flags & IN_PAGING) {
   2107 		ip->i_flags &= ~IN_PAGING;
   2108 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2109 	}
   2110 	simple_unlock(&fs->lfs_interlock);
   2111 
   2112 	/*
   2113 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2114 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2115 	 * will not be true if we stop using malloc/copy.
   2116 	 */
   2117 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2118 	lfs_segunlock(fs);
   2119 
   2120 	/*
   2121 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2122 	 * take care of this, but there is a slight possibility that
   2123 	 * aiodoned might not have got around to our buffers yet.
   2124 	 */
   2125 	if (sync) {
   2126 		s = splbio();
   2127 		simple_lock(&global_v_numoutput_slock);
   2128 		while (vp->v_numoutput > 0) {
   2129 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2130 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2131 			vp->v_flag |= VBWAIT;
   2132 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2133 			    &global_v_numoutput_slock);
   2134 		}
   2135 		simple_unlock(&global_v_numoutput_slock);
   2136 		splx(s);
   2137 	}
   2138 	return error;
   2139 }
   2140 
   2141 /*
   2142  * Return the last logical file offset that should be written for this file
   2143  * if we're doing a write that ends at "size".	If writing, we need to know
   2144  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2145  * to know about entire blocks.
   2146  */
   2147 void
   2148 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2149 {
   2150 	struct inode *ip = VTOI(vp);
   2151 	struct lfs *fs = ip->i_lfs;
   2152 	daddr_t olbn, nlbn;
   2153 
   2154 	olbn = lblkno(fs, ip->i_size);
   2155 	nlbn = lblkno(fs, size);
   2156 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2157 		*eobp = fragroundup(fs, size);
   2158 	} else {
   2159 		*eobp = blkroundup(fs, size);
   2160 	}
   2161 }
   2162 
   2163 #ifdef DEBUG
   2164 void lfs_dump_vop(void *);
   2165 
   2166 void
   2167 lfs_dump_vop(void *v)
   2168 {
   2169 	struct vop_putpages_args /* {
   2170 		struct vnode *a_vp;
   2171 		voff_t a_offlo;
   2172 		voff_t a_offhi;
   2173 		int a_flags;
   2174 	} */ *ap = v;
   2175 
   2176 #ifdef DDB
   2177 	vfs_vnode_print(ap->a_vp, 0, printf);
   2178 #endif
   2179 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2180 }
   2181 #endif
   2182 
   2183 int
   2184 lfs_mmap(void *v)
   2185 {
   2186 	struct vop_mmap_args /* {
   2187 		const struct vnodeop_desc *a_desc;
   2188 		struct vnode *a_vp;
   2189 		int a_fflags;
   2190 		kauth_cred_t a_cred;
   2191 		struct lwp *a_l;
   2192 	} */ *ap = v;
   2193 
   2194 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2195 		return EOPNOTSUPP;
   2196 	return ufs_mmap(v);
   2197 }
   2198