lfs_vnops.c revision 1.169 1 /* $NetBSD: lfs_vnops.c,v 1.169 2006/04/18 21:41:20 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.169 2006/04/18 21:41:20 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_lease_desc, spec_lease_check }, /* lease */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
201 };
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
204
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, fifo_lookup }, /* lookup */
209 { &vop_create_desc, fifo_create }, /* create */
210 { &vop_mknod_desc, fifo_mknod }, /* mknod */
211 { &vop_open_desc, fifo_open }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_lease_desc, fifo_lease_check }, /* lease */
219 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
220 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
221 { &vop_poll_desc, fifo_poll }, /* poll */
222 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
223 { &vop_revoke_desc, fifo_revoke }, /* revoke */
224 { &vop_mmap_desc, fifo_mmap }, /* mmap */
225 { &vop_fsync_desc, fifo_fsync }, /* fsync */
226 { &vop_seek_desc, fifo_seek }, /* seek */
227 { &vop_remove_desc, fifo_remove }, /* remove */
228 { &vop_link_desc, fifo_link }, /* link */
229 { &vop_rename_desc, fifo_rename }, /* rename */
230 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
231 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
232 { &vop_symlink_desc, fifo_symlink }, /* symlink */
233 { &vop_readdir_desc, fifo_readdir }, /* readdir */
234 { &vop_readlink_desc, fifo_readlink }, /* readlink */
235 { &vop_abortop_desc, fifo_abortop }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ufs_lock }, /* lock */
239 { &vop_unlock_desc, ufs_unlock }, /* unlock */
240 { &vop_bmap_desc, fifo_bmap }, /* bmap */
241 { &vop_strategy_desc, fifo_strategy }, /* strategy */
242 { &vop_print_desc, ufs_print }, /* print */
243 { &vop_islocked_desc, ufs_islocked }, /* islocked */
244 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
245 { &vop_advlock_desc, fifo_advlock }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, fifo_putpages }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
254
255 #define LFS_READWRITE
256 #include <ufs/ufs/ufs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 struct ucred *a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 struct lwp *a_l;
273 } */ *ap = v;
274 struct vnode *vp = ap->a_vp;
275 int error, wait;
276
277 /* If we're mounted read-only, don't try to sync. */
278 if (VTOI(vp)->i_lfs->lfs_ronly)
279 return 0;
280
281 /*
282 * Trickle sync checks for need to do a checkpoint after possible
283 * activity from the pagedaemon.
284 */
285 if (ap->a_flags & FSYNC_LAZY) {
286 simple_lock(&lfs_subsys_lock);
287 wakeup(&lfs_writer_daemon);
288 simple_unlock(&lfs_subsys_lock);
289 return 0;
290 }
291
292 wait = (ap->a_flags & FSYNC_WAIT);
293 simple_lock(&vp->v_interlock);
294 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
295 round_page(ap->a_offhi),
296 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
297 if (error)
298 return error;
299 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
300 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
301 int l = 0;
302 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
303 ap->a_l->l_proc->p_ucred, ap->a_l);
304 }
305 if (wait && !VPISEMPTY(vp))
306 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
307
308 return error;
309 }
310
311 /*
312 * Take IN_ADIROP off, then call ufs_inactive.
313 */
314 int
315 lfs_inactive(void *v)
316 {
317 struct vop_inactive_args /* {
318 struct vnode *a_vp;
319 struct lwp *a_l;
320 } */ *ap = v;
321
322 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
323
324 lfs_unmark_vnode(ap->a_vp);
325
326 /*
327 * The Ifile is only ever inactivated on unmount.
328 * Streamline this process by not giving it more dirty blocks.
329 */
330 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
331 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
332 VOP_UNLOCK(ap->a_vp, 0);
333 return 0;
334 }
335
336 return ufs_inactive(v);
337 }
338
339 /*
340 * These macros are used to bracket UFS directory ops, so that we can
341 * identify all the pages touched during directory ops which need to
342 * be ordered and flushed atomically, so that they may be recovered.
343 *
344 * Because we have to mark nodes VDIROP in order to prevent
345 * the cache from reclaiming them while a dirop is in progress, we must
346 * also manage the number of nodes so marked (otherwise we can run out).
347 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
348 * is decremented during segment write, when VDIROP is taken off.
349 */
350 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
351 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
352 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
353 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
354 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
355 static int lfs_set_dirop(struct vnode *, struct vnode *);
356
357 static int
358 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
359 {
360 struct lfs *fs;
361 int error;
362
363 KASSERT(VOP_ISLOCKED(dvp));
364 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
365
366 fs = VTOI(dvp)->i_lfs;
367
368 ASSERT_NO_SEGLOCK(fs);
369 /*
370 * LFS_NRESERVE calculates direct and indirect blocks as well
371 * as an inode block; an overestimate in most cases.
372 */
373 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
374 return (error);
375
376 restart:
377 simple_lock(&fs->lfs_interlock);
378 if (fs->lfs_dirops == 0) {
379 simple_unlock(&fs->lfs_interlock);
380 lfs_check(dvp, LFS_UNUSED_LBN, 0);
381 simple_lock(&fs->lfs_interlock);
382 }
383 while (fs->lfs_writer)
384 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
385 &fs->lfs_interlock);
386 simple_lock(&lfs_subsys_lock);
387 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
388 wakeup(&lfs_writer_daemon);
389 simple_unlock(&lfs_subsys_lock);
390 simple_unlock(&fs->lfs_interlock);
391 preempt(1);
392 goto restart;
393 }
394
395 if (lfs_dirvcount > LFS_MAX_DIROP) {
396 simple_unlock(&fs->lfs_interlock);
397 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
398 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
399 if ((error = ltsleep(&lfs_dirvcount,
400 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
401 &lfs_subsys_lock)) != 0) {
402 goto unreserve;
403 }
404 goto restart;
405 }
406 simple_unlock(&lfs_subsys_lock);
407
408 ++fs->lfs_dirops;
409 fs->lfs_doifile = 1;
410 simple_unlock(&fs->lfs_interlock);
411
412 /* Hold a reference so SET_ENDOP will be happy */
413 vref(dvp);
414 if (vp) {
415 vref(vp);
416 MARK_VNODE(vp);
417 }
418
419 MARK_VNODE(dvp);
420 return 0;
421
422 unreserve:
423 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
424 return error;
425 }
426
427 /*
428 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
429 * in getnewvnode(), if we have a stacked filesystem mounted on top
430 * of us.
431 *
432 * NB: this means we have to clear the new vnodes on error. Fortunately
433 * SET_ENDOP is there to do that for us.
434 */
435 static int
436 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
437 {
438 int error;
439 struct lfs *fs;
440
441 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
442 ASSERT_NO_SEGLOCK(fs);
443 if (fs->lfs_ronly)
444 return EROFS;
445 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
446 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
447 dvp, error));
448 return error;
449 }
450 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
451 if (vpp) {
452 ungetnewvnode(*vpp);
453 *vpp = NULL;
454 }
455 return error;
456 }
457 return 0;
458 }
459
460 #define SET_ENDOP_BASE(fs, dvp, str) \
461 do { \
462 simple_lock(&(fs)->lfs_interlock); \
463 --(fs)->lfs_dirops; \
464 if (!(fs)->lfs_dirops) { \
465 if ((fs)->lfs_nadirop) { \
466 panic("SET_ENDOP: %s: no dirops but " \
467 " nadirop=%d", (str), \
468 (fs)->lfs_nadirop); \
469 } \
470 wakeup(&(fs)->lfs_writer); \
471 simple_unlock(&(fs)->lfs_interlock); \
472 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
473 } else \
474 simple_unlock(&(fs)->lfs_interlock); \
475 } while(0)
476 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
477 do { \
478 UNMARK_VNODE(dvp); \
479 if (nvpp && *nvpp) \
480 UNMARK_VNODE(*nvpp); \
481 /* Check for error return to stem vnode leakage */ \
482 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
483 ungetnewvnode(*(nvpp)); \
484 SET_ENDOP_BASE((fs), (dvp), (str)); \
485 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
486 vrele(dvp); \
487 } while(0)
488 #define SET_ENDOP_CREATE_AP(ap, str) \
489 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
490 (ap)->a_vpp, (str))
491 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
492 do { \
493 UNMARK_VNODE(dvp); \
494 if (ovp) \
495 UNMARK_VNODE(ovp); \
496 SET_ENDOP_BASE((fs), (dvp), (str)); \
497 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
498 vrele(dvp); \
499 if (ovp) \
500 vrele(ovp); \
501 } while(0)
502
503 void
504 lfs_mark_vnode(struct vnode *vp)
505 {
506 struct inode *ip = VTOI(vp);
507 struct lfs *fs = ip->i_lfs;
508
509 simple_lock(&fs->lfs_interlock);
510 if (!(ip->i_flag & IN_ADIROP)) {
511 if (!(vp->v_flag & VDIROP)) {
512 (void)lfs_vref(vp);
513 simple_lock(&lfs_subsys_lock);
514 ++lfs_dirvcount;
515 simple_unlock(&lfs_subsys_lock);
516 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
517 vp->v_flag |= VDIROP;
518 }
519 ++fs->lfs_nadirop;
520 ip->i_flag |= IN_ADIROP;
521 } else
522 KASSERT(vp->v_flag & VDIROP);
523 simple_unlock(&fs->lfs_interlock);
524 }
525
526 void
527 lfs_unmark_vnode(struct vnode *vp)
528 {
529 struct inode *ip = VTOI(vp);
530
531 if (ip && (ip->i_flag & IN_ADIROP)) {
532 KASSERT(vp->v_flag & VDIROP);
533 simple_lock(&ip->i_lfs->lfs_interlock);
534 --ip->i_lfs->lfs_nadirop;
535 simple_unlock(&ip->i_lfs->lfs_interlock);
536 ip->i_flag &= ~IN_ADIROP;
537 }
538 }
539
540 int
541 lfs_symlink(void *v)
542 {
543 struct vop_symlink_args /* {
544 struct vnode *a_dvp;
545 struct vnode **a_vpp;
546 struct componentname *a_cnp;
547 struct vattr *a_vap;
548 char *a_target;
549 } */ *ap = v;
550 int error;
551
552 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
553 vput(ap->a_dvp);
554 return error;
555 }
556 error = ufs_symlink(ap);
557 SET_ENDOP_CREATE_AP(ap, "symlink");
558 return (error);
559 }
560
561 int
562 lfs_mknod(void *v)
563 {
564 struct vop_mknod_args /* {
565 struct vnode *a_dvp;
566 struct vnode **a_vpp;
567 struct componentname *a_cnp;
568 struct vattr *a_vap;
569 } */ *ap = v;
570 struct vattr *vap = ap->a_vap;
571 struct vnode **vpp = ap->a_vpp;
572 struct inode *ip;
573 int error;
574 struct mount *mp;
575 ino_t ino;
576
577 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
578 vput(ap->a_dvp);
579 return error;
580 }
581 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
582 ap->a_dvp, vpp, ap->a_cnp);
583
584 /* Either way we're done with the dirop at this point */
585 SET_ENDOP_CREATE_AP(ap, "mknod");
586
587 if (error)
588 return (error);
589
590 ip = VTOI(*vpp);
591 mp = (*vpp)->v_mount;
592 ino = ip->i_number;
593 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
594 if (vap->va_rdev != VNOVAL) {
595 /*
596 * Want to be able to use this to make badblock
597 * inodes, so don't truncate the dev number.
598 */
599 #if 0
600 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
601 UFS_MPNEEDSWAP((*vpp)->v_mount));
602 #else
603 ip->i_ffs1_rdev = vap->va_rdev;
604 #endif
605 }
606
607 /*
608 * Call fsync to write the vnode so that we don't have to deal with
609 * flushing it when it's marked VDIROP|VXLOCK.
610 *
611 * XXX KS - If we can't flush we also can't call vgone(), so must
612 * return. But, that leaves this vnode in limbo, also not good.
613 * Can this ever happen (barring hardware failure)?
614 */
615 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
616 curlwp)) != 0) {
617 panic("lfs_mknod: couldn't fsync (ino %llu)",
618 (unsigned long long)ino);
619 /* return (error); */
620 }
621 /*
622 * Remove vnode so that it will be reloaded by VFS_VGET and
623 * checked to see if it is an alias of an existing entry in
624 * the inode cache.
625 */
626 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
627
628 VOP_UNLOCK(*vpp, 0);
629 lfs_vunref(*vpp);
630 (*vpp)->v_type = VNON;
631 vgone(*vpp);
632 error = VFS_VGET(mp, ino, vpp);
633
634 if (error != 0) {
635 *vpp = NULL;
636 return (error);
637 }
638 return (0);
639 }
640
641 int
642 lfs_create(void *v)
643 {
644 struct vop_create_args /* {
645 struct vnode *a_dvp;
646 struct vnode **a_vpp;
647 struct componentname *a_cnp;
648 struct vattr *a_vap;
649 } */ *ap = v;
650 int error;
651
652 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
653 vput(ap->a_dvp);
654 return error;
655 }
656 error = ufs_create(ap);
657 SET_ENDOP_CREATE_AP(ap, "create");
658 return (error);
659 }
660
661 int
662 lfs_mkdir(void *v)
663 {
664 struct vop_mkdir_args /* {
665 struct vnode *a_dvp;
666 struct vnode **a_vpp;
667 struct componentname *a_cnp;
668 struct vattr *a_vap;
669 } */ *ap = v;
670 int error;
671
672 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
673 vput(ap->a_dvp);
674 return error;
675 }
676 error = ufs_mkdir(ap);
677 SET_ENDOP_CREATE_AP(ap, "mkdir");
678 return (error);
679 }
680
681 int
682 lfs_remove(void *v)
683 {
684 struct vop_remove_args /* {
685 struct vnode *a_dvp;
686 struct vnode *a_vp;
687 struct componentname *a_cnp;
688 } */ *ap = v;
689 struct vnode *dvp, *vp;
690 int error;
691
692 dvp = ap->a_dvp;
693 vp = ap->a_vp;
694 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
695 if (dvp == vp)
696 vrele(vp);
697 else
698 vput(vp);
699 vput(dvp);
700 return error;
701 }
702 error = ufs_remove(ap);
703 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, vp, "remove");
704 return (error);
705 }
706
707 int
708 lfs_rmdir(void *v)
709 {
710 struct vop_rmdir_args /* {
711 struct vnodeop_desc *a_desc;
712 struct vnode *a_dvp;
713 struct vnode *a_vp;
714 struct componentname *a_cnp;
715 } */ *ap = v;
716 struct vnode *vp;
717 int error;
718
719 vp = ap->a_vp;
720 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
721 vrele(ap->a_dvp);
722 if (ap->a_vp != ap->a_dvp)
723 VOP_UNLOCK(ap->a_dvp, 0);
724 vput(vp);
725 return error;
726 }
727 error = ufs_rmdir(ap);
728 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
729 return (error);
730 }
731
732 int
733 lfs_link(void *v)
734 {
735 struct vop_link_args /* {
736 struct vnode *a_dvp;
737 struct vnode *a_vp;
738 struct componentname *a_cnp;
739 } */ *ap = v;
740 int error;
741 struct vnode **vpp = NULL;
742
743 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
744 vput(ap->a_dvp);
745 return error;
746 }
747 error = ufs_link(ap);
748 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
749 return (error);
750 }
751
752 int
753 lfs_rename(void *v)
754 {
755 struct vop_rename_args /* {
756 struct vnode *a_fdvp;
757 struct vnode *a_fvp;
758 struct componentname *a_fcnp;
759 struct vnode *a_tdvp;
760 struct vnode *a_tvp;
761 struct componentname *a_tcnp;
762 } */ *ap = v;
763 struct vnode *tvp, *fvp, *tdvp, *fdvp;
764 struct componentname *tcnp, *fcnp;
765 int error;
766 struct lfs *fs;
767
768 fs = VTOI(ap->a_fdvp)->i_lfs;
769 tvp = ap->a_tvp;
770 tdvp = ap->a_tdvp;
771 tcnp = ap->a_tcnp;
772 fvp = ap->a_fvp;
773 fdvp = ap->a_fdvp;
774 fcnp = ap->a_fcnp;
775
776 /*
777 * Check for cross-device rename.
778 * If it is, we don't want to set dirops, just error out.
779 * (In particular note that MARK_VNODE(tdvp) will DTWT on
780 * a cross-device rename.)
781 *
782 * Copied from ufs_rename.
783 */
784 if ((fvp->v_mount != tdvp->v_mount) ||
785 (tvp && (fvp->v_mount != tvp->v_mount))) {
786 error = EXDEV;
787 goto errout;
788 }
789
790 /*
791 * Check to make sure we're not renaming a vnode onto itself
792 * (deleting a hard link by renaming one name onto another);
793 * if we are we can't recursively call VOP_REMOVE since that
794 * would leave us with an unaccounted-for number of live dirops.
795 *
796 * Inline the relevant section of ufs_rename here, *before*
797 * calling SET_DIROP_REMOVE.
798 */
799 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
800 (VTOI(tdvp)->i_flags & APPEND))) {
801 error = EPERM;
802 goto errout;
803 }
804 if (fvp == tvp) {
805 if (fvp->v_type == VDIR) {
806 error = EINVAL;
807 goto errout;
808 }
809
810 /* Release destination completely. */
811 VOP_ABORTOP(tdvp, tcnp);
812 vput(tdvp);
813 vput(tvp);
814
815 /* Delete source. */
816 vrele(fvp);
817 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
818 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
819 fcnp->cn_nameiop = DELETE;
820 if ((error = relookup(fdvp, &fvp, fcnp))){
821 /* relookup blew away fdvp */
822 return (error);
823 }
824 return (VOP_REMOVE(fdvp, fvp, fcnp));
825 }
826
827 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
828 goto errout;
829 MARK_VNODE(fdvp);
830 MARK_VNODE(fvp);
831
832 error = ufs_rename(ap);
833 UNMARK_VNODE(fdvp);
834 UNMARK_VNODE(fvp);
835 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
836 return (error);
837
838 errout:
839 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
840 if (tdvp == tvp)
841 vrele(tdvp);
842 else
843 vput(tdvp);
844 if (tvp)
845 vput(tvp);
846 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
847 vrele(fdvp);
848 vrele(fvp);
849 return (error);
850 }
851
852 /* XXX hack to avoid calling ITIMES in getattr */
853 int
854 lfs_getattr(void *v)
855 {
856 struct vop_getattr_args /* {
857 struct vnode *a_vp;
858 struct vattr *a_vap;
859 struct ucred *a_cred;
860 struct lwp *a_l;
861 } */ *ap = v;
862 struct vnode *vp = ap->a_vp;
863 struct inode *ip = VTOI(vp);
864 struct vattr *vap = ap->a_vap;
865 struct lfs *fs = ip->i_lfs;
866 /*
867 * Copy from inode table
868 */
869 vap->va_fsid = ip->i_dev;
870 vap->va_fileid = ip->i_number;
871 vap->va_mode = ip->i_mode & ~IFMT;
872 vap->va_nlink = ip->i_nlink;
873 vap->va_uid = ip->i_uid;
874 vap->va_gid = ip->i_gid;
875 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
876 vap->va_size = vp->v_size;
877 vap->va_atime.tv_sec = ip->i_ffs1_atime;
878 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
879 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
880 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
881 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
882 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
883 vap->va_flags = ip->i_flags;
884 vap->va_gen = ip->i_gen;
885 /* this doesn't belong here */
886 if (vp->v_type == VBLK)
887 vap->va_blocksize = BLKDEV_IOSIZE;
888 else if (vp->v_type == VCHR)
889 vap->va_blocksize = MAXBSIZE;
890 else
891 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
892 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
893 vap->va_type = vp->v_type;
894 vap->va_filerev = ip->i_modrev;
895 return (0);
896 }
897
898 /*
899 * Check to make sure the inode blocks won't choke the buffer
900 * cache, then call ufs_setattr as usual.
901 */
902 int
903 lfs_setattr(void *v)
904 {
905 struct vop_setattr_args /* {
906 struct vnode *a_vp;
907 struct vattr *a_vap;
908 struct ucred *a_cred;
909 struct lwp *a_l;
910 } */ *ap = v;
911 struct vnode *vp = ap->a_vp;
912
913 lfs_check(vp, LFS_UNUSED_LBN, 0);
914 return ufs_setattr(v);
915 }
916
917 /*
918 * Close called
919 *
920 * XXX -- we were using ufs_close, but since it updates the
921 * times on the inode, we might need to bump the uinodes
922 * count.
923 */
924 /* ARGSUSED */
925 int
926 lfs_close(void *v)
927 {
928 struct vop_close_args /* {
929 struct vnode *a_vp;
930 int a_fflag;
931 struct ucred *a_cred;
932 struct lwp *a_l;
933 } */ *ap = v;
934 struct vnode *vp = ap->a_vp;
935 struct inode *ip = VTOI(vp);
936
937 if (vp == ip->i_lfs->lfs_ivnode &&
938 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
939 return 0;
940
941 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
942 LFS_ITIMES(ip, NULL, NULL, NULL);
943 }
944 return (0);
945 }
946
947 /*
948 * Close wrapper for special devices.
949 *
950 * Update the times on the inode then do device close.
951 */
952 int
953 lfsspec_close(void *v)
954 {
955 struct vop_close_args /* {
956 struct vnode *a_vp;
957 int a_fflag;
958 struct ucred *a_cred;
959 struct lwp *a_l;
960 } */ *ap = v;
961 struct vnode *vp;
962 struct inode *ip;
963
964 vp = ap->a_vp;
965 ip = VTOI(vp);
966 if (vp->v_usecount > 1) {
967 LFS_ITIMES(ip, NULL, NULL, NULL);
968 }
969 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
970 }
971
972 /*
973 * Close wrapper for fifo's.
974 *
975 * Update the times on the inode then do device close.
976 */
977 int
978 lfsfifo_close(void *v)
979 {
980 struct vop_close_args /* {
981 struct vnode *a_vp;
982 int a_fflag;
983 struct ucred *a_cred;
984 struct lwp *a_l;
985 } */ *ap = v;
986 struct vnode *vp;
987 struct inode *ip;
988
989 vp = ap->a_vp;
990 ip = VTOI(vp);
991 if (ap->a_vp->v_usecount > 1) {
992 LFS_ITIMES(ip, NULL, NULL, NULL);
993 }
994 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
995 }
996
997 /*
998 * Reclaim an inode so that it can be used for other purposes.
999 */
1000
1001 int
1002 lfs_reclaim(void *v)
1003 {
1004 struct vop_reclaim_args /* {
1005 struct vnode *a_vp;
1006 struct lwp *a_l;
1007 } */ *ap = v;
1008 struct vnode *vp = ap->a_vp;
1009 struct inode *ip = VTOI(vp);
1010 int error;
1011
1012 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1013
1014 LFS_CLR_UINO(ip, IN_ALLMOD);
1015 if ((error = ufs_reclaim(vp, ap->a_l)))
1016 return (error);
1017 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1018 lfs_deregister_all(vp);
1019 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1020 ip->inode_ext.lfs = NULL;
1021 pool_put(&lfs_inode_pool, vp->v_data);
1022 vp->v_data = NULL;
1023 return (0);
1024 }
1025
1026 /*
1027 * Read a block from a storage device.
1028 * In order to avoid reading blocks that are in the process of being
1029 * written by the cleaner---and hence are not mutexed by the normal
1030 * buffer cache / page cache mechanisms---check for collisions before
1031 * reading.
1032 *
1033 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1034 * the active cleaner test.
1035 *
1036 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1037 */
1038 int
1039 lfs_strategy(void *v)
1040 {
1041 struct vop_strategy_args /* {
1042 struct vnode *a_vp;
1043 struct buf *a_bp;
1044 } */ *ap = v;
1045 struct buf *bp;
1046 struct lfs *fs;
1047 struct vnode *vp;
1048 struct inode *ip;
1049 daddr_t tbn;
1050 int i, sn, error, slept;
1051
1052 bp = ap->a_bp;
1053 vp = ap->a_vp;
1054 ip = VTOI(vp);
1055 fs = ip->i_lfs;
1056
1057 /* lfs uses its strategy routine only for read */
1058 KASSERT(bp->b_flags & B_READ);
1059
1060 if (vp->v_type == VBLK || vp->v_type == VCHR)
1061 panic("lfs_strategy: spec");
1062 KASSERT(bp->b_bcount != 0);
1063 if (bp->b_blkno == bp->b_lblkno) {
1064 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1065 NULL);
1066 if (error) {
1067 bp->b_error = error;
1068 bp->b_flags |= B_ERROR;
1069 biodone(bp);
1070 return (error);
1071 }
1072 if ((long)bp->b_blkno == -1) /* no valid data */
1073 clrbuf(bp);
1074 }
1075 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1076 biodone(bp);
1077 return (0);
1078 }
1079
1080 slept = 1;
1081 simple_lock(&fs->lfs_interlock);
1082 while (slept && fs->lfs_seglock) {
1083 simple_unlock(&fs->lfs_interlock);
1084 /*
1085 * Look through list of intervals.
1086 * There will only be intervals to look through
1087 * if the cleaner holds the seglock.
1088 * Since the cleaner is synchronous, we can trust
1089 * the list of intervals to be current.
1090 */
1091 tbn = dbtofsb(fs, bp->b_blkno);
1092 sn = dtosn(fs, tbn);
1093 slept = 0;
1094 for (i = 0; i < fs->lfs_cleanind; i++) {
1095 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1096 tbn >= fs->lfs_cleanint[i]) {
1097 DLOG((DLOG_CLEAN,
1098 "lfs_strategy: ino %d lbn %" PRId64
1099 " ind %d sn %d fsb %" PRIx32
1100 " given sn %d fsb %" PRIx64 "\n",
1101 ip->i_number, bp->b_lblkno, i,
1102 dtosn(fs, fs->lfs_cleanint[i]),
1103 fs->lfs_cleanint[i], sn, tbn));
1104 DLOG((DLOG_CLEAN,
1105 "lfs_strategy: sleeping on ino %d lbn %"
1106 PRId64 "\n", ip->i_number, bp->b_lblkno));
1107 simple_lock(&fs->lfs_interlock);
1108 if (fs->lfs_seglock) {
1109 ltsleep(&fs->lfs_seglock,
1110 (PRIBIO + 1) | PNORELOCK,
1111 "lfs_strategy", 0,
1112 &fs->lfs_interlock);
1113 slept = 1;
1114 break;
1115 }
1116 simple_unlock(&fs->lfs_interlock);
1117 }
1118 }
1119 simple_lock(&fs->lfs_interlock);
1120 }
1121 simple_unlock(&fs->lfs_interlock);
1122
1123 vp = ip->i_devvp;
1124 VOP_STRATEGY(vp, bp);
1125 return (0);
1126 }
1127
1128 static void
1129 lfs_flush_dirops(struct lfs *fs)
1130 {
1131 struct inode *ip, *nip;
1132 struct vnode *vp;
1133 extern int lfs_dostats;
1134 struct segment *sp;
1135 int needunlock;
1136
1137 ASSERT_MAYBE_SEGLOCK(fs);
1138
1139 if (fs->lfs_ronly)
1140 return;
1141
1142 simple_lock(&fs->lfs_interlock);
1143 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1144 simple_unlock(&fs->lfs_interlock);
1145 return;
1146 } else
1147 simple_unlock(&fs->lfs_interlock);
1148
1149 if (lfs_dostats)
1150 ++lfs_stats.flush_invoked;
1151
1152 /*
1153 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1154 * Technically this is a checkpoint (the on-disk state is valid)
1155 * even though we are leaving out all the file data.
1156 */
1157 lfs_imtime(fs);
1158 lfs_seglock(fs, SEGM_CKP);
1159 sp = fs->lfs_sp;
1160
1161 /*
1162 * lfs_writevnodes, optimized to get dirops out of the way.
1163 * Only write dirops, and don't flush files' pages, only
1164 * blocks from the directories.
1165 *
1166 * We don't need to vref these files because they are
1167 * dirops and so hold an extra reference until the
1168 * segunlock clears them of that status.
1169 *
1170 * We don't need to check for IN_ADIROP because we know that
1171 * no dirops are active.
1172 *
1173 */
1174 simple_lock(&fs->lfs_interlock);
1175 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1176 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1177 simple_unlock(&fs->lfs_interlock);
1178 vp = ITOV(ip);
1179
1180 /*
1181 * All writes to directories come from dirops; all
1182 * writes to files' direct blocks go through the page
1183 * cache, which we're not touching. Reads to files
1184 * and/or directories will not be affected by writing
1185 * directory blocks inodes and file inodes. So we don't
1186 * really need to lock. If we don't lock, though,
1187 * make sure that we don't clear IN_MODIFIED
1188 * unnecessarily.
1189 */
1190 if (vp->v_flag & (VXLOCK | VFREEING)) {
1191 simple_lock(&fs->lfs_interlock);
1192 continue;
1193 }
1194 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1195 needunlock = 1;
1196 } else {
1197 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1198 VTOI(vp)->i_number));
1199 needunlock = 0;
1200 }
1201 if (vp->v_type != VREG &&
1202 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1203 lfs_writefile(fs, sp, vp);
1204 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1205 !(ip->i_flag & IN_ALLMOD)) {
1206 LFS_SET_UINO(ip, IN_MODIFIED);
1207 }
1208 }
1209 (void) lfs_writeinode(fs, sp, ip);
1210 if (needunlock)
1211 VOP_UNLOCK(vp, 0);
1212 else
1213 LFS_SET_UINO(ip, IN_MODIFIED);
1214 simple_lock(&fs->lfs_interlock);
1215 }
1216 simple_unlock(&fs->lfs_interlock);
1217 /* We've written all the dirops there are */
1218 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1219 (void) lfs_writeseg(fs, sp);
1220 lfs_segunlock(fs);
1221 }
1222
1223 /*
1224 * Flush all vnodes for which the pagedaemon has requested pageouts.
1225 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1226 * has just run, this would be an error). If we have to skip a vnode
1227 * for any reason, just skip it; if we have to wait for the cleaner,
1228 * abort. The writer daemon will call us again later.
1229 */
1230 void
1231 lfs_flush_pchain(struct lfs *fs)
1232 {
1233 struct inode *ip, *nip;
1234 struct vnode *vp;
1235 extern int lfs_dostats;
1236 struct segment *sp;
1237 int error;
1238
1239 ASSERT_NO_SEGLOCK(fs);
1240
1241 if (fs->lfs_ronly)
1242 return;
1243
1244 simple_lock(&fs->lfs_interlock);
1245 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1246 simple_unlock(&fs->lfs_interlock);
1247 return;
1248 } else
1249 simple_unlock(&fs->lfs_interlock);
1250
1251 /* Get dirops out of the way */
1252 lfs_flush_dirops(fs);
1253
1254 if (lfs_dostats)
1255 ++lfs_stats.flush_invoked;
1256
1257 /*
1258 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1259 */
1260 lfs_imtime(fs);
1261 lfs_seglock(fs, 0);
1262 sp = fs->lfs_sp;
1263
1264 /*
1265 * lfs_writevnodes, optimized to clear pageout requests.
1266 * Only write non-dirop files that are in the pageout queue.
1267 * We're very conservative about what we write; we want to be
1268 * fast and async.
1269 */
1270 simple_lock(&fs->lfs_interlock);
1271 top:
1272 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1273 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1274 vp = ITOV(ip);
1275
1276 if (!(ip->i_flags & IN_PAGING))
1277 goto top;
1278
1279 if (vp->v_flag & (VXLOCK|VDIROP))
1280 continue;
1281 if (vp->v_type != VREG)
1282 continue;
1283 if (lfs_vref(vp))
1284 continue;
1285 simple_unlock(&fs->lfs_interlock);
1286
1287 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1288 lfs_vunref(vp);
1289 simple_lock(&fs->lfs_interlock);
1290 continue;
1291 }
1292
1293 error = lfs_writefile(fs, sp, vp);
1294 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1295 !(ip->i_flag & IN_ALLMOD)) {
1296 LFS_SET_UINO(ip, IN_MODIFIED);
1297 }
1298 (void) lfs_writeinode(fs, sp, ip);
1299
1300 VOP_UNLOCK(vp, 0);
1301 lfs_vunref(vp);
1302
1303 simple_lock(&fs->lfs_interlock);
1304
1305 if (error == EAGAIN) {
1306 lfs_writeseg(fs, sp);
1307 break;
1308 }
1309 }
1310 simple_unlock(&fs->lfs_interlock);
1311 (void) lfs_writeseg(fs, sp);
1312 lfs_segunlock(fs);
1313 }
1314
1315 /*
1316 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1317 */
1318 int
1319 lfs_fcntl(void *v)
1320 {
1321 struct vop_fcntl_args /* {
1322 struct vnode *a_vp;
1323 u_long a_command;
1324 caddr_t a_data;
1325 int a_fflag;
1326 struct ucred *a_cred;
1327 struct lwp *a_l;
1328 } */ *ap = v;
1329 struct timeval *tvp;
1330 BLOCK_INFO *blkiov;
1331 CLEANERINFO *cip;
1332 SEGUSE *sup;
1333 int blkcnt, error, oclean;
1334 struct lfs_fcntl_markv blkvp;
1335 struct proc *p;
1336 fsid_t *fsidp;
1337 struct lfs *fs;
1338 struct buf *bp;
1339 fhandle_t *fhp;
1340 daddr_t off;
1341
1342 /* Only respect LFS fcntls on fs root or Ifile */
1343 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1344 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1345 return ufs_fcntl(v);
1346 }
1347
1348 /* Avoid locking a draining lock */
1349 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1350 return ESHUTDOWN;
1351 }
1352
1353 p = ap->a_l->l_proc;
1354 fs = VTOI(ap->a_vp)->i_lfs;
1355 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1356
1357 switch (ap->a_command) {
1358 case LFCNSEGWAITALL:
1359 case LFCNSEGWAITALL_COMPAT:
1360 fsidp = NULL;
1361 /* FALLSTHROUGH */
1362 case LFCNSEGWAIT:
1363 case LFCNSEGWAIT_COMPAT:
1364 tvp = (struct timeval *)ap->a_data;
1365 simple_lock(&fs->lfs_interlock);
1366 ++fs->lfs_sleepers;
1367 simple_unlock(&fs->lfs_interlock);
1368 VOP_UNLOCK(ap->a_vp, 0);
1369
1370 error = lfs_segwait(fsidp, tvp);
1371
1372 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1373 simple_lock(&fs->lfs_interlock);
1374 if (--fs->lfs_sleepers == 0)
1375 wakeup(&fs->lfs_sleepers);
1376 simple_unlock(&fs->lfs_interlock);
1377 return error;
1378
1379 case LFCNBMAPV:
1380 case LFCNMARKV:
1381 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1382 return (error);
1383 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1384
1385 blkcnt = blkvp.blkcnt;
1386 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1387 return (EINVAL);
1388 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1389 if ((error = copyin(blkvp.blkiov, blkiov,
1390 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1391 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1392 return error;
1393 }
1394
1395 simple_lock(&fs->lfs_interlock);
1396 ++fs->lfs_sleepers;
1397 simple_unlock(&fs->lfs_interlock);
1398 VOP_UNLOCK(ap->a_vp, 0);
1399 if (ap->a_command == LFCNBMAPV)
1400 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1401 else /* LFCNMARKV */
1402 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1403 if (error == 0)
1404 error = copyout(blkiov, blkvp.blkiov,
1405 blkcnt * sizeof(BLOCK_INFO));
1406 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1407 simple_lock(&fs->lfs_interlock);
1408 if (--fs->lfs_sleepers == 0)
1409 wakeup(&fs->lfs_sleepers);
1410 simple_unlock(&fs->lfs_interlock);
1411 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1412 return error;
1413
1414 case LFCNRECLAIM:
1415 /*
1416 * Flush dirops and write Ifile, allowing empty segments
1417 * to be immediately reclaimed.
1418 */
1419 VOP_UNLOCK(ap->a_vp, 0);
1420 lfs_writer_enter(fs, "pndirop");
1421 off = fs->lfs_offset;
1422 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1423 lfs_flush_dirops(fs);
1424 LFS_CLEANERINFO(cip, fs, bp);
1425 oclean = cip->clean;
1426 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1427 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1428 fs->lfs_sp->seg_flags |= SEGM_PROT;
1429 lfs_segunlock(fs);
1430 lfs_writer_leave(fs);
1431
1432 #ifdef DEBUG
1433 LFS_CLEANERINFO(cip, fs, bp);
1434 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1435 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1436 fs->lfs_offset - off, cip->clean - oclean,
1437 fs->lfs_activesb));
1438 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1439 #endif
1440
1441 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1442 return 0;
1443
1444 case LFCNIFILEFH:
1445 /* Return the filehandle of the Ifile */
1446 if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
1447 return (error);
1448 fhp = (struct fhandle *)ap->a_data;
1449 fhp->fh_fsid = *fsidp;
1450 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1451
1452 case LFCNREWIND:
1453 /* Move lfs_offset to the lowest-numbered segment */
1454 return lfs_rewind(fs, *(int *)ap->a_data);
1455
1456 case LFCNINVAL:
1457 /* Mark a segment SEGUSE_INVAL */
1458 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1459 if (sup->su_nbytes > 0) {
1460 brelse(bp);
1461 lfs_unset_inval_all(fs);
1462 return EBUSY;
1463 }
1464 sup->su_flags |= SEGUSE_INVAL;
1465 VOP_BWRITE(bp);
1466 return 0;
1467
1468 case LFCNRESIZE:
1469 /* Resize the filesystem */
1470 return lfs_resize_fs(fs, *(int *)ap->a_data);
1471
1472 case LFCNWRAPSTOP:
1473 /*
1474 * Hold lfs_newseg at segment 0; sleep until the filesystem
1475 * wraps around. For debugging purposes, so an external
1476 * agent can log every segment in the filesystem as it
1477 * was written, and we can regression-test checkpoint
1478 * validity in the general case.
1479 */
1480 VOP_UNLOCK(ap->a_vp, 0);
1481 simple_lock(&fs->lfs_interlock);
1482 fs->lfs_nowrap = 1;
1483 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
1484 "segwrap", 0, &fs->lfs_interlock);
1485 if (error) {
1486 fs->lfs_nowrap = 0;
1487 wakeup(&fs->lfs_nowrap);
1488 }
1489 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1490 return 0;
1491
1492 case LFCNWRAPGO:
1493 /*
1494 * Having done its work, the agent wakes up the writer.
1495 * It sleeps until a new segment is selected.
1496 */
1497 VOP_UNLOCK(ap->a_vp, 0);
1498 simple_lock(&fs->lfs_interlock);
1499 fs->lfs_nowrap = 0;
1500 wakeup(&fs->lfs_nowrap);
1501 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
1502 "segment", 0, &fs->lfs_interlock);
1503 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1504 return 0;
1505
1506 default:
1507 return ufs_fcntl(v);
1508 }
1509 return 0;
1510 }
1511
1512 int
1513 lfs_getpages(void *v)
1514 {
1515 struct vop_getpages_args /* {
1516 struct vnode *a_vp;
1517 voff_t a_offset;
1518 struct vm_page **a_m;
1519 int *a_count;
1520 int a_centeridx;
1521 vm_prot_t a_access_type;
1522 int a_advice;
1523 int a_flags;
1524 } */ *ap = v;
1525
1526 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1527 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1528 return EPERM;
1529 }
1530 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1531 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1532 }
1533
1534 /*
1535 * we're relying on the fact that genfs_getpages() always read in
1536 * entire filesystem blocks.
1537 */
1538 return genfs_getpages(v);
1539 }
1540
1541 /*
1542 * Make sure that for all pages in every block in the given range,
1543 * either all are dirty or all are clean. If any of the pages
1544 * we've seen so far are dirty, put the vnode on the paging chain,
1545 * and mark it IN_PAGING.
1546 *
1547 * If checkfirst != 0, don't check all the pages but return at the
1548 * first dirty page.
1549 */
1550 static int
1551 check_dirty(struct lfs *fs, struct vnode *vp,
1552 off_t startoffset, off_t endoffset, off_t blkeof,
1553 int flags, int checkfirst)
1554 {
1555 int by_list;
1556 struct vm_page *curpg = NULL; /* XXX: gcc */
1557 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1558 off_t soff = 0; /* XXX: gcc */
1559 voff_t off;
1560 int i;
1561 int nonexistent;
1562 int any_dirty; /* number of dirty pages */
1563 int dirty; /* number of dirty pages in a block */
1564 int tdirty;
1565 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1566 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1567
1568 ASSERT_MAYBE_SEGLOCK(fs);
1569 top:
1570 by_list = (vp->v_uobj.uo_npages <=
1571 ((endoffset - startoffset) >> PAGE_SHIFT) *
1572 UVM_PAGE_HASH_PENALTY);
1573 any_dirty = 0;
1574
1575 if (by_list) {
1576 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1577 } else {
1578 soff = startoffset;
1579 }
1580 while (by_list || soff < MIN(blkeof, endoffset)) {
1581 if (by_list) {
1582 /*
1583 * Find the first page in a block. Skip
1584 * blocks outside our area of interest or beyond
1585 * the end of file.
1586 */
1587 if (pages_per_block > 1) {
1588 while (curpg &&
1589 ((curpg->offset & fs->lfs_bmask) ||
1590 curpg->offset >= vp->v_size ||
1591 curpg->offset >= endoffset))
1592 curpg = TAILQ_NEXT(curpg, listq);
1593 }
1594 if (curpg == NULL)
1595 break;
1596 soff = curpg->offset;
1597 }
1598
1599 /*
1600 * Mark all pages in extended range busy; find out if any
1601 * of them are dirty.
1602 */
1603 nonexistent = dirty = 0;
1604 for (i = 0; i == 0 || i < pages_per_block; i++) {
1605 if (by_list && pages_per_block <= 1) {
1606 pgs[i] = pg = curpg;
1607 } else {
1608 off = soff + (i << PAGE_SHIFT);
1609 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1610 if (pg == NULL) {
1611 ++nonexistent;
1612 continue;
1613 }
1614 }
1615 KASSERT(pg != NULL);
1616
1617 /*
1618 * If we're holding the segment lock, we can deadlocked
1619 * against a process that has our page and is waiting
1620 * for the cleaner, while the cleaner waits for the
1621 * segment lock. Just bail in that case.
1622 */
1623 if ((pg->flags & PG_BUSY) &&
1624 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1625 if (by_list && i > 0)
1626 uvm_page_unbusy(pgs, i);
1627 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1628 return -1;
1629 }
1630
1631 while (pg->flags & PG_BUSY) {
1632 pg->flags |= PG_WANTED;
1633 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1634 "lfsput", 0);
1635 simple_lock(&vp->v_interlock);
1636 if (by_list) {
1637 if (i > 0)
1638 uvm_page_unbusy(pgs, i);
1639 goto top;
1640 }
1641 }
1642 pg->flags |= PG_BUSY;
1643 UVM_PAGE_OWN(pg, "lfs_putpages");
1644
1645 pmap_page_protect(pg, VM_PROT_NONE);
1646 tdirty = (pmap_clear_modify(pg) ||
1647 (pg->flags & PG_CLEAN) == 0);
1648 dirty += tdirty;
1649 }
1650 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1651 if (by_list) {
1652 curpg = TAILQ_NEXT(curpg, listq);
1653 } else {
1654 soff += fs->lfs_bsize;
1655 }
1656 continue;
1657 }
1658
1659 any_dirty += dirty;
1660 KASSERT(nonexistent == 0);
1661
1662 /*
1663 * If any are dirty make all dirty; unbusy them,
1664 * but if we were asked to clean, wire them so that
1665 * the pagedaemon doesn't bother us about them while
1666 * they're on their way to disk.
1667 */
1668 for (i = 0; i == 0 || i < pages_per_block; i++) {
1669 pg = pgs[i];
1670 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1671 if (dirty) {
1672 pg->flags &= ~PG_CLEAN;
1673 if (flags & PGO_FREE) {
1674 /*
1675 * Wire the page so that
1676 * pdaemon doesn't see it again.
1677 */
1678 uvm_lock_pageq();
1679 uvm_pagewire(pg);
1680 uvm_unlock_pageq();
1681
1682 /* Suspended write flag */
1683 pg->flags |= PG_DELWRI;
1684 }
1685 }
1686 if (pg->flags & PG_WANTED)
1687 wakeup(pg);
1688 pg->flags &= ~(PG_WANTED|PG_BUSY);
1689 UVM_PAGE_OWN(pg, NULL);
1690 }
1691
1692 if (checkfirst && any_dirty)
1693 break;
1694
1695 if (by_list) {
1696 curpg = TAILQ_NEXT(curpg, listq);
1697 } else {
1698 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1699 }
1700 }
1701
1702 return any_dirty;
1703 }
1704
1705 /*
1706 * lfs_putpages functions like genfs_putpages except that
1707 *
1708 * (1) It needs to bounds-check the incoming requests to ensure that
1709 * they are block-aligned; if they are not, expand the range and
1710 * do the right thing in case, e.g., the requested range is clean
1711 * but the expanded range is dirty.
1712 * (2) It needs to explicitly send blocks to be written when it is done.
1713 * VOP_PUTPAGES is not ever called with the seglock held, so
1714 * we simply take the seglock and let lfs_segunlock wait for us.
1715 * XXX Actually we can be called with the seglock held, if we have
1716 * XXX to flush a vnode while lfs_markv is in operation. As of this
1717 * XXX writing we panic in this case.
1718 *
1719 * Assumptions:
1720 *
1721 * (1) The caller does not hold any pages in this vnode busy. If it does,
1722 * there is a danger that when we expand the page range and busy the
1723 * pages we will deadlock.
1724 * (2) We are called with vp->v_interlock held; we must return with it
1725 * released.
1726 * (3) We don't absolutely have to free pages right away, provided that
1727 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1728 * us a request with PGO_FREE, we take the pages out of the paging
1729 * queue and wake up the writer, which will handle freeing them for us.
1730 *
1731 * We ensure that for any filesystem block, all pages for that
1732 * block are either resident or not, even if those pages are higher
1733 * than EOF; that means that we will be getting requests to free
1734 * "unused" pages above EOF all the time, and should ignore them.
1735 *
1736 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1737 */
1738
1739 int
1740 lfs_putpages(void *v)
1741 {
1742 int error;
1743 struct vop_putpages_args /* {
1744 struct vnode *a_vp;
1745 voff_t a_offlo;
1746 voff_t a_offhi;
1747 int a_flags;
1748 } */ *ap = v;
1749 struct vnode *vp;
1750 struct inode *ip;
1751 struct lfs *fs;
1752 struct segment *sp;
1753 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1754 off_t off, max_endoffset;
1755 int s;
1756 boolean_t seglocked, sync, pagedaemon;
1757 struct vm_page *pg;
1758 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1759
1760 vp = ap->a_vp;
1761 ip = VTOI(vp);
1762 fs = ip->i_lfs;
1763 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1764 pagedaemon = (curproc == uvm.pagedaemon_proc);
1765
1766 /* Putpages does nothing for metadata. */
1767 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1768 simple_unlock(&vp->v_interlock);
1769 return 0;
1770 }
1771
1772 /*
1773 * If there are no pages, don't do anything.
1774 */
1775 if (vp->v_uobj.uo_npages == 0) {
1776 s = splbio();
1777 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1778 (vp->v_flag & VONWORKLST)) {
1779 vp->v_flag &= ~VONWORKLST;
1780 LIST_REMOVE(vp, v_synclist);
1781 }
1782 splx(s);
1783 simple_unlock(&vp->v_interlock);
1784
1785 /* Remove us from paging queue, if we were on it */
1786 simple_lock(&fs->lfs_interlock);
1787 if (ip->i_flags & IN_PAGING) {
1788 ip->i_flags &= ~IN_PAGING;
1789 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1790 }
1791 simple_unlock(&fs->lfs_interlock);
1792 return 0;
1793 }
1794
1795 blkeof = blkroundup(fs, ip->i_size);
1796
1797 /*
1798 * Ignore requests to free pages past EOF but in the same block
1799 * as EOF, unless the request is synchronous. (If the request is
1800 * sync, it comes from lfs_truncate.)
1801 * XXXUBC Make these pages look "active" so the pagedaemon won't
1802 * XXXUBC bother us with them again.
1803 */
1804 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1805 origoffset = ap->a_offlo;
1806 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1807 pg = uvm_pagelookup(&vp->v_uobj, off);
1808 KASSERT(pg != NULL);
1809 while (pg->flags & PG_BUSY) {
1810 pg->flags |= PG_WANTED;
1811 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1812 "lfsput2", 0);
1813 simple_lock(&vp->v_interlock);
1814 }
1815 uvm_lock_pageq();
1816 uvm_pageactivate(pg);
1817 uvm_unlock_pageq();
1818 }
1819 ap->a_offlo = blkeof;
1820 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1821 simple_unlock(&vp->v_interlock);
1822 return 0;
1823 }
1824 }
1825
1826 /*
1827 * Extend page range to start and end at block boundaries.
1828 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1829 */
1830 origoffset = ap->a_offlo;
1831 origendoffset = ap->a_offhi;
1832 startoffset = origoffset & ~(fs->lfs_bmask);
1833 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1834 << fs->lfs_bshift;
1835
1836 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1837 endoffset = max_endoffset;
1838 origendoffset = endoffset;
1839 } else {
1840 origendoffset = round_page(ap->a_offhi);
1841 endoffset = round_page(blkroundup(fs, origendoffset));
1842 }
1843
1844 KASSERT(startoffset > 0 || endoffset >= startoffset);
1845 if (startoffset == endoffset) {
1846 /* Nothing to do, why were we called? */
1847 simple_unlock(&vp->v_interlock);
1848 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1849 PRId64 "\n", startoffset));
1850 return 0;
1851 }
1852
1853 ap->a_offlo = startoffset;
1854 ap->a_offhi = endoffset;
1855
1856 if (!(ap->a_flags & PGO_CLEANIT))
1857 return genfs_putpages(v);
1858
1859 /*
1860 * If there are more than one page per block, we don't want
1861 * to get caught locking them backwards; so set PGO_BUSYFAIL
1862 * to avoid deadlocks.
1863 */
1864 ap->a_flags |= PGO_BUSYFAIL;
1865
1866 do {
1867 int r;
1868
1869 /* If no pages are dirty, we can just use genfs_putpages. */
1870 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1871 ap->a_flags, 1);
1872 if (r < 0) {
1873 simple_unlock(&vp->v_interlock);
1874 return EDEADLK;
1875 }
1876 if (r > 0)
1877 break;
1878
1879 /*
1880 * Sometimes pages are dirtied between the time that
1881 * we check and the time we try to clean them.
1882 * Instruct lfs_gop_write to return EDEADLK in this case
1883 * so we can write them properly.
1884 */
1885 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1886 r = genfs_putpages(v);
1887 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1888 if (r != EDEADLK)
1889 return r;
1890
1891 /* Start over. */
1892 preempt(1);
1893 simple_lock(&vp->v_interlock);
1894 } while(1);
1895
1896 /*
1897 * Dirty and asked to clean.
1898 *
1899 * Pagedaemon can't actually write LFS pages; wake up
1900 * the writer to take care of that. The writer will
1901 * notice the pager inode queue and act on that.
1902 */
1903 if (pagedaemon) {
1904 simple_lock(&fs->lfs_interlock);
1905 if (!(ip->i_flags & IN_PAGING)) {
1906 ip->i_flags |= IN_PAGING;
1907 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1908 }
1909 simple_lock(&lfs_subsys_lock);
1910 wakeup(&lfs_writer_daemon);
1911 simple_unlock(&lfs_subsys_lock);
1912 simple_unlock(&fs->lfs_interlock);
1913 simple_unlock(&vp->v_interlock);
1914 preempt(1);
1915 return EWOULDBLOCK;
1916 }
1917
1918 /*
1919 * If this is a file created in a recent dirop, we can't flush its
1920 * inode until the dirop is complete. Drain dirops, then flush the
1921 * filesystem (taking care of any other pending dirops while we're
1922 * at it).
1923 */
1924 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1925 (vp->v_flag & VDIROP)) {
1926 int locked;
1927
1928 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1929 locked = VOP_ISLOCKED(vp) && /* XXX */
1930 vp->v_lock.lk_lockholder == curproc->p_pid;
1931 simple_unlock(&vp->v_interlock);
1932 lfs_writer_enter(fs, "ppdirop");
1933 if (locked)
1934 VOP_UNLOCK(vp, 0);
1935
1936 simple_lock(&fs->lfs_interlock);
1937 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1938 simple_unlock(&fs->lfs_interlock);
1939
1940 simple_lock(&vp->v_interlock);
1941 if (locked) {
1942 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1943 simple_lock(&vp->v_interlock);
1944 }
1945 lfs_writer_leave(fs);
1946
1947 /* XXX the flush should have taken care of this one too! */
1948 }
1949
1950 /*
1951 * This is it. We are going to write some pages. From here on
1952 * down it's all just mechanics.
1953 *
1954 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1955 */
1956 ap->a_flags &= ~PGO_SYNCIO;
1957
1958 /*
1959 * If we've already got the seglock, flush the node and return.
1960 * The FIP has already been set up for us by lfs_writefile,
1961 * and FIP cleanup and lfs_updatemeta will also be done there,
1962 * unless genfs_putpages returns EDEADLK; then we must flush
1963 * what we have, and correct FIP and segment header accounting.
1964 */
1965
1966 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1967 if (!seglocked) {
1968 simple_unlock(&vp->v_interlock);
1969 /*
1970 * Take the seglock, because we are going to be writing pages.
1971 */
1972 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1973 if (error != 0)
1974 return error;
1975 simple_lock(&vp->v_interlock);
1976 }
1977
1978 /*
1979 * VOP_PUTPAGES should not be called while holding the seglock.
1980 * XXXUBC fix lfs_markv, or do this properly.
1981 */
1982 #ifdef notyet
1983 KASSERT(fs->lfs_seglock == 1);
1984 #endif /* notyet */
1985
1986 /*
1987 * We assume we're being called with sp->fip pointing at blank space.
1988 * Account for a new FIP in the segment header, and set sp->vp.
1989 * (This should duplicate the setup at the top of lfs_writefile().)
1990 */
1991 sp = fs->lfs_sp;
1992 if (!seglocked) {
1993 if (sp->seg_bytes_left < fs->lfs_bsize ||
1994 sp->sum_bytes_left < sizeof(struct finfo))
1995 (void) lfs_writeseg(fs, fs->lfs_sp);
1996
1997 sp->sum_bytes_left -= FINFOSIZE;
1998 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1999 }
2000 KASSERT(sp->vp == NULL);
2001 sp->vp = vp;
2002
2003 if (!seglocked) {
2004 if (vp->v_flag & VDIROP)
2005 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2006 }
2007
2008 sp->fip->fi_nblocks = 0;
2009 sp->fip->fi_ino = ip->i_number;
2010 sp->fip->fi_version = ip->i_gen;
2011
2012 /*
2013 * Loop through genfs_putpages until all pages are gathered.
2014 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2015 * Whenever we lose the interlock we have to rerun check_dirty, as
2016 * well.
2017 */
2018 again:
2019 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2020 ap->a_flags, 0) < 0) {
2021 simple_unlock(&vp->v_interlock);
2022 sp->vp = NULL;
2023 if (!seglocked)
2024 lfs_segunlock(fs);
2025 return EDEADLK;
2026 }
2027
2028 error = genfs_putpages(v);
2029 if (error == EDEADLK || error == EAGAIN) {
2030 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2031 " EDEADLK [2] ino %d off %x (seg %d)\n",
2032 ip->i_number, fs->lfs_offset,
2033 dtosn(fs, fs->lfs_offset)));
2034 /* If nothing to write, short-circuit */
2035 if (sp->cbpp - sp->bpp > 1) {
2036 /* Write gathered pages */
2037 lfs_updatemeta(sp);
2038 (void) lfs_writeseg(fs, sp);
2039
2040 /*
2041 * Reinitialize brand new FIP and add us to it.
2042 * (This should duplicate the fixup in
2043 * lfs_gatherpages().)
2044 */
2045 KASSERT(sp->vp == vp);
2046 sp->fip->fi_version = ip->i_gen;
2047 sp->fip->fi_ino = ip->i_number;
2048 /* Add us to the new segment summary. */
2049 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2050 sp->sum_bytes_left -= FINFOSIZE;
2051 }
2052
2053 /* Give the write a chance to complete */
2054 preempt(1);
2055
2056 /* We've lost the interlock. Start over. */
2057 if (error == EDEADLK) {
2058 simple_lock(&vp->v_interlock);
2059 goto again;
2060 }
2061 }
2062
2063 KASSERT(sp->vp == vp);
2064 if (!seglocked) {
2065 sp->vp = NULL; /* XXX lfs_gather below will set this */
2066
2067 /* Write indirect blocks as well */
2068 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2069 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2070 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2071
2072 KASSERT(sp->vp == NULL);
2073 sp->vp = vp;
2074 }
2075
2076 /*
2077 * Blocks are now gathered into a segment waiting to be written.
2078 * All that's left to do is update metadata, and write them.
2079 */
2080 lfs_updatemeta(sp);
2081 KASSERT(sp->vp == vp);
2082 sp->vp = NULL;
2083
2084 if (seglocked) {
2085 /* we're called by lfs_writefile. */
2086 return error;
2087 }
2088
2089 /*
2090 * Clean up FIP, since we're done writing this file.
2091 * This should duplicate cleanup at the end of lfs_writefile().
2092 */
2093 if (sp->fip->fi_nblocks != 0) {
2094 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2095 sizeof(int32_t) * sp->fip->fi_nblocks);
2096 sp->start_lbp = &sp->fip->fi_blocks[0];
2097 } else {
2098 sp->sum_bytes_left += FINFOSIZE;
2099 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2100 }
2101 lfs_writeseg(fs, fs->lfs_sp);
2102
2103 /*
2104 * Remove us from paging queue, since we've now written all our
2105 * pages.
2106 */
2107 simple_lock(&fs->lfs_interlock);
2108 if (ip->i_flags & IN_PAGING) {
2109 ip->i_flags &= ~IN_PAGING;
2110 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2111 }
2112 simple_unlock(&fs->lfs_interlock);
2113
2114 /*
2115 * XXX - with the malloc/copy writeseg, the pages are freed by now
2116 * even if we don't wait (e.g. if we hold a nested lock). This
2117 * will not be true if we stop using malloc/copy.
2118 */
2119 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2120 lfs_segunlock(fs);
2121
2122 /*
2123 * Wait for v_numoutput to drop to zero. The seglock should
2124 * take care of this, but there is a slight possibility that
2125 * aiodoned might not have got around to our buffers yet.
2126 */
2127 if (sync) {
2128 s = splbio();
2129 simple_lock(&global_v_numoutput_slock);
2130 while (vp->v_numoutput > 0) {
2131 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2132 " num %d\n", ip->i_number, vp->v_numoutput));
2133 vp->v_flag |= VBWAIT;
2134 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2135 &global_v_numoutput_slock);
2136 }
2137 simple_unlock(&global_v_numoutput_slock);
2138 splx(s);
2139 }
2140 return error;
2141 }
2142
2143 /*
2144 * Return the last logical file offset that should be written for this file
2145 * if we're doing a write that ends at "size". If writing, we need to know
2146 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2147 * to know about entire blocks.
2148 */
2149 void
2150 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2151 {
2152 struct inode *ip = VTOI(vp);
2153 struct lfs *fs = ip->i_lfs;
2154 daddr_t olbn, nlbn;
2155
2156 olbn = lblkno(fs, ip->i_size);
2157 nlbn = lblkno(fs, size);
2158 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2159 *eobp = fragroundup(fs, size);
2160 } else {
2161 *eobp = blkroundup(fs, size);
2162 }
2163 }
2164
2165 #ifdef DEBUG
2166 void lfs_dump_vop(void *);
2167
2168 void
2169 lfs_dump_vop(void *v)
2170 {
2171 struct vop_putpages_args /* {
2172 struct vnode *a_vp;
2173 voff_t a_offlo;
2174 voff_t a_offhi;
2175 int a_flags;
2176 } */ *ap = v;
2177
2178 #ifdef DDB
2179 vfs_vnode_print(ap->a_vp, 0, printf);
2180 #endif
2181 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2182 }
2183 #endif
2184
2185 int
2186 lfs_mmap(void *v)
2187 {
2188 struct vop_mmap_args /* {
2189 const struct vnodeop_desc *a_desc;
2190 struct vnode *a_vp;
2191 int a_fflags;
2192 struct ucred *a_cred;
2193 struct lwp *a_l;
2194 } */ *ap = v;
2195
2196 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2197 return EOPNOTSUPP;
2198 return ufs_mmap(v);
2199 }
2200