Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.170
      1 /*	$NetBSD: lfs_vnops.c,v 1.170 2006/04/30 21:19:42 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.170 2006/04/30 21:19:42 perseant Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/resourcevar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/file.h>
     78 #include <sys/stat.h>
     79 #include <sys/buf.h>
     80 #include <sys/proc.h>
     81 #include <sys/mount.h>
     82 #include <sys/vnode.h>
     83 #include <sys/pool.h>
     84 #include <sys/signalvar.h>
     85 
     86 #include <miscfs/fifofs/fifo.h>
     87 #include <miscfs/genfs/genfs.h>
     88 #include <miscfs/specfs/specdev.h>
     89 
     90 #include <ufs/ufs/inode.h>
     91 #include <ufs/ufs/dir.h>
     92 #include <ufs/ufs/ufsmount.h>
     93 #include <ufs/ufs/ufs_extern.h>
     94 
     95 #include <uvm/uvm.h>
     96 #include <uvm/uvm_pmap.h>
     97 #include <uvm/uvm_stat.h>
     98 #include <uvm/uvm_pager.h>
     99 
    100 #include <ufs/lfs/lfs.h>
    101 #include <ufs/lfs/lfs_extern.h>
    102 
    103 extern pid_t lfs_writer_daemon;
    104 
    105 /* Global vfs data structures for lfs. */
    106 int (**lfs_vnodeop_p)(void *);
    107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    108 	{ &vop_default_desc, vn_default_error },
    109 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    110 	{ &vop_create_desc, lfs_create },		/* create */
    111 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    112 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    113 	{ &vop_open_desc, ufs_open },			/* open */
    114 	{ &vop_close_desc, lfs_close },			/* close */
    115 	{ &vop_access_desc, ufs_access },		/* access */
    116 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    117 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    118 	{ &vop_read_desc, lfs_read },			/* read */
    119 	{ &vop_write_desc, lfs_write },			/* write */
    120 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    121 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    122 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    123 	{ &vop_poll_desc, ufs_poll },			/* poll */
    124 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    125 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    126 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    127 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    128 	{ &vop_seek_desc, ufs_seek },			/* seek */
    129 	{ &vop_remove_desc, lfs_remove },		/* remove */
    130 	{ &vop_link_desc, lfs_link },			/* link */
    131 	{ &vop_rename_desc, lfs_rename },		/* rename */
    132 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    133 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    134 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    135 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    136 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    137 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    138 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    139 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    140 	{ &vop_lock_desc, ufs_lock },			/* lock */
    141 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    142 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    143 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    144 	{ &vop_print_desc, ufs_print },			/* print */
    145 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    146 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    147 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    148 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    149 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    150 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    151 	{ NULL, NULL }
    152 };
    153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    154 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    155 
    156 int (**lfs_specop_p)(void *);
    157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    158 	{ &vop_default_desc, vn_default_error },
    159 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    160 	{ &vop_create_desc, spec_create },		/* create */
    161 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    162 	{ &vop_open_desc, spec_open },			/* open */
    163 	{ &vop_close_desc, lfsspec_close },		/* close */
    164 	{ &vop_access_desc, ufs_access },		/* access */
    165 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    166 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    167 	{ &vop_read_desc, ufsspec_read },		/* read */
    168 	{ &vop_write_desc, ufsspec_write },		/* write */
    169 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    170 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    171 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    172 	{ &vop_poll_desc, spec_poll },			/* poll */
    173 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    174 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    175 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    176 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    177 	{ &vop_seek_desc, spec_seek },			/* seek */
    178 	{ &vop_remove_desc, spec_remove },		/* remove */
    179 	{ &vop_link_desc, spec_link },			/* link */
    180 	{ &vop_rename_desc, spec_rename },		/* rename */
    181 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    182 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    183 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    184 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    185 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    186 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    187 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    188 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    189 	{ &vop_lock_desc, ufs_lock },			/* lock */
    190 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    191 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    192 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    193 	{ &vop_print_desc, ufs_print },			/* print */
    194 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    195 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    196 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    197 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    198 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    199 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    200 	{ NULL, NULL }
    201 };
    202 const struct vnodeopv_desc lfs_specop_opv_desc =
    203 	{ &lfs_specop_p, lfs_specop_entries };
    204 
    205 int (**lfs_fifoop_p)(void *);
    206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    207 	{ &vop_default_desc, vn_default_error },
    208 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    209 	{ &vop_create_desc, fifo_create },		/* create */
    210 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    211 	{ &vop_open_desc, fifo_open },			/* open */
    212 	{ &vop_close_desc, lfsfifo_close },		/* close */
    213 	{ &vop_access_desc, ufs_access },		/* access */
    214 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    215 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    216 	{ &vop_read_desc, ufsfifo_read },		/* read */
    217 	{ &vop_write_desc, ufsfifo_write },		/* write */
    218 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    219 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    220 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    221 	{ &vop_poll_desc, fifo_poll },			/* poll */
    222 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    223 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    224 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    225 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    226 	{ &vop_seek_desc, fifo_seek },			/* seek */
    227 	{ &vop_remove_desc, fifo_remove },		/* remove */
    228 	{ &vop_link_desc, fifo_link },			/* link */
    229 	{ &vop_rename_desc, fifo_rename },		/* rename */
    230 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    231 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    232 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    233 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    234 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    235 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    236 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238 	{ &vop_lock_desc, ufs_lock },			/* lock */
    239 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    240 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    241 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    242 	{ &vop_print_desc, ufs_print },			/* print */
    243 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    244 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    245 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    246 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    248 	{ NULL, NULL }
    249 };
    250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252 
    253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    254 
    255 #define	LFS_READWRITE
    256 #include <ufs/ufs/ufs_readwrite.c>
    257 #undef	LFS_READWRITE
    258 
    259 /*
    260  * Synch an open file.
    261  */
    262 /* ARGSUSED */
    263 int
    264 lfs_fsync(void *v)
    265 {
    266 	struct vop_fsync_args /* {
    267 		struct vnode *a_vp;
    268 		struct ucred *a_cred;
    269 		int a_flags;
    270 		off_t offlo;
    271 		off_t offhi;
    272 		struct lwp *a_l;
    273 	} */ *ap = v;
    274 	struct vnode *vp = ap->a_vp;
    275 	int error, wait;
    276 
    277 	/* If we're mounted read-only, don't try to sync. */
    278 	if (VTOI(vp)->i_lfs->lfs_ronly)
    279 		return 0;
    280 
    281 	/*
    282 	 * Trickle sync checks for need to do a checkpoint after possible
    283 	 * activity from the pagedaemon.
    284 	 */
    285 	if (ap->a_flags & FSYNC_LAZY) {
    286 		simple_lock(&lfs_subsys_lock);
    287 		wakeup(&lfs_writer_daemon);
    288 		simple_unlock(&lfs_subsys_lock);
    289 		return 0;
    290 	}
    291 
    292 	wait = (ap->a_flags & FSYNC_WAIT);
    293 	simple_lock(&vp->v_interlock);
    294 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    295 			round_page(ap->a_offhi),
    296 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    297 	if (error)
    298 		return error;
    299 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    300 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    301 		int l = 0;
    302 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    303 				  ap->a_l->l_proc->p_ucred, ap->a_l);
    304 	}
    305 	if (wait && !VPISEMPTY(vp))
    306 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    307 
    308 	return error;
    309 }
    310 
    311 /*
    312  * Take IN_ADIROP off, then call ufs_inactive.
    313  */
    314 int
    315 lfs_inactive(void *v)
    316 {
    317 	struct vop_inactive_args /* {
    318 		struct vnode *a_vp;
    319 		struct lwp *a_l;
    320 	} */ *ap = v;
    321 
    322 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    323 
    324 	lfs_unmark_vnode(ap->a_vp);
    325 
    326 	/*
    327 	 * The Ifile is only ever inactivated on unmount.
    328 	 * Streamline this process by not giving it more dirty blocks.
    329 	 */
    330 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    331 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    332 		VOP_UNLOCK(ap->a_vp, 0);
    333 		return 0;
    334 	}
    335 
    336 	return ufs_inactive(v);
    337 }
    338 
    339 /*
    340  * These macros are used to bracket UFS directory ops, so that we can
    341  * identify all the pages touched during directory ops which need to
    342  * be ordered and flushed atomically, so that they may be recovered.
    343  *
    344  * Because we have to mark nodes VDIROP in order to prevent
    345  * the cache from reclaiming them while a dirop is in progress, we must
    346  * also manage the number of nodes so marked (otherwise we can run out).
    347  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    348  * is decremented during segment write, when VDIROP is taken off.
    349  */
    350 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    351 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    352 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    353 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    354 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    355 static int lfs_set_dirop(struct vnode *, struct vnode *);
    356 
    357 static int
    358 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    359 {
    360 	struct lfs *fs;
    361 	int error;
    362 
    363 	KASSERT(VOP_ISLOCKED(dvp));
    364 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    365 
    366 	fs = VTOI(dvp)->i_lfs;
    367 
    368 	ASSERT_NO_SEGLOCK(fs);
    369 	/*
    370 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    371 	 * as an inode block; an overestimate in most cases.
    372 	 */
    373 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    374 		return (error);
    375 
    376     restart:
    377 	simple_lock(&fs->lfs_interlock);
    378 	if (fs->lfs_dirops == 0) {
    379 		simple_unlock(&fs->lfs_interlock);
    380 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    381 		simple_lock(&fs->lfs_interlock);
    382 	}
    383 	while (fs->lfs_writer)
    384 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    385 			&fs->lfs_interlock);
    386 	simple_lock(&lfs_subsys_lock);
    387 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    388 		wakeup(&lfs_writer_daemon);
    389 		simple_unlock(&lfs_subsys_lock);
    390 		simple_unlock(&fs->lfs_interlock);
    391 		preempt(1);
    392 		goto restart;
    393 	}
    394 
    395 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    396 		simple_unlock(&fs->lfs_interlock);
    397 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    398 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    399 		if ((error = ltsleep(&lfs_dirvcount,
    400 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    401 		    &lfs_subsys_lock)) != 0) {
    402 			goto unreserve;
    403 		}
    404 		goto restart;
    405 	}
    406 	simple_unlock(&lfs_subsys_lock);
    407 
    408 	++fs->lfs_dirops;
    409 	fs->lfs_doifile = 1;
    410 	simple_unlock(&fs->lfs_interlock);
    411 
    412 	/* Hold a reference so SET_ENDOP will be happy */
    413 	vref(dvp);
    414 	if (vp) {
    415 		vref(vp);
    416 		MARK_VNODE(vp);
    417 	}
    418 
    419 	MARK_VNODE(dvp);
    420 	return 0;
    421 
    422 unreserve:
    423 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    424 	return error;
    425 }
    426 
    427 /*
    428  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    429  * in getnewvnode(), if we have a stacked filesystem mounted on top
    430  * of us.
    431  *
    432  * NB: this means we have to clear the new vnodes on error.  Fortunately
    433  * SET_ENDOP is there to do that for us.
    434  */
    435 static int
    436 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    437 {
    438 	int error;
    439 	struct lfs *fs;
    440 
    441 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    442 	ASSERT_NO_SEGLOCK(fs);
    443 	if (fs->lfs_ronly)
    444 		return EROFS;
    445 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    446 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    447 		      dvp, error));
    448 		return error;
    449 	}
    450 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    451 		if (vpp) {
    452 			ungetnewvnode(*vpp);
    453 			*vpp = NULL;
    454 		}
    455 		return error;
    456 	}
    457 	return 0;
    458 }
    459 
    460 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    461 	do {								\
    462 		simple_lock(&(fs)->lfs_interlock);			\
    463 		--(fs)->lfs_dirops;					\
    464 		if (!(fs)->lfs_dirops) {				\
    465 			if ((fs)->lfs_nadirop) {			\
    466 				panic("SET_ENDOP: %s: no dirops but "	\
    467 					" nadirop=%d", (str),		\
    468 					(fs)->lfs_nadirop);		\
    469 			}						\
    470 			wakeup(&(fs)->lfs_writer);			\
    471 			simple_unlock(&(fs)->lfs_interlock);		\
    472 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    473 		} else							\
    474 			simple_unlock(&(fs)->lfs_interlock);		\
    475 	} while(0)
    476 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    477 	do {								\
    478 		UNMARK_VNODE(dvp);					\
    479 		if (nvpp && *nvpp)					\
    480 			UNMARK_VNODE(*nvpp);				\
    481 		/* Check for error return to stem vnode leakage */	\
    482 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    483 			ungetnewvnode(*(nvpp));				\
    484 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    485 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    486 		vrele(dvp);						\
    487 	} while(0)
    488 #define SET_ENDOP_CREATE_AP(ap, str)					\
    489 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    490 			 (ap)->a_vpp, (str))
    491 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    492 	do {								\
    493 		UNMARK_VNODE(dvp);					\
    494 		if (ovp)						\
    495 			UNMARK_VNODE(ovp);				\
    496 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    497 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    498 		vrele(dvp);						\
    499 		if (ovp)						\
    500 			vrele(ovp);					\
    501 	} while(0)
    502 
    503 void
    504 lfs_mark_vnode(struct vnode *vp)
    505 {
    506 	struct inode *ip = VTOI(vp);
    507 	struct lfs *fs = ip->i_lfs;
    508 
    509 	simple_lock(&fs->lfs_interlock);
    510 	if (!(ip->i_flag & IN_ADIROP)) {
    511 		if (!(vp->v_flag & VDIROP)) {
    512 			(void)lfs_vref(vp);
    513 			simple_lock(&lfs_subsys_lock);
    514 			++lfs_dirvcount;
    515 			simple_unlock(&lfs_subsys_lock);
    516 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    517 			vp->v_flag |= VDIROP;
    518 		}
    519 		++fs->lfs_nadirop;
    520 		ip->i_flag |= IN_ADIROP;
    521 	} else
    522 		KASSERT(vp->v_flag & VDIROP);
    523 	simple_unlock(&fs->lfs_interlock);
    524 }
    525 
    526 void
    527 lfs_unmark_vnode(struct vnode *vp)
    528 {
    529 	struct inode *ip = VTOI(vp);
    530 
    531 	if (ip && (ip->i_flag & IN_ADIROP)) {
    532 		KASSERT(vp->v_flag & VDIROP);
    533 		simple_lock(&ip->i_lfs->lfs_interlock);
    534 		--ip->i_lfs->lfs_nadirop;
    535 		simple_unlock(&ip->i_lfs->lfs_interlock);
    536 		ip->i_flag &= ~IN_ADIROP;
    537 	}
    538 }
    539 
    540 int
    541 lfs_symlink(void *v)
    542 {
    543 	struct vop_symlink_args /* {
    544 		struct vnode *a_dvp;
    545 		struct vnode **a_vpp;
    546 		struct componentname *a_cnp;
    547 		struct vattr *a_vap;
    548 		char *a_target;
    549 	} */ *ap = v;
    550 	int error;
    551 
    552 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    553 		vput(ap->a_dvp);
    554 		return error;
    555 	}
    556 	error = ufs_symlink(ap);
    557 	SET_ENDOP_CREATE_AP(ap, "symlink");
    558 	return (error);
    559 }
    560 
    561 int
    562 lfs_mknod(void *v)
    563 {
    564 	struct vop_mknod_args	/* {
    565 		struct vnode *a_dvp;
    566 		struct vnode **a_vpp;
    567 		struct componentname *a_cnp;
    568 		struct vattr *a_vap;
    569 		} */ *ap = v;
    570 	struct vattr *vap = ap->a_vap;
    571 	struct vnode **vpp = ap->a_vpp;
    572 	struct inode *ip;
    573 	int error;
    574 	struct mount	*mp;
    575 	ino_t		ino;
    576 
    577 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    578 		vput(ap->a_dvp);
    579 		return error;
    580 	}
    581 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    582 	    ap->a_dvp, vpp, ap->a_cnp);
    583 
    584 	/* Either way we're done with the dirop at this point */
    585 	SET_ENDOP_CREATE_AP(ap, "mknod");
    586 
    587 	if (error)
    588 		return (error);
    589 
    590 	ip = VTOI(*vpp);
    591 	mp  = (*vpp)->v_mount;
    592 	ino = ip->i_number;
    593 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    594 	if (vap->va_rdev != VNOVAL) {
    595 		/*
    596 		 * Want to be able to use this to make badblock
    597 		 * inodes, so don't truncate the dev number.
    598 		 */
    599 #if 0
    600 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    601 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    602 #else
    603 		ip->i_ffs1_rdev = vap->va_rdev;
    604 #endif
    605 	}
    606 
    607 	/*
    608 	 * Call fsync to write the vnode so that we don't have to deal with
    609 	 * flushing it when it's marked VDIROP|VXLOCK.
    610 	 *
    611 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    612 	 * return.  But, that leaves this vnode in limbo, also not good.
    613 	 * Can this ever happen (barring hardware failure)?
    614 	 */
    615 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    616 	    curlwp)) != 0) {
    617 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    618 		    (unsigned long long)ino);
    619 		/* return (error); */
    620 	}
    621 	/*
    622 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    623 	 * checked to see if it is an alias of an existing entry in
    624 	 * the inode cache.
    625 	 */
    626 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    627 
    628 	VOP_UNLOCK(*vpp, 0);
    629 	lfs_vunref(*vpp);
    630 	(*vpp)->v_type = VNON;
    631 	vgone(*vpp);
    632 	error = VFS_VGET(mp, ino, vpp);
    633 
    634 	if (error != 0) {
    635 		*vpp = NULL;
    636 		return (error);
    637 	}
    638 	return (0);
    639 }
    640 
    641 int
    642 lfs_create(void *v)
    643 {
    644 	struct vop_create_args	/* {
    645 		struct vnode *a_dvp;
    646 		struct vnode **a_vpp;
    647 		struct componentname *a_cnp;
    648 		struct vattr *a_vap;
    649 	} */ *ap = v;
    650 	int error;
    651 
    652 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    653 		vput(ap->a_dvp);
    654 		return error;
    655 	}
    656 	error = ufs_create(ap);
    657 	SET_ENDOP_CREATE_AP(ap, "create");
    658 	return (error);
    659 }
    660 
    661 int
    662 lfs_mkdir(void *v)
    663 {
    664 	struct vop_mkdir_args	/* {
    665 		struct vnode *a_dvp;
    666 		struct vnode **a_vpp;
    667 		struct componentname *a_cnp;
    668 		struct vattr *a_vap;
    669 	} */ *ap = v;
    670 	int error;
    671 
    672 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    673 		vput(ap->a_dvp);
    674 		return error;
    675 	}
    676 	error = ufs_mkdir(ap);
    677 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    678 	return (error);
    679 }
    680 
    681 int
    682 lfs_remove(void *v)
    683 {
    684 	struct vop_remove_args	/* {
    685 		struct vnode *a_dvp;
    686 		struct vnode *a_vp;
    687 		struct componentname *a_cnp;
    688 	} */ *ap = v;
    689 	struct vnode *dvp, *vp;
    690 	int error;
    691 
    692 	dvp = ap->a_dvp;
    693 	vp = ap->a_vp;
    694 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    695 		if (dvp == vp)
    696 			vrele(vp);
    697 		else
    698 			vput(vp);
    699 		vput(dvp);
    700 		return error;
    701 	}
    702 	error = ufs_remove(ap);
    703 	SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
    704 	return (error);
    705 }
    706 
    707 int
    708 lfs_rmdir(void *v)
    709 {
    710 	struct vop_rmdir_args	/* {
    711 		struct vnodeop_desc *a_desc;
    712 		struct vnode *a_dvp;
    713 		struct vnode *a_vp;
    714 		struct componentname *a_cnp;
    715 	} */ *ap = v;
    716 	struct vnode *vp;
    717 	int error;
    718 
    719 	vp = ap->a_vp;
    720 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    721 		vrele(ap->a_dvp);
    722 		if (ap->a_vp != ap->a_dvp)
    723 			VOP_UNLOCK(ap->a_dvp, 0);
    724 		vput(vp);
    725 		return error;
    726 	}
    727 	error = ufs_rmdir(ap);
    728 	SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    729 	return (error);
    730 }
    731 
    732 int
    733 lfs_link(void *v)
    734 {
    735 	struct vop_link_args	/* {
    736 		struct vnode *a_dvp;
    737 		struct vnode *a_vp;
    738 		struct componentname *a_cnp;
    739 	} */ *ap = v;
    740 	int error;
    741 	struct vnode **vpp = NULL;
    742 
    743 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    744 		vput(ap->a_dvp);
    745 		return error;
    746 	}
    747 	error = ufs_link(ap);
    748 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    749 	return (error);
    750 }
    751 
    752 int
    753 lfs_rename(void *v)
    754 {
    755 	struct vop_rename_args	/* {
    756 		struct vnode *a_fdvp;
    757 		struct vnode *a_fvp;
    758 		struct componentname *a_fcnp;
    759 		struct vnode *a_tdvp;
    760 		struct vnode *a_tvp;
    761 		struct componentname *a_tcnp;
    762 	} */ *ap = v;
    763 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    764 	struct componentname *tcnp, *fcnp;
    765 	int error;
    766 	struct lfs *fs;
    767 
    768 	fs = VTOI(ap->a_fdvp)->i_lfs;
    769 	tvp = ap->a_tvp;
    770 	tdvp = ap->a_tdvp;
    771 	tcnp = ap->a_tcnp;
    772 	fvp = ap->a_fvp;
    773 	fdvp = ap->a_fdvp;
    774 	fcnp = ap->a_fcnp;
    775 
    776 	/*
    777 	 * Check for cross-device rename.
    778 	 * If it is, we don't want to set dirops, just error out.
    779 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    780 	 * a cross-device rename.)
    781 	 *
    782 	 * Copied from ufs_rename.
    783 	 */
    784 	if ((fvp->v_mount != tdvp->v_mount) ||
    785 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    786 		error = EXDEV;
    787 		goto errout;
    788 	}
    789 
    790 	/*
    791 	 * Check to make sure we're not renaming a vnode onto itself
    792 	 * (deleting a hard link by renaming one name onto another);
    793 	 * if we are we can't recursively call VOP_REMOVE since that
    794 	 * would leave us with an unaccounted-for number of live dirops.
    795 	 *
    796 	 * Inline the relevant section of ufs_rename here, *before*
    797 	 * calling SET_DIROP_REMOVE.
    798 	 */
    799 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    800 	    (VTOI(tdvp)->i_flags & APPEND))) {
    801 		error = EPERM;
    802 		goto errout;
    803 	}
    804 	if (fvp == tvp) {
    805 		if (fvp->v_type == VDIR) {
    806 			error = EINVAL;
    807 			goto errout;
    808 		}
    809 
    810 		/* Release destination completely. */
    811 		VOP_ABORTOP(tdvp, tcnp);
    812 		vput(tdvp);
    813 		vput(tvp);
    814 
    815 		/* Delete source. */
    816 		vrele(fvp);
    817 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    818 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    819 		fcnp->cn_nameiop = DELETE;
    820 		if ((error = relookup(fdvp, &fvp, fcnp))){
    821 			/* relookup blew away fdvp */
    822 			return (error);
    823 		}
    824 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    825 	}
    826 
    827 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    828 		goto errout;
    829 	MARK_VNODE(fdvp);
    830 	MARK_VNODE(fvp);
    831 
    832 	error = ufs_rename(ap);
    833 	UNMARK_VNODE(fdvp);
    834 	UNMARK_VNODE(fvp);
    835 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    836 	return (error);
    837 
    838     errout:
    839 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    840 	if (tdvp == tvp)
    841 		vrele(tdvp);
    842 	else
    843 		vput(tdvp);
    844 	if (tvp)
    845 		vput(tvp);
    846 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    847 	vrele(fdvp);
    848 	vrele(fvp);
    849 	return (error);
    850 }
    851 
    852 /* XXX hack to avoid calling ITIMES in getattr */
    853 int
    854 lfs_getattr(void *v)
    855 {
    856 	struct vop_getattr_args /* {
    857 		struct vnode *a_vp;
    858 		struct vattr *a_vap;
    859 		struct ucred *a_cred;
    860 		struct lwp *a_l;
    861 	} */ *ap = v;
    862 	struct vnode *vp = ap->a_vp;
    863 	struct inode *ip = VTOI(vp);
    864 	struct vattr *vap = ap->a_vap;
    865 	struct lfs *fs = ip->i_lfs;
    866 	/*
    867 	 * Copy from inode table
    868 	 */
    869 	vap->va_fsid = ip->i_dev;
    870 	vap->va_fileid = ip->i_number;
    871 	vap->va_mode = ip->i_mode & ~IFMT;
    872 	vap->va_nlink = ip->i_nlink;
    873 	vap->va_uid = ip->i_uid;
    874 	vap->va_gid = ip->i_gid;
    875 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    876 	vap->va_size = vp->v_size;
    877 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    878 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    879 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    880 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    881 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    882 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    883 	vap->va_flags = ip->i_flags;
    884 	vap->va_gen = ip->i_gen;
    885 	/* this doesn't belong here */
    886 	if (vp->v_type == VBLK)
    887 		vap->va_blocksize = BLKDEV_IOSIZE;
    888 	else if (vp->v_type == VCHR)
    889 		vap->va_blocksize = MAXBSIZE;
    890 	else
    891 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    892 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    893 	vap->va_type = vp->v_type;
    894 	vap->va_filerev = ip->i_modrev;
    895 	return (0);
    896 }
    897 
    898 /*
    899  * Check to make sure the inode blocks won't choke the buffer
    900  * cache, then call ufs_setattr as usual.
    901  */
    902 int
    903 lfs_setattr(void *v)
    904 {
    905 	struct vop_setattr_args /* {
    906 		struct vnode *a_vp;
    907 		struct vattr *a_vap;
    908 		struct ucred *a_cred;
    909 		struct lwp *a_l;
    910 	} */ *ap = v;
    911 	struct vnode *vp = ap->a_vp;
    912 
    913 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    914 	return ufs_setattr(v);
    915 }
    916 
    917 /*
    918  * Close called
    919  *
    920  * XXX -- we were using ufs_close, but since it updates the
    921  * times on the inode, we might need to bump the uinodes
    922  * count.
    923  */
    924 /* ARGSUSED */
    925 int
    926 lfs_close(void *v)
    927 {
    928 	struct vop_close_args /* {
    929 		struct vnode *a_vp;
    930 		int  a_fflag;
    931 		struct ucred *a_cred;
    932 		struct lwp *a_l;
    933 	} */ *ap = v;
    934 	struct vnode *vp = ap->a_vp;
    935 	struct inode *ip = VTOI(vp);
    936 
    937 	if (vp == ip->i_lfs->lfs_ivnode &&
    938 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    939 		return 0;
    940 
    941 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    942 		LFS_ITIMES(ip, NULL, NULL, NULL);
    943 	}
    944 	return (0);
    945 }
    946 
    947 /*
    948  * Close wrapper for special devices.
    949  *
    950  * Update the times on the inode then do device close.
    951  */
    952 int
    953 lfsspec_close(void *v)
    954 {
    955 	struct vop_close_args /* {
    956 		struct vnode	*a_vp;
    957 		int		a_fflag;
    958 		struct ucred	*a_cred;
    959 		struct lwp	*a_l;
    960 	} */ *ap = v;
    961 	struct vnode	*vp;
    962 	struct inode	*ip;
    963 
    964 	vp = ap->a_vp;
    965 	ip = VTOI(vp);
    966 	if (vp->v_usecount > 1) {
    967 		LFS_ITIMES(ip, NULL, NULL, NULL);
    968 	}
    969 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
    970 }
    971 
    972 /*
    973  * Close wrapper for fifo's.
    974  *
    975  * Update the times on the inode then do device close.
    976  */
    977 int
    978 lfsfifo_close(void *v)
    979 {
    980 	struct vop_close_args /* {
    981 		struct vnode	*a_vp;
    982 		int		a_fflag;
    983 		struct ucred	*a_cred;
    984 		struct lwp	*a_l;
    985 	} */ *ap = v;
    986 	struct vnode	*vp;
    987 	struct inode	*ip;
    988 
    989 	vp = ap->a_vp;
    990 	ip = VTOI(vp);
    991 	if (ap->a_vp->v_usecount > 1) {
    992 		LFS_ITIMES(ip, NULL, NULL, NULL);
    993 	}
    994 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
    995 }
    996 
    997 /*
    998  * Reclaim an inode so that it can be used for other purposes.
    999  */
   1000 
   1001 int
   1002 lfs_reclaim(void *v)
   1003 {
   1004 	struct vop_reclaim_args /* {
   1005 		struct vnode *a_vp;
   1006 		struct lwp *a_l;
   1007 	} */ *ap = v;
   1008 	struct vnode *vp = ap->a_vp;
   1009 	struct inode *ip = VTOI(vp);
   1010 	int error;
   1011 
   1012 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1013 
   1014 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1015 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1016 		return (error);
   1017 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1018 	lfs_deregister_all(vp);
   1019 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1020 	ip->inode_ext.lfs = NULL;
   1021 	pool_put(&lfs_inode_pool, vp->v_data);
   1022 	vp->v_data = NULL;
   1023 	return (0);
   1024 }
   1025 
   1026 /*
   1027  * Read a block from a storage device.
   1028  * In order to avoid reading blocks that are in the process of being
   1029  * written by the cleaner---and hence are not mutexed by the normal
   1030  * buffer cache / page cache mechanisms---check for collisions before
   1031  * reading.
   1032  *
   1033  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1034  * the active cleaner test.
   1035  *
   1036  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1037  */
   1038 int
   1039 lfs_strategy(void *v)
   1040 {
   1041 	struct vop_strategy_args /* {
   1042 		struct vnode *a_vp;
   1043 		struct buf *a_bp;
   1044 	} */ *ap = v;
   1045 	struct buf	*bp;
   1046 	struct lfs	*fs;
   1047 	struct vnode	*vp;
   1048 	struct inode	*ip;
   1049 	daddr_t		tbn;
   1050 	int		i, sn, error, slept;
   1051 
   1052 	bp = ap->a_bp;
   1053 	vp = ap->a_vp;
   1054 	ip = VTOI(vp);
   1055 	fs = ip->i_lfs;
   1056 
   1057 	/* lfs uses its strategy routine only for read */
   1058 	KASSERT(bp->b_flags & B_READ);
   1059 
   1060 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1061 		panic("lfs_strategy: spec");
   1062 	KASSERT(bp->b_bcount != 0);
   1063 	if (bp->b_blkno == bp->b_lblkno) {
   1064 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1065 				 NULL);
   1066 		if (error) {
   1067 			bp->b_error = error;
   1068 			bp->b_flags |= B_ERROR;
   1069 			biodone(bp);
   1070 			return (error);
   1071 		}
   1072 		if ((long)bp->b_blkno == -1) /* no valid data */
   1073 			clrbuf(bp);
   1074 	}
   1075 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1076 		biodone(bp);
   1077 		return (0);
   1078 	}
   1079 
   1080 	slept = 1;
   1081 	simple_lock(&fs->lfs_interlock);
   1082 	while (slept && fs->lfs_seglock) {
   1083 		simple_unlock(&fs->lfs_interlock);
   1084 		/*
   1085 		 * Look through list of intervals.
   1086 		 * There will only be intervals to look through
   1087 		 * if the cleaner holds the seglock.
   1088 		 * Since the cleaner is synchronous, we can trust
   1089 		 * the list of intervals to be current.
   1090 		 */
   1091 		tbn = dbtofsb(fs, bp->b_blkno);
   1092 		sn = dtosn(fs, tbn);
   1093 		slept = 0;
   1094 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1095 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1096 			    tbn >= fs->lfs_cleanint[i]) {
   1097 				DLOG((DLOG_CLEAN,
   1098 				      "lfs_strategy: ino %d lbn %" PRId64
   1099 				       " ind %d sn %d fsb %" PRIx32
   1100 				       " given sn %d fsb %" PRIx64 "\n",
   1101 					ip->i_number, bp->b_lblkno, i,
   1102 					dtosn(fs, fs->lfs_cleanint[i]),
   1103 					fs->lfs_cleanint[i], sn, tbn));
   1104 				DLOG((DLOG_CLEAN,
   1105 				      "lfs_strategy: sleeping on ino %d lbn %"
   1106 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1107 				simple_lock(&fs->lfs_interlock);
   1108 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1109 					/* Cleaner can't wait for itself */
   1110 					ltsleep(&fs->lfs_iocount,
   1111 						(PRIBIO + 1) | PNORELOCK,
   1112 						"clean2", 0,
   1113 						&fs->lfs_interlock);
   1114 					slept = 1;
   1115 					break;
   1116 				} else if (fs->lfs_seglock) {
   1117 					ltsleep(&fs->lfs_seglock,
   1118 						(PRIBIO + 1) | PNORELOCK,
   1119 						"clean1", 0,
   1120 						&fs->lfs_interlock);
   1121 					slept = 1;
   1122 					break;
   1123 				}
   1124 				simple_unlock(&fs->lfs_interlock);
   1125 			}
   1126 		}
   1127 		simple_lock(&fs->lfs_interlock);
   1128 	}
   1129 	simple_unlock(&fs->lfs_interlock);
   1130 
   1131 	vp = ip->i_devvp;
   1132 	VOP_STRATEGY(vp, bp);
   1133 	return (0);
   1134 }
   1135 
   1136 static void
   1137 lfs_flush_dirops(struct lfs *fs)
   1138 {
   1139 	struct inode *ip, *nip;
   1140 	struct vnode *vp;
   1141 	extern int lfs_dostats;
   1142 	struct segment *sp;
   1143 	int needunlock;
   1144 
   1145 	ASSERT_MAYBE_SEGLOCK(fs);
   1146 
   1147 	if (fs->lfs_ronly)
   1148 		return;
   1149 
   1150 	simple_lock(&fs->lfs_interlock);
   1151 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1152 		simple_unlock(&fs->lfs_interlock);
   1153 		return;
   1154 	} else
   1155 		simple_unlock(&fs->lfs_interlock);
   1156 
   1157 	if (lfs_dostats)
   1158 		++lfs_stats.flush_invoked;
   1159 
   1160 	/*
   1161 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1162 	 * Technically this is a checkpoint (the on-disk state is valid)
   1163 	 * even though we are leaving out all the file data.
   1164 	 */
   1165 	lfs_imtime(fs);
   1166 	lfs_seglock(fs, SEGM_CKP);
   1167 	sp = fs->lfs_sp;
   1168 
   1169 	/*
   1170 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1171 	 * Only write dirops, and don't flush files' pages, only
   1172 	 * blocks from the directories.
   1173 	 *
   1174 	 * We don't need to vref these files because they are
   1175 	 * dirops and so hold an extra reference until the
   1176 	 * segunlock clears them of that status.
   1177 	 *
   1178 	 * We don't need to check for IN_ADIROP because we know that
   1179 	 * no dirops are active.
   1180 	 *
   1181 	 */
   1182 	simple_lock(&fs->lfs_interlock);
   1183 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1184 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1185 		simple_unlock(&fs->lfs_interlock);
   1186 		vp = ITOV(ip);
   1187 
   1188 		/*
   1189 		 * All writes to directories come from dirops; all
   1190 		 * writes to files' direct blocks go through the page
   1191 		 * cache, which we're not touching.  Reads to files
   1192 		 * and/or directories will not be affected by writing
   1193 		 * directory blocks inodes and file inodes.  So we don't
   1194 		 * really need to lock.  If we don't lock, though,
   1195 		 * make sure that we don't clear IN_MODIFIED
   1196 		 * unnecessarily.
   1197 		 */
   1198 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1199 			simple_lock(&fs->lfs_interlock);
   1200 			continue;
   1201 		}
   1202 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
   1203 			needunlock = 1;
   1204 		} else {
   1205 			DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
   1206 			       VTOI(vp)->i_number));
   1207 			needunlock = 0;
   1208 		}
   1209 		if (vp->v_type != VREG &&
   1210 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1211 			lfs_writefile(fs, sp, vp);
   1212 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1213 			    !(ip->i_flag & IN_ALLMOD)) {
   1214 				LFS_SET_UINO(ip, IN_MODIFIED);
   1215 			}
   1216 		}
   1217 		(void) lfs_writeinode(fs, sp, ip);
   1218 		if (needunlock)
   1219 			VOP_UNLOCK(vp, 0);
   1220 		else
   1221 			LFS_SET_UINO(ip, IN_MODIFIED);
   1222 		simple_lock(&fs->lfs_interlock);
   1223 	}
   1224 	simple_unlock(&fs->lfs_interlock);
   1225 	/* We've written all the dirops there are */
   1226 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1227 	lfs_finalize_fs_seguse(fs);
   1228 	(void) lfs_writeseg(fs, sp);
   1229 	lfs_segunlock(fs);
   1230 }
   1231 
   1232 /*
   1233  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1234  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1235  * has just run, this would be an error).  If we have to skip a vnode
   1236  * for any reason, just skip it; if we have to wait for the cleaner,
   1237  * abort.  The writer daemon will call us again later.
   1238  */
   1239 void
   1240 lfs_flush_pchain(struct lfs *fs)
   1241 {
   1242 	struct inode *ip, *nip;
   1243 	struct vnode *vp;
   1244 	extern int lfs_dostats;
   1245 	struct segment *sp;
   1246 	int error;
   1247 
   1248 	ASSERT_NO_SEGLOCK(fs);
   1249 
   1250 	if (fs->lfs_ronly)
   1251 		return;
   1252 
   1253 	simple_lock(&fs->lfs_interlock);
   1254 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1255 		simple_unlock(&fs->lfs_interlock);
   1256 		return;
   1257 	} else
   1258 		simple_unlock(&fs->lfs_interlock);
   1259 
   1260 	/* Get dirops out of the way */
   1261 	lfs_flush_dirops(fs);
   1262 
   1263 	if (lfs_dostats)
   1264 		++lfs_stats.flush_invoked;
   1265 
   1266 	/*
   1267 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1268 	 */
   1269 	lfs_imtime(fs);
   1270 	lfs_seglock(fs, 0);
   1271 	sp = fs->lfs_sp;
   1272 
   1273 	/*
   1274 	 * lfs_writevnodes, optimized to clear pageout requests.
   1275 	 * Only write non-dirop files that are in the pageout queue.
   1276 	 * We're very conservative about what we write; we want to be
   1277 	 * fast and async.
   1278 	 */
   1279 	simple_lock(&fs->lfs_interlock);
   1280     top:
   1281 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1282 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1283 		vp = ITOV(ip);
   1284 
   1285 		if (!(ip->i_flags & IN_PAGING))
   1286 			goto top;
   1287 
   1288 		if (vp->v_flag & (VXLOCK|VDIROP))
   1289 			continue;
   1290 		if (vp->v_type != VREG)
   1291 			continue;
   1292 		if (lfs_vref(vp))
   1293 			continue;
   1294 		simple_unlock(&fs->lfs_interlock);
   1295 
   1296 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
   1297 			lfs_vunref(vp);
   1298 			simple_lock(&fs->lfs_interlock);
   1299 			continue;
   1300 		}
   1301 
   1302 		error = lfs_writefile(fs, sp, vp);
   1303 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1304 		    !(ip->i_flag & IN_ALLMOD)) {
   1305 			LFS_SET_UINO(ip, IN_MODIFIED);
   1306 		}
   1307 		(void) lfs_writeinode(fs, sp, ip);
   1308 
   1309 		VOP_UNLOCK(vp, 0);
   1310 		lfs_vunref(vp);
   1311 
   1312 		if (error == EAGAIN) {
   1313 			lfs_writeseg(fs, sp);
   1314 			simple_lock(&fs->lfs_interlock);
   1315 			break;
   1316 		}
   1317 		simple_lock(&fs->lfs_interlock);
   1318 	}
   1319 	simple_unlock(&fs->lfs_interlock);
   1320 	(void) lfs_writeseg(fs, sp);
   1321 	lfs_segunlock(fs);
   1322 }
   1323 
   1324 /*
   1325  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1326  */
   1327 int
   1328 lfs_fcntl(void *v)
   1329 {
   1330 	struct vop_fcntl_args /* {
   1331 		struct vnode *a_vp;
   1332 		u_long a_command;
   1333 		caddr_t  a_data;
   1334 		int  a_fflag;
   1335 		struct ucred *a_cred;
   1336 		struct lwp *a_l;
   1337 	} */ *ap = v;
   1338 	struct timeval *tvp;
   1339 	BLOCK_INFO *blkiov;
   1340 	CLEANERINFO *cip;
   1341 	SEGUSE *sup;
   1342 	int blkcnt, error, oclean;
   1343 	struct lfs_fcntl_markv blkvp;
   1344 	struct proc *p;
   1345 	fsid_t *fsidp;
   1346 	struct lfs *fs;
   1347 	struct buf *bp;
   1348 	fhandle_t *fhp;
   1349 	daddr_t off;
   1350 
   1351 	/* Only respect LFS fcntls on fs root or Ifile */
   1352 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1353 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1354 		return ufs_fcntl(v);
   1355 	}
   1356 
   1357 	/* Avoid locking a draining lock */
   1358 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1359 		return ESHUTDOWN;
   1360 	}
   1361 
   1362 	p = ap->a_l->l_proc;
   1363 	fs = VTOI(ap->a_vp)->i_lfs;
   1364 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1365 
   1366 	switch (ap->a_command) {
   1367 	    case LFCNSEGWAITALL:
   1368 	    case LFCNSEGWAITALL_COMPAT:
   1369 		fsidp = NULL;
   1370 		/* FALLSTHROUGH */
   1371 	    case LFCNSEGWAIT:
   1372 	    case LFCNSEGWAIT_COMPAT:
   1373 		tvp = (struct timeval *)ap->a_data;
   1374 		simple_lock(&fs->lfs_interlock);
   1375 		++fs->lfs_sleepers;
   1376 		simple_unlock(&fs->lfs_interlock);
   1377 		VOP_UNLOCK(ap->a_vp, 0);
   1378 
   1379 		error = lfs_segwait(fsidp, tvp);
   1380 
   1381 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1382 		simple_lock(&fs->lfs_interlock);
   1383 		if (--fs->lfs_sleepers == 0)
   1384 			wakeup(&fs->lfs_sleepers);
   1385 		simple_unlock(&fs->lfs_interlock);
   1386 		return error;
   1387 
   1388 	    case LFCNBMAPV:
   1389 	    case LFCNMARKV:
   1390 		if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
   1391 			return (error);
   1392 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1393 
   1394 		blkcnt = blkvp.blkcnt;
   1395 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1396 			return (EINVAL);
   1397 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1398 		if ((error = copyin(blkvp.blkiov, blkiov,
   1399 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1400 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1401 			return error;
   1402 		}
   1403 
   1404 		simple_lock(&fs->lfs_interlock);
   1405 		++fs->lfs_sleepers;
   1406 		simple_unlock(&fs->lfs_interlock);
   1407 		VOP_UNLOCK(ap->a_vp, 0);
   1408 		if (ap->a_command == LFCNBMAPV)
   1409 			error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
   1410 		else /* LFCNMARKV */
   1411 			error = lfs_markv(p, fsidp, blkiov, blkcnt);
   1412 		if (error == 0)
   1413 			error = copyout(blkiov, blkvp.blkiov,
   1414 					blkcnt * sizeof(BLOCK_INFO));
   1415 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1416 		simple_lock(&fs->lfs_interlock);
   1417 		if (--fs->lfs_sleepers == 0)
   1418 			wakeup(&fs->lfs_sleepers);
   1419 		simple_unlock(&fs->lfs_interlock);
   1420 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1421 		return error;
   1422 
   1423 	    case LFCNRECLAIM:
   1424 		/*
   1425 		 * Flush dirops and write Ifile, allowing empty segments
   1426 		 * to be immediately reclaimed.
   1427 		 */
   1428 		VOP_UNLOCK(ap->a_vp, 0);
   1429 		lfs_writer_enter(fs, "pndirop");
   1430 		off = fs->lfs_offset;
   1431 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1432 		lfs_flush_dirops(fs);
   1433 		LFS_CLEANERINFO(cip, fs, bp);
   1434 		oclean = cip->clean;
   1435 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1436 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1437 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1438 		lfs_segunlock(fs);
   1439 		lfs_writer_leave(fs);
   1440 
   1441 #ifdef DEBUG
   1442 		LFS_CLEANERINFO(cip, fs, bp);
   1443 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1444 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1445 		      fs->lfs_offset - off, cip->clean - oclean,
   1446 		      fs->lfs_activesb));
   1447 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1448 #endif
   1449 
   1450 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1451 		return 0;
   1452 
   1453 	    case LFCNIFILEFH:
   1454 		/* Return the filehandle of the Ifile */
   1455 		if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
   1456 			return (error);
   1457 		fhp = (struct fhandle *)ap->a_data;
   1458 		fhp->fh_fsid = *fsidp;
   1459 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
   1460 
   1461 	    case LFCNREWIND:
   1462 		/* Move lfs_offset to the lowest-numbered segment */
   1463 		return lfs_rewind(fs, *(int *)ap->a_data);
   1464 
   1465 	    case LFCNINVAL:
   1466 		/* Mark a segment SEGUSE_INVAL */
   1467 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1468 		if (sup->su_nbytes > 0) {
   1469 			brelse(bp);
   1470 			lfs_unset_inval_all(fs);
   1471 			return EBUSY;
   1472 		}
   1473 		sup->su_flags |= SEGUSE_INVAL;
   1474 		VOP_BWRITE(bp);
   1475 		return 0;
   1476 
   1477 	    case LFCNRESIZE:
   1478 		/* Resize the filesystem */
   1479 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1480 
   1481 	    case LFCNWRAPSTOP:
   1482 		/*
   1483 		 * Hold lfs_newseg at segment 0; sleep until the filesystem
   1484 		 * wraps around.  For debugging purposes, so an external
   1485 		 * agent can log every segment in the filesystem as it
   1486 		 * was written, and we can regression-test checkpoint
   1487 		 * validity in the general case.
   1488 		 */
   1489 		VOP_UNLOCK(ap->a_vp, 0);
   1490 		simple_lock(&fs->lfs_interlock);
   1491 		fs->lfs_nowrap = 1;
   1492 		error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
   1493 			"segwrap", 0, &fs->lfs_interlock);
   1494 		if (error) {
   1495 			fs->lfs_nowrap = 0;
   1496 			wakeup(&fs->lfs_nowrap);
   1497 		}
   1498 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1499 		return 0;
   1500 
   1501 	    case LFCNWRAPGO:
   1502 		/*
   1503 		 * Having done its work, the agent wakes up the writer.
   1504 		 * It sleeps until a new segment is selected.
   1505 		 */
   1506 		VOP_UNLOCK(ap->a_vp, 0);
   1507 		simple_lock(&fs->lfs_interlock);
   1508 		fs->lfs_nowrap = 0;
   1509 		wakeup(&fs->lfs_nowrap);
   1510                 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
   1511                         "segment", 0, &fs->lfs_interlock);
   1512 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1513 		return 0;
   1514 
   1515 	    default:
   1516 		return ufs_fcntl(v);
   1517 	}
   1518 	return 0;
   1519 }
   1520 
   1521 int
   1522 lfs_getpages(void *v)
   1523 {
   1524 	struct vop_getpages_args /* {
   1525 		struct vnode *a_vp;
   1526 		voff_t a_offset;
   1527 		struct vm_page **a_m;
   1528 		int *a_count;
   1529 		int a_centeridx;
   1530 		vm_prot_t a_access_type;
   1531 		int a_advice;
   1532 		int a_flags;
   1533 	} */ *ap = v;
   1534 
   1535 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1536 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1537 		return EPERM;
   1538 	}
   1539 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1540 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1541 	}
   1542 
   1543 	/*
   1544 	 * we're relying on the fact that genfs_getpages() always read in
   1545 	 * entire filesystem blocks.
   1546 	 */
   1547 	return genfs_getpages(v);
   1548 }
   1549 
   1550 /*
   1551  * Make sure that for all pages in every block in the given range,
   1552  * either all are dirty or all are clean.  If any of the pages
   1553  * we've seen so far are dirty, put the vnode on the paging chain,
   1554  * and mark it IN_PAGING.
   1555  *
   1556  * If checkfirst != 0, don't check all the pages but return at the
   1557  * first dirty page.
   1558  */
   1559 static int
   1560 check_dirty(struct lfs *fs, struct vnode *vp,
   1561 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1562 	    int flags, int checkfirst)
   1563 {
   1564 	int by_list;
   1565 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1566 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1567 	off_t soff = 0; /* XXX: gcc */
   1568 	voff_t off;
   1569 	int i;
   1570 	int nonexistent;
   1571 	int any_dirty;	/* number of dirty pages */
   1572 	int dirty;	/* number of dirty pages in a block */
   1573 	int tdirty;
   1574 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1575 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1576 
   1577 	ASSERT_MAYBE_SEGLOCK(fs);
   1578   top:
   1579 	by_list = (vp->v_uobj.uo_npages <=
   1580 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1581 		   UVM_PAGE_HASH_PENALTY);
   1582 	any_dirty = 0;
   1583 
   1584 	if (by_list) {
   1585 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1586 	} else {
   1587 		soff = startoffset;
   1588 	}
   1589 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1590 		if (by_list) {
   1591 			/*
   1592 			 * Find the first page in a block.  Skip
   1593 			 * blocks outside our area of interest or beyond
   1594 			 * the end of file.
   1595 			 */
   1596 			if (pages_per_block > 1) {
   1597 				while (curpg &&
   1598 				       ((curpg->offset & fs->lfs_bmask) ||
   1599 					curpg->offset >= vp->v_size ||
   1600 					curpg->offset >= endoffset))
   1601 					curpg = TAILQ_NEXT(curpg, listq);
   1602 			}
   1603 			if (curpg == NULL)
   1604 				break;
   1605 			soff = curpg->offset;
   1606 		}
   1607 
   1608 		/*
   1609 		 * Mark all pages in extended range busy; find out if any
   1610 		 * of them are dirty.
   1611 		 */
   1612 		nonexistent = dirty = 0;
   1613 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1614 			if (by_list && pages_per_block <= 1) {
   1615 				pgs[i] = pg = curpg;
   1616 			} else {
   1617 				off = soff + (i << PAGE_SHIFT);
   1618 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1619 				if (pg == NULL) {
   1620 					++nonexistent;
   1621 					continue;
   1622 				}
   1623 			}
   1624 			KASSERT(pg != NULL);
   1625 
   1626 			/*
   1627 			 * If we're holding the segment lock, we can deadlocked
   1628 			 * against a process that has our page and is waiting
   1629 			 * for the cleaner, while the cleaner waits for the
   1630 			 * segment lock.  Just bail in that case.
   1631 			 */
   1632 			if ((pg->flags & PG_BUSY) &&
   1633 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1634 				if (by_list && i > 0)
   1635 					uvm_page_unbusy(pgs, i);
   1636 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1637 				return -1;
   1638 			}
   1639 
   1640 			while (pg->flags & PG_BUSY) {
   1641 				pg->flags |= PG_WANTED;
   1642 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1643 						    "lfsput", 0);
   1644 				simple_lock(&vp->v_interlock);
   1645 				if (by_list) {
   1646 					if (i > 0)
   1647 						uvm_page_unbusy(pgs, i);
   1648 					goto top;
   1649 				}
   1650 			}
   1651 			pg->flags |= PG_BUSY;
   1652 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1653 
   1654 			pmap_page_protect(pg, VM_PROT_NONE);
   1655 			tdirty = (pmap_clear_modify(pg) ||
   1656 				  (pg->flags & PG_CLEAN) == 0);
   1657 			dirty += tdirty;
   1658 		}
   1659 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1660 			if (by_list) {
   1661 				curpg = TAILQ_NEXT(curpg, listq);
   1662 			} else {
   1663 				soff += fs->lfs_bsize;
   1664 			}
   1665 			continue;
   1666 		}
   1667 
   1668 		any_dirty += dirty;
   1669 		KASSERT(nonexistent == 0);
   1670 
   1671 		/*
   1672 		 * If any are dirty make all dirty; unbusy them,
   1673 		 * but if we were asked to clean, wire them so that
   1674 		 * the pagedaemon doesn't bother us about them while
   1675 		 * they're on their way to disk.
   1676 		 */
   1677 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1678 			pg = pgs[i];
   1679 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1680 			if (dirty) {
   1681 				pg->flags &= ~PG_CLEAN;
   1682 				if (flags & PGO_FREE) {
   1683 					/*
   1684 					 * Wire the page so that
   1685 					 * pdaemon doesn't see it again.
   1686 					 */
   1687 					uvm_lock_pageq();
   1688 					uvm_pagewire(pg);
   1689 					uvm_unlock_pageq();
   1690 
   1691 					/* Suspended write flag */
   1692 					pg->flags |= PG_DELWRI;
   1693 				}
   1694 			}
   1695 			if (pg->flags & PG_WANTED)
   1696 				wakeup(pg);
   1697 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1698 			UVM_PAGE_OWN(pg, NULL);
   1699 		}
   1700 
   1701 		if (checkfirst && any_dirty)
   1702 			break;
   1703 
   1704 		if (by_list) {
   1705 			curpg = TAILQ_NEXT(curpg, listq);
   1706 		} else {
   1707 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1708 		}
   1709 	}
   1710 
   1711 	return any_dirty;
   1712 }
   1713 
   1714 /*
   1715  * lfs_putpages functions like genfs_putpages except that
   1716  *
   1717  * (1) It needs to bounds-check the incoming requests to ensure that
   1718  *     they are block-aligned; if they are not, expand the range and
   1719  *     do the right thing in case, e.g., the requested range is clean
   1720  *     but the expanded range is dirty.
   1721  * (2) It needs to explicitly send blocks to be written when it is done.
   1722  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1723  *     we simply take the seglock and let lfs_segunlock wait for us.
   1724  *     XXX Actually we can be called with the seglock held, if we have
   1725  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1726  *     XXX writing we panic in this case.
   1727  *
   1728  * Assumptions:
   1729  *
   1730  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1731  *     there is a danger that when we expand the page range and busy the
   1732  *     pages we will deadlock.
   1733  * (2) We are called with vp->v_interlock held; we must return with it
   1734  *     released.
   1735  * (3) We don't absolutely have to free pages right away, provided that
   1736  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1737  *     us a request with PGO_FREE, we take the pages out of the paging
   1738  *     queue and wake up the writer, which will handle freeing them for us.
   1739  *
   1740  *     We ensure that for any filesystem block, all pages for that
   1741  *     block are either resident or not, even if those pages are higher
   1742  *     than EOF; that means that we will be getting requests to free
   1743  *     "unused" pages above EOF all the time, and should ignore them.
   1744  *
   1745  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1746  */
   1747 
   1748 int
   1749 lfs_putpages(void *v)
   1750 {
   1751 	int error;
   1752 	struct vop_putpages_args /* {
   1753 		struct vnode *a_vp;
   1754 		voff_t a_offlo;
   1755 		voff_t a_offhi;
   1756 		int a_flags;
   1757 	} */ *ap = v;
   1758 	struct vnode *vp;
   1759 	struct inode *ip;
   1760 	struct lfs *fs;
   1761 	struct segment *sp;
   1762 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1763 	off_t off, max_endoffset;
   1764 	int s;
   1765 	boolean_t seglocked, sync, pagedaemon;
   1766 	struct vm_page *pg;
   1767 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1768 
   1769 	vp = ap->a_vp;
   1770 	ip = VTOI(vp);
   1771 	fs = ip->i_lfs;
   1772 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1773 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1774 
   1775 	/* Putpages does nothing for metadata. */
   1776 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1777 		simple_unlock(&vp->v_interlock);
   1778 		return 0;
   1779 	}
   1780 
   1781 	/*
   1782 	 * If there are no pages, don't do anything.
   1783 	 */
   1784 	if (vp->v_uobj.uo_npages == 0) {
   1785 		s = splbio();
   1786 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1787 		    (vp->v_flag & VONWORKLST)) {
   1788 			vp->v_flag &= ~VONWORKLST;
   1789 			LIST_REMOVE(vp, v_synclist);
   1790 		}
   1791 		splx(s);
   1792 		simple_unlock(&vp->v_interlock);
   1793 
   1794 		/* Remove us from paging queue, if we were on it */
   1795 		simple_lock(&fs->lfs_interlock);
   1796 		if (ip->i_flags & IN_PAGING) {
   1797 			ip->i_flags &= ~IN_PAGING;
   1798 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1799 		}
   1800 		simple_unlock(&fs->lfs_interlock);
   1801 		return 0;
   1802 	}
   1803 
   1804 	blkeof = blkroundup(fs, ip->i_size);
   1805 
   1806 	/*
   1807 	 * Ignore requests to free pages past EOF but in the same block
   1808 	 * as EOF, unless the request is synchronous.  (If the request is
   1809 	 * sync, it comes from lfs_truncate.)
   1810 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1811 	 * XXXUBC bother us with them again.
   1812 	 */
   1813 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1814 		origoffset = ap->a_offlo;
   1815 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1816 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1817 			KASSERT(pg != NULL);
   1818 			while (pg->flags & PG_BUSY) {
   1819 				pg->flags |= PG_WANTED;
   1820 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1821 						    "lfsput2", 0);
   1822 				simple_lock(&vp->v_interlock);
   1823 			}
   1824 			uvm_lock_pageq();
   1825 			uvm_pageactivate(pg);
   1826 			uvm_unlock_pageq();
   1827 		}
   1828 		ap->a_offlo = blkeof;
   1829 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1830 			simple_unlock(&vp->v_interlock);
   1831 			return 0;
   1832 		}
   1833 	}
   1834 
   1835 	/*
   1836 	 * Extend page range to start and end at block boundaries.
   1837 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1838 	 */
   1839 	origoffset = ap->a_offlo;
   1840 	origendoffset = ap->a_offhi;
   1841 	startoffset = origoffset & ~(fs->lfs_bmask);
   1842 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1843 					       << fs->lfs_bshift;
   1844 
   1845 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1846 		endoffset = max_endoffset;
   1847 		origendoffset = endoffset;
   1848 	} else {
   1849 		origendoffset = round_page(ap->a_offhi);
   1850 		endoffset = round_page(blkroundup(fs, origendoffset));
   1851 	}
   1852 
   1853 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1854 	if (startoffset == endoffset) {
   1855 		/* Nothing to do, why were we called? */
   1856 		simple_unlock(&vp->v_interlock);
   1857 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1858 		      PRId64 "\n", startoffset));
   1859 		return 0;
   1860 	}
   1861 
   1862 	ap->a_offlo = startoffset;
   1863 	ap->a_offhi = endoffset;
   1864 
   1865 	if (!(ap->a_flags & PGO_CLEANIT))
   1866 		return genfs_putpages(v);
   1867 
   1868 	/*
   1869 	 * If there are more than one page per block, we don't want
   1870 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1871 	 * to avoid deadlocks.
   1872 	 */
   1873 	ap->a_flags |= PGO_BUSYFAIL;
   1874 
   1875 	do {
   1876 		int r;
   1877 
   1878 		/* If no pages are dirty, we can just use genfs_putpages. */
   1879 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   1880 				ap->a_flags, 1);
   1881 		if (r < 0) {
   1882 			simple_unlock(&vp->v_interlock);
   1883 			return EDEADLK;
   1884 		}
   1885 		if (r > 0)
   1886 			break;
   1887 
   1888 		/*
   1889 		 * Sometimes pages are dirtied between the time that
   1890 		 * we check and the time we try to clean them.
   1891 		 * Instruct lfs_gop_write to return EDEADLK in this case
   1892 		 * so we can write them properly.
   1893 		 */
   1894 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   1895 		r = genfs_putpages(v);
   1896 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   1897 		if (r != EDEADLK)
   1898 			return r;
   1899 
   1900 		/* Start over. */
   1901 		preempt(1);
   1902 		simple_lock(&vp->v_interlock);
   1903 	} while(1);
   1904 
   1905 	/*
   1906 	 * Dirty and asked to clean.
   1907 	 *
   1908 	 * Pagedaemon can't actually write LFS pages; wake up
   1909 	 * the writer to take care of that.  The writer will
   1910 	 * notice the pager inode queue and act on that.
   1911 	 */
   1912 	if (pagedaemon) {
   1913 		simple_lock(&fs->lfs_interlock);
   1914 		if (!(ip->i_flags & IN_PAGING)) {
   1915 			ip->i_flags |= IN_PAGING;
   1916 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1917 		}
   1918 		simple_lock(&lfs_subsys_lock);
   1919 		wakeup(&lfs_writer_daemon);
   1920 		simple_unlock(&lfs_subsys_lock);
   1921 		simple_unlock(&fs->lfs_interlock);
   1922 		simple_unlock(&vp->v_interlock);
   1923 		preempt(1);
   1924 		return EWOULDBLOCK;
   1925 	}
   1926 
   1927 	/*
   1928 	 * If this is a file created in a recent dirop, we can't flush its
   1929 	 * inode until the dirop is complete.  Drain dirops, then flush the
   1930 	 * filesystem (taking care of any other pending dirops while we're
   1931 	 * at it).
   1932 	 */
   1933 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   1934 	    (vp->v_flag & VDIROP)) {
   1935 		int locked;
   1936 
   1937 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   1938 		locked = VOP_ISLOCKED(vp) && /* XXX */
   1939 			vp->v_lock.lk_lockholder == curproc->p_pid;
   1940 		simple_unlock(&vp->v_interlock);
   1941 		lfs_writer_enter(fs, "ppdirop");
   1942 		if (locked)
   1943 			VOP_UNLOCK(vp, 0);
   1944 
   1945 		simple_lock(&fs->lfs_interlock);
   1946 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   1947 		simple_unlock(&fs->lfs_interlock);
   1948 
   1949 		simple_lock(&vp->v_interlock);
   1950 		if (locked) {
   1951 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   1952 			simple_lock(&vp->v_interlock);
   1953 		}
   1954 		lfs_writer_leave(fs);
   1955 
   1956 		/* XXX the flush should have taken care of this one too! */
   1957 	}
   1958 
   1959 	/*
   1960 	 * This is it.	We are going to write some pages.  From here on
   1961 	 * down it's all just mechanics.
   1962 	 *
   1963 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   1964 	 */
   1965 	ap->a_flags &= ~PGO_SYNCIO;
   1966 
   1967 	/*
   1968 	 * If we've already got the seglock, flush the node and return.
   1969 	 * The FIP has already been set up for us by lfs_writefile,
   1970 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   1971 	 * unless genfs_putpages returns EDEADLK; then we must flush
   1972 	 * what we have, and correct FIP and segment header accounting.
   1973 	 */
   1974 
   1975 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   1976 	if (!seglocked) {
   1977 		simple_unlock(&vp->v_interlock);
   1978 		/*
   1979 		 * Take the seglock, because we are going to be writing pages.
   1980 		 */
   1981 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   1982 		if (error != 0)
   1983 			return error;
   1984 		simple_lock(&vp->v_interlock);
   1985 	}
   1986 
   1987 	/*
   1988 	 * VOP_PUTPAGES should not be called while holding the seglock.
   1989 	 * XXXUBC fix lfs_markv, or do this properly.
   1990 	 */
   1991 #ifdef notyet
   1992 	KASSERT(fs->lfs_seglock == 1);
   1993 #endif /* notyet */
   1994 
   1995 	/*
   1996 	 * We assume we're being called with sp->fip pointing at blank space.
   1997 	 * Account for a new FIP in the segment header, and set sp->vp.
   1998 	 * (This should duplicate the setup at the top of lfs_writefile().)
   1999 	 */
   2000 	sp = fs->lfs_sp;
   2001 	if (!seglocked) {
   2002 		if (sp->seg_bytes_left < fs->lfs_bsize ||
   2003 		    sp->sum_bytes_left < sizeof(struct finfo))
   2004 			(void) lfs_writeseg(fs, fs->lfs_sp);
   2005 
   2006 		sp->sum_bytes_left -= FINFOSIZE;
   2007 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2008 	}
   2009 	KASSERT(sp->vp == NULL);
   2010 	sp->vp = vp;
   2011 
   2012 	if (!seglocked) {
   2013 		if (vp->v_flag & VDIROP)
   2014 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2015 	}
   2016 
   2017 	sp->fip->fi_nblocks = 0;
   2018 	sp->fip->fi_ino = ip->i_number;
   2019 	sp->fip->fi_version = ip->i_gen;
   2020 
   2021 	/*
   2022 	 * Loop through genfs_putpages until all pages are gathered.
   2023 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2024 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2025 	 * well.
   2026 	 */
   2027 again:
   2028 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2029 	    ap->a_flags, 0) < 0) {
   2030 		simple_unlock(&vp->v_interlock);
   2031 		sp->vp = NULL;
   2032 		if (!seglocked)
   2033 			lfs_segunlock(fs);
   2034 		return EDEADLK;
   2035 	}
   2036 
   2037 	error = genfs_putpages(v);
   2038 	if (error == EDEADLK || error == EAGAIN) {
   2039 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2040 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2041 		      ip->i_number, fs->lfs_offset,
   2042 		      dtosn(fs, fs->lfs_offset)));
   2043 		/* If nothing to write, short-circuit */
   2044 		if (sp->cbpp - sp->bpp > 1) {
   2045 			/* Write gathered pages */
   2046 			lfs_updatemeta(sp);
   2047 			(void) lfs_writeseg(fs, sp);
   2048 
   2049 			/*
   2050 			 * Reinitialize brand new FIP and add us to it.
   2051 			 * (This should duplicate the fixup in
   2052 			 * lfs_gatherpages().)
   2053 			 */
   2054 			KASSERT(sp->vp == vp);
   2055 			sp->fip->fi_version = ip->i_gen;
   2056 			sp->fip->fi_ino = ip->i_number;
   2057 			/* Add us to the new segment summary. */
   2058 			++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2059 			sp->sum_bytes_left -= FINFOSIZE;
   2060 		}
   2061 
   2062 		/* Give the write a chance to complete */
   2063 		preempt(1);
   2064 
   2065 		/* We've lost the interlock.  Start over. */
   2066 		if (error == EDEADLK) {
   2067 			simple_lock(&vp->v_interlock);
   2068 			goto again;
   2069 		}
   2070 	}
   2071 
   2072 	KASSERT(sp->vp == vp);
   2073 	if (!seglocked) {
   2074 		sp->vp = NULL; /* XXX lfs_gather below will set this */
   2075 
   2076 		/* Write indirect blocks as well */
   2077 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2078 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2079 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2080 
   2081 		KASSERT(sp->vp == NULL);
   2082 		sp->vp = vp;
   2083 	}
   2084 
   2085 	/*
   2086 	 * Blocks are now gathered into a segment waiting to be written.
   2087 	 * All that's left to do is update metadata, and write them.
   2088 	 */
   2089 	lfs_updatemeta(sp);
   2090 	KASSERT(sp->vp == vp);
   2091 	sp->vp = NULL;
   2092 
   2093 	if (seglocked) {
   2094 		/* we're called by lfs_writefile. */
   2095 		return error;
   2096 	}
   2097 
   2098 	/*
   2099 	 * Clean up FIP, since we're done writing this file.
   2100 	 * This should duplicate cleanup at the end of lfs_writefile().
   2101 	 */
   2102 	if (sp->fip->fi_nblocks != 0) {
   2103 		sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
   2104 			sizeof(int32_t) * sp->fip->fi_nblocks);
   2105 		sp->start_lbp = &sp->fip->fi_blocks[0];
   2106 	} else {
   2107 		sp->sum_bytes_left += FINFOSIZE;
   2108 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2109 	}
   2110 	lfs_writeseg(fs, fs->lfs_sp);
   2111 
   2112 	/*
   2113 	 * Remove us from paging queue, since we've now written all our
   2114 	 * pages.
   2115 	 */
   2116 	simple_lock(&fs->lfs_interlock);
   2117 	if (ip->i_flags & IN_PAGING) {
   2118 		ip->i_flags &= ~IN_PAGING;
   2119 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2120 	}
   2121 	simple_unlock(&fs->lfs_interlock);
   2122 
   2123 	/*
   2124 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2125 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2126 	 * will not be true if we stop using malloc/copy.
   2127 	 */
   2128 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2129 	lfs_segunlock(fs);
   2130 
   2131 	/*
   2132 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2133 	 * take care of this, but there is a slight possibility that
   2134 	 * aiodoned might not have got around to our buffers yet.
   2135 	 */
   2136 	if (sync) {
   2137 		s = splbio();
   2138 		simple_lock(&global_v_numoutput_slock);
   2139 		while (vp->v_numoutput > 0) {
   2140 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2141 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2142 			vp->v_flag |= VBWAIT;
   2143 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2144 			    &global_v_numoutput_slock);
   2145 		}
   2146 		simple_unlock(&global_v_numoutput_slock);
   2147 		splx(s);
   2148 	}
   2149 	return error;
   2150 }
   2151 
   2152 /*
   2153  * Return the last logical file offset that should be written for this file
   2154  * if we're doing a write that ends at "size".	If writing, we need to know
   2155  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2156  * to know about entire blocks.
   2157  */
   2158 void
   2159 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2160 {
   2161 	struct inode *ip = VTOI(vp);
   2162 	struct lfs *fs = ip->i_lfs;
   2163 	daddr_t olbn, nlbn;
   2164 
   2165 	olbn = lblkno(fs, ip->i_size);
   2166 	nlbn = lblkno(fs, size);
   2167 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2168 		*eobp = fragroundup(fs, size);
   2169 	} else {
   2170 		*eobp = blkroundup(fs, size);
   2171 	}
   2172 }
   2173 
   2174 #ifdef DEBUG
   2175 void lfs_dump_vop(void *);
   2176 
   2177 void
   2178 lfs_dump_vop(void *v)
   2179 {
   2180 	struct vop_putpages_args /* {
   2181 		struct vnode *a_vp;
   2182 		voff_t a_offlo;
   2183 		voff_t a_offhi;
   2184 		int a_flags;
   2185 	} */ *ap = v;
   2186 
   2187 #ifdef DDB
   2188 	vfs_vnode_print(ap->a_vp, 0, printf);
   2189 #endif
   2190 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2191 }
   2192 #endif
   2193 
   2194 int
   2195 lfs_mmap(void *v)
   2196 {
   2197 	struct vop_mmap_args /* {
   2198 		const struct vnodeop_desc *a_desc;
   2199 		struct vnode *a_vp;
   2200 		int a_fflags;
   2201 		struct ucred *a_cred;
   2202 		struct lwp *a_l;
   2203 	} */ *ap = v;
   2204 
   2205 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2206 		return EOPNOTSUPP;
   2207 	return ufs_mmap(v);
   2208 }
   2209