lfs_vnops.c revision 1.170 1 /* $NetBSD: lfs_vnops.c,v 1.170 2006/04/30 21:19:42 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.170 2006/04/30 21:19:42 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_lease_desc, spec_lease_check }, /* lease */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
201 };
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
204
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, fifo_lookup }, /* lookup */
209 { &vop_create_desc, fifo_create }, /* create */
210 { &vop_mknod_desc, fifo_mknod }, /* mknod */
211 { &vop_open_desc, fifo_open }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_lease_desc, fifo_lease_check }, /* lease */
219 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
220 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
221 { &vop_poll_desc, fifo_poll }, /* poll */
222 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
223 { &vop_revoke_desc, fifo_revoke }, /* revoke */
224 { &vop_mmap_desc, fifo_mmap }, /* mmap */
225 { &vop_fsync_desc, fifo_fsync }, /* fsync */
226 { &vop_seek_desc, fifo_seek }, /* seek */
227 { &vop_remove_desc, fifo_remove }, /* remove */
228 { &vop_link_desc, fifo_link }, /* link */
229 { &vop_rename_desc, fifo_rename }, /* rename */
230 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
231 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
232 { &vop_symlink_desc, fifo_symlink }, /* symlink */
233 { &vop_readdir_desc, fifo_readdir }, /* readdir */
234 { &vop_readlink_desc, fifo_readlink }, /* readlink */
235 { &vop_abortop_desc, fifo_abortop }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ufs_lock }, /* lock */
239 { &vop_unlock_desc, ufs_unlock }, /* unlock */
240 { &vop_bmap_desc, fifo_bmap }, /* bmap */
241 { &vop_strategy_desc, fifo_strategy }, /* strategy */
242 { &vop_print_desc, ufs_print }, /* print */
243 { &vop_islocked_desc, ufs_islocked }, /* islocked */
244 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
245 { &vop_advlock_desc, fifo_advlock }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, fifo_putpages }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
254
255 #define LFS_READWRITE
256 #include <ufs/ufs/ufs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 struct ucred *a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 struct lwp *a_l;
273 } */ *ap = v;
274 struct vnode *vp = ap->a_vp;
275 int error, wait;
276
277 /* If we're mounted read-only, don't try to sync. */
278 if (VTOI(vp)->i_lfs->lfs_ronly)
279 return 0;
280
281 /*
282 * Trickle sync checks for need to do a checkpoint after possible
283 * activity from the pagedaemon.
284 */
285 if (ap->a_flags & FSYNC_LAZY) {
286 simple_lock(&lfs_subsys_lock);
287 wakeup(&lfs_writer_daemon);
288 simple_unlock(&lfs_subsys_lock);
289 return 0;
290 }
291
292 wait = (ap->a_flags & FSYNC_WAIT);
293 simple_lock(&vp->v_interlock);
294 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
295 round_page(ap->a_offhi),
296 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
297 if (error)
298 return error;
299 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
300 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
301 int l = 0;
302 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
303 ap->a_l->l_proc->p_ucred, ap->a_l);
304 }
305 if (wait && !VPISEMPTY(vp))
306 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
307
308 return error;
309 }
310
311 /*
312 * Take IN_ADIROP off, then call ufs_inactive.
313 */
314 int
315 lfs_inactive(void *v)
316 {
317 struct vop_inactive_args /* {
318 struct vnode *a_vp;
319 struct lwp *a_l;
320 } */ *ap = v;
321
322 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
323
324 lfs_unmark_vnode(ap->a_vp);
325
326 /*
327 * The Ifile is only ever inactivated on unmount.
328 * Streamline this process by not giving it more dirty blocks.
329 */
330 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
331 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
332 VOP_UNLOCK(ap->a_vp, 0);
333 return 0;
334 }
335
336 return ufs_inactive(v);
337 }
338
339 /*
340 * These macros are used to bracket UFS directory ops, so that we can
341 * identify all the pages touched during directory ops which need to
342 * be ordered and flushed atomically, so that they may be recovered.
343 *
344 * Because we have to mark nodes VDIROP in order to prevent
345 * the cache from reclaiming them while a dirop is in progress, we must
346 * also manage the number of nodes so marked (otherwise we can run out).
347 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
348 * is decremented during segment write, when VDIROP is taken off.
349 */
350 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
351 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
352 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
353 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
354 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
355 static int lfs_set_dirop(struct vnode *, struct vnode *);
356
357 static int
358 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
359 {
360 struct lfs *fs;
361 int error;
362
363 KASSERT(VOP_ISLOCKED(dvp));
364 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
365
366 fs = VTOI(dvp)->i_lfs;
367
368 ASSERT_NO_SEGLOCK(fs);
369 /*
370 * LFS_NRESERVE calculates direct and indirect blocks as well
371 * as an inode block; an overestimate in most cases.
372 */
373 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
374 return (error);
375
376 restart:
377 simple_lock(&fs->lfs_interlock);
378 if (fs->lfs_dirops == 0) {
379 simple_unlock(&fs->lfs_interlock);
380 lfs_check(dvp, LFS_UNUSED_LBN, 0);
381 simple_lock(&fs->lfs_interlock);
382 }
383 while (fs->lfs_writer)
384 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
385 &fs->lfs_interlock);
386 simple_lock(&lfs_subsys_lock);
387 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
388 wakeup(&lfs_writer_daemon);
389 simple_unlock(&lfs_subsys_lock);
390 simple_unlock(&fs->lfs_interlock);
391 preempt(1);
392 goto restart;
393 }
394
395 if (lfs_dirvcount > LFS_MAX_DIROP) {
396 simple_unlock(&fs->lfs_interlock);
397 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
398 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
399 if ((error = ltsleep(&lfs_dirvcount,
400 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
401 &lfs_subsys_lock)) != 0) {
402 goto unreserve;
403 }
404 goto restart;
405 }
406 simple_unlock(&lfs_subsys_lock);
407
408 ++fs->lfs_dirops;
409 fs->lfs_doifile = 1;
410 simple_unlock(&fs->lfs_interlock);
411
412 /* Hold a reference so SET_ENDOP will be happy */
413 vref(dvp);
414 if (vp) {
415 vref(vp);
416 MARK_VNODE(vp);
417 }
418
419 MARK_VNODE(dvp);
420 return 0;
421
422 unreserve:
423 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
424 return error;
425 }
426
427 /*
428 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
429 * in getnewvnode(), if we have a stacked filesystem mounted on top
430 * of us.
431 *
432 * NB: this means we have to clear the new vnodes on error. Fortunately
433 * SET_ENDOP is there to do that for us.
434 */
435 static int
436 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
437 {
438 int error;
439 struct lfs *fs;
440
441 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
442 ASSERT_NO_SEGLOCK(fs);
443 if (fs->lfs_ronly)
444 return EROFS;
445 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
446 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
447 dvp, error));
448 return error;
449 }
450 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
451 if (vpp) {
452 ungetnewvnode(*vpp);
453 *vpp = NULL;
454 }
455 return error;
456 }
457 return 0;
458 }
459
460 #define SET_ENDOP_BASE(fs, dvp, str) \
461 do { \
462 simple_lock(&(fs)->lfs_interlock); \
463 --(fs)->lfs_dirops; \
464 if (!(fs)->lfs_dirops) { \
465 if ((fs)->lfs_nadirop) { \
466 panic("SET_ENDOP: %s: no dirops but " \
467 " nadirop=%d", (str), \
468 (fs)->lfs_nadirop); \
469 } \
470 wakeup(&(fs)->lfs_writer); \
471 simple_unlock(&(fs)->lfs_interlock); \
472 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
473 } else \
474 simple_unlock(&(fs)->lfs_interlock); \
475 } while(0)
476 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
477 do { \
478 UNMARK_VNODE(dvp); \
479 if (nvpp && *nvpp) \
480 UNMARK_VNODE(*nvpp); \
481 /* Check for error return to stem vnode leakage */ \
482 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
483 ungetnewvnode(*(nvpp)); \
484 SET_ENDOP_BASE((fs), (dvp), (str)); \
485 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
486 vrele(dvp); \
487 } while(0)
488 #define SET_ENDOP_CREATE_AP(ap, str) \
489 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
490 (ap)->a_vpp, (str))
491 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
492 do { \
493 UNMARK_VNODE(dvp); \
494 if (ovp) \
495 UNMARK_VNODE(ovp); \
496 SET_ENDOP_BASE((fs), (dvp), (str)); \
497 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
498 vrele(dvp); \
499 if (ovp) \
500 vrele(ovp); \
501 } while(0)
502
503 void
504 lfs_mark_vnode(struct vnode *vp)
505 {
506 struct inode *ip = VTOI(vp);
507 struct lfs *fs = ip->i_lfs;
508
509 simple_lock(&fs->lfs_interlock);
510 if (!(ip->i_flag & IN_ADIROP)) {
511 if (!(vp->v_flag & VDIROP)) {
512 (void)lfs_vref(vp);
513 simple_lock(&lfs_subsys_lock);
514 ++lfs_dirvcount;
515 simple_unlock(&lfs_subsys_lock);
516 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
517 vp->v_flag |= VDIROP;
518 }
519 ++fs->lfs_nadirop;
520 ip->i_flag |= IN_ADIROP;
521 } else
522 KASSERT(vp->v_flag & VDIROP);
523 simple_unlock(&fs->lfs_interlock);
524 }
525
526 void
527 lfs_unmark_vnode(struct vnode *vp)
528 {
529 struct inode *ip = VTOI(vp);
530
531 if (ip && (ip->i_flag & IN_ADIROP)) {
532 KASSERT(vp->v_flag & VDIROP);
533 simple_lock(&ip->i_lfs->lfs_interlock);
534 --ip->i_lfs->lfs_nadirop;
535 simple_unlock(&ip->i_lfs->lfs_interlock);
536 ip->i_flag &= ~IN_ADIROP;
537 }
538 }
539
540 int
541 lfs_symlink(void *v)
542 {
543 struct vop_symlink_args /* {
544 struct vnode *a_dvp;
545 struct vnode **a_vpp;
546 struct componentname *a_cnp;
547 struct vattr *a_vap;
548 char *a_target;
549 } */ *ap = v;
550 int error;
551
552 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
553 vput(ap->a_dvp);
554 return error;
555 }
556 error = ufs_symlink(ap);
557 SET_ENDOP_CREATE_AP(ap, "symlink");
558 return (error);
559 }
560
561 int
562 lfs_mknod(void *v)
563 {
564 struct vop_mknod_args /* {
565 struct vnode *a_dvp;
566 struct vnode **a_vpp;
567 struct componentname *a_cnp;
568 struct vattr *a_vap;
569 } */ *ap = v;
570 struct vattr *vap = ap->a_vap;
571 struct vnode **vpp = ap->a_vpp;
572 struct inode *ip;
573 int error;
574 struct mount *mp;
575 ino_t ino;
576
577 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
578 vput(ap->a_dvp);
579 return error;
580 }
581 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
582 ap->a_dvp, vpp, ap->a_cnp);
583
584 /* Either way we're done with the dirop at this point */
585 SET_ENDOP_CREATE_AP(ap, "mknod");
586
587 if (error)
588 return (error);
589
590 ip = VTOI(*vpp);
591 mp = (*vpp)->v_mount;
592 ino = ip->i_number;
593 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
594 if (vap->va_rdev != VNOVAL) {
595 /*
596 * Want to be able to use this to make badblock
597 * inodes, so don't truncate the dev number.
598 */
599 #if 0
600 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
601 UFS_MPNEEDSWAP((*vpp)->v_mount));
602 #else
603 ip->i_ffs1_rdev = vap->va_rdev;
604 #endif
605 }
606
607 /*
608 * Call fsync to write the vnode so that we don't have to deal with
609 * flushing it when it's marked VDIROP|VXLOCK.
610 *
611 * XXX KS - If we can't flush we also can't call vgone(), so must
612 * return. But, that leaves this vnode in limbo, also not good.
613 * Can this ever happen (barring hardware failure)?
614 */
615 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
616 curlwp)) != 0) {
617 panic("lfs_mknod: couldn't fsync (ino %llu)",
618 (unsigned long long)ino);
619 /* return (error); */
620 }
621 /*
622 * Remove vnode so that it will be reloaded by VFS_VGET and
623 * checked to see if it is an alias of an existing entry in
624 * the inode cache.
625 */
626 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
627
628 VOP_UNLOCK(*vpp, 0);
629 lfs_vunref(*vpp);
630 (*vpp)->v_type = VNON;
631 vgone(*vpp);
632 error = VFS_VGET(mp, ino, vpp);
633
634 if (error != 0) {
635 *vpp = NULL;
636 return (error);
637 }
638 return (0);
639 }
640
641 int
642 lfs_create(void *v)
643 {
644 struct vop_create_args /* {
645 struct vnode *a_dvp;
646 struct vnode **a_vpp;
647 struct componentname *a_cnp;
648 struct vattr *a_vap;
649 } */ *ap = v;
650 int error;
651
652 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
653 vput(ap->a_dvp);
654 return error;
655 }
656 error = ufs_create(ap);
657 SET_ENDOP_CREATE_AP(ap, "create");
658 return (error);
659 }
660
661 int
662 lfs_mkdir(void *v)
663 {
664 struct vop_mkdir_args /* {
665 struct vnode *a_dvp;
666 struct vnode **a_vpp;
667 struct componentname *a_cnp;
668 struct vattr *a_vap;
669 } */ *ap = v;
670 int error;
671
672 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
673 vput(ap->a_dvp);
674 return error;
675 }
676 error = ufs_mkdir(ap);
677 SET_ENDOP_CREATE_AP(ap, "mkdir");
678 return (error);
679 }
680
681 int
682 lfs_remove(void *v)
683 {
684 struct vop_remove_args /* {
685 struct vnode *a_dvp;
686 struct vnode *a_vp;
687 struct componentname *a_cnp;
688 } */ *ap = v;
689 struct vnode *dvp, *vp;
690 int error;
691
692 dvp = ap->a_dvp;
693 vp = ap->a_vp;
694 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
695 if (dvp == vp)
696 vrele(vp);
697 else
698 vput(vp);
699 vput(dvp);
700 return error;
701 }
702 error = ufs_remove(ap);
703 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
704 return (error);
705 }
706
707 int
708 lfs_rmdir(void *v)
709 {
710 struct vop_rmdir_args /* {
711 struct vnodeop_desc *a_desc;
712 struct vnode *a_dvp;
713 struct vnode *a_vp;
714 struct componentname *a_cnp;
715 } */ *ap = v;
716 struct vnode *vp;
717 int error;
718
719 vp = ap->a_vp;
720 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
721 vrele(ap->a_dvp);
722 if (ap->a_vp != ap->a_dvp)
723 VOP_UNLOCK(ap->a_dvp, 0);
724 vput(vp);
725 return error;
726 }
727 error = ufs_rmdir(ap);
728 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
729 return (error);
730 }
731
732 int
733 lfs_link(void *v)
734 {
735 struct vop_link_args /* {
736 struct vnode *a_dvp;
737 struct vnode *a_vp;
738 struct componentname *a_cnp;
739 } */ *ap = v;
740 int error;
741 struct vnode **vpp = NULL;
742
743 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
744 vput(ap->a_dvp);
745 return error;
746 }
747 error = ufs_link(ap);
748 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
749 return (error);
750 }
751
752 int
753 lfs_rename(void *v)
754 {
755 struct vop_rename_args /* {
756 struct vnode *a_fdvp;
757 struct vnode *a_fvp;
758 struct componentname *a_fcnp;
759 struct vnode *a_tdvp;
760 struct vnode *a_tvp;
761 struct componentname *a_tcnp;
762 } */ *ap = v;
763 struct vnode *tvp, *fvp, *tdvp, *fdvp;
764 struct componentname *tcnp, *fcnp;
765 int error;
766 struct lfs *fs;
767
768 fs = VTOI(ap->a_fdvp)->i_lfs;
769 tvp = ap->a_tvp;
770 tdvp = ap->a_tdvp;
771 tcnp = ap->a_tcnp;
772 fvp = ap->a_fvp;
773 fdvp = ap->a_fdvp;
774 fcnp = ap->a_fcnp;
775
776 /*
777 * Check for cross-device rename.
778 * If it is, we don't want to set dirops, just error out.
779 * (In particular note that MARK_VNODE(tdvp) will DTWT on
780 * a cross-device rename.)
781 *
782 * Copied from ufs_rename.
783 */
784 if ((fvp->v_mount != tdvp->v_mount) ||
785 (tvp && (fvp->v_mount != tvp->v_mount))) {
786 error = EXDEV;
787 goto errout;
788 }
789
790 /*
791 * Check to make sure we're not renaming a vnode onto itself
792 * (deleting a hard link by renaming one name onto another);
793 * if we are we can't recursively call VOP_REMOVE since that
794 * would leave us with an unaccounted-for number of live dirops.
795 *
796 * Inline the relevant section of ufs_rename here, *before*
797 * calling SET_DIROP_REMOVE.
798 */
799 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
800 (VTOI(tdvp)->i_flags & APPEND))) {
801 error = EPERM;
802 goto errout;
803 }
804 if (fvp == tvp) {
805 if (fvp->v_type == VDIR) {
806 error = EINVAL;
807 goto errout;
808 }
809
810 /* Release destination completely. */
811 VOP_ABORTOP(tdvp, tcnp);
812 vput(tdvp);
813 vput(tvp);
814
815 /* Delete source. */
816 vrele(fvp);
817 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
818 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
819 fcnp->cn_nameiop = DELETE;
820 if ((error = relookup(fdvp, &fvp, fcnp))){
821 /* relookup blew away fdvp */
822 return (error);
823 }
824 return (VOP_REMOVE(fdvp, fvp, fcnp));
825 }
826
827 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
828 goto errout;
829 MARK_VNODE(fdvp);
830 MARK_VNODE(fvp);
831
832 error = ufs_rename(ap);
833 UNMARK_VNODE(fdvp);
834 UNMARK_VNODE(fvp);
835 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
836 return (error);
837
838 errout:
839 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
840 if (tdvp == tvp)
841 vrele(tdvp);
842 else
843 vput(tdvp);
844 if (tvp)
845 vput(tvp);
846 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
847 vrele(fdvp);
848 vrele(fvp);
849 return (error);
850 }
851
852 /* XXX hack to avoid calling ITIMES in getattr */
853 int
854 lfs_getattr(void *v)
855 {
856 struct vop_getattr_args /* {
857 struct vnode *a_vp;
858 struct vattr *a_vap;
859 struct ucred *a_cred;
860 struct lwp *a_l;
861 } */ *ap = v;
862 struct vnode *vp = ap->a_vp;
863 struct inode *ip = VTOI(vp);
864 struct vattr *vap = ap->a_vap;
865 struct lfs *fs = ip->i_lfs;
866 /*
867 * Copy from inode table
868 */
869 vap->va_fsid = ip->i_dev;
870 vap->va_fileid = ip->i_number;
871 vap->va_mode = ip->i_mode & ~IFMT;
872 vap->va_nlink = ip->i_nlink;
873 vap->va_uid = ip->i_uid;
874 vap->va_gid = ip->i_gid;
875 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
876 vap->va_size = vp->v_size;
877 vap->va_atime.tv_sec = ip->i_ffs1_atime;
878 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
879 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
880 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
881 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
882 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
883 vap->va_flags = ip->i_flags;
884 vap->va_gen = ip->i_gen;
885 /* this doesn't belong here */
886 if (vp->v_type == VBLK)
887 vap->va_blocksize = BLKDEV_IOSIZE;
888 else if (vp->v_type == VCHR)
889 vap->va_blocksize = MAXBSIZE;
890 else
891 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
892 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
893 vap->va_type = vp->v_type;
894 vap->va_filerev = ip->i_modrev;
895 return (0);
896 }
897
898 /*
899 * Check to make sure the inode blocks won't choke the buffer
900 * cache, then call ufs_setattr as usual.
901 */
902 int
903 lfs_setattr(void *v)
904 {
905 struct vop_setattr_args /* {
906 struct vnode *a_vp;
907 struct vattr *a_vap;
908 struct ucred *a_cred;
909 struct lwp *a_l;
910 } */ *ap = v;
911 struct vnode *vp = ap->a_vp;
912
913 lfs_check(vp, LFS_UNUSED_LBN, 0);
914 return ufs_setattr(v);
915 }
916
917 /*
918 * Close called
919 *
920 * XXX -- we were using ufs_close, but since it updates the
921 * times on the inode, we might need to bump the uinodes
922 * count.
923 */
924 /* ARGSUSED */
925 int
926 lfs_close(void *v)
927 {
928 struct vop_close_args /* {
929 struct vnode *a_vp;
930 int a_fflag;
931 struct ucred *a_cred;
932 struct lwp *a_l;
933 } */ *ap = v;
934 struct vnode *vp = ap->a_vp;
935 struct inode *ip = VTOI(vp);
936
937 if (vp == ip->i_lfs->lfs_ivnode &&
938 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
939 return 0;
940
941 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
942 LFS_ITIMES(ip, NULL, NULL, NULL);
943 }
944 return (0);
945 }
946
947 /*
948 * Close wrapper for special devices.
949 *
950 * Update the times on the inode then do device close.
951 */
952 int
953 lfsspec_close(void *v)
954 {
955 struct vop_close_args /* {
956 struct vnode *a_vp;
957 int a_fflag;
958 struct ucred *a_cred;
959 struct lwp *a_l;
960 } */ *ap = v;
961 struct vnode *vp;
962 struct inode *ip;
963
964 vp = ap->a_vp;
965 ip = VTOI(vp);
966 if (vp->v_usecount > 1) {
967 LFS_ITIMES(ip, NULL, NULL, NULL);
968 }
969 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
970 }
971
972 /*
973 * Close wrapper for fifo's.
974 *
975 * Update the times on the inode then do device close.
976 */
977 int
978 lfsfifo_close(void *v)
979 {
980 struct vop_close_args /* {
981 struct vnode *a_vp;
982 int a_fflag;
983 struct ucred *a_cred;
984 struct lwp *a_l;
985 } */ *ap = v;
986 struct vnode *vp;
987 struct inode *ip;
988
989 vp = ap->a_vp;
990 ip = VTOI(vp);
991 if (ap->a_vp->v_usecount > 1) {
992 LFS_ITIMES(ip, NULL, NULL, NULL);
993 }
994 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
995 }
996
997 /*
998 * Reclaim an inode so that it can be used for other purposes.
999 */
1000
1001 int
1002 lfs_reclaim(void *v)
1003 {
1004 struct vop_reclaim_args /* {
1005 struct vnode *a_vp;
1006 struct lwp *a_l;
1007 } */ *ap = v;
1008 struct vnode *vp = ap->a_vp;
1009 struct inode *ip = VTOI(vp);
1010 int error;
1011
1012 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1013
1014 LFS_CLR_UINO(ip, IN_ALLMOD);
1015 if ((error = ufs_reclaim(vp, ap->a_l)))
1016 return (error);
1017 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1018 lfs_deregister_all(vp);
1019 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1020 ip->inode_ext.lfs = NULL;
1021 pool_put(&lfs_inode_pool, vp->v_data);
1022 vp->v_data = NULL;
1023 return (0);
1024 }
1025
1026 /*
1027 * Read a block from a storage device.
1028 * In order to avoid reading blocks that are in the process of being
1029 * written by the cleaner---and hence are not mutexed by the normal
1030 * buffer cache / page cache mechanisms---check for collisions before
1031 * reading.
1032 *
1033 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1034 * the active cleaner test.
1035 *
1036 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1037 */
1038 int
1039 lfs_strategy(void *v)
1040 {
1041 struct vop_strategy_args /* {
1042 struct vnode *a_vp;
1043 struct buf *a_bp;
1044 } */ *ap = v;
1045 struct buf *bp;
1046 struct lfs *fs;
1047 struct vnode *vp;
1048 struct inode *ip;
1049 daddr_t tbn;
1050 int i, sn, error, slept;
1051
1052 bp = ap->a_bp;
1053 vp = ap->a_vp;
1054 ip = VTOI(vp);
1055 fs = ip->i_lfs;
1056
1057 /* lfs uses its strategy routine only for read */
1058 KASSERT(bp->b_flags & B_READ);
1059
1060 if (vp->v_type == VBLK || vp->v_type == VCHR)
1061 panic("lfs_strategy: spec");
1062 KASSERT(bp->b_bcount != 0);
1063 if (bp->b_blkno == bp->b_lblkno) {
1064 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1065 NULL);
1066 if (error) {
1067 bp->b_error = error;
1068 bp->b_flags |= B_ERROR;
1069 biodone(bp);
1070 return (error);
1071 }
1072 if ((long)bp->b_blkno == -1) /* no valid data */
1073 clrbuf(bp);
1074 }
1075 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1076 biodone(bp);
1077 return (0);
1078 }
1079
1080 slept = 1;
1081 simple_lock(&fs->lfs_interlock);
1082 while (slept && fs->lfs_seglock) {
1083 simple_unlock(&fs->lfs_interlock);
1084 /*
1085 * Look through list of intervals.
1086 * There will only be intervals to look through
1087 * if the cleaner holds the seglock.
1088 * Since the cleaner is synchronous, we can trust
1089 * the list of intervals to be current.
1090 */
1091 tbn = dbtofsb(fs, bp->b_blkno);
1092 sn = dtosn(fs, tbn);
1093 slept = 0;
1094 for (i = 0; i < fs->lfs_cleanind; i++) {
1095 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1096 tbn >= fs->lfs_cleanint[i]) {
1097 DLOG((DLOG_CLEAN,
1098 "lfs_strategy: ino %d lbn %" PRId64
1099 " ind %d sn %d fsb %" PRIx32
1100 " given sn %d fsb %" PRIx64 "\n",
1101 ip->i_number, bp->b_lblkno, i,
1102 dtosn(fs, fs->lfs_cleanint[i]),
1103 fs->lfs_cleanint[i], sn, tbn));
1104 DLOG((DLOG_CLEAN,
1105 "lfs_strategy: sleeping on ino %d lbn %"
1106 PRId64 "\n", ip->i_number, bp->b_lblkno));
1107 simple_lock(&fs->lfs_interlock);
1108 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1109 /* Cleaner can't wait for itself */
1110 ltsleep(&fs->lfs_iocount,
1111 (PRIBIO + 1) | PNORELOCK,
1112 "clean2", 0,
1113 &fs->lfs_interlock);
1114 slept = 1;
1115 break;
1116 } else if (fs->lfs_seglock) {
1117 ltsleep(&fs->lfs_seglock,
1118 (PRIBIO + 1) | PNORELOCK,
1119 "clean1", 0,
1120 &fs->lfs_interlock);
1121 slept = 1;
1122 break;
1123 }
1124 simple_unlock(&fs->lfs_interlock);
1125 }
1126 }
1127 simple_lock(&fs->lfs_interlock);
1128 }
1129 simple_unlock(&fs->lfs_interlock);
1130
1131 vp = ip->i_devvp;
1132 VOP_STRATEGY(vp, bp);
1133 return (0);
1134 }
1135
1136 static void
1137 lfs_flush_dirops(struct lfs *fs)
1138 {
1139 struct inode *ip, *nip;
1140 struct vnode *vp;
1141 extern int lfs_dostats;
1142 struct segment *sp;
1143 int needunlock;
1144
1145 ASSERT_MAYBE_SEGLOCK(fs);
1146
1147 if (fs->lfs_ronly)
1148 return;
1149
1150 simple_lock(&fs->lfs_interlock);
1151 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1152 simple_unlock(&fs->lfs_interlock);
1153 return;
1154 } else
1155 simple_unlock(&fs->lfs_interlock);
1156
1157 if (lfs_dostats)
1158 ++lfs_stats.flush_invoked;
1159
1160 /*
1161 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1162 * Technically this is a checkpoint (the on-disk state is valid)
1163 * even though we are leaving out all the file data.
1164 */
1165 lfs_imtime(fs);
1166 lfs_seglock(fs, SEGM_CKP);
1167 sp = fs->lfs_sp;
1168
1169 /*
1170 * lfs_writevnodes, optimized to get dirops out of the way.
1171 * Only write dirops, and don't flush files' pages, only
1172 * blocks from the directories.
1173 *
1174 * We don't need to vref these files because they are
1175 * dirops and so hold an extra reference until the
1176 * segunlock clears them of that status.
1177 *
1178 * We don't need to check for IN_ADIROP because we know that
1179 * no dirops are active.
1180 *
1181 */
1182 simple_lock(&fs->lfs_interlock);
1183 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1184 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1185 simple_unlock(&fs->lfs_interlock);
1186 vp = ITOV(ip);
1187
1188 /*
1189 * All writes to directories come from dirops; all
1190 * writes to files' direct blocks go through the page
1191 * cache, which we're not touching. Reads to files
1192 * and/or directories will not be affected by writing
1193 * directory blocks inodes and file inodes. So we don't
1194 * really need to lock. If we don't lock, though,
1195 * make sure that we don't clear IN_MODIFIED
1196 * unnecessarily.
1197 */
1198 if (vp->v_flag & (VXLOCK | VFREEING)) {
1199 simple_lock(&fs->lfs_interlock);
1200 continue;
1201 }
1202 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
1203 needunlock = 1;
1204 } else {
1205 DLOG((DLOG_VNODE, "lfs_flush_dirops: flushing locked ino %d\n",
1206 VTOI(vp)->i_number));
1207 needunlock = 0;
1208 }
1209 if (vp->v_type != VREG &&
1210 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1211 lfs_writefile(fs, sp, vp);
1212 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1213 !(ip->i_flag & IN_ALLMOD)) {
1214 LFS_SET_UINO(ip, IN_MODIFIED);
1215 }
1216 }
1217 (void) lfs_writeinode(fs, sp, ip);
1218 if (needunlock)
1219 VOP_UNLOCK(vp, 0);
1220 else
1221 LFS_SET_UINO(ip, IN_MODIFIED);
1222 simple_lock(&fs->lfs_interlock);
1223 }
1224 simple_unlock(&fs->lfs_interlock);
1225 /* We've written all the dirops there are */
1226 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1227 lfs_finalize_fs_seguse(fs);
1228 (void) lfs_writeseg(fs, sp);
1229 lfs_segunlock(fs);
1230 }
1231
1232 /*
1233 * Flush all vnodes for which the pagedaemon has requested pageouts.
1234 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1235 * has just run, this would be an error). If we have to skip a vnode
1236 * for any reason, just skip it; if we have to wait for the cleaner,
1237 * abort. The writer daemon will call us again later.
1238 */
1239 void
1240 lfs_flush_pchain(struct lfs *fs)
1241 {
1242 struct inode *ip, *nip;
1243 struct vnode *vp;
1244 extern int lfs_dostats;
1245 struct segment *sp;
1246 int error;
1247
1248 ASSERT_NO_SEGLOCK(fs);
1249
1250 if (fs->lfs_ronly)
1251 return;
1252
1253 simple_lock(&fs->lfs_interlock);
1254 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1255 simple_unlock(&fs->lfs_interlock);
1256 return;
1257 } else
1258 simple_unlock(&fs->lfs_interlock);
1259
1260 /* Get dirops out of the way */
1261 lfs_flush_dirops(fs);
1262
1263 if (lfs_dostats)
1264 ++lfs_stats.flush_invoked;
1265
1266 /*
1267 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1268 */
1269 lfs_imtime(fs);
1270 lfs_seglock(fs, 0);
1271 sp = fs->lfs_sp;
1272
1273 /*
1274 * lfs_writevnodes, optimized to clear pageout requests.
1275 * Only write non-dirop files that are in the pageout queue.
1276 * We're very conservative about what we write; we want to be
1277 * fast and async.
1278 */
1279 simple_lock(&fs->lfs_interlock);
1280 top:
1281 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1282 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1283 vp = ITOV(ip);
1284
1285 if (!(ip->i_flags & IN_PAGING))
1286 goto top;
1287
1288 if (vp->v_flag & (VXLOCK|VDIROP))
1289 continue;
1290 if (vp->v_type != VREG)
1291 continue;
1292 if (lfs_vref(vp))
1293 continue;
1294 simple_unlock(&fs->lfs_interlock);
1295
1296 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1297 lfs_vunref(vp);
1298 simple_lock(&fs->lfs_interlock);
1299 continue;
1300 }
1301
1302 error = lfs_writefile(fs, sp, vp);
1303 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1304 !(ip->i_flag & IN_ALLMOD)) {
1305 LFS_SET_UINO(ip, IN_MODIFIED);
1306 }
1307 (void) lfs_writeinode(fs, sp, ip);
1308
1309 VOP_UNLOCK(vp, 0);
1310 lfs_vunref(vp);
1311
1312 if (error == EAGAIN) {
1313 lfs_writeseg(fs, sp);
1314 simple_lock(&fs->lfs_interlock);
1315 break;
1316 }
1317 simple_lock(&fs->lfs_interlock);
1318 }
1319 simple_unlock(&fs->lfs_interlock);
1320 (void) lfs_writeseg(fs, sp);
1321 lfs_segunlock(fs);
1322 }
1323
1324 /*
1325 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1326 */
1327 int
1328 lfs_fcntl(void *v)
1329 {
1330 struct vop_fcntl_args /* {
1331 struct vnode *a_vp;
1332 u_long a_command;
1333 caddr_t a_data;
1334 int a_fflag;
1335 struct ucred *a_cred;
1336 struct lwp *a_l;
1337 } */ *ap = v;
1338 struct timeval *tvp;
1339 BLOCK_INFO *blkiov;
1340 CLEANERINFO *cip;
1341 SEGUSE *sup;
1342 int blkcnt, error, oclean;
1343 struct lfs_fcntl_markv blkvp;
1344 struct proc *p;
1345 fsid_t *fsidp;
1346 struct lfs *fs;
1347 struct buf *bp;
1348 fhandle_t *fhp;
1349 daddr_t off;
1350
1351 /* Only respect LFS fcntls on fs root or Ifile */
1352 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1353 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1354 return ufs_fcntl(v);
1355 }
1356
1357 /* Avoid locking a draining lock */
1358 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1359 return ESHUTDOWN;
1360 }
1361
1362 p = ap->a_l->l_proc;
1363 fs = VTOI(ap->a_vp)->i_lfs;
1364 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1365
1366 switch (ap->a_command) {
1367 case LFCNSEGWAITALL:
1368 case LFCNSEGWAITALL_COMPAT:
1369 fsidp = NULL;
1370 /* FALLSTHROUGH */
1371 case LFCNSEGWAIT:
1372 case LFCNSEGWAIT_COMPAT:
1373 tvp = (struct timeval *)ap->a_data;
1374 simple_lock(&fs->lfs_interlock);
1375 ++fs->lfs_sleepers;
1376 simple_unlock(&fs->lfs_interlock);
1377 VOP_UNLOCK(ap->a_vp, 0);
1378
1379 error = lfs_segwait(fsidp, tvp);
1380
1381 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1382 simple_lock(&fs->lfs_interlock);
1383 if (--fs->lfs_sleepers == 0)
1384 wakeup(&fs->lfs_sleepers);
1385 simple_unlock(&fs->lfs_interlock);
1386 return error;
1387
1388 case LFCNBMAPV:
1389 case LFCNMARKV:
1390 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1391 return (error);
1392 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1393
1394 blkcnt = blkvp.blkcnt;
1395 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1396 return (EINVAL);
1397 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1398 if ((error = copyin(blkvp.blkiov, blkiov,
1399 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1400 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1401 return error;
1402 }
1403
1404 simple_lock(&fs->lfs_interlock);
1405 ++fs->lfs_sleepers;
1406 simple_unlock(&fs->lfs_interlock);
1407 VOP_UNLOCK(ap->a_vp, 0);
1408 if (ap->a_command == LFCNBMAPV)
1409 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1410 else /* LFCNMARKV */
1411 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1412 if (error == 0)
1413 error = copyout(blkiov, blkvp.blkiov,
1414 blkcnt * sizeof(BLOCK_INFO));
1415 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1416 simple_lock(&fs->lfs_interlock);
1417 if (--fs->lfs_sleepers == 0)
1418 wakeup(&fs->lfs_sleepers);
1419 simple_unlock(&fs->lfs_interlock);
1420 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1421 return error;
1422
1423 case LFCNRECLAIM:
1424 /*
1425 * Flush dirops and write Ifile, allowing empty segments
1426 * to be immediately reclaimed.
1427 */
1428 VOP_UNLOCK(ap->a_vp, 0);
1429 lfs_writer_enter(fs, "pndirop");
1430 off = fs->lfs_offset;
1431 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1432 lfs_flush_dirops(fs);
1433 LFS_CLEANERINFO(cip, fs, bp);
1434 oclean = cip->clean;
1435 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1436 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1437 fs->lfs_sp->seg_flags |= SEGM_PROT;
1438 lfs_segunlock(fs);
1439 lfs_writer_leave(fs);
1440
1441 #ifdef DEBUG
1442 LFS_CLEANERINFO(cip, fs, bp);
1443 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1444 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1445 fs->lfs_offset - off, cip->clean - oclean,
1446 fs->lfs_activesb));
1447 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1448 #endif
1449
1450 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1451 return 0;
1452
1453 case LFCNIFILEFH:
1454 /* Return the filehandle of the Ifile */
1455 if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
1456 return (error);
1457 fhp = (struct fhandle *)ap->a_data;
1458 fhp->fh_fsid = *fsidp;
1459 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1460
1461 case LFCNREWIND:
1462 /* Move lfs_offset to the lowest-numbered segment */
1463 return lfs_rewind(fs, *(int *)ap->a_data);
1464
1465 case LFCNINVAL:
1466 /* Mark a segment SEGUSE_INVAL */
1467 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1468 if (sup->su_nbytes > 0) {
1469 brelse(bp);
1470 lfs_unset_inval_all(fs);
1471 return EBUSY;
1472 }
1473 sup->su_flags |= SEGUSE_INVAL;
1474 VOP_BWRITE(bp);
1475 return 0;
1476
1477 case LFCNRESIZE:
1478 /* Resize the filesystem */
1479 return lfs_resize_fs(fs, *(int *)ap->a_data);
1480
1481 case LFCNWRAPSTOP:
1482 /*
1483 * Hold lfs_newseg at segment 0; sleep until the filesystem
1484 * wraps around. For debugging purposes, so an external
1485 * agent can log every segment in the filesystem as it
1486 * was written, and we can regression-test checkpoint
1487 * validity in the general case.
1488 */
1489 VOP_UNLOCK(ap->a_vp, 0);
1490 simple_lock(&fs->lfs_interlock);
1491 fs->lfs_nowrap = 1;
1492 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
1493 "segwrap", 0, &fs->lfs_interlock);
1494 if (error) {
1495 fs->lfs_nowrap = 0;
1496 wakeup(&fs->lfs_nowrap);
1497 }
1498 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1499 return 0;
1500
1501 case LFCNWRAPGO:
1502 /*
1503 * Having done its work, the agent wakes up the writer.
1504 * It sleeps until a new segment is selected.
1505 */
1506 VOP_UNLOCK(ap->a_vp, 0);
1507 simple_lock(&fs->lfs_interlock);
1508 fs->lfs_nowrap = 0;
1509 wakeup(&fs->lfs_nowrap);
1510 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
1511 "segment", 0, &fs->lfs_interlock);
1512 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1513 return 0;
1514
1515 default:
1516 return ufs_fcntl(v);
1517 }
1518 return 0;
1519 }
1520
1521 int
1522 lfs_getpages(void *v)
1523 {
1524 struct vop_getpages_args /* {
1525 struct vnode *a_vp;
1526 voff_t a_offset;
1527 struct vm_page **a_m;
1528 int *a_count;
1529 int a_centeridx;
1530 vm_prot_t a_access_type;
1531 int a_advice;
1532 int a_flags;
1533 } */ *ap = v;
1534
1535 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1536 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1537 return EPERM;
1538 }
1539 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1540 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1541 }
1542
1543 /*
1544 * we're relying on the fact that genfs_getpages() always read in
1545 * entire filesystem blocks.
1546 */
1547 return genfs_getpages(v);
1548 }
1549
1550 /*
1551 * Make sure that for all pages in every block in the given range,
1552 * either all are dirty or all are clean. If any of the pages
1553 * we've seen so far are dirty, put the vnode on the paging chain,
1554 * and mark it IN_PAGING.
1555 *
1556 * If checkfirst != 0, don't check all the pages but return at the
1557 * first dirty page.
1558 */
1559 static int
1560 check_dirty(struct lfs *fs, struct vnode *vp,
1561 off_t startoffset, off_t endoffset, off_t blkeof,
1562 int flags, int checkfirst)
1563 {
1564 int by_list;
1565 struct vm_page *curpg = NULL; /* XXX: gcc */
1566 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1567 off_t soff = 0; /* XXX: gcc */
1568 voff_t off;
1569 int i;
1570 int nonexistent;
1571 int any_dirty; /* number of dirty pages */
1572 int dirty; /* number of dirty pages in a block */
1573 int tdirty;
1574 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1575 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1576
1577 ASSERT_MAYBE_SEGLOCK(fs);
1578 top:
1579 by_list = (vp->v_uobj.uo_npages <=
1580 ((endoffset - startoffset) >> PAGE_SHIFT) *
1581 UVM_PAGE_HASH_PENALTY);
1582 any_dirty = 0;
1583
1584 if (by_list) {
1585 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1586 } else {
1587 soff = startoffset;
1588 }
1589 while (by_list || soff < MIN(blkeof, endoffset)) {
1590 if (by_list) {
1591 /*
1592 * Find the first page in a block. Skip
1593 * blocks outside our area of interest or beyond
1594 * the end of file.
1595 */
1596 if (pages_per_block > 1) {
1597 while (curpg &&
1598 ((curpg->offset & fs->lfs_bmask) ||
1599 curpg->offset >= vp->v_size ||
1600 curpg->offset >= endoffset))
1601 curpg = TAILQ_NEXT(curpg, listq);
1602 }
1603 if (curpg == NULL)
1604 break;
1605 soff = curpg->offset;
1606 }
1607
1608 /*
1609 * Mark all pages in extended range busy; find out if any
1610 * of them are dirty.
1611 */
1612 nonexistent = dirty = 0;
1613 for (i = 0; i == 0 || i < pages_per_block; i++) {
1614 if (by_list && pages_per_block <= 1) {
1615 pgs[i] = pg = curpg;
1616 } else {
1617 off = soff + (i << PAGE_SHIFT);
1618 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1619 if (pg == NULL) {
1620 ++nonexistent;
1621 continue;
1622 }
1623 }
1624 KASSERT(pg != NULL);
1625
1626 /*
1627 * If we're holding the segment lock, we can deadlocked
1628 * against a process that has our page and is waiting
1629 * for the cleaner, while the cleaner waits for the
1630 * segment lock. Just bail in that case.
1631 */
1632 if ((pg->flags & PG_BUSY) &&
1633 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1634 if (by_list && i > 0)
1635 uvm_page_unbusy(pgs, i);
1636 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1637 return -1;
1638 }
1639
1640 while (pg->flags & PG_BUSY) {
1641 pg->flags |= PG_WANTED;
1642 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1643 "lfsput", 0);
1644 simple_lock(&vp->v_interlock);
1645 if (by_list) {
1646 if (i > 0)
1647 uvm_page_unbusy(pgs, i);
1648 goto top;
1649 }
1650 }
1651 pg->flags |= PG_BUSY;
1652 UVM_PAGE_OWN(pg, "lfs_putpages");
1653
1654 pmap_page_protect(pg, VM_PROT_NONE);
1655 tdirty = (pmap_clear_modify(pg) ||
1656 (pg->flags & PG_CLEAN) == 0);
1657 dirty += tdirty;
1658 }
1659 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1660 if (by_list) {
1661 curpg = TAILQ_NEXT(curpg, listq);
1662 } else {
1663 soff += fs->lfs_bsize;
1664 }
1665 continue;
1666 }
1667
1668 any_dirty += dirty;
1669 KASSERT(nonexistent == 0);
1670
1671 /*
1672 * If any are dirty make all dirty; unbusy them,
1673 * but if we were asked to clean, wire them so that
1674 * the pagedaemon doesn't bother us about them while
1675 * they're on their way to disk.
1676 */
1677 for (i = 0; i == 0 || i < pages_per_block; i++) {
1678 pg = pgs[i];
1679 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1680 if (dirty) {
1681 pg->flags &= ~PG_CLEAN;
1682 if (flags & PGO_FREE) {
1683 /*
1684 * Wire the page so that
1685 * pdaemon doesn't see it again.
1686 */
1687 uvm_lock_pageq();
1688 uvm_pagewire(pg);
1689 uvm_unlock_pageq();
1690
1691 /* Suspended write flag */
1692 pg->flags |= PG_DELWRI;
1693 }
1694 }
1695 if (pg->flags & PG_WANTED)
1696 wakeup(pg);
1697 pg->flags &= ~(PG_WANTED|PG_BUSY);
1698 UVM_PAGE_OWN(pg, NULL);
1699 }
1700
1701 if (checkfirst && any_dirty)
1702 break;
1703
1704 if (by_list) {
1705 curpg = TAILQ_NEXT(curpg, listq);
1706 } else {
1707 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1708 }
1709 }
1710
1711 return any_dirty;
1712 }
1713
1714 /*
1715 * lfs_putpages functions like genfs_putpages except that
1716 *
1717 * (1) It needs to bounds-check the incoming requests to ensure that
1718 * they are block-aligned; if they are not, expand the range and
1719 * do the right thing in case, e.g., the requested range is clean
1720 * but the expanded range is dirty.
1721 * (2) It needs to explicitly send blocks to be written when it is done.
1722 * VOP_PUTPAGES is not ever called with the seglock held, so
1723 * we simply take the seglock and let lfs_segunlock wait for us.
1724 * XXX Actually we can be called with the seglock held, if we have
1725 * XXX to flush a vnode while lfs_markv is in operation. As of this
1726 * XXX writing we panic in this case.
1727 *
1728 * Assumptions:
1729 *
1730 * (1) The caller does not hold any pages in this vnode busy. If it does,
1731 * there is a danger that when we expand the page range and busy the
1732 * pages we will deadlock.
1733 * (2) We are called with vp->v_interlock held; we must return with it
1734 * released.
1735 * (3) We don't absolutely have to free pages right away, provided that
1736 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1737 * us a request with PGO_FREE, we take the pages out of the paging
1738 * queue and wake up the writer, which will handle freeing them for us.
1739 *
1740 * We ensure that for any filesystem block, all pages for that
1741 * block are either resident or not, even if those pages are higher
1742 * than EOF; that means that we will be getting requests to free
1743 * "unused" pages above EOF all the time, and should ignore them.
1744 *
1745 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1746 */
1747
1748 int
1749 lfs_putpages(void *v)
1750 {
1751 int error;
1752 struct vop_putpages_args /* {
1753 struct vnode *a_vp;
1754 voff_t a_offlo;
1755 voff_t a_offhi;
1756 int a_flags;
1757 } */ *ap = v;
1758 struct vnode *vp;
1759 struct inode *ip;
1760 struct lfs *fs;
1761 struct segment *sp;
1762 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1763 off_t off, max_endoffset;
1764 int s;
1765 boolean_t seglocked, sync, pagedaemon;
1766 struct vm_page *pg;
1767 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1768
1769 vp = ap->a_vp;
1770 ip = VTOI(vp);
1771 fs = ip->i_lfs;
1772 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1773 pagedaemon = (curproc == uvm.pagedaemon_proc);
1774
1775 /* Putpages does nothing for metadata. */
1776 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1777 simple_unlock(&vp->v_interlock);
1778 return 0;
1779 }
1780
1781 /*
1782 * If there are no pages, don't do anything.
1783 */
1784 if (vp->v_uobj.uo_npages == 0) {
1785 s = splbio();
1786 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1787 (vp->v_flag & VONWORKLST)) {
1788 vp->v_flag &= ~VONWORKLST;
1789 LIST_REMOVE(vp, v_synclist);
1790 }
1791 splx(s);
1792 simple_unlock(&vp->v_interlock);
1793
1794 /* Remove us from paging queue, if we were on it */
1795 simple_lock(&fs->lfs_interlock);
1796 if (ip->i_flags & IN_PAGING) {
1797 ip->i_flags &= ~IN_PAGING;
1798 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1799 }
1800 simple_unlock(&fs->lfs_interlock);
1801 return 0;
1802 }
1803
1804 blkeof = blkroundup(fs, ip->i_size);
1805
1806 /*
1807 * Ignore requests to free pages past EOF but in the same block
1808 * as EOF, unless the request is synchronous. (If the request is
1809 * sync, it comes from lfs_truncate.)
1810 * XXXUBC Make these pages look "active" so the pagedaemon won't
1811 * XXXUBC bother us with them again.
1812 */
1813 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1814 origoffset = ap->a_offlo;
1815 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1816 pg = uvm_pagelookup(&vp->v_uobj, off);
1817 KASSERT(pg != NULL);
1818 while (pg->flags & PG_BUSY) {
1819 pg->flags |= PG_WANTED;
1820 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1821 "lfsput2", 0);
1822 simple_lock(&vp->v_interlock);
1823 }
1824 uvm_lock_pageq();
1825 uvm_pageactivate(pg);
1826 uvm_unlock_pageq();
1827 }
1828 ap->a_offlo = blkeof;
1829 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1830 simple_unlock(&vp->v_interlock);
1831 return 0;
1832 }
1833 }
1834
1835 /*
1836 * Extend page range to start and end at block boundaries.
1837 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1838 */
1839 origoffset = ap->a_offlo;
1840 origendoffset = ap->a_offhi;
1841 startoffset = origoffset & ~(fs->lfs_bmask);
1842 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1843 << fs->lfs_bshift;
1844
1845 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1846 endoffset = max_endoffset;
1847 origendoffset = endoffset;
1848 } else {
1849 origendoffset = round_page(ap->a_offhi);
1850 endoffset = round_page(blkroundup(fs, origendoffset));
1851 }
1852
1853 KASSERT(startoffset > 0 || endoffset >= startoffset);
1854 if (startoffset == endoffset) {
1855 /* Nothing to do, why were we called? */
1856 simple_unlock(&vp->v_interlock);
1857 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1858 PRId64 "\n", startoffset));
1859 return 0;
1860 }
1861
1862 ap->a_offlo = startoffset;
1863 ap->a_offhi = endoffset;
1864
1865 if (!(ap->a_flags & PGO_CLEANIT))
1866 return genfs_putpages(v);
1867
1868 /*
1869 * If there are more than one page per block, we don't want
1870 * to get caught locking them backwards; so set PGO_BUSYFAIL
1871 * to avoid deadlocks.
1872 */
1873 ap->a_flags |= PGO_BUSYFAIL;
1874
1875 do {
1876 int r;
1877
1878 /* If no pages are dirty, we can just use genfs_putpages. */
1879 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1880 ap->a_flags, 1);
1881 if (r < 0) {
1882 simple_unlock(&vp->v_interlock);
1883 return EDEADLK;
1884 }
1885 if (r > 0)
1886 break;
1887
1888 /*
1889 * Sometimes pages are dirtied between the time that
1890 * we check and the time we try to clean them.
1891 * Instruct lfs_gop_write to return EDEADLK in this case
1892 * so we can write them properly.
1893 */
1894 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1895 r = genfs_putpages(v);
1896 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1897 if (r != EDEADLK)
1898 return r;
1899
1900 /* Start over. */
1901 preempt(1);
1902 simple_lock(&vp->v_interlock);
1903 } while(1);
1904
1905 /*
1906 * Dirty and asked to clean.
1907 *
1908 * Pagedaemon can't actually write LFS pages; wake up
1909 * the writer to take care of that. The writer will
1910 * notice the pager inode queue and act on that.
1911 */
1912 if (pagedaemon) {
1913 simple_lock(&fs->lfs_interlock);
1914 if (!(ip->i_flags & IN_PAGING)) {
1915 ip->i_flags |= IN_PAGING;
1916 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1917 }
1918 simple_lock(&lfs_subsys_lock);
1919 wakeup(&lfs_writer_daemon);
1920 simple_unlock(&lfs_subsys_lock);
1921 simple_unlock(&fs->lfs_interlock);
1922 simple_unlock(&vp->v_interlock);
1923 preempt(1);
1924 return EWOULDBLOCK;
1925 }
1926
1927 /*
1928 * If this is a file created in a recent dirop, we can't flush its
1929 * inode until the dirop is complete. Drain dirops, then flush the
1930 * filesystem (taking care of any other pending dirops while we're
1931 * at it).
1932 */
1933 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1934 (vp->v_flag & VDIROP)) {
1935 int locked;
1936
1937 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1938 locked = VOP_ISLOCKED(vp) && /* XXX */
1939 vp->v_lock.lk_lockholder == curproc->p_pid;
1940 simple_unlock(&vp->v_interlock);
1941 lfs_writer_enter(fs, "ppdirop");
1942 if (locked)
1943 VOP_UNLOCK(vp, 0);
1944
1945 simple_lock(&fs->lfs_interlock);
1946 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1947 simple_unlock(&fs->lfs_interlock);
1948
1949 simple_lock(&vp->v_interlock);
1950 if (locked) {
1951 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1952 simple_lock(&vp->v_interlock);
1953 }
1954 lfs_writer_leave(fs);
1955
1956 /* XXX the flush should have taken care of this one too! */
1957 }
1958
1959 /*
1960 * This is it. We are going to write some pages. From here on
1961 * down it's all just mechanics.
1962 *
1963 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1964 */
1965 ap->a_flags &= ~PGO_SYNCIO;
1966
1967 /*
1968 * If we've already got the seglock, flush the node and return.
1969 * The FIP has already been set up for us by lfs_writefile,
1970 * and FIP cleanup and lfs_updatemeta will also be done there,
1971 * unless genfs_putpages returns EDEADLK; then we must flush
1972 * what we have, and correct FIP and segment header accounting.
1973 */
1974
1975 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1976 if (!seglocked) {
1977 simple_unlock(&vp->v_interlock);
1978 /*
1979 * Take the seglock, because we are going to be writing pages.
1980 */
1981 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1982 if (error != 0)
1983 return error;
1984 simple_lock(&vp->v_interlock);
1985 }
1986
1987 /*
1988 * VOP_PUTPAGES should not be called while holding the seglock.
1989 * XXXUBC fix lfs_markv, or do this properly.
1990 */
1991 #ifdef notyet
1992 KASSERT(fs->lfs_seglock == 1);
1993 #endif /* notyet */
1994
1995 /*
1996 * We assume we're being called with sp->fip pointing at blank space.
1997 * Account for a new FIP in the segment header, and set sp->vp.
1998 * (This should duplicate the setup at the top of lfs_writefile().)
1999 */
2000 sp = fs->lfs_sp;
2001 if (!seglocked) {
2002 if (sp->seg_bytes_left < fs->lfs_bsize ||
2003 sp->sum_bytes_left < sizeof(struct finfo))
2004 (void) lfs_writeseg(fs, fs->lfs_sp);
2005
2006 sp->sum_bytes_left -= FINFOSIZE;
2007 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2008 }
2009 KASSERT(sp->vp == NULL);
2010 sp->vp = vp;
2011
2012 if (!seglocked) {
2013 if (vp->v_flag & VDIROP)
2014 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2015 }
2016
2017 sp->fip->fi_nblocks = 0;
2018 sp->fip->fi_ino = ip->i_number;
2019 sp->fip->fi_version = ip->i_gen;
2020
2021 /*
2022 * Loop through genfs_putpages until all pages are gathered.
2023 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2024 * Whenever we lose the interlock we have to rerun check_dirty, as
2025 * well.
2026 */
2027 again:
2028 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2029 ap->a_flags, 0) < 0) {
2030 simple_unlock(&vp->v_interlock);
2031 sp->vp = NULL;
2032 if (!seglocked)
2033 lfs_segunlock(fs);
2034 return EDEADLK;
2035 }
2036
2037 error = genfs_putpages(v);
2038 if (error == EDEADLK || error == EAGAIN) {
2039 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2040 " EDEADLK [2] ino %d off %x (seg %d)\n",
2041 ip->i_number, fs->lfs_offset,
2042 dtosn(fs, fs->lfs_offset)));
2043 /* If nothing to write, short-circuit */
2044 if (sp->cbpp - sp->bpp > 1) {
2045 /* Write gathered pages */
2046 lfs_updatemeta(sp);
2047 (void) lfs_writeseg(fs, sp);
2048
2049 /*
2050 * Reinitialize brand new FIP and add us to it.
2051 * (This should duplicate the fixup in
2052 * lfs_gatherpages().)
2053 */
2054 KASSERT(sp->vp == vp);
2055 sp->fip->fi_version = ip->i_gen;
2056 sp->fip->fi_ino = ip->i_number;
2057 /* Add us to the new segment summary. */
2058 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2059 sp->sum_bytes_left -= FINFOSIZE;
2060 }
2061
2062 /* Give the write a chance to complete */
2063 preempt(1);
2064
2065 /* We've lost the interlock. Start over. */
2066 if (error == EDEADLK) {
2067 simple_lock(&vp->v_interlock);
2068 goto again;
2069 }
2070 }
2071
2072 KASSERT(sp->vp == vp);
2073 if (!seglocked) {
2074 sp->vp = NULL; /* XXX lfs_gather below will set this */
2075
2076 /* Write indirect blocks as well */
2077 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2078 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2079 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2080
2081 KASSERT(sp->vp == NULL);
2082 sp->vp = vp;
2083 }
2084
2085 /*
2086 * Blocks are now gathered into a segment waiting to be written.
2087 * All that's left to do is update metadata, and write them.
2088 */
2089 lfs_updatemeta(sp);
2090 KASSERT(sp->vp == vp);
2091 sp->vp = NULL;
2092
2093 if (seglocked) {
2094 /* we're called by lfs_writefile. */
2095 return error;
2096 }
2097
2098 /*
2099 * Clean up FIP, since we're done writing this file.
2100 * This should duplicate cleanup at the end of lfs_writefile().
2101 */
2102 if (sp->fip->fi_nblocks != 0) {
2103 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2104 sizeof(int32_t) * sp->fip->fi_nblocks);
2105 sp->start_lbp = &sp->fip->fi_blocks[0];
2106 } else {
2107 sp->sum_bytes_left += FINFOSIZE;
2108 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2109 }
2110 lfs_writeseg(fs, fs->lfs_sp);
2111
2112 /*
2113 * Remove us from paging queue, since we've now written all our
2114 * pages.
2115 */
2116 simple_lock(&fs->lfs_interlock);
2117 if (ip->i_flags & IN_PAGING) {
2118 ip->i_flags &= ~IN_PAGING;
2119 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2120 }
2121 simple_unlock(&fs->lfs_interlock);
2122
2123 /*
2124 * XXX - with the malloc/copy writeseg, the pages are freed by now
2125 * even if we don't wait (e.g. if we hold a nested lock). This
2126 * will not be true if we stop using malloc/copy.
2127 */
2128 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2129 lfs_segunlock(fs);
2130
2131 /*
2132 * Wait for v_numoutput to drop to zero. The seglock should
2133 * take care of this, but there is a slight possibility that
2134 * aiodoned might not have got around to our buffers yet.
2135 */
2136 if (sync) {
2137 s = splbio();
2138 simple_lock(&global_v_numoutput_slock);
2139 while (vp->v_numoutput > 0) {
2140 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2141 " num %d\n", ip->i_number, vp->v_numoutput));
2142 vp->v_flag |= VBWAIT;
2143 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2144 &global_v_numoutput_slock);
2145 }
2146 simple_unlock(&global_v_numoutput_slock);
2147 splx(s);
2148 }
2149 return error;
2150 }
2151
2152 /*
2153 * Return the last logical file offset that should be written for this file
2154 * if we're doing a write that ends at "size". If writing, we need to know
2155 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2156 * to know about entire blocks.
2157 */
2158 void
2159 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2160 {
2161 struct inode *ip = VTOI(vp);
2162 struct lfs *fs = ip->i_lfs;
2163 daddr_t olbn, nlbn;
2164
2165 olbn = lblkno(fs, ip->i_size);
2166 nlbn = lblkno(fs, size);
2167 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2168 *eobp = fragroundup(fs, size);
2169 } else {
2170 *eobp = blkroundup(fs, size);
2171 }
2172 }
2173
2174 #ifdef DEBUG
2175 void lfs_dump_vop(void *);
2176
2177 void
2178 lfs_dump_vop(void *v)
2179 {
2180 struct vop_putpages_args /* {
2181 struct vnode *a_vp;
2182 voff_t a_offlo;
2183 voff_t a_offhi;
2184 int a_flags;
2185 } */ *ap = v;
2186
2187 #ifdef DDB
2188 vfs_vnode_print(ap->a_vp, 0, printf);
2189 #endif
2190 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2191 }
2192 #endif
2193
2194 int
2195 lfs_mmap(void *v)
2196 {
2197 struct vop_mmap_args /* {
2198 const struct vnodeop_desc *a_desc;
2199 struct vnode *a_vp;
2200 int a_fflags;
2201 struct ucred *a_cred;
2202 struct lwp *a_l;
2203 } */ *ap = v;
2204
2205 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2206 return EOPNOTSUPP;
2207 return ufs_mmap(v);
2208 }
2209