lfs_vnops.c revision 1.173 1 /* $NetBSD: lfs_vnops.c,v 1.173 2006/05/04 04:22:57 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.173 2006/05/04 04:22:57 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_lease_desc, spec_lease_check }, /* lease */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
201 };
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
204
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, fifo_lookup }, /* lookup */
209 { &vop_create_desc, fifo_create }, /* create */
210 { &vop_mknod_desc, fifo_mknod }, /* mknod */
211 { &vop_open_desc, fifo_open }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_lease_desc, fifo_lease_check }, /* lease */
219 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
220 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
221 { &vop_poll_desc, fifo_poll }, /* poll */
222 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
223 { &vop_revoke_desc, fifo_revoke }, /* revoke */
224 { &vop_mmap_desc, fifo_mmap }, /* mmap */
225 { &vop_fsync_desc, fifo_fsync }, /* fsync */
226 { &vop_seek_desc, fifo_seek }, /* seek */
227 { &vop_remove_desc, fifo_remove }, /* remove */
228 { &vop_link_desc, fifo_link }, /* link */
229 { &vop_rename_desc, fifo_rename }, /* rename */
230 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
231 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
232 { &vop_symlink_desc, fifo_symlink }, /* symlink */
233 { &vop_readdir_desc, fifo_readdir }, /* readdir */
234 { &vop_readlink_desc, fifo_readlink }, /* readlink */
235 { &vop_abortop_desc, fifo_abortop }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ufs_lock }, /* lock */
239 { &vop_unlock_desc, ufs_unlock }, /* unlock */
240 { &vop_bmap_desc, fifo_bmap }, /* bmap */
241 { &vop_strategy_desc, fifo_strategy }, /* strategy */
242 { &vop_print_desc, ufs_print }, /* print */
243 { &vop_islocked_desc, ufs_islocked }, /* islocked */
244 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
245 { &vop_advlock_desc, fifo_advlock }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, fifo_putpages }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
254
255 #define LFS_READWRITE
256 #include <ufs/ufs/ufs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 struct ucred *a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 struct lwp *a_l;
273 } */ *ap = v;
274 struct vnode *vp = ap->a_vp;
275 int error, wait;
276
277 /* If we're mounted read-only, don't try to sync. */
278 if (VTOI(vp)->i_lfs->lfs_ronly)
279 return 0;
280
281 /*
282 * Trickle sync checks for need to do a checkpoint after possible
283 * activity from the pagedaemon.
284 */
285 if (ap->a_flags & FSYNC_LAZY) {
286 simple_lock(&lfs_subsys_lock);
287 wakeup(&lfs_writer_daemon);
288 simple_unlock(&lfs_subsys_lock);
289 return 0;
290 }
291
292 wait = (ap->a_flags & FSYNC_WAIT);
293 simple_lock(&vp->v_interlock);
294 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
295 round_page(ap->a_offhi),
296 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
297 if (error)
298 return error;
299 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
300 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
301 int l = 0;
302 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
303 ap->a_l->l_proc->p_ucred, ap->a_l);
304 }
305 if (wait && !VPISEMPTY(vp))
306 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
307
308 return error;
309 }
310
311 /*
312 * Take IN_ADIROP off, then call ufs_inactive.
313 */
314 int
315 lfs_inactive(void *v)
316 {
317 struct vop_inactive_args /* {
318 struct vnode *a_vp;
319 struct lwp *a_l;
320 } */ *ap = v;
321
322 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
323
324 lfs_unmark_vnode(ap->a_vp);
325
326 /*
327 * The Ifile is only ever inactivated on unmount.
328 * Streamline this process by not giving it more dirty blocks.
329 */
330 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
331 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
332 VOP_UNLOCK(ap->a_vp, 0);
333 return 0;
334 }
335
336 return ufs_inactive(v);
337 }
338
339 /*
340 * These macros are used to bracket UFS directory ops, so that we can
341 * identify all the pages touched during directory ops which need to
342 * be ordered and flushed atomically, so that they may be recovered.
343 *
344 * Because we have to mark nodes VDIROP in order to prevent
345 * the cache from reclaiming them while a dirop is in progress, we must
346 * also manage the number of nodes so marked (otherwise we can run out).
347 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
348 * is decremented during segment write, when VDIROP is taken off.
349 */
350 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
351 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
352 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
353 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
354 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
355 static int lfs_set_dirop(struct vnode *, struct vnode *);
356
357 static int
358 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
359 {
360 struct lfs *fs;
361 int error;
362
363 KASSERT(VOP_ISLOCKED(dvp));
364 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
365
366 fs = VTOI(dvp)->i_lfs;
367
368 ASSERT_NO_SEGLOCK(fs);
369 /*
370 * LFS_NRESERVE calculates direct and indirect blocks as well
371 * as an inode block; an overestimate in most cases.
372 */
373 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
374 return (error);
375
376 restart:
377 simple_lock(&fs->lfs_interlock);
378 if (fs->lfs_dirops == 0) {
379 simple_unlock(&fs->lfs_interlock);
380 lfs_check(dvp, LFS_UNUSED_LBN, 0);
381 simple_lock(&fs->lfs_interlock);
382 }
383 while (fs->lfs_writer)
384 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
385 &fs->lfs_interlock);
386 simple_lock(&lfs_subsys_lock);
387 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
388 wakeup(&lfs_writer_daemon);
389 simple_unlock(&lfs_subsys_lock);
390 simple_unlock(&fs->lfs_interlock);
391 preempt(1);
392 goto restart;
393 }
394
395 if (lfs_dirvcount > LFS_MAX_DIROP) {
396 simple_unlock(&fs->lfs_interlock);
397 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
398 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
399 if ((error = ltsleep(&lfs_dirvcount,
400 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
401 &lfs_subsys_lock)) != 0) {
402 goto unreserve;
403 }
404 goto restart;
405 }
406 simple_unlock(&lfs_subsys_lock);
407
408 ++fs->lfs_dirops;
409 fs->lfs_doifile = 1;
410 simple_unlock(&fs->lfs_interlock);
411
412 /* Hold a reference so SET_ENDOP will be happy */
413 vref(dvp);
414 if (vp) {
415 vref(vp);
416 MARK_VNODE(vp);
417 }
418
419 MARK_VNODE(dvp);
420 return 0;
421
422 unreserve:
423 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
424 return error;
425 }
426
427 /*
428 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
429 * in getnewvnode(), if we have a stacked filesystem mounted on top
430 * of us.
431 *
432 * NB: this means we have to clear the new vnodes on error. Fortunately
433 * SET_ENDOP is there to do that for us.
434 */
435 static int
436 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
437 {
438 int error;
439 struct lfs *fs;
440
441 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
442 ASSERT_NO_SEGLOCK(fs);
443 if (fs->lfs_ronly)
444 return EROFS;
445 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
446 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
447 dvp, error));
448 return error;
449 }
450 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
451 if (vpp) {
452 ungetnewvnode(*vpp);
453 *vpp = NULL;
454 }
455 return error;
456 }
457 return 0;
458 }
459
460 #define SET_ENDOP_BASE(fs, dvp, str) \
461 do { \
462 simple_lock(&(fs)->lfs_interlock); \
463 --(fs)->lfs_dirops; \
464 if (!(fs)->lfs_dirops) { \
465 if ((fs)->lfs_nadirop) { \
466 panic("SET_ENDOP: %s: no dirops but " \
467 " nadirop=%d", (str), \
468 (fs)->lfs_nadirop); \
469 } \
470 wakeup(&(fs)->lfs_writer); \
471 simple_unlock(&(fs)->lfs_interlock); \
472 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
473 } else \
474 simple_unlock(&(fs)->lfs_interlock); \
475 } while(0)
476 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
477 do { \
478 UNMARK_VNODE(dvp); \
479 if (nvpp && *nvpp) \
480 UNMARK_VNODE(*nvpp); \
481 /* Check for error return to stem vnode leakage */ \
482 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
483 ungetnewvnode(*(nvpp)); \
484 SET_ENDOP_BASE((fs), (dvp), (str)); \
485 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
486 vrele(dvp); \
487 } while(0)
488 #define SET_ENDOP_CREATE_AP(ap, str) \
489 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
490 (ap)->a_vpp, (str))
491 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
492 do { \
493 UNMARK_VNODE(dvp); \
494 if (ovp) \
495 UNMARK_VNODE(ovp); \
496 SET_ENDOP_BASE((fs), (dvp), (str)); \
497 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
498 vrele(dvp); \
499 if (ovp) \
500 vrele(ovp); \
501 } while(0)
502
503 void
504 lfs_mark_vnode(struct vnode *vp)
505 {
506 struct inode *ip = VTOI(vp);
507 struct lfs *fs = ip->i_lfs;
508
509 simple_lock(&fs->lfs_interlock);
510 if (!(ip->i_flag & IN_ADIROP)) {
511 if (!(vp->v_flag & VDIROP)) {
512 (void)lfs_vref(vp);
513 simple_lock(&lfs_subsys_lock);
514 ++lfs_dirvcount;
515 ++fs->lfs_dirvcount;
516 simple_unlock(&lfs_subsys_lock);
517 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
518 vp->v_flag |= VDIROP;
519 }
520 ++fs->lfs_nadirop;
521 ip->i_flag |= IN_ADIROP;
522 } else
523 KASSERT(vp->v_flag & VDIROP);
524 simple_unlock(&fs->lfs_interlock);
525 }
526
527 void
528 lfs_unmark_vnode(struct vnode *vp)
529 {
530 struct inode *ip = VTOI(vp);
531
532 if (ip && (ip->i_flag & IN_ADIROP)) {
533 KASSERT(vp->v_flag & VDIROP);
534 simple_lock(&ip->i_lfs->lfs_interlock);
535 --ip->i_lfs->lfs_nadirop;
536 simple_unlock(&ip->i_lfs->lfs_interlock);
537 ip->i_flag &= ~IN_ADIROP;
538 }
539 }
540
541 int
542 lfs_symlink(void *v)
543 {
544 struct vop_symlink_args /* {
545 struct vnode *a_dvp;
546 struct vnode **a_vpp;
547 struct componentname *a_cnp;
548 struct vattr *a_vap;
549 char *a_target;
550 } */ *ap = v;
551 int error;
552
553 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
554 vput(ap->a_dvp);
555 return error;
556 }
557 error = ufs_symlink(ap);
558 SET_ENDOP_CREATE_AP(ap, "symlink");
559 return (error);
560 }
561
562 int
563 lfs_mknod(void *v)
564 {
565 struct vop_mknod_args /* {
566 struct vnode *a_dvp;
567 struct vnode **a_vpp;
568 struct componentname *a_cnp;
569 struct vattr *a_vap;
570 } */ *ap = v;
571 struct vattr *vap = ap->a_vap;
572 struct vnode **vpp = ap->a_vpp;
573 struct inode *ip;
574 int error;
575 struct mount *mp;
576 ino_t ino;
577
578 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
579 vput(ap->a_dvp);
580 return error;
581 }
582 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
583 ap->a_dvp, vpp, ap->a_cnp);
584
585 /* Either way we're done with the dirop at this point */
586 SET_ENDOP_CREATE_AP(ap, "mknod");
587
588 if (error)
589 return (error);
590
591 ip = VTOI(*vpp);
592 mp = (*vpp)->v_mount;
593 ino = ip->i_number;
594 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
595 if (vap->va_rdev != VNOVAL) {
596 /*
597 * Want to be able to use this to make badblock
598 * inodes, so don't truncate the dev number.
599 */
600 #if 0
601 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
602 UFS_MPNEEDSWAP((*vpp)->v_mount));
603 #else
604 ip->i_ffs1_rdev = vap->va_rdev;
605 #endif
606 }
607
608 /*
609 * Call fsync to write the vnode so that we don't have to deal with
610 * flushing it when it's marked VDIROP|VXLOCK.
611 *
612 * XXX KS - If we can't flush we also can't call vgone(), so must
613 * return. But, that leaves this vnode in limbo, also not good.
614 * Can this ever happen (barring hardware failure)?
615 */
616 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
617 curlwp)) != 0) {
618 panic("lfs_mknod: couldn't fsync (ino %llu)",
619 (unsigned long long)ino);
620 /* return (error); */
621 }
622 /*
623 * Remove vnode so that it will be reloaded by VFS_VGET and
624 * checked to see if it is an alias of an existing entry in
625 * the inode cache.
626 */
627 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
628
629 VOP_UNLOCK(*vpp, 0);
630 lfs_vunref(*vpp);
631 (*vpp)->v_type = VNON;
632 vgone(*vpp);
633 error = VFS_VGET(mp, ino, vpp);
634
635 if (error != 0) {
636 *vpp = NULL;
637 return (error);
638 }
639 return (0);
640 }
641
642 int
643 lfs_create(void *v)
644 {
645 struct vop_create_args /* {
646 struct vnode *a_dvp;
647 struct vnode **a_vpp;
648 struct componentname *a_cnp;
649 struct vattr *a_vap;
650 } */ *ap = v;
651 int error;
652
653 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
654 vput(ap->a_dvp);
655 return error;
656 }
657 error = ufs_create(ap);
658 SET_ENDOP_CREATE_AP(ap, "create");
659 return (error);
660 }
661
662 int
663 lfs_mkdir(void *v)
664 {
665 struct vop_mkdir_args /* {
666 struct vnode *a_dvp;
667 struct vnode **a_vpp;
668 struct componentname *a_cnp;
669 struct vattr *a_vap;
670 } */ *ap = v;
671 int error;
672
673 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
674 vput(ap->a_dvp);
675 return error;
676 }
677 error = ufs_mkdir(ap);
678 SET_ENDOP_CREATE_AP(ap, "mkdir");
679 return (error);
680 }
681
682 int
683 lfs_remove(void *v)
684 {
685 struct vop_remove_args /* {
686 struct vnode *a_dvp;
687 struct vnode *a_vp;
688 struct componentname *a_cnp;
689 } */ *ap = v;
690 struct vnode *dvp, *vp;
691 int error;
692
693 dvp = ap->a_dvp;
694 vp = ap->a_vp;
695 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
696 if (dvp == vp)
697 vrele(vp);
698 else
699 vput(vp);
700 vput(dvp);
701 return error;
702 }
703 error = ufs_remove(ap);
704 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
705 return (error);
706 }
707
708 int
709 lfs_rmdir(void *v)
710 {
711 struct vop_rmdir_args /* {
712 struct vnodeop_desc *a_desc;
713 struct vnode *a_dvp;
714 struct vnode *a_vp;
715 struct componentname *a_cnp;
716 } */ *ap = v;
717 struct vnode *vp;
718 int error;
719
720 vp = ap->a_vp;
721 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
722 vrele(ap->a_dvp);
723 if (ap->a_vp != ap->a_dvp)
724 VOP_UNLOCK(ap->a_dvp, 0);
725 vput(vp);
726 return error;
727 }
728 error = ufs_rmdir(ap);
729 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
730 return (error);
731 }
732
733 int
734 lfs_link(void *v)
735 {
736 struct vop_link_args /* {
737 struct vnode *a_dvp;
738 struct vnode *a_vp;
739 struct componentname *a_cnp;
740 } */ *ap = v;
741 int error;
742 struct vnode **vpp = NULL;
743
744 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
745 vput(ap->a_dvp);
746 return error;
747 }
748 error = ufs_link(ap);
749 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
750 return (error);
751 }
752
753 int
754 lfs_rename(void *v)
755 {
756 struct vop_rename_args /* {
757 struct vnode *a_fdvp;
758 struct vnode *a_fvp;
759 struct componentname *a_fcnp;
760 struct vnode *a_tdvp;
761 struct vnode *a_tvp;
762 struct componentname *a_tcnp;
763 } */ *ap = v;
764 struct vnode *tvp, *fvp, *tdvp, *fdvp;
765 struct componentname *tcnp, *fcnp;
766 int error;
767 struct lfs *fs;
768
769 fs = VTOI(ap->a_fdvp)->i_lfs;
770 tvp = ap->a_tvp;
771 tdvp = ap->a_tdvp;
772 tcnp = ap->a_tcnp;
773 fvp = ap->a_fvp;
774 fdvp = ap->a_fdvp;
775 fcnp = ap->a_fcnp;
776
777 /*
778 * Check for cross-device rename.
779 * If it is, we don't want to set dirops, just error out.
780 * (In particular note that MARK_VNODE(tdvp) will DTWT on
781 * a cross-device rename.)
782 *
783 * Copied from ufs_rename.
784 */
785 if ((fvp->v_mount != tdvp->v_mount) ||
786 (tvp && (fvp->v_mount != tvp->v_mount))) {
787 error = EXDEV;
788 goto errout;
789 }
790
791 /*
792 * Check to make sure we're not renaming a vnode onto itself
793 * (deleting a hard link by renaming one name onto another);
794 * if we are we can't recursively call VOP_REMOVE since that
795 * would leave us with an unaccounted-for number of live dirops.
796 *
797 * Inline the relevant section of ufs_rename here, *before*
798 * calling SET_DIROP_REMOVE.
799 */
800 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
801 (VTOI(tdvp)->i_flags & APPEND))) {
802 error = EPERM;
803 goto errout;
804 }
805 if (fvp == tvp) {
806 if (fvp->v_type == VDIR) {
807 error = EINVAL;
808 goto errout;
809 }
810
811 /* Release destination completely. */
812 VOP_ABORTOP(tdvp, tcnp);
813 vput(tdvp);
814 vput(tvp);
815
816 /* Delete source. */
817 vrele(fvp);
818 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
819 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
820 fcnp->cn_nameiop = DELETE;
821 if ((error = relookup(fdvp, &fvp, fcnp))){
822 /* relookup blew away fdvp */
823 return (error);
824 }
825 return (VOP_REMOVE(fdvp, fvp, fcnp));
826 }
827
828 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
829 goto errout;
830 MARK_VNODE(fdvp);
831 MARK_VNODE(fvp);
832
833 error = ufs_rename(ap);
834 UNMARK_VNODE(fdvp);
835 UNMARK_VNODE(fvp);
836 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
837 return (error);
838
839 errout:
840 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
841 if (tdvp == tvp)
842 vrele(tdvp);
843 else
844 vput(tdvp);
845 if (tvp)
846 vput(tvp);
847 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
848 vrele(fdvp);
849 vrele(fvp);
850 return (error);
851 }
852
853 /* XXX hack to avoid calling ITIMES in getattr */
854 int
855 lfs_getattr(void *v)
856 {
857 struct vop_getattr_args /* {
858 struct vnode *a_vp;
859 struct vattr *a_vap;
860 struct ucred *a_cred;
861 struct lwp *a_l;
862 } */ *ap = v;
863 struct vnode *vp = ap->a_vp;
864 struct inode *ip = VTOI(vp);
865 struct vattr *vap = ap->a_vap;
866 struct lfs *fs = ip->i_lfs;
867 /*
868 * Copy from inode table
869 */
870 vap->va_fsid = ip->i_dev;
871 vap->va_fileid = ip->i_number;
872 vap->va_mode = ip->i_mode & ~IFMT;
873 vap->va_nlink = ip->i_nlink;
874 vap->va_uid = ip->i_uid;
875 vap->va_gid = ip->i_gid;
876 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
877 vap->va_size = vp->v_size;
878 vap->va_atime.tv_sec = ip->i_ffs1_atime;
879 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
880 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
881 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
882 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
883 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
884 vap->va_flags = ip->i_flags;
885 vap->va_gen = ip->i_gen;
886 /* this doesn't belong here */
887 if (vp->v_type == VBLK)
888 vap->va_blocksize = BLKDEV_IOSIZE;
889 else if (vp->v_type == VCHR)
890 vap->va_blocksize = MAXBSIZE;
891 else
892 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
893 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
894 vap->va_type = vp->v_type;
895 vap->va_filerev = ip->i_modrev;
896 return (0);
897 }
898
899 /*
900 * Check to make sure the inode blocks won't choke the buffer
901 * cache, then call ufs_setattr as usual.
902 */
903 int
904 lfs_setattr(void *v)
905 {
906 struct vop_setattr_args /* {
907 struct vnode *a_vp;
908 struct vattr *a_vap;
909 struct ucred *a_cred;
910 struct lwp *a_l;
911 } */ *ap = v;
912 struct vnode *vp = ap->a_vp;
913
914 lfs_check(vp, LFS_UNUSED_LBN, 0);
915 return ufs_setattr(v);
916 }
917
918 /*
919 * Close called
920 *
921 * XXX -- we were using ufs_close, but since it updates the
922 * times on the inode, we might need to bump the uinodes
923 * count.
924 */
925 /* ARGSUSED */
926 int
927 lfs_close(void *v)
928 {
929 struct vop_close_args /* {
930 struct vnode *a_vp;
931 int a_fflag;
932 struct ucred *a_cred;
933 struct lwp *a_l;
934 } */ *ap = v;
935 struct vnode *vp = ap->a_vp;
936 struct inode *ip = VTOI(vp);
937
938 if (vp == ip->i_lfs->lfs_ivnode &&
939 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
940 return 0;
941
942 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
943 LFS_ITIMES(ip, NULL, NULL, NULL);
944 }
945 return (0);
946 }
947
948 /*
949 * Close wrapper for special devices.
950 *
951 * Update the times on the inode then do device close.
952 */
953 int
954 lfsspec_close(void *v)
955 {
956 struct vop_close_args /* {
957 struct vnode *a_vp;
958 int a_fflag;
959 struct ucred *a_cred;
960 struct lwp *a_l;
961 } */ *ap = v;
962 struct vnode *vp;
963 struct inode *ip;
964
965 vp = ap->a_vp;
966 ip = VTOI(vp);
967 if (vp->v_usecount > 1) {
968 LFS_ITIMES(ip, NULL, NULL, NULL);
969 }
970 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
971 }
972
973 /*
974 * Close wrapper for fifo's.
975 *
976 * Update the times on the inode then do device close.
977 */
978 int
979 lfsfifo_close(void *v)
980 {
981 struct vop_close_args /* {
982 struct vnode *a_vp;
983 int a_fflag;
984 struct ucred *a_cred;
985 struct lwp *a_l;
986 } */ *ap = v;
987 struct vnode *vp;
988 struct inode *ip;
989
990 vp = ap->a_vp;
991 ip = VTOI(vp);
992 if (ap->a_vp->v_usecount > 1) {
993 LFS_ITIMES(ip, NULL, NULL, NULL);
994 }
995 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
996 }
997
998 /*
999 * Reclaim an inode so that it can be used for other purposes.
1000 */
1001
1002 int
1003 lfs_reclaim(void *v)
1004 {
1005 struct vop_reclaim_args /* {
1006 struct vnode *a_vp;
1007 struct lwp *a_l;
1008 } */ *ap = v;
1009 struct vnode *vp = ap->a_vp;
1010 struct inode *ip = VTOI(vp);
1011 int error;
1012
1013 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1014
1015 LFS_CLR_UINO(ip, IN_ALLMOD);
1016 if ((error = ufs_reclaim(vp, ap->a_l)))
1017 return (error);
1018 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1019 lfs_deregister_all(vp);
1020 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1021 ip->inode_ext.lfs = NULL;
1022 pool_put(&lfs_inode_pool, vp->v_data);
1023 vp->v_data = NULL;
1024 return (0);
1025 }
1026
1027 /*
1028 * Read a block from a storage device.
1029 * In order to avoid reading blocks that are in the process of being
1030 * written by the cleaner---and hence are not mutexed by the normal
1031 * buffer cache / page cache mechanisms---check for collisions before
1032 * reading.
1033 *
1034 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1035 * the active cleaner test.
1036 *
1037 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1038 */
1039 int
1040 lfs_strategy(void *v)
1041 {
1042 struct vop_strategy_args /* {
1043 struct vnode *a_vp;
1044 struct buf *a_bp;
1045 } */ *ap = v;
1046 struct buf *bp;
1047 struct lfs *fs;
1048 struct vnode *vp;
1049 struct inode *ip;
1050 daddr_t tbn;
1051 int i, sn, error, slept;
1052
1053 bp = ap->a_bp;
1054 vp = ap->a_vp;
1055 ip = VTOI(vp);
1056 fs = ip->i_lfs;
1057
1058 /* lfs uses its strategy routine only for read */
1059 KASSERT(bp->b_flags & B_READ);
1060
1061 if (vp->v_type == VBLK || vp->v_type == VCHR)
1062 panic("lfs_strategy: spec");
1063 KASSERT(bp->b_bcount != 0);
1064 if (bp->b_blkno == bp->b_lblkno) {
1065 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1066 NULL);
1067 if (error) {
1068 bp->b_error = error;
1069 bp->b_flags |= B_ERROR;
1070 biodone(bp);
1071 return (error);
1072 }
1073 if ((long)bp->b_blkno == -1) /* no valid data */
1074 clrbuf(bp);
1075 }
1076 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1077 biodone(bp);
1078 return (0);
1079 }
1080
1081 slept = 1;
1082 simple_lock(&fs->lfs_interlock);
1083 while (slept && fs->lfs_seglock) {
1084 simple_unlock(&fs->lfs_interlock);
1085 /*
1086 * Look through list of intervals.
1087 * There will only be intervals to look through
1088 * if the cleaner holds the seglock.
1089 * Since the cleaner is synchronous, we can trust
1090 * the list of intervals to be current.
1091 */
1092 tbn = dbtofsb(fs, bp->b_blkno);
1093 sn = dtosn(fs, tbn);
1094 slept = 0;
1095 for (i = 0; i < fs->lfs_cleanind; i++) {
1096 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1097 tbn >= fs->lfs_cleanint[i]) {
1098 DLOG((DLOG_CLEAN,
1099 "lfs_strategy: ino %d lbn %" PRId64
1100 " ind %d sn %d fsb %" PRIx32
1101 " given sn %d fsb %" PRIx64 "\n",
1102 ip->i_number, bp->b_lblkno, i,
1103 dtosn(fs, fs->lfs_cleanint[i]),
1104 fs->lfs_cleanint[i], sn, tbn));
1105 DLOG((DLOG_CLEAN,
1106 "lfs_strategy: sleeping on ino %d lbn %"
1107 PRId64 "\n", ip->i_number, bp->b_lblkno));
1108 simple_lock(&fs->lfs_interlock);
1109 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1110 /* Cleaner can't wait for itself */
1111 ltsleep(&fs->lfs_iocount,
1112 (PRIBIO + 1) | PNORELOCK,
1113 "clean2", 0,
1114 &fs->lfs_interlock);
1115 slept = 1;
1116 break;
1117 } else if (fs->lfs_seglock) {
1118 ltsleep(&fs->lfs_seglock,
1119 (PRIBIO + 1) | PNORELOCK,
1120 "clean1", 0,
1121 &fs->lfs_interlock);
1122 slept = 1;
1123 break;
1124 }
1125 simple_unlock(&fs->lfs_interlock);
1126 }
1127 }
1128 simple_lock(&fs->lfs_interlock);
1129 }
1130 simple_unlock(&fs->lfs_interlock);
1131
1132 vp = ip->i_devvp;
1133 VOP_STRATEGY(vp, bp);
1134 return (0);
1135 }
1136
1137 void
1138 lfs_flush_dirops(struct lfs *fs)
1139 {
1140 struct inode *ip, *nip;
1141 struct vnode *vp;
1142 extern int lfs_dostats;
1143 struct segment *sp;
1144 int waslocked;
1145
1146 ASSERT_MAYBE_SEGLOCK(fs);
1147 KASSERT(fs->lfs_nadirop == 0);
1148
1149 if (fs->lfs_ronly)
1150 return;
1151
1152 simple_lock(&fs->lfs_interlock);
1153 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1154 simple_unlock(&fs->lfs_interlock);
1155 return;
1156 } else
1157 simple_unlock(&fs->lfs_interlock);
1158
1159 if (lfs_dostats)
1160 ++lfs_stats.flush_invoked;
1161
1162 /*
1163 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1164 * Technically this is a checkpoint (the on-disk state is valid)
1165 * even though we are leaving out all the file data.
1166 */
1167 lfs_imtime(fs);
1168 lfs_seglock(fs, SEGM_CKP);
1169 sp = fs->lfs_sp;
1170
1171 /*
1172 * lfs_writevnodes, optimized to get dirops out of the way.
1173 * Only write dirops, and don't flush files' pages, only
1174 * blocks from the directories.
1175 *
1176 * We don't need to vref these files because they are
1177 * dirops and so hold an extra reference until the
1178 * segunlock clears them of that status.
1179 *
1180 * We don't need to check for IN_ADIROP because we know that
1181 * no dirops are active.
1182 *
1183 */
1184 simple_lock(&fs->lfs_interlock);
1185 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1186 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1187 simple_unlock(&fs->lfs_interlock);
1188 vp = ITOV(ip);
1189
1190 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1191
1192 /*
1193 * All writes to directories come from dirops; all
1194 * writes to files' direct blocks go through the page
1195 * cache, which we're not touching. Reads to files
1196 * and/or directories will not be affected by writing
1197 * directory blocks inodes and file inodes. So we don't
1198 * really need to lock. If we don't lock, though,
1199 * make sure that we don't clear IN_MODIFIED
1200 * unnecessarily.
1201 */
1202 if (vp->v_flag & (VXLOCK | VFREEING)) {
1203 simple_lock(&fs->lfs_interlock);
1204 continue;
1205 }
1206 waslocked = VOP_ISLOCKED(vp);
1207 if (vp->v_type != VREG &&
1208 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1209 lfs_writefile(fs, sp, vp);
1210 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1211 !(ip->i_flag & IN_ALLMOD)) {
1212 LFS_SET_UINO(ip, IN_MODIFIED);
1213 }
1214 }
1215 (void) lfs_writeinode(fs, sp, ip);
1216 if (waslocked)
1217 LFS_SET_UINO(ip, IN_MODIFIED);
1218 simple_lock(&fs->lfs_interlock);
1219 }
1220 simple_unlock(&fs->lfs_interlock);
1221 /* We've written all the dirops there are */
1222 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1223 lfs_finalize_fs_seguse(fs);
1224 (void) lfs_writeseg(fs, sp);
1225 lfs_segunlock(fs);
1226 }
1227
1228 /*
1229 * Flush all vnodes for which the pagedaemon has requested pageouts.
1230 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1231 * has just run, this would be an error). If we have to skip a vnode
1232 * for any reason, just skip it; if we have to wait for the cleaner,
1233 * abort. The writer daemon will call us again later.
1234 */
1235 void
1236 lfs_flush_pchain(struct lfs *fs)
1237 {
1238 struct inode *ip, *nip;
1239 struct vnode *vp;
1240 extern int lfs_dostats;
1241 struct segment *sp;
1242 int error;
1243
1244 ASSERT_NO_SEGLOCK(fs);
1245
1246 if (fs->lfs_ronly)
1247 return;
1248
1249 simple_lock(&fs->lfs_interlock);
1250 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1251 simple_unlock(&fs->lfs_interlock);
1252 return;
1253 } else
1254 simple_unlock(&fs->lfs_interlock);
1255
1256 /* Get dirops out of the way */
1257 lfs_flush_dirops(fs);
1258
1259 if (lfs_dostats)
1260 ++lfs_stats.flush_invoked;
1261
1262 /*
1263 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1264 */
1265 lfs_imtime(fs);
1266 lfs_seglock(fs, 0);
1267 sp = fs->lfs_sp;
1268
1269 /*
1270 * lfs_writevnodes, optimized to clear pageout requests.
1271 * Only write non-dirop files that are in the pageout queue.
1272 * We're very conservative about what we write; we want to be
1273 * fast and async.
1274 */
1275 simple_lock(&fs->lfs_interlock);
1276 top:
1277 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1278 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1279 vp = ITOV(ip);
1280
1281 if (!(ip->i_flags & IN_PAGING))
1282 goto top;
1283
1284 if (vp->v_flag & (VXLOCK|VDIROP))
1285 continue;
1286 if (vp->v_type != VREG)
1287 continue;
1288 if (lfs_vref(vp))
1289 continue;
1290 simple_unlock(&fs->lfs_interlock);
1291
1292 if (VOP_ISLOCKED(vp)) {
1293 lfs_vunref(vp);
1294 simple_lock(&fs->lfs_interlock);
1295 continue;
1296 }
1297
1298 error = lfs_writefile(fs, sp, vp);
1299 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1300 !(ip->i_flag & IN_ALLMOD)) {
1301 LFS_SET_UINO(ip, IN_MODIFIED);
1302 }
1303 (void) lfs_writeinode(fs, sp, ip);
1304
1305 lfs_vunref(vp);
1306
1307 if (error == EAGAIN) {
1308 lfs_writeseg(fs, sp);
1309 simple_lock(&fs->lfs_interlock);
1310 break;
1311 }
1312 simple_lock(&fs->lfs_interlock);
1313 }
1314 simple_unlock(&fs->lfs_interlock);
1315 (void) lfs_writeseg(fs, sp);
1316 lfs_segunlock(fs);
1317 }
1318
1319 /*
1320 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1321 */
1322 int
1323 lfs_fcntl(void *v)
1324 {
1325 struct vop_fcntl_args /* {
1326 struct vnode *a_vp;
1327 u_long a_command;
1328 caddr_t a_data;
1329 int a_fflag;
1330 struct ucred *a_cred;
1331 struct lwp *a_l;
1332 } */ *ap = v;
1333 struct timeval *tvp;
1334 BLOCK_INFO *blkiov;
1335 CLEANERINFO *cip;
1336 SEGUSE *sup;
1337 int blkcnt, error, oclean;
1338 struct lfs_fcntl_markv blkvp;
1339 struct proc *p;
1340 fsid_t *fsidp;
1341 struct lfs *fs;
1342 struct buf *bp;
1343 fhandle_t *fhp;
1344 daddr_t off;
1345
1346 /* Only respect LFS fcntls on fs root or Ifile */
1347 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1348 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1349 return ufs_fcntl(v);
1350 }
1351
1352 /* Avoid locking a draining lock */
1353 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1354 return ESHUTDOWN;
1355 }
1356
1357 p = ap->a_l->l_proc;
1358 fs = VTOI(ap->a_vp)->i_lfs;
1359 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1360
1361 switch (ap->a_command) {
1362 case LFCNSEGWAITALL:
1363 case LFCNSEGWAITALL_COMPAT:
1364 fsidp = NULL;
1365 /* FALLSTHROUGH */
1366 case LFCNSEGWAIT:
1367 case LFCNSEGWAIT_COMPAT:
1368 tvp = (struct timeval *)ap->a_data;
1369 simple_lock(&fs->lfs_interlock);
1370 ++fs->lfs_sleepers;
1371 simple_unlock(&fs->lfs_interlock);
1372 VOP_UNLOCK(ap->a_vp, 0);
1373
1374 error = lfs_segwait(fsidp, tvp);
1375
1376 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1377 simple_lock(&fs->lfs_interlock);
1378 if (--fs->lfs_sleepers == 0)
1379 wakeup(&fs->lfs_sleepers);
1380 simple_unlock(&fs->lfs_interlock);
1381 return error;
1382
1383 case LFCNBMAPV:
1384 case LFCNMARKV:
1385 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1386 return (error);
1387 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1388
1389 blkcnt = blkvp.blkcnt;
1390 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1391 return (EINVAL);
1392 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1393 if ((error = copyin(blkvp.blkiov, blkiov,
1394 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1395 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1396 return error;
1397 }
1398
1399 simple_lock(&fs->lfs_interlock);
1400 ++fs->lfs_sleepers;
1401 simple_unlock(&fs->lfs_interlock);
1402 VOP_UNLOCK(ap->a_vp, 0);
1403 if (ap->a_command == LFCNBMAPV)
1404 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1405 else /* LFCNMARKV */
1406 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1407 if (error == 0)
1408 error = copyout(blkiov, blkvp.blkiov,
1409 blkcnt * sizeof(BLOCK_INFO));
1410 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1411 simple_lock(&fs->lfs_interlock);
1412 if (--fs->lfs_sleepers == 0)
1413 wakeup(&fs->lfs_sleepers);
1414 simple_unlock(&fs->lfs_interlock);
1415 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1416 return error;
1417
1418 case LFCNRECLAIM:
1419 /*
1420 * Flush dirops and write Ifile, allowing empty segments
1421 * to be immediately reclaimed.
1422 */
1423 VOP_UNLOCK(ap->a_vp, 0);
1424 lfs_writer_enter(fs, "pndirop");
1425 off = fs->lfs_offset;
1426 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1427 lfs_flush_dirops(fs);
1428 LFS_CLEANERINFO(cip, fs, bp);
1429 oclean = cip->clean;
1430 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1431 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1432 fs->lfs_sp->seg_flags |= SEGM_PROT;
1433 lfs_segunlock(fs);
1434 lfs_writer_leave(fs);
1435
1436 #ifdef DEBUG
1437 LFS_CLEANERINFO(cip, fs, bp);
1438 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1439 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1440 fs->lfs_offset - off, cip->clean - oclean,
1441 fs->lfs_activesb));
1442 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1443 #endif
1444
1445 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1446 return 0;
1447
1448 case LFCNIFILEFH:
1449 /* Return the filehandle of the Ifile */
1450 if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
1451 return (error);
1452 fhp = (struct fhandle *)ap->a_data;
1453 fhp->fh_fsid = *fsidp;
1454 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1455
1456 case LFCNREWIND:
1457 /* Move lfs_offset to the lowest-numbered segment */
1458 return lfs_rewind(fs, *(int *)ap->a_data);
1459
1460 case LFCNINVAL:
1461 /* Mark a segment SEGUSE_INVAL */
1462 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1463 if (sup->su_nbytes > 0) {
1464 brelse(bp);
1465 lfs_unset_inval_all(fs);
1466 return EBUSY;
1467 }
1468 sup->su_flags |= SEGUSE_INVAL;
1469 VOP_BWRITE(bp);
1470 return 0;
1471
1472 case LFCNRESIZE:
1473 /* Resize the filesystem */
1474 return lfs_resize_fs(fs, *(int *)ap->a_data);
1475
1476 case LFCNWRAPSTOP:
1477 /*
1478 * Hold lfs_newseg at segment 0; sleep until the filesystem
1479 * wraps around. For debugging purposes, so an external
1480 * agent can log every segment in the filesystem as it
1481 * was written, and we can regression-test checkpoint
1482 * validity in the general case.
1483 */
1484 VOP_UNLOCK(ap->a_vp, 0);
1485 simple_lock(&fs->lfs_interlock);
1486 fs->lfs_nowrap = 1;
1487 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
1488 "segwrap", 0, &fs->lfs_interlock);
1489 if (error) {
1490 fs->lfs_nowrap = 0;
1491 wakeup(&fs->lfs_nowrap);
1492 }
1493 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1494 return 0;
1495
1496 case LFCNWRAPGO:
1497 /*
1498 * Having done its work, the agent wakes up the writer.
1499 * It sleeps until a new segment is selected.
1500 */
1501 VOP_UNLOCK(ap->a_vp, 0);
1502 simple_lock(&fs->lfs_interlock);
1503 fs->lfs_nowrap = 0;
1504 wakeup(&fs->lfs_nowrap);
1505 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
1506 "segment", 0, &fs->lfs_interlock);
1507 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1508 return 0;
1509
1510 default:
1511 return ufs_fcntl(v);
1512 }
1513 return 0;
1514 }
1515
1516 int
1517 lfs_getpages(void *v)
1518 {
1519 struct vop_getpages_args /* {
1520 struct vnode *a_vp;
1521 voff_t a_offset;
1522 struct vm_page **a_m;
1523 int *a_count;
1524 int a_centeridx;
1525 vm_prot_t a_access_type;
1526 int a_advice;
1527 int a_flags;
1528 } */ *ap = v;
1529
1530 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1531 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1532 return EPERM;
1533 }
1534 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1535 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1536 }
1537
1538 /*
1539 * we're relying on the fact that genfs_getpages() always read in
1540 * entire filesystem blocks.
1541 */
1542 return genfs_getpages(v);
1543 }
1544
1545 /*
1546 * Make sure that for all pages in every block in the given range,
1547 * either all are dirty or all are clean. If any of the pages
1548 * we've seen so far are dirty, put the vnode on the paging chain,
1549 * and mark it IN_PAGING.
1550 *
1551 * If checkfirst != 0, don't check all the pages but return at the
1552 * first dirty page.
1553 */
1554 static int
1555 check_dirty(struct lfs *fs, struct vnode *vp,
1556 off_t startoffset, off_t endoffset, off_t blkeof,
1557 int flags, int checkfirst)
1558 {
1559 int by_list;
1560 struct vm_page *curpg = NULL; /* XXX: gcc */
1561 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1562 off_t soff = 0; /* XXX: gcc */
1563 voff_t off;
1564 int i;
1565 int nonexistent;
1566 int any_dirty; /* number of dirty pages */
1567 int dirty; /* number of dirty pages in a block */
1568 int tdirty;
1569 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1570 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1571
1572 ASSERT_MAYBE_SEGLOCK(fs);
1573 top:
1574 by_list = (vp->v_uobj.uo_npages <=
1575 ((endoffset - startoffset) >> PAGE_SHIFT) *
1576 UVM_PAGE_HASH_PENALTY);
1577 any_dirty = 0;
1578
1579 if (by_list) {
1580 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1581 } else {
1582 soff = startoffset;
1583 }
1584 while (by_list || soff < MIN(blkeof, endoffset)) {
1585 if (by_list) {
1586 /*
1587 * Find the first page in a block. Skip
1588 * blocks outside our area of interest or beyond
1589 * the end of file.
1590 */
1591 if (pages_per_block > 1) {
1592 while (curpg &&
1593 ((curpg->offset & fs->lfs_bmask) ||
1594 curpg->offset >= vp->v_size ||
1595 curpg->offset >= endoffset))
1596 curpg = TAILQ_NEXT(curpg, listq);
1597 }
1598 if (curpg == NULL)
1599 break;
1600 soff = curpg->offset;
1601 }
1602
1603 /*
1604 * Mark all pages in extended range busy; find out if any
1605 * of them are dirty.
1606 */
1607 nonexistent = dirty = 0;
1608 for (i = 0; i == 0 || i < pages_per_block; i++) {
1609 if (by_list && pages_per_block <= 1) {
1610 pgs[i] = pg = curpg;
1611 } else {
1612 off = soff + (i << PAGE_SHIFT);
1613 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1614 if (pg == NULL) {
1615 ++nonexistent;
1616 continue;
1617 }
1618 }
1619 KASSERT(pg != NULL);
1620
1621 /*
1622 * If we're holding the segment lock, we can deadlocked
1623 * against a process that has our page and is waiting
1624 * for the cleaner, while the cleaner waits for the
1625 * segment lock. Just bail in that case.
1626 */
1627 if ((pg->flags & PG_BUSY) &&
1628 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1629 if (by_list && i > 0)
1630 uvm_page_unbusy(pgs, i);
1631 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1632 return -1;
1633 }
1634
1635 while (pg->flags & PG_BUSY) {
1636 pg->flags |= PG_WANTED;
1637 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1638 "lfsput", 0);
1639 simple_lock(&vp->v_interlock);
1640 if (by_list) {
1641 if (i > 0)
1642 uvm_page_unbusy(pgs, i);
1643 goto top;
1644 }
1645 }
1646 pg->flags |= PG_BUSY;
1647 UVM_PAGE_OWN(pg, "lfs_putpages");
1648
1649 pmap_page_protect(pg, VM_PROT_NONE);
1650 tdirty = (pmap_clear_modify(pg) ||
1651 (pg->flags & PG_CLEAN) == 0);
1652 dirty += tdirty;
1653 }
1654 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1655 if (by_list) {
1656 curpg = TAILQ_NEXT(curpg, listq);
1657 } else {
1658 soff += fs->lfs_bsize;
1659 }
1660 continue;
1661 }
1662
1663 any_dirty += dirty;
1664 KASSERT(nonexistent == 0);
1665
1666 /*
1667 * If any are dirty make all dirty; unbusy them,
1668 * but if we were asked to clean, wire them so that
1669 * the pagedaemon doesn't bother us about them while
1670 * they're on their way to disk.
1671 */
1672 for (i = 0; i == 0 || i < pages_per_block; i++) {
1673 pg = pgs[i];
1674 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1675 if (dirty) {
1676 pg->flags &= ~PG_CLEAN;
1677 if (flags & PGO_FREE) {
1678 /*
1679 * Wire the page so that
1680 * pdaemon doesn't see it again.
1681 */
1682 uvm_lock_pageq();
1683 uvm_pagewire(pg);
1684 uvm_unlock_pageq();
1685
1686 /* Suspended write flag */
1687 pg->flags |= PG_DELWRI;
1688 }
1689 }
1690 if (pg->flags & PG_WANTED)
1691 wakeup(pg);
1692 pg->flags &= ~(PG_WANTED|PG_BUSY);
1693 UVM_PAGE_OWN(pg, NULL);
1694 }
1695
1696 if (checkfirst && any_dirty)
1697 break;
1698
1699 if (by_list) {
1700 curpg = TAILQ_NEXT(curpg, listq);
1701 } else {
1702 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1703 }
1704 }
1705
1706 return any_dirty;
1707 }
1708
1709 /*
1710 * lfs_putpages functions like genfs_putpages except that
1711 *
1712 * (1) It needs to bounds-check the incoming requests to ensure that
1713 * they are block-aligned; if they are not, expand the range and
1714 * do the right thing in case, e.g., the requested range is clean
1715 * but the expanded range is dirty.
1716 * (2) It needs to explicitly send blocks to be written when it is done.
1717 * VOP_PUTPAGES is not ever called with the seglock held, so
1718 * we simply take the seglock and let lfs_segunlock wait for us.
1719 * XXX Actually we can be called with the seglock held, if we have
1720 * XXX to flush a vnode while lfs_markv is in operation. As of this
1721 * XXX writing we panic in this case.
1722 *
1723 * Assumptions:
1724 *
1725 * (1) The caller does not hold any pages in this vnode busy. If it does,
1726 * there is a danger that when we expand the page range and busy the
1727 * pages we will deadlock.
1728 * (2) We are called with vp->v_interlock held; we must return with it
1729 * released.
1730 * (3) We don't absolutely have to free pages right away, provided that
1731 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1732 * us a request with PGO_FREE, we take the pages out of the paging
1733 * queue and wake up the writer, which will handle freeing them for us.
1734 *
1735 * We ensure that for any filesystem block, all pages for that
1736 * block are either resident or not, even if those pages are higher
1737 * than EOF; that means that we will be getting requests to free
1738 * "unused" pages above EOF all the time, and should ignore them.
1739 *
1740 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1741 */
1742
1743 int
1744 lfs_putpages(void *v)
1745 {
1746 int error;
1747 struct vop_putpages_args /* {
1748 struct vnode *a_vp;
1749 voff_t a_offlo;
1750 voff_t a_offhi;
1751 int a_flags;
1752 } */ *ap = v;
1753 struct vnode *vp;
1754 struct inode *ip;
1755 struct lfs *fs;
1756 struct segment *sp;
1757 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1758 off_t off, max_endoffset;
1759 int s;
1760 boolean_t seglocked, sync, pagedaemon;
1761 struct vm_page *pg;
1762 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1763
1764 vp = ap->a_vp;
1765 ip = VTOI(vp);
1766 fs = ip->i_lfs;
1767 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1768 pagedaemon = (curproc == uvm.pagedaemon_proc);
1769
1770 /* Putpages does nothing for metadata. */
1771 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1772 simple_unlock(&vp->v_interlock);
1773 return 0;
1774 }
1775
1776 /*
1777 * If there are no pages, don't do anything.
1778 */
1779 if (vp->v_uobj.uo_npages == 0) {
1780 s = splbio();
1781 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1782 (vp->v_flag & VONWORKLST)) {
1783 vp->v_flag &= ~VONWORKLST;
1784 LIST_REMOVE(vp, v_synclist);
1785 }
1786 splx(s);
1787 simple_unlock(&vp->v_interlock);
1788
1789 /* Remove us from paging queue, if we were on it */
1790 simple_lock(&fs->lfs_interlock);
1791 if (ip->i_flags & IN_PAGING) {
1792 ip->i_flags &= ~IN_PAGING;
1793 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1794 }
1795 simple_unlock(&fs->lfs_interlock);
1796 return 0;
1797 }
1798
1799 blkeof = blkroundup(fs, ip->i_size);
1800
1801 /*
1802 * Ignore requests to free pages past EOF but in the same block
1803 * as EOF, unless the request is synchronous. (If the request is
1804 * sync, it comes from lfs_truncate.)
1805 * XXXUBC Make these pages look "active" so the pagedaemon won't
1806 * XXXUBC bother us with them again.
1807 */
1808 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1809 origoffset = ap->a_offlo;
1810 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1811 pg = uvm_pagelookup(&vp->v_uobj, off);
1812 KASSERT(pg != NULL);
1813 while (pg->flags & PG_BUSY) {
1814 pg->flags |= PG_WANTED;
1815 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1816 "lfsput2", 0);
1817 simple_lock(&vp->v_interlock);
1818 }
1819 uvm_lock_pageq();
1820 uvm_pageactivate(pg);
1821 uvm_unlock_pageq();
1822 }
1823 ap->a_offlo = blkeof;
1824 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1825 simple_unlock(&vp->v_interlock);
1826 return 0;
1827 }
1828 }
1829
1830 /*
1831 * Extend page range to start and end at block boundaries.
1832 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1833 */
1834 origoffset = ap->a_offlo;
1835 origendoffset = ap->a_offhi;
1836 startoffset = origoffset & ~(fs->lfs_bmask);
1837 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1838 << fs->lfs_bshift;
1839
1840 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1841 endoffset = max_endoffset;
1842 origendoffset = endoffset;
1843 } else {
1844 origendoffset = round_page(ap->a_offhi);
1845 endoffset = round_page(blkroundup(fs, origendoffset));
1846 }
1847
1848 KASSERT(startoffset > 0 || endoffset >= startoffset);
1849 if (startoffset == endoffset) {
1850 /* Nothing to do, why were we called? */
1851 simple_unlock(&vp->v_interlock);
1852 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1853 PRId64 "\n", startoffset));
1854 return 0;
1855 }
1856
1857 ap->a_offlo = startoffset;
1858 ap->a_offhi = endoffset;
1859
1860 if (!(ap->a_flags & PGO_CLEANIT))
1861 return genfs_putpages(v);
1862
1863 /*
1864 * If there are more than one page per block, we don't want
1865 * to get caught locking them backwards; so set PGO_BUSYFAIL
1866 * to avoid deadlocks.
1867 */
1868 ap->a_flags |= PGO_BUSYFAIL;
1869
1870 do {
1871 int r;
1872
1873 /* If no pages are dirty, we can just use genfs_putpages. */
1874 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1875 ap->a_flags, 1);
1876 if (r < 0) {
1877 simple_unlock(&vp->v_interlock);
1878 return EDEADLK;
1879 }
1880 if (r > 0)
1881 break;
1882
1883 /*
1884 * Sometimes pages are dirtied between the time that
1885 * we check and the time we try to clean them.
1886 * Instruct lfs_gop_write to return EDEADLK in this case
1887 * so we can write them properly.
1888 */
1889 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1890 r = genfs_putpages(v);
1891 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1892 if (r != EDEADLK)
1893 return r;
1894
1895 /* Start over. */
1896 preempt(1);
1897 simple_lock(&vp->v_interlock);
1898 } while(1);
1899
1900 /*
1901 * Dirty and asked to clean.
1902 *
1903 * Pagedaemon can't actually write LFS pages; wake up
1904 * the writer to take care of that. The writer will
1905 * notice the pager inode queue and act on that.
1906 */
1907 if (pagedaemon) {
1908 simple_lock(&fs->lfs_interlock);
1909 if (!(ip->i_flags & IN_PAGING)) {
1910 ip->i_flags |= IN_PAGING;
1911 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1912 }
1913 simple_lock(&lfs_subsys_lock);
1914 wakeup(&lfs_writer_daemon);
1915 simple_unlock(&lfs_subsys_lock);
1916 simple_unlock(&fs->lfs_interlock);
1917 simple_unlock(&vp->v_interlock);
1918 preempt(1);
1919 return EWOULDBLOCK;
1920 }
1921
1922 /*
1923 * If this is a file created in a recent dirop, we can't flush its
1924 * inode until the dirop is complete. Drain dirops, then flush the
1925 * filesystem (taking care of any other pending dirops while we're
1926 * at it).
1927 */
1928 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1929 (vp->v_flag & VDIROP)) {
1930 int locked;
1931
1932 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1933 locked = VOP_ISLOCKED(vp) && /* XXX */
1934 vp->v_lock.lk_lockholder == curproc->p_pid;
1935 simple_unlock(&vp->v_interlock);
1936 lfs_writer_enter(fs, "ppdirop");
1937 if (locked)
1938 VOP_UNLOCK(vp, 0);
1939
1940 simple_lock(&fs->lfs_interlock);
1941 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1942 simple_unlock(&fs->lfs_interlock);
1943
1944 simple_lock(&vp->v_interlock);
1945 if (locked) {
1946 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1947 simple_lock(&vp->v_interlock);
1948 }
1949 lfs_writer_leave(fs);
1950
1951 /* XXX the flush should have taken care of this one too! */
1952 }
1953
1954 /*
1955 * This is it. We are going to write some pages. From here on
1956 * down it's all just mechanics.
1957 *
1958 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1959 */
1960 ap->a_flags &= ~PGO_SYNCIO;
1961
1962 /*
1963 * If we've already got the seglock, flush the node and return.
1964 * The FIP has already been set up for us by lfs_writefile,
1965 * and FIP cleanup and lfs_updatemeta will also be done there,
1966 * unless genfs_putpages returns EDEADLK; then we must flush
1967 * what we have, and correct FIP and segment header accounting.
1968 */
1969
1970 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1971 if (!seglocked) {
1972 simple_unlock(&vp->v_interlock);
1973 /*
1974 * Take the seglock, because we are going to be writing pages.
1975 */
1976 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1977 if (error != 0)
1978 return error;
1979 simple_lock(&vp->v_interlock);
1980 }
1981
1982 /*
1983 * VOP_PUTPAGES should not be called while holding the seglock.
1984 * XXXUBC fix lfs_markv, or do this properly.
1985 */
1986 #ifdef notyet
1987 KASSERT(fs->lfs_seglock == 1);
1988 #endif /* notyet */
1989
1990 /*
1991 * We assume we're being called with sp->fip pointing at blank space.
1992 * Account for a new FIP in the segment header, and set sp->vp.
1993 * (This should duplicate the setup at the top of lfs_writefile().)
1994 */
1995 sp = fs->lfs_sp;
1996 if (!seglocked) {
1997 if (sp->seg_bytes_left < fs->lfs_bsize ||
1998 sp->sum_bytes_left < sizeof(struct finfo))
1999 (void) lfs_writeseg(fs, fs->lfs_sp);
2000
2001 sp->sum_bytes_left -= FINFOSIZE;
2002 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2003 }
2004 KASSERT(sp->vp == NULL);
2005 sp->vp = vp;
2006
2007 if (!seglocked) {
2008 if (vp->v_flag & VDIROP)
2009 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2010 }
2011
2012 sp->fip->fi_nblocks = 0;
2013 sp->fip->fi_ino = ip->i_number;
2014 sp->fip->fi_version = ip->i_gen;
2015
2016 /*
2017 * Loop through genfs_putpages until all pages are gathered.
2018 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2019 * Whenever we lose the interlock we have to rerun check_dirty, as
2020 * well.
2021 */
2022 again:
2023 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2024 ap->a_flags, 0) < 0) {
2025 simple_unlock(&vp->v_interlock);
2026 sp->vp = NULL;
2027 if (!seglocked)
2028 lfs_segunlock(fs);
2029 return EDEADLK;
2030 }
2031
2032 error = genfs_putpages(v);
2033 if (error == EDEADLK || error == EAGAIN) {
2034 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2035 " EDEADLK [2] ino %d off %x (seg %d)\n",
2036 ip->i_number, fs->lfs_offset,
2037 dtosn(fs, fs->lfs_offset)));
2038 /* If nothing to write, short-circuit */
2039 if (sp->cbpp - sp->bpp > 1) {
2040 /* Write gathered pages */
2041 lfs_updatemeta(sp);
2042 (void) lfs_writeseg(fs, sp);
2043
2044 /*
2045 * Reinitialize brand new FIP and add us to it.
2046 * (This should duplicate the fixup in
2047 * lfs_gatherpages().)
2048 */
2049 KASSERT(sp->vp == vp);
2050 sp->fip->fi_version = ip->i_gen;
2051 sp->fip->fi_ino = ip->i_number;
2052 /* Add us to the new segment summary. */
2053 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2054 sp->sum_bytes_left -= FINFOSIZE;
2055 }
2056
2057 /* Give the write a chance to complete */
2058 preempt(1);
2059
2060 /* We've lost the interlock. Start over. */
2061 if (error == EDEADLK) {
2062 simple_lock(&vp->v_interlock);
2063 goto again;
2064 }
2065 }
2066
2067 KASSERT(sp->vp == vp);
2068 if (!seglocked) {
2069 sp->vp = NULL; /* XXX lfs_gather below will set this */
2070
2071 /* Write indirect blocks as well */
2072 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2073 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2074 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2075
2076 KASSERT(sp->vp == NULL);
2077 sp->vp = vp;
2078 }
2079
2080 /*
2081 * Blocks are now gathered into a segment waiting to be written.
2082 * All that's left to do is update metadata, and write them.
2083 */
2084 lfs_updatemeta(sp);
2085 KASSERT(sp->vp == vp);
2086 sp->vp = NULL;
2087
2088 if (seglocked) {
2089 /* we're called by lfs_writefile. */
2090 return error;
2091 }
2092
2093 /*
2094 * Clean up FIP, since we're done writing this file.
2095 * This should duplicate cleanup at the end of lfs_writefile().
2096 */
2097 if (sp->fip->fi_nblocks != 0) {
2098 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2099 sizeof(int32_t) * sp->fip->fi_nblocks);
2100 sp->start_lbp = &sp->fip->fi_blocks[0];
2101 } else {
2102 sp->sum_bytes_left += FINFOSIZE;
2103 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2104 }
2105 lfs_writeseg(fs, fs->lfs_sp);
2106
2107 /*
2108 * Remove us from paging queue, since we've now written all our
2109 * pages.
2110 */
2111 simple_lock(&fs->lfs_interlock);
2112 if (ip->i_flags & IN_PAGING) {
2113 ip->i_flags &= ~IN_PAGING;
2114 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2115 }
2116 simple_unlock(&fs->lfs_interlock);
2117
2118 /*
2119 * XXX - with the malloc/copy writeseg, the pages are freed by now
2120 * even if we don't wait (e.g. if we hold a nested lock). This
2121 * will not be true if we stop using malloc/copy.
2122 */
2123 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2124 lfs_segunlock(fs);
2125
2126 /*
2127 * Wait for v_numoutput to drop to zero. The seglock should
2128 * take care of this, but there is a slight possibility that
2129 * aiodoned might not have got around to our buffers yet.
2130 */
2131 if (sync) {
2132 s = splbio();
2133 simple_lock(&global_v_numoutput_slock);
2134 while (vp->v_numoutput > 0) {
2135 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2136 " num %d\n", ip->i_number, vp->v_numoutput));
2137 vp->v_flag |= VBWAIT;
2138 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2139 &global_v_numoutput_slock);
2140 }
2141 simple_unlock(&global_v_numoutput_slock);
2142 splx(s);
2143 }
2144 return error;
2145 }
2146
2147 /*
2148 * Return the last logical file offset that should be written for this file
2149 * if we're doing a write that ends at "size". If writing, we need to know
2150 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2151 * to know about entire blocks.
2152 */
2153 void
2154 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2155 {
2156 struct inode *ip = VTOI(vp);
2157 struct lfs *fs = ip->i_lfs;
2158 daddr_t olbn, nlbn;
2159
2160 olbn = lblkno(fs, ip->i_size);
2161 nlbn = lblkno(fs, size);
2162 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2163 *eobp = fragroundup(fs, size);
2164 } else {
2165 *eobp = blkroundup(fs, size);
2166 }
2167 }
2168
2169 #ifdef DEBUG
2170 void lfs_dump_vop(void *);
2171
2172 void
2173 lfs_dump_vop(void *v)
2174 {
2175 struct vop_putpages_args /* {
2176 struct vnode *a_vp;
2177 voff_t a_offlo;
2178 voff_t a_offhi;
2179 int a_flags;
2180 } */ *ap = v;
2181
2182 #ifdef DDB
2183 vfs_vnode_print(ap->a_vp, 0, printf);
2184 #endif
2185 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2186 }
2187 #endif
2188
2189 int
2190 lfs_mmap(void *v)
2191 {
2192 struct vop_mmap_args /* {
2193 const struct vnodeop_desc *a_desc;
2194 struct vnode *a_vp;
2195 int a_fflags;
2196 struct ucred *a_cred;
2197 struct lwp *a_l;
2198 } */ *ap = v;
2199
2200 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2201 return EOPNOTSUPP;
2202 return ufs_mmap(v);
2203 }
2204