Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.173
      1 /*	$NetBSD: lfs_vnops.c,v 1.173 2006/05/04 04:22:57 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.173 2006/05/04 04:22:57 perseant Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/resourcevar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/file.h>
     78 #include <sys/stat.h>
     79 #include <sys/buf.h>
     80 #include <sys/proc.h>
     81 #include <sys/mount.h>
     82 #include <sys/vnode.h>
     83 #include <sys/pool.h>
     84 #include <sys/signalvar.h>
     85 
     86 #include <miscfs/fifofs/fifo.h>
     87 #include <miscfs/genfs/genfs.h>
     88 #include <miscfs/specfs/specdev.h>
     89 
     90 #include <ufs/ufs/inode.h>
     91 #include <ufs/ufs/dir.h>
     92 #include <ufs/ufs/ufsmount.h>
     93 #include <ufs/ufs/ufs_extern.h>
     94 
     95 #include <uvm/uvm.h>
     96 #include <uvm/uvm_pmap.h>
     97 #include <uvm/uvm_stat.h>
     98 #include <uvm/uvm_pager.h>
     99 
    100 #include <ufs/lfs/lfs.h>
    101 #include <ufs/lfs/lfs_extern.h>
    102 
    103 extern pid_t lfs_writer_daemon;
    104 
    105 /* Global vfs data structures for lfs. */
    106 int (**lfs_vnodeop_p)(void *);
    107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    108 	{ &vop_default_desc, vn_default_error },
    109 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    110 	{ &vop_create_desc, lfs_create },		/* create */
    111 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    112 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    113 	{ &vop_open_desc, ufs_open },			/* open */
    114 	{ &vop_close_desc, lfs_close },			/* close */
    115 	{ &vop_access_desc, ufs_access },		/* access */
    116 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    117 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    118 	{ &vop_read_desc, lfs_read },			/* read */
    119 	{ &vop_write_desc, lfs_write },			/* write */
    120 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    121 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    122 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    123 	{ &vop_poll_desc, ufs_poll },			/* poll */
    124 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    125 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    126 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    127 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    128 	{ &vop_seek_desc, ufs_seek },			/* seek */
    129 	{ &vop_remove_desc, lfs_remove },		/* remove */
    130 	{ &vop_link_desc, lfs_link },			/* link */
    131 	{ &vop_rename_desc, lfs_rename },		/* rename */
    132 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    133 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    134 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    135 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    136 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    137 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    138 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    139 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    140 	{ &vop_lock_desc, ufs_lock },			/* lock */
    141 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    142 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    143 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    144 	{ &vop_print_desc, ufs_print },			/* print */
    145 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    146 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    147 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    148 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    149 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    150 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    151 	{ NULL, NULL }
    152 };
    153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    154 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    155 
    156 int (**lfs_specop_p)(void *);
    157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    158 	{ &vop_default_desc, vn_default_error },
    159 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    160 	{ &vop_create_desc, spec_create },		/* create */
    161 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    162 	{ &vop_open_desc, spec_open },			/* open */
    163 	{ &vop_close_desc, lfsspec_close },		/* close */
    164 	{ &vop_access_desc, ufs_access },		/* access */
    165 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    166 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    167 	{ &vop_read_desc, ufsspec_read },		/* read */
    168 	{ &vop_write_desc, ufsspec_write },		/* write */
    169 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    170 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    171 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    172 	{ &vop_poll_desc, spec_poll },			/* poll */
    173 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    174 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    175 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    176 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    177 	{ &vop_seek_desc, spec_seek },			/* seek */
    178 	{ &vop_remove_desc, spec_remove },		/* remove */
    179 	{ &vop_link_desc, spec_link },			/* link */
    180 	{ &vop_rename_desc, spec_rename },		/* rename */
    181 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    182 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    183 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    184 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    185 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    186 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    187 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    188 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    189 	{ &vop_lock_desc, ufs_lock },			/* lock */
    190 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    191 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    192 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    193 	{ &vop_print_desc, ufs_print },			/* print */
    194 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    195 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    196 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    197 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    198 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    199 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    200 	{ NULL, NULL }
    201 };
    202 const struct vnodeopv_desc lfs_specop_opv_desc =
    203 	{ &lfs_specop_p, lfs_specop_entries };
    204 
    205 int (**lfs_fifoop_p)(void *);
    206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    207 	{ &vop_default_desc, vn_default_error },
    208 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    209 	{ &vop_create_desc, fifo_create },		/* create */
    210 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    211 	{ &vop_open_desc, fifo_open },			/* open */
    212 	{ &vop_close_desc, lfsfifo_close },		/* close */
    213 	{ &vop_access_desc, ufs_access },		/* access */
    214 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    215 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    216 	{ &vop_read_desc, ufsfifo_read },		/* read */
    217 	{ &vop_write_desc, ufsfifo_write },		/* write */
    218 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    219 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    220 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    221 	{ &vop_poll_desc, fifo_poll },			/* poll */
    222 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    223 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    224 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    225 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    226 	{ &vop_seek_desc, fifo_seek },			/* seek */
    227 	{ &vop_remove_desc, fifo_remove },		/* remove */
    228 	{ &vop_link_desc, fifo_link },			/* link */
    229 	{ &vop_rename_desc, fifo_rename },		/* rename */
    230 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    231 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    232 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    233 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    234 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    235 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    236 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238 	{ &vop_lock_desc, ufs_lock },			/* lock */
    239 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    240 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    241 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    242 	{ &vop_print_desc, ufs_print },			/* print */
    243 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    244 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    245 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    246 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    248 	{ NULL, NULL }
    249 };
    250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252 
    253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    254 
    255 #define	LFS_READWRITE
    256 #include <ufs/ufs/ufs_readwrite.c>
    257 #undef	LFS_READWRITE
    258 
    259 /*
    260  * Synch an open file.
    261  */
    262 /* ARGSUSED */
    263 int
    264 lfs_fsync(void *v)
    265 {
    266 	struct vop_fsync_args /* {
    267 		struct vnode *a_vp;
    268 		struct ucred *a_cred;
    269 		int a_flags;
    270 		off_t offlo;
    271 		off_t offhi;
    272 		struct lwp *a_l;
    273 	} */ *ap = v;
    274 	struct vnode *vp = ap->a_vp;
    275 	int error, wait;
    276 
    277 	/* If we're mounted read-only, don't try to sync. */
    278 	if (VTOI(vp)->i_lfs->lfs_ronly)
    279 		return 0;
    280 
    281 	/*
    282 	 * Trickle sync checks for need to do a checkpoint after possible
    283 	 * activity from the pagedaemon.
    284 	 */
    285 	if (ap->a_flags & FSYNC_LAZY) {
    286 		simple_lock(&lfs_subsys_lock);
    287 		wakeup(&lfs_writer_daemon);
    288 		simple_unlock(&lfs_subsys_lock);
    289 		return 0;
    290 	}
    291 
    292 	wait = (ap->a_flags & FSYNC_WAIT);
    293 	simple_lock(&vp->v_interlock);
    294 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    295 			round_page(ap->a_offhi),
    296 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    297 	if (error)
    298 		return error;
    299 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    300 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    301 		int l = 0;
    302 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    303 				  ap->a_l->l_proc->p_ucred, ap->a_l);
    304 	}
    305 	if (wait && !VPISEMPTY(vp))
    306 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    307 
    308 	return error;
    309 }
    310 
    311 /*
    312  * Take IN_ADIROP off, then call ufs_inactive.
    313  */
    314 int
    315 lfs_inactive(void *v)
    316 {
    317 	struct vop_inactive_args /* {
    318 		struct vnode *a_vp;
    319 		struct lwp *a_l;
    320 	} */ *ap = v;
    321 
    322 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    323 
    324 	lfs_unmark_vnode(ap->a_vp);
    325 
    326 	/*
    327 	 * The Ifile is only ever inactivated on unmount.
    328 	 * Streamline this process by not giving it more dirty blocks.
    329 	 */
    330 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    331 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    332 		VOP_UNLOCK(ap->a_vp, 0);
    333 		return 0;
    334 	}
    335 
    336 	return ufs_inactive(v);
    337 }
    338 
    339 /*
    340  * These macros are used to bracket UFS directory ops, so that we can
    341  * identify all the pages touched during directory ops which need to
    342  * be ordered and flushed atomically, so that they may be recovered.
    343  *
    344  * Because we have to mark nodes VDIROP in order to prevent
    345  * the cache from reclaiming them while a dirop is in progress, we must
    346  * also manage the number of nodes so marked (otherwise we can run out).
    347  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    348  * is decremented during segment write, when VDIROP is taken off.
    349  */
    350 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    351 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    352 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    353 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    354 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    355 static int lfs_set_dirop(struct vnode *, struct vnode *);
    356 
    357 static int
    358 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    359 {
    360 	struct lfs *fs;
    361 	int error;
    362 
    363 	KASSERT(VOP_ISLOCKED(dvp));
    364 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    365 
    366 	fs = VTOI(dvp)->i_lfs;
    367 
    368 	ASSERT_NO_SEGLOCK(fs);
    369 	/*
    370 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    371 	 * as an inode block; an overestimate in most cases.
    372 	 */
    373 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    374 		return (error);
    375 
    376     restart:
    377 	simple_lock(&fs->lfs_interlock);
    378 	if (fs->lfs_dirops == 0) {
    379 		simple_unlock(&fs->lfs_interlock);
    380 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    381 		simple_lock(&fs->lfs_interlock);
    382 	}
    383 	while (fs->lfs_writer)
    384 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    385 			&fs->lfs_interlock);
    386 	simple_lock(&lfs_subsys_lock);
    387 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    388 		wakeup(&lfs_writer_daemon);
    389 		simple_unlock(&lfs_subsys_lock);
    390 		simple_unlock(&fs->lfs_interlock);
    391 		preempt(1);
    392 		goto restart;
    393 	}
    394 
    395 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    396 		simple_unlock(&fs->lfs_interlock);
    397 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    398 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    399 		if ((error = ltsleep(&lfs_dirvcount,
    400 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    401 		    &lfs_subsys_lock)) != 0) {
    402 			goto unreserve;
    403 		}
    404 		goto restart;
    405 	}
    406 	simple_unlock(&lfs_subsys_lock);
    407 
    408 	++fs->lfs_dirops;
    409 	fs->lfs_doifile = 1;
    410 	simple_unlock(&fs->lfs_interlock);
    411 
    412 	/* Hold a reference so SET_ENDOP will be happy */
    413 	vref(dvp);
    414 	if (vp) {
    415 		vref(vp);
    416 		MARK_VNODE(vp);
    417 	}
    418 
    419 	MARK_VNODE(dvp);
    420 	return 0;
    421 
    422 unreserve:
    423 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    424 	return error;
    425 }
    426 
    427 /*
    428  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    429  * in getnewvnode(), if we have a stacked filesystem mounted on top
    430  * of us.
    431  *
    432  * NB: this means we have to clear the new vnodes on error.  Fortunately
    433  * SET_ENDOP is there to do that for us.
    434  */
    435 static int
    436 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    437 {
    438 	int error;
    439 	struct lfs *fs;
    440 
    441 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    442 	ASSERT_NO_SEGLOCK(fs);
    443 	if (fs->lfs_ronly)
    444 		return EROFS;
    445 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    446 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    447 		      dvp, error));
    448 		return error;
    449 	}
    450 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    451 		if (vpp) {
    452 			ungetnewvnode(*vpp);
    453 			*vpp = NULL;
    454 		}
    455 		return error;
    456 	}
    457 	return 0;
    458 }
    459 
    460 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    461 	do {								\
    462 		simple_lock(&(fs)->lfs_interlock);			\
    463 		--(fs)->lfs_dirops;					\
    464 		if (!(fs)->lfs_dirops) {				\
    465 			if ((fs)->lfs_nadirop) {			\
    466 				panic("SET_ENDOP: %s: no dirops but "	\
    467 					" nadirop=%d", (str),		\
    468 					(fs)->lfs_nadirop);		\
    469 			}						\
    470 			wakeup(&(fs)->lfs_writer);			\
    471 			simple_unlock(&(fs)->lfs_interlock);		\
    472 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    473 		} else							\
    474 			simple_unlock(&(fs)->lfs_interlock);		\
    475 	} while(0)
    476 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    477 	do {								\
    478 		UNMARK_VNODE(dvp);					\
    479 		if (nvpp && *nvpp)					\
    480 			UNMARK_VNODE(*nvpp);				\
    481 		/* Check for error return to stem vnode leakage */	\
    482 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    483 			ungetnewvnode(*(nvpp));				\
    484 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    485 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    486 		vrele(dvp);						\
    487 	} while(0)
    488 #define SET_ENDOP_CREATE_AP(ap, str)					\
    489 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    490 			 (ap)->a_vpp, (str))
    491 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    492 	do {								\
    493 		UNMARK_VNODE(dvp);					\
    494 		if (ovp)						\
    495 			UNMARK_VNODE(ovp);				\
    496 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    497 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    498 		vrele(dvp);						\
    499 		if (ovp)						\
    500 			vrele(ovp);					\
    501 	} while(0)
    502 
    503 void
    504 lfs_mark_vnode(struct vnode *vp)
    505 {
    506 	struct inode *ip = VTOI(vp);
    507 	struct lfs *fs = ip->i_lfs;
    508 
    509 	simple_lock(&fs->lfs_interlock);
    510 	if (!(ip->i_flag & IN_ADIROP)) {
    511 		if (!(vp->v_flag & VDIROP)) {
    512 			(void)lfs_vref(vp);
    513 			simple_lock(&lfs_subsys_lock);
    514 			++lfs_dirvcount;
    515 			++fs->lfs_dirvcount;
    516 			simple_unlock(&lfs_subsys_lock);
    517 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    518 			vp->v_flag |= VDIROP;
    519 		}
    520 		++fs->lfs_nadirop;
    521 		ip->i_flag |= IN_ADIROP;
    522 	} else
    523 		KASSERT(vp->v_flag & VDIROP);
    524 	simple_unlock(&fs->lfs_interlock);
    525 }
    526 
    527 void
    528 lfs_unmark_vnode(struct vnode *vp)
    529 {
    530 	struct inode *ip = VTOI(vp);
    531 
    532 	if (ip && (ip->i_flag & IN_ADIROP)) {
    533 		KASSERT(vp->v_flag & VDIROP);
    534 		simple_lock(&ip->i_lfs->lfs_interlock);
    535 		--ip->i_lfs->lfs_nadirop;
    536 		simple_unlock(&ip->i_lfs->lfs_interlock);
    537 		ip->i_flag &= ~IN_ADIROP;
    538 	}
    539 }
    540 
    541 int
    542 lfs_symlink(void *v)
    543 {
    544 	struct vop_symlink_args /* {
    545 		struct vnode *a_dvp;
    546 		struct vnode **a_vpp;
    547 		struct componentname *a_cnp;
    548 		struct vattr *a_vap;
    549 		char *a_target;
    550 	} */ *ap = v;
    551 	int error;
    552 
    553 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    554 		vput(ap->a_dvp);
    555 		return error;
    556 	}
    557 	error = ufs_symlink(ap);
    558 	SET_ENDOP_CREATE_AP(ap, "symlink");
    559 	return (error);
    560 }
    561 
    562 int
    563 lfs_mknod(void *v)
    564 {
    565 	struct vop_mknod_args	/* {
    566 		struct vnode *a_dvp;
    567 		struct vnode **a_vpp;
    568 		struct componentname *a_cnp;
    569 		struct vattr *a_vap;
    570 		} */ *ap = v;
    571 	struct vattr *vap = ap->a_vap;
    572 	struct vnode **vpp = ap->a_vpp;
    573 	struct inode *ip;
    574 	int error;
    575 	struct mount	*mp;
    576 	ino_t		ino;
    577 
    578 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    579 		vput(ap->a_dvp);
    580 		return error;
    581 	}
    582 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    583 	    ap->a_dvp, vpp, ap->a_cnp);
    584 
    585 	/* Either way we're done with the dirop at this point */
    586 	SET_ENDOP_CREATE_AP(ap, "mknod");
    587 
    588 	if (error)
    589 		return (error);
    590 
    591 	ip = VTOI(*vpp);
    592 	mp  = (*vpp)->v_mount;
    593 	ino = ip->i_number;
    594 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    595 	if (vap->va_rdev != VNOVAL) {
    596 		/*
    597 		 * Want to be able to use this to make badblock
    598 		 * inodes, so don't truncate the dev number.
    599 		 */
    600 #if 0
    601 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    602 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    603 #else
    604 		ip->i_ffs1_rdev = vap->va_rdev;
    605 #endif
    606 	}
    607 
    608 	/*
    609 	 * Call fsync to write the vnode so that we don't have to deal with
    610 	 * flushing it when it's marked VDIROP|VXLOCK.
    611 	 *
    612 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    613 	 * return.  But, that leaves this vnode in limbo, also not good.
    614 	 * Can this ever happen (barring hardware failure)?
    615 	 */
    616 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    617 	    curlwp)) != 0) {
    618 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    619 		    (unsigned long long)ino);
    620 		/* return (error); */
    621 	}
    622 	/*
    623 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    624 	 * checked to see if it is an alias of an existing entry in
    625 	 * the inode cache.
    626 	 */
    627 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    628 
    629 	VOP_UNLOCK(*vpp, 0);
    630 	lfs_vunref(*vpp);
    631 	(*vpp)->v_type = VNON;
    632 	vgone(*vpp);
    633 	error = VFS_VGET(mp, ino, vpp);
    634 
    635 	if (error != 0) {
    636 		*vpp = NULL;
    637 		return (error);
    638 	}
    639 	return (0);
    640 }
    641 
    642 int
    643 lfs_create(void *v)
    644 {
    645 	struct vop_create_args	/* {
    646 		struct vnode *a_dvp;
    647 		struct vnode **a_vpp;
    648 		struct componentname *a_cnp;
    649 		struct vattr *a_vap;
    650 	} */ *ap = v;
    651 	int error;
    652 
    653 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    654 		vput(ap->a_dvp);
    655 		return error;
    656 	}
    657 	error = ufs_create(ap);
    658 	SET_ENDOP_CREATE_AP(ap, "create");
    659 	return (error);
    660 }
    661 
    662 int
    663 lfs_mkdir(void *v)
    664 {
    665 	struct vop_mkdir_args	/* {
    666 		struct vnode *a_dvp;
    667 		struct vnode **a_vpp;
    668 		struct componentname *a_cnp;
    669 		struct vattr *a_vap;
    670 	} */ *ap = v;
    671 	int error;
    672 
    673 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    674 		vput(ap->a_dvp);
    675 		return error;
    676 	}
    677 	error = ufs_mkdir(ap);
    678 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    679 	return (error);
    680 }
    681 
    682 int
    683 lfs_remove(void *v)
    684 {
    685 	struct vop_remove_args	/* {
    686 		struct vnode *a_dvp;
    687 		struct vnode *a_vp;
    688 		struct componentname *a_cnp;
    689 	} */ *ap = v;
    690 	struct vnode *dvp, *vp;
    691 	int error;
    692 
    693 	dvp = ap->a_dvp;
    694 	vp = ap->a_vp;
    695 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    696 		if (dvp == vp)
    697 			vrele(vp);
    698 		else
    699 			vput(vp);
    700 		vput(dvp);
    701 		return error;
    702 	}
    703 	error = ufs_remove(ap);
    704 	SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
    705 	return (error);
    706 }
    707 
    708 int
    709 lfs_rmdir(void *v)
    710 {
    711 	struct vop_rmdir_args	/* {
    712 		struct vnodeop_desc *a_desc;
    713 		struct vnode *a_dvp;
    714 		struct vnode *a_vp;
    715 		struct componentname *a_cnp;
    716 	} */ *ap = v;
    717 	struct vnode *vp;
    718 	int error;
    719 
    720 	vp = ap->a_vp;
    721 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    722 		vrele(ap->a_dvp);
    723 		if (ap->a_vp != ap->a_dvp)
    724 			VOP_UNLOCK(ap->a_dvp, 0);
    725 		vput(vp);
    726 		return error;
    727 	}
    728 	error = ufs_rmdir(ap);
    729 	SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    730 	return (error);
    731 }
    732 
    733 int
    734 lfs_link(void *v)
    735 {
    736 	struct vop_link_args	/* {
    737 		struct vnode *a_dvp;
    738 		struct vnode *a_vp;
    739 		struct componentname *a_cnp;
    740 	} */ *ap = v;
    741 	int error;
    742 	struct vnode **vpp = NULL;
    743 
    744 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    745 		vput(ap->a_dvp);
    746 		return error;
    747 	}
    748 	error = ufs_link(ap);
    749 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    750 	return (error);
    751 }
    752 
    753 int
    754 lfs_rename(void *v)
    755 {
    756 	struct vop_rename_args	/* {
    757 		struct vnode *a_fdvp;
    758 		struct vnode *a_fvp;
    759 		struct componentname *a_fcnp;
    760 		struct vnode *a_tdvp;
    761 		struct vnode *a_tvp;
    762 		struct componentname *a_tcnp;
    763 	} */ *ap = v;
    764 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    765 	struct componentname *tcnp, *fcnp;
    766 	int error;
    767 	struct lfs *fs;
    768 
    769 	fs = VTOI(ap->a_fdvp)->i_lfs;
    770 	tvp = ap->a_tvp;
    771 	tdvp = ap->a_tdvp;
    772 	tcnp = ap->a_tcnp;
    773 	fvp = ap->a_fvp;
    774 	fdvp = ap->a_fdvp;
    775 	fcnp = ap->a_fcnp;
    776 
    777 	/*
    778 	 * Check for cross-device rename.
    779 	 * If it is, we don't want to set dirops, just error out.
    780 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    781 	 * a cross-device rename.)
    782 	 *
    783 	 * Copied from ufs_rename.
    784 	 */
    785 	if ((fvp->v_mount != tdvp->v_mount) ||
    786 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    787 		error = EXDEV;
    788 		goto errout;
    789 	}
    790 
    791 	/*
    792 	 * Check to make sure we're not renaming a vnode onto itself
    793 	 * (deleting a hard link by renaming one name onto another);
    794 	 * if we are we can't recursively call VOP_REMOVE since that
    795 	 * would leave us with an unaccounted-for number of live dirops.
    796 	 *
    797 	 * Inline the relevant section of ufs_rename here, *before*
    798 	 * calling SET_DIROP_REMOVE.
    799 	 */
    800 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    801 	    (VTOI(tdvp)->i_flags & APPEND))) {
    802 		error = EPERM;
    803 		goto errout;
    804 	}
    805 	if (fvp == tvp) {
    806 		if (fvp->v_type == VDIR) {
    807 			error = EINVAL;
    808 			goto errout;
    809 		}
    810 
    811 		/* Release destination completely. */
    812 		VOP_ABORTOP(tdvp, tcnp);
    813 		vput(tdvp);
    814 		vput(tvp);
    815 
    816 		/* Delete source. */
    817 		vrele(fvp);
    818 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    819 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    820 		fcnp->cn_nameiop = DELETE;
    821 		if ((error = relookup(fdvp, &fvp, fcnp))){
    822 			/* relookup blew away fdvp */
    823 			return (error);
    824 		}
    825 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    826 	}
    827 
    828 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    829 		goto errout;
    830 	MARK_VNODE(fdvp);
    831 	MARK_VNODE(fvp);
    832 
    833 	error = ufs_rename(ap);
    834 	UNMARK_VNODE(fdvp);
    835 	UNMARK_VNODE(fvp);
    836 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    837 	return (error);
    838 
    839     errout:
    840 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    841 	if (tdvp == tvp)
    842 		vrele(tdvp);
    843 	else
    844 		vput(tdvp);
    845 	if (tvp)
    846 		vput(tvp);
    847 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    848 	vrele(fdvp);
    849 	vrele(fvp);
    850 	return (error);
    851 }
    852 
    853 /* XXX hack to avoid calling ITIMES in getattr */
    854 int
    855 lfs_getattr(void *v)
    856 {
    857 	struct vop_getattr_args /* {
    858 		struct vnode *a_vp;
    859 		struct vattr *a_vap;
    860 		struct ucred *a_cred;
    861 		struct lwp *a_l;
    862 	} */ *ap = v;
    863 	struct vnode *vp = ap->a_vp;
    864 	struct inode *ip = VTOI(vp);
    865 	struct vattr *vap = ap->a_vap;
    866 	struct lfs *fs = ip->i_lfs;
    867 	/*
    868 	 * Copy from inode table
    869 	 */
    870 	vap->va_fsid = ip->i_dev;
    871 	vap->va_fileid = ip->i_number;
    872 	vap->va_mode = ip->i_mode & ~IFMT;
    873 	vap->va_nlink = ip->i_nlink;
    874 	vap->va_uid = ip->i_uid;
    875 	vap->va_gid = ip->i_gid;
    876 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    877 	vap->va_size = vp->v_size;
    878 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    879 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    880 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    881 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    882 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    883 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    884 	vap->va_flags = ip->i_flags;
    885 	vap->va_gen = ip->i_gen;
    886 	/* this doesn't belong here */
    887 	if (vp->v_type == VBLK)
    888 		vap->va_blocksize = BLKDEV_IOSIZE;
    889 	else if (vp->v_type == VCHR)
    890 		vap->va_blocksize = MAXBSIZE;
    891 	else
    892 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    893 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    894 	vap->va_type = vp->v_type;
    895 	vap->va_filerev = ip->i_modrev;
    896 	return (0);
    897 }
    898 
    899 /*
    900  * Check to make sure the inode blocks won't choke the buffer
    901  * cache, then call ufs_setattr as usual.
    902  */
    903 int
    904 lfs_setattr(void *v)
    905 {
    906 	struct vop_setattr_args /* {
    907 		struct vnode *a_vp;
    908 		struct vattr *a_vap;
    909 		struct ucred *a_cred;
    910 		struct lwp *a_l;
    911 	} */ *ap = v;
    912 	struct vnode *vp = ap->a_vp;
    913 
    914 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    915 	return ufs_setattr(v);
    916 }
    917 
    918 /*
    919  * Close called
    920  *
    921  * XXX -- we were using ufs_close, but since it updates the
    922  * times on the inode, we might need to bump the uinodes
    923  * count.
    924  */
    925 /* ARGSUSED */
    926 int
    927 lfs_close(void *v)
    928 {
    929 	struct vop_close_args /* {
    930 		struct vnode *a_vp;
    931 		int  a_fflag;
    932 		struct ucred *a_cred;
    933 		struct lwp *a_l;
    934 	} */ *ap = v;
    935 	struct vnode *vp = ap->a_vp;
    936 	struct inode *ip = VTOI(vp);
    937 
    938 	if (vp == ip->i_lfs->lfs_ivnode &&
    939 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    940 		return 0;
    941 
    942 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    943 		LFS_ITIMES(ip, NULL, NULL, NULL);
    944 	}
    945 	return (0);
    946 }
    947 
    948 /*
    949  * Close wrapper for special devices.
    950  *
    951  * Update the times on the inode then do device close.
    952  */
    953 int
    954 lfsspec_close(void *v)
    955 {
    956 	struct vop_close_args /* {
    957 		struct vnode	*a_vp;
    958 		int		a_fflag;
    959 		struct ucred	*a_cred;
    960 		struct lwp	*a_l;
    961 	} */ *ap = v;
    962 	struct vnode	*vp;
    963 	struct inode	*ip;
    964 
    965 	vp = ap->a_vp;
    966 	ip = VTOI(vp);
    967 	if (vp->v_usecount > 1) {
    968 		LFS_ITIMES(ip, NULL, NULL, NULL);
    969 	}
    970 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
    971 }
    972 
    973 /*
    974  * Close wrapper for fifo's.
    975  *
    976  * Update the times on the inode then do device close.
    977  */
    978 int
    979 lfsfifo_close(void *v)
    980 {
    981 	struct vop_close_args /* {
    982 		struct vnode	*a_vp;
    983 		int		a_fflag;
    984 		struct ucred	*a_cred;
    985 		struct lwp	*a_l;
    986 	} */ *ap = v;
    987 	struct vnode	*vp;
    988 	struct inode	*ip;
    989 
    990 	vp = ap->a_vp;
    991 	ip = VTOI(vp);
    992 	if (ap->a_vp->v_usecount > 1) {
    993 		LFS_ITIMES(ip, NULL, NULL, NULL);
    994 	}
    995 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
    996 }
    997 
    998 /*
    999  * Reclaim an inode so that it can be used for other purposes.
   1000  */
   1001 
   1002 int
   1003 lfs_reclaim(void *v)
   1004 {
   1005 	struct vop_reclaim_args /* {
   1006 		struct vnode *a_vp;
   1007 		struct lwp *a_l;
   1008 	} */ *ap = v;
   1009 	struct vnode *vp = ap->a_vp;
   1010 	struct inode *ip = VTOI(vp);
   1011 	int error;
   1012 
   1013 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1014 
   1015 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1016 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1017 		return (error);
   1018 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1019 	lfs_deregister_all(vp);
   1020 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1021 	ip->inode_ext.lfs = NULL;
   1022 	pool_put(&lfs_inode_pool, vp->v_data);
   1023 	vp->v_data = NULL;
   1024 	return (0);
   1025 }
   1026 
   1027 /*
   1028  * Read a block from a storage device.
   1029  * In order to avoid reading blocks that are in the process of being
   1030  * written by the cleaner---and hence are not mutexed by the normal
   1031  * buffer cache / page cache mechanisms---check for collisions before
   1032  * reading.
   1033  *
   1034  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1035  * the active cleaner test.
   1036  *
   1037  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1038  */
   1039 int
   1040 lfs_strategy(void *v)
   1041 {
   1042 	struct vop_strategy_args /* {
   1043 		struct vnode *a_vp;
   1044 		struct buf *a_bp;
   1045 	} */ *ap = v;
   1046 	struct buf	*bp;
   1047 	struct lfs	*fs;
   1048 	struct vnode	*vp;
   1049 	struct inode	*ip;
   1050 	daddr_t		tbn;
   1051 	int		i, sn, error, slept;
   1052 
   1053 	bp = ap->a_bp;
   1054 	vp = ap->a_vp;
   1055 	ip = VTOI(vp);
   1056 	fs = ip->i_lfs;
   1057 
   1058 	/* lfs uses its strategy routine only for read */
   1059 	KASSERT(bp->b_flags & B_READ);
   1060 
   1061 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1062 		panic("lfs_strategy: spec");
   1063 	KASSERT(bp->b_bcount != 0);
   1064 	if (bp->b_blkno == bp->b_lblkno) {
   1065 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1066 				 NULL);
   1067 		if (error) {
   1068 			bp->b_error = error;
   1069 			bp->b_flags |= B_ERROR;
   1070 			biodone(bp);
   1071 			return (error);
   1072 		}
   1073 		if ((long)bp->b_blkno == -1) /* no valid data */
   1074 			clrbuf(bp);
   1075 	}
   1076 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1077 		biodone(bp);
   1078 		return (0);
   1079 	}
   1080 
   1081 	slept = 1;
   1082 	simple_lock(&fs->lfs_interlock);
   1083 	while (slept && fs->lfs_seglock) {
   1084 		simple_unlock(&fs->lfs_interlock);
   1085 		/*
   1086 		 * Look through list of intervals.
   1087 		 * There will only be intervals to look through
   1088 		 * if the cleaner holds the seglock.
   1089 		 * Since the cleaner is synchronous, we can trust
   1090 		 * the list of intervals to be current.
   1091 		 */
   1092 		tbn = dbtofsb(fs, bp->b_blkno);
   1093 		sn = dtosn(fs, tbn);
   1094 		slept = 0;
   1095 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1096 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1097 			    tbn >= fs->lfs_cleanint[i]) {
   1098 				DLOG((DLOG_CLEAN,
   1099 				      "lfs_strategy: ino %d lbn %" PRId64
   1100 				       " ind %d sn %d fsb %" PRIx32
   1101 				       " given sn %d fsb %" PRIx64 "\n",
   1102 					ip->i_number, bp->b_lblkno, i,
   1103 					dtosn(fs, fs->lfs_cleanint[i]),
   1104 					fs->lfs_cleanint[i], sn, tbn));
   1105 				DLOG((DLOG_CLEAN,
   1106 				      "lfs_strategy: sleeping on ino %d lbn %"
   1107 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1108 				simple_lock(&fs->lfs_interlock);
   1109 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1110 					/* Cleaner can't wait for itself */
   1111 					ltsleep(&fs->lfs_iocount,
   1112 						(PRIBIO + 1) | PNORELOCK,
   1113 						"clean2", 0,
   1114 						&fs->lfs_interlock);
   1115 					slept = 1;
   1116 					break;
   1117 				} else if (fs->lfs_seglock) {
   1118 					ltsleep(&fs->lfs_seglock,
   1119 						(PRIBIO + 1) | PNORELOCK,
   1120 						"clean1", 0,
   1121 						&fs->lfs_interlock);
   1122 					slept = 1;
   1123 					break;
   1124 				}
   1125 				simple_unlock(&fs->lfs_interlock);
   1126 			}
   1127 		}
   1128 		simple_lock(&fs->lfs_interlock);
   1129 	}
   1130 	simple_unlock(&fs->lfs_interlock);
   1131 
   1132 	vp = ip->i_devvp;
   1133 	VOP_STRATEGY(vp, bp);
   1134 	return (0);
   1135 }
   1136 
   1137 void
   1138 lfs_flush_dirops(struct lfs *fs)
   1139 {
   1140 	struct inode *ip, *nip;
   1141 	struct vnode *vp;
   1142 	extern int lfs_dostats;
   1143 	struct segment *sp;
   1144 	int waslocked;
   1145 
   1146 	ASSERT_MAYBE_SEGLOCK(fs);
   1147 	KASSERT(fs->lfs_nadirop == 0);
   1148 
   1149 	if (fs->lfs_ronly)
   1150 		return;
   1151 
   1152 	simple_lock(&fs->lfs_interlock);
   1153 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1154 		simple_unlock(&fs->lfs_interlock);
   1155 		return;
   1156 	} else
   1157 		simple_unlock(&fs->lfs_interlock);
   1158 
   1159 	if (lfs_dostats)
   1160 		++lfs_stats.flush_invoked;
   1161 
   1162 	/*
   1163 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1164 	 * Technically this is a checkpoint (the on-disk state is valid)
   1165 	 * even though we are leaving out all the file data.
   1166 	 */
   1167 	lfs_imtime(fs);
   1168 	lfs_seglock(fs, SEGM_CKP);
   1169 	sp = fs->lfs_sp;
   1170 
   1171 	/*
   1172 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1173 	 * Only write dirops, and don't flush files' pages, only
   1174 	 * blocks from the directories.
   1175 	 *
   1176 	 * We don't need to vref these files because they are
   1177 	 * dirops and so hold an extra reference until the
   1178 	 * segunlock clears them of that status.
   1179 	 *
   1180 	 * We don't need to check for IN_ADIROP because we know that
   1181 	 * no dirops are active.
   1182 	 *
   1183 	 */
   1184 	simple_lock(&fs->lfs_interlock);
   1185 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1186 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1187 		simple_unlock(&fs->lfs_interlock);
   1188 		vp = ITOV(ip);
   1189 
   1190 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1191 
   1192 		/*
   1193 		 * All writes to directories come from dirops; all
   1194 		 * writes to files' direct blocks go through the page
   1195 		 * cache, which we're not touching.  Reads to files
   1196 		 * and/or directories will not be affected by writing
   1197 		 * directory blocks inodes and file inodes.  So we don't
   1198 		 * really need to lock.  If we don't lock, though,
   1199 		 * make sure that we don't clear IN_MODIFIED
   1200 		 * unnecessarily.
   1201 		 */
   1202 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1203 			simple_lock(&fs->lfs_interlock);
   1204 			continue;
   1205 		}
   1206 		waslocked = VOP_ISLOCKED(vp);
   1207 		if (vp->v_type != VREG &&
   1208 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1209 			lfs_writefile(fs, sp, vp);
   1210 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1211 			    !(ip->i_flag & IN_ALLMOD)) {
   1212 				LFS_SET_UINO(ip, IN_MODIFIED);
   1213 			}
   1214 		}
   1215 		(void) lfs_writeinode(fs, sp, ip);
   1216 		if (waslocked)
   1217 			LFS_SET_UINO(ip, IN_MODIFIED);
   1218 		simple_lock(&fs->lfs_interlock);
   1219 	}
   1220 	simple_unlock(&fs->lfs_interlock);
   1221 	/* We've written all the dirops there are */
   1222 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1223 	lfs_finalize_fs_seguse(fs);
   1224 	(void) lfs_writeseg(fs, sp);
   1225 	lfs_segunlock(fs);
   1226 }
   1227 
   1228 /*
   1229  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1230  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1231  * has just run, this would be an error).  If we have to skip a vnode
   1232  * for any reason, just skip it; if we have to wait for the cleaner,
   1233  * abort.  The writer daemon will call us again later.
   1234  */
   1235 void
   1236 lfs_flush_pchain(struct lfs *fs)
   1237 {
   1238 	struct inode *ip, *nip;
   1239 	struct vnode *vp;
   1240 	extern int lfs_dostats;
   1241 	struct segment *sp;
   1242 	int error;
   1243 
   1244 	ASSERT_NO_SEGLOCK(fs);
   1245 
   1246 	if (fs->lfs_ronly)
   1247 		return;
   1248 
   1249 	simple_lock(&fs->lfs_interlock);
   1250 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1251 		simple_unlock(&fs->lfs_interlock);
   1252 		return;
   1253 	} else
   1254 		simple_unlock(&fs->lfs_interlock);
   1255 
   1256 	/* Get dirops out of the way */
   1257 	lfs_flush_dirops(fs);
   1258 
   1259 	if (lfs_dostats)
   1260 		++lfs_stats.flush_invoked;
   1261 
   1262 	/*
   1263 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1264 	 */
   1265 	lfs_imtime(fs);
   1266 	lfs_seglock(fs, 0);
   1267 	sp = fs->lfs_sp;
   1268 
   1269 	/*
   1270 	 * lfs_writevnodes, optimized to clear pageout requests.
   1271 	 * Only write non-dirop files that are in the pageout queue.
   1272 	 * We're very conservative about what we write; we want to be
   1273 	 * fast and async.
   1274 	 */
   1275 	simple_lock(&fs->lfs_interlock);
   1276     top:
   1277 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1278 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1279 		vp = ITOV(ip);
   1280 
   1281 		if (!(ip->i_flags & IN_PAGING))
   1282 			goto top;
   1283 
   1284 		if (vp->v_flag & (VXLOCK|VDIROP))
   1285 			continue;
   1286 		if (vp->v_type != VREG)
   1287 			continue;
   1288 		if (lfs_vref(vp))
   1289 			continue;
   1290 		simple_unlock(&fs->lfs_interlock);
   1291 
   1292 		if (VOP_ISLOCKED(vp)) {
   1293 			lfs_vunref(vp);
   1294 			simple_lock(&fs->lfs_interlock);
   1295 			continue;
   1296 		}
   1297 
   1298 		error = lfs_writefile(fs, sp, vp);
   1299 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1300 		    !(ip->i_flag & IN_ALLMOD)) {
   1301 			LFS_SET_UINO(ip, IN_MODIFIED);
   1302 		}
   1303 		(void) lfs_writeinode(fs, sp, ip);
   1304 
   1305 		lfs_vunref(vp);
   1306 
   1307 		if (error == EAGAIN) {
   1308 			lfs_writeseg(fs, sp);
   1309 			simple_lock(&fs->lfs_interlock);
   1310 			break;
   1311 		}
   1312 		simple_lock(&fs->lfs_interlock);
   1313 	}
   1314 	simple_unlock(&fs->lfs_interlock);
   1315 	(void) lfs_writeseg(fs, sp);
   1316 	lfs_segunlock(fs);
   1317 }
   1318 
   1319 /*
   1320  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1321  */
   1322 int
   1323 lfs_fcntl(void *v)
   1324 {
   1325 	struct vop_fcntl_args /* {
   1326 		struct vnode *a_vp;
   1327 		u_long a_command;
   1328 		caddr_t  a_data;
   1329 		int  a_fflag;
   1330 		struct ucred *a_cred;
   1331 		struct lwp *a_l;
   1332 	} */ *ap = v;
   1333 	struct timeval *tvp;
   1334 	BLOCK_INFO *blkiov;
   1335 	CLEANERINFO *cip;
   1336 	SEGUSE *sup;
   1337 	int blkcnt, error, oclean;
   1338 	struct lfs_fcntl_markv blkvp;
   1339 	struct proc *p;
   1340 	fsid_t *fsidp;
   1341 	struct lfs *fs;
   1342 	struct buf *bp;
   1343 	fhandle_t *fhp;
   1344 	daddr_t off;
   1345 
   1346 	/* Only respect LFS fcntls on fs root or Ifile */
   1347 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1348 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1349 		return ufs_fcntl(v);
   1350 	}
   1351 
   1352 	/* Avoid locking a draining lock */
   1353 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1354 		return ESHUTDOWN;
   1355 	}
   1356 
   1357 	p = ap->a_l->l_proc;
   1358 	fs = VTOI(ap->a_vp)->i_lfs;
   1359 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1360 
   1361 	switch (ap->a_command) {
   1362 	    case LFCNSEGWAITALL:
   1363 	    case LFCNSEGWAITALL_COMPAT:
   1364 		fsidp = NULL;
   1365 		/* FALLSTHROUGH */
   1366 	    case LFCNSEGWAIT:
   1367 	    case LFCNSEGWAIT_COMPAT:
   1368 		tvp = (struct timeval *)ap->a_data;
   1369 		simple_lock(&fs->lfs_interlock);
   1370 		++fs->lfs_sleepers;
   1371 		simple_unlock(&fs->lfs_interlock);
   1372 		VOP_UNLOCK(ap->a_vp, 0);
   1373 
   1374 		error = lfs_segwait(fsidp, tvp);
   1375 
   1376 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1377 		simple_lock(&fs->lfs_interlock);
   1378 		if (--fs->lfs_sleepers == 0)
   1379 			wakeup(&fs->lfs_sleepers);
   1380 		simple_unlock(&fs->lfs_interlock);
   1381 		return error;
   1382 
   1383 	    case LFCNBMAPV:
   1384 	    case LFCNMARKV:
   1385 		if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
   1386 			return (error);
   1387 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1388 
   1389 		blkcnt = blkvp.blkcnt;
   1390 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1391 			return (EINVAL);
   1392 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1393 		if ((error = copyin(blkvp.blkiov, blkiov,
   1394 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1395 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1396 			return error;
   1397 		}
   1398 
   1399 		simple_lock(&fs->lfs_interlock);
   1400 		++fs->lfs_sleepers;
   1401 		simple_unlock(&fs->lfs_interlock);
   1402 		VOP_UNLOCK(ap->a_vp, 0);
   1403 		if (ap->a_command == LFCNBMAPV)
   1404 			error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
   1405 		else /* LFCNMARKV */
   1406 			error = lfs_markv(p, fsidp, blkiov, blkcnt);
   1407 		if (error == 0)
   1408 			error = copyout(blkiov, blkvp.blkiov,
   1409 					blkcnt * sizeof(BLOCK_INFO));
   1410 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1411 		simple_lock(&fs->lfs_interlock);
   1412 		if (--fs->lfs_sleepers == 0)
   1413 			wakeup(&fs->lfs_sleepers);
   1414 		simple_unlock(&fs->lfs_interlock);
   1415 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1416 		return error;
   1417 
   1418 	    case LFCNRECLAIM:
   1419 		/*
   1420 		 * Flush dirops and write Ifile, allowing empty segments
   1421 		 * to be immediately reclaimed.
   1422 		 */
   1423 		VOP_UNLOCK(ap->a_vp, 0);
   1424 		lfs_writer_enter(fs, "pndirop");
   1425 		off = fs->lfs_offset;
   1426 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1427 		lfs_flush_dirops(fs);
   1428 		LFS_CLEANERINFO(cip, fs, bp);
   1429 		oclean = cip->clean;
   1430 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1431 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1432 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1433 		lfs_segunlock(fs);
   1434 		lfs_writer_leave(fs);
   1435 
   1436 #ifdef DEBUG
   1437 		LFS_CLEANERINFO(cip, fs, bp);
   1438 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1439 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1440 		      fs->lfs_offset - off, cip->clean - oclean,
   1441 		      fs->lfs_activesb));
   1442 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1443 #endif
   1444 
   1445 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1446 		return 0;
   1447 
   1448 	    case LFCNIFILEFH:
   1449 		/* Return the filehandle of the Ifile */
   1450 		if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
   1451 			return (error);
   1452 		fhp = (struct fhandle *)ap->a_data;
   1453 		fhp->fh_fsid = *fsidp;
   1454 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
   1455 
   1456 	    case LFCNREWIND:
   1457 		/* Move lfs_offset to the lowest-numbered segment */
   1458 		return lfs_rewind(fs, *(int *)ap->a_data);
   1459 
   1460 	    case LFCNINVAL:
   1461 		/* Mark a segment SEGUSE_INVAL */
   1462 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1463 		if (sup->su_nbytes > 0) {
   1464 			brelse(bp);
   1465 			lfs_unset_inval_all(fs);
   1466 			return EBUSY;
   1467 		}
   1468 		sup->su_flags |= SEGUSE_INVAL;
   1469 		VOP_BWRITE(bp);
   1470 		return 0;
   1471 
   1472 	    case LFCNRESIZE:
   1473 		/* Resize the filesystem */
   1474 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1475 
   1476 	    case LFCNWRAPSTOP:
   1477 		/*
   1478 		 * Hold lfs_newseg at segment 0; sleep until the filesystem
   1479 		 * wraps around.  For debugging purposes, so an external
   1480 		 * agent can log every segment in the filesystem as it
   1481 		 * was written, and we can regression-test checkpoint
   1482 		 * validity in the general case.
   1483 		 */
   1484 		VOP_UNLOCK(ap->a_vp, 0);
   1485 		simple_lock(&fs->lfs_interlock);
   1486 		fs->lfs_nowrap = 1;
   1487 		error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
   1488 			"segwrap", 0, &fs->lfs_interlock);
   1489 		if (error) {
   1490 			fs->lfs_nowrap = 0;
   1491 			wakeup(&fs->lfs_nowrap);
   1492 		}
   1493 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1494 		return 0;
   1495 
   1496 	    case LFCNWRAPGO:
   1497 		/*
   1498 		 * Having done its work, the agent wakes up the writer.
   1499 		 * It sleeps until a new segment is selected.
   1500 		 */
   1501 		VOP_UNLOCK(ap->a_vp, 0);
   1502 		simple_lock(&fs->lfs_interlock);
   1503 		fs->lfs_nowrap = 0;
   1504 		wakeup(&fs->lfs_nowrap);
   1505                 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
   1506                         "segment", 0, &fs->lfs_interlock);
   1507 		VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
   1508 		return 0;
   1509 
   1510 	    default:
   1511 		return ufs_fcntl(v);
   1512 	}
   1513 	return 0;
   1514 }
   1515 
   1516 int
   1517 lfs_getpages(void *v)
   1518 {
   1519 	struct vop_getpages_args /* {
   1520 		struct vnode *a_vp;
   1521 		voff_t a_offset;
   1522 		struct vm_page **a_m;
   1523 		int *a_count;
   1524 		int a_centeridx;
   1525 		vm_prot_t a_access_type;
   1526 		int a_advice;
   1527 		int a_flags;
   1528 	} */ *ap = v;
   1529 
   1530 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1531 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1532 		return EPERM;
   1533 	}
   1534 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1535 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1536 	}
   1537 
   1538 	/*
   1539 	 * we're relying on the fact that genfs_getpages() always read in
   1540 	 * entire filesystem blocks.
   1541 	 */
   1542 	return genfs_getpages(v);
   1543 }
   1544 
   1545 /*
   1546  * Make sure that for all pages in every block in the given range,
   1547  * either all are dirty or all are clean.  If any of the pages
   1548  * we've seen so far are dirty, put the vnode on the paging chain,
   1549  * and mark it IN_PAGING.
   1550  *
   1551  * If checkfirst != 0, don't check all the pages but return at the
   1552  * first dirty page.
   1553  */
   1554 static int
   1555 check_dirty(struct lfs *fs, struct vnode *vp,
   1556 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1557 	    int flags, int checkfirst)
   1558 {
   1559 	int by_list;
   1560 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1561 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1562 	off_t soff = 0; /* XXX: gcc */
   1563 	voff_t off;
   1564 	int i;
   1565 	int nonexistent;
   1566 	int any_dirty;	/* number of dirty pages */
   1567 	int dirty;	/* number of dirty pages in a block */
   1568 	int tdirty;
   1569 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1570 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1571 
   1572 	ASSERT_MAYBE_SEGLOCK(fs);
   1573   top:
   1574 	by_list = (vp->v_uobj.uo_npages <=
   1575 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1576 		   UVM_PAGE_HASH_PENALTY);
   1577 	any_dirty = 0;
   1578 
   1579 	if (by_list) {
   1580 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1581 	} else {
   1582 		soff = startoffset;
   1583 	}
   1584 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1585 		if (by_list) {
   1586 			/*
   1587 			 * Find the first page in a block.  Skip
   1588 			 * blocks outside our area of interest or beyond
   1589 			 * the end of file.
   1590 			 */
   1591 			if (pages_per_block > 1) {
   1592 				while (curpg &&
   1593 				       ((curpg->offset & fs->lfs_bmask) ||
   1594 					curpg->offset >= vp->v_size ||
   1595 					curpg->offset >= endoffset))
   1596 					curpg = TAILQ_NEXT(curpg, listq);
   1597 			}
   1598 			if (curpg == NULL)
   1599 				break;
   1600 			soff = curpg->offset;
   1601 		}
   1602 
   1603 		/*
   1604 		 * Mark all pages in extended range busy; find out if any
   1605 		 * of them are dirty.
   1606 		 */
   1607 		nonexistent = dirty = 0;
   1608 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1609 			if (by_list && pages_per_block <= 1) {
   1610 				pgs[i] = pg = curpg;
   1611 			} else {
   1612 				off = soff + (i << PAGE_SHIFT);
   1613 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1614 				if (pg == NULL) {
   1615 					++nonexistent;
   1616 					continue;
   1617 				}
   1618 			}
   1619 			KASSERT(pg != NULL);
   1620 
   1621 			/*
   1622 			 * If we're holding the segment lock, we can deadlocked
   1623 			 * against a process that has our page and is waiting
   1624 			 * for the cleaner, while the cleaner waits for the
   1625 			 * segment lock.  Just bail in that case.
   1626 			 */
   1627 			if ((pg->flags & PG_BUSY) &&
   1628 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1629 				if (by_list && i > 0)
   1630 					uvm_page_unbusy(pgs, i);
   1631 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1632 				return -1;
   1633 			}
   1634 
   1635 			while (pg->flags & PG_BUSY) {
   1636 				pg->flags |= PG_WANTED;
   1637 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1638 						    "lfsput", 0);
   1639 				simple_lock(&vp->v_interlock);
   1640 				if (by_list) {
   1641 					if (i > 0)
   1642 						uvm_page_unbusy(pgs, i);
   1643 					goto top;
   1644 				}
   1645 			}
   1646 			pg->flags |= PG_BUSY;
   1647 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1648 
   1649 			pmap_page_protect(pg, VM_PROT_NONE);
   1650 			tdirty = (pmap_clear_modify(pg) ||
   1651 				  (pg->flags & PG_CLEAN) == 0);
   1652 			dirty += tdirty;
   1653 		}
   1654 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1655 			if (by_list) {
   1656 				curpg = TAILQ_NEXT(curpg, listq);
   1657 			} else {
   1658 				soff += fs->lfs_bsize;
   1659 			}
   1660 			continue;
   1661 		}
   1662 
   1663 		any_dirty += dirty;
   1664 		KASSERT(nonexistent == 0);
   1665 
   1666 		/*
   1667 		 * If any are dirty make all dirty; unbusy them,
   1668 		 * but if we were asked to clean, wire them so that
   1669 		 * the pagedaemon doesn't bother us about them while
   1670 		 * they're on their way to disk.
   1671 		 */
   1672 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1673 			pg = pgs[i];
   1674 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1675 			if (dirty) {
   1676 				pg->flags &= ~PG_CLEAN;
   1677 				if (flags & PGO_FREE) {
   1678 					/*
   1679 					 * Wire the page so that
   1680 					 * pdaemon doesn't see it again.
   1681 					 */
   1682 					uvm_lock_pageq();
   1683 					uvm_pagewire(pg);
   1684 					uvm_unlock_pageq();
   1685 
   1686 					/* Suspended write flag */
   1687 					pg->flags |= PG_DELWRI;
   1688 				}
   1689 			}
   1690 			if (pg->flags & PG_WANTED)
   1691 				wakeup(pg);
   1692 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1693 			UVM_PAGE_OWN(pg, NULL);
   1694 		}
   1695 
   1696 		if (checkfirst && any_dirty)
   1697 			break;
   1698 
   1699 		if (by_list) {
   1700 			curpg = TAILQ_NEXT(curpg, listq);
   1701 		} else {
   1702 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1703 		}
   1704 	}
   1705 
   1706 	return any_dirty;
   1707 }
   1708 
   1709 /*
   1710  * lfs_putpages functions like genfs_putpages except that
   1711  *
   1712  * (1) It needs to bounds-check the incoming requests to ensure that
   1713  *     they are block-aligned; if they are not, expand the range and
   1714  *     do the right thing in case, e.g., the requested range is clean
   1715  *     but the expanded range is dirty.
   1716  * (2) It needs to explicitly send blocks to be written when it is done.
   1717  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1718  *     we simply take the seglock and let lfs_segunlock wait for us.
   1719  *     XXX Actually we can be called with the seglock held, if we have
   1720  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1721  *     XXX writing we panic in this case.
   1722  *
   1723  * Assumptions:
   1724  *
   1725  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1726  *     there is a danger that when we expand the page range and busy the
   1727  *     pages we will deadlock.
   1728  * (2) We are called with vp->v_interlock held; we must return with it
   1729  *     released.
   1730  * (3) We don't absolutely have to free pages right away, provided that
   1731  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1732  *     us a request with PGO_FREE, we take the pages out of the paging
   1733  *     queue and wake up the writer, which will handle freeing them for us.
   1734  *
   1735  *     We ensure that for any filesystem block, all pages for that
   1736  *     block are either resident or not, even if those pages are higher
   1737  *     than EOF; that means that we will be getting requests to free
   1738  *     "unused" pages above EOF all the time, and should ignore them.
   1739  *
   1740  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1741  */
   1742 
   1743 int
   1744 lfs_putpages(void *v)
   1745 {
   1746 	int error;
   1747 	struct vop_putpages_args /* {
   1748 		struct vnode *a_vp;
   1749 		voff_t a_offlo;
   1750 		voff_t a_offhi;
   1751 		int a_flags;
   1752 	} */ *ap = v;
   1753 	struct vnode *vp;
   1754 	struct inode *ip;
   1755 	struct lfs *fs;
   1756 	struct segment *sp;
   1757 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1758 	off_t off, max_endoffset;
   1759 	int s;
   1760 	boolean_t seglocked, sync, pagedaemon;
   1761 	struct vm_page *pg;
   1762 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1763 
   1764 	vp = ap->a_vp;
   1765 	ip = VTOI(vp);
   1766 	fs = ip->i_lfs;
   1767 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1768 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1769 
   1770 	/* Putpages does nothing for metadata. */
   1771 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1772 		simple_unlock(&vp->v_interlock);
   1773 		return 0;
   1774 	}
   1775 
   1776 	/*
   1777 	 * If there are no pages, don't do anything.
   1778 	 */
   1779 	if (vp->v_uobj.uo_npages == 0) {
   1780 		s = splbio();
   1781 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1782 		    (vp->v_flag & VONWORKLST)) {
   1783 			vp->v_flag &= ~VONWORKLST;
   1784 			LIST_REMOVE(vp, v_synclist);
   1785 		}
   1786 		splx(s);
   1787 		simple_unlock(&vp->v_interlock);
   1788 
   1789 		/* Remove us from paging queue, if we were on it */
   1790 		simple_lock(&fs->lfs_interlock);
   1791 		if (ip->i_flags & IN_PAGING) {
   1792 			ip->i_flags &= ~IN_PAGING;
   1793 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1794 		}
   1795 		simple_unlock(&fs->lfs_interlock);
   1796 		return 0;
   1797 	}
   1798 
   1799 	blkeof = blkroundup(fs, ip->i_size);
   1800 
   1801 	/*
   1802 	 * Ignore requests to free pages past EOF but in the same block
   1803 	 * as EOF, unless the request is synchronous.  (If the request is
   1804 	 * sync, it comes from lfs_truncate.)
   1805 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1806 	 * XXXUBC bother us with them again.
   1807 	 */
   1808 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1809 		origoffset = ap->a_offlo;
   1810 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1811 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1812 			KASSERT(pg != NULL);
   1813 			while (pg->flags & PG_BUSY) {
   1814 				pg->flags |= PG_WANTED;
   1815 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1816 						    "lfsput2", 0);
   1817 				simple_lock(&vp->v_interlock);
   1818 			}
   1819 			uvm_lock_pageq();
   1820 			uvm_pageactivate(pg);
   1821 			uvm_unlock_pageq();
   1822 		}
   1823 		ap->a_offlo = blkeof;
   1824 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1825 			simple_unlock(&vp->v_interlock);
   1826 			return 0;
   1827 		}
   1828 	}
   1829 
   1830 	/*
   1831 	 * Extend page range to start and end at block boundaries.
   1832 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1833 	 */
   1834 	origoffset = ap->a_offlo;
   1835 	origendoffset = ap->a_offhi;
   1836 	startoffset = origoffset & ~(fs->lfs_bmask);
   1837 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1838 					       << fs->lfs_bshift;
   1839 
   1840 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1841 		endoffset = max_endoffset;
   1842 		origendoffset = endoffset;
   1843 	} else {
   1844 		origendoffset = round_page(ap->a_offhi);
   1845 		endoffset = round_page(blkroundup(fs, origendoffset));
   1846 	}
   1847 
   1848 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1849 	if (startoffset == endoffset) {
   1850 		/* Nothing to do, why were we called? */
   1851 		simple_unlock(&vp->v_interlock);
   1852 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1853 		      PRId64 "\n", startoffset));
   1854 		return 0;
   1855 	}
   1856 
   1857 	ap->a_offlo = startoffset;
   1858 	ap->a_offhi = endoffset;
   1859 
   1860 	if (!(ap->a_flags & PGO_CLEANIT))
   1861 		return genfs_putpages(v);
   1862 
   1863 	/*
   1864 	 * If there are more than one page per block, we don't want
   1865 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1866 	 * to avoid deadlocks.
   1867 	 */
   1868 	ap->a_flags |= PGO_BUSYFAIL;
   1869 
   1870 	do {
   1871 		int r;
   1872 
   1873 		/* If no pages are dirty, we can just use genfs_putpages. */
   1874 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   1875 				ap->a_flags, 1);
   1876 		if (r < 0) {
   1877 			simple_unlock(&vp->v_interlock);
   1878 			return EDEADLK;
   1879 		}
   1880 		if (r > 0)
   1881 			break;
   1882 
   1883 		/*
   1884 		 * Sometimes pages are dirtied between the time that
   1885 		 * we check and the time we try to clean them.
   1886 		 * Instruct lfs_gop_write to return EDEADLK in this case
   1887 		 * so we can write them properly.
   1888 		 */
   1889 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   1890 		r = genfs_putpages(v);
   1891 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   1892 		if (r != EDEADLK)
   1893 			return r;
   1894 
   1895 		/* Start over. */
   1896 		preempt(1);
   1897 		simple_lock(&vp->v_interlock);
   1898 	} while(1);
   1899 
   1900 	/*
   1901 	 * Dirty and asked to clean.
   1902 	 *
   1903 	 * Pagedaemon can't actually write LFS pages; wake up
   1904 	 * the writer to take care of that.  The writer will
   1905 	 * notice the pager inode queue and act on that.
   1906 	 */
   1907 	if (pagedaemon) {
   1908 		simple_lock(&fs->lfs_interlock);
   1909 		if (!(ip->i_flags & IN_PAGING)) {
   1910 			ip->i_flags |= IN_PAGING;
   1911 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1912 		}
   1913 		simple_lock(&lfs_subsys_lock);
   1914 		wakeup(&lfs_writer_daemon);
   1915 		simple_unlock(&lfs_subsys_lock);
   1916 		simple_unlock(&fs->lfs_interlock);
   1917 		simple_unlock(&vp->v_interlock);
   1918 		preempt(1);
   1919 		return EWOULDBLOCK;
   1920 	}
   1921 
   1922 	/*
   1923 	 * If this is a file created in a recent dirop, we can't flush its
   1924 	 * inode until the dirop is complete.  Drain dirops, then flush the
   1925 	 * filesystem (taking care of any other pending dirops while we're
   1926 	 * at it).
   1927 	 */
   1928 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   1929 	    (vp->v_flag & VDIROP)) {
   1930 		int locked;
   1931 
   1932 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   1933 		locked = VOP_ISLOCKED(vp) && /* XXX */
   1934 			vp->v_lock.lk_lockholder == curproc->p_pid;
   1935 		simple_unlock(&vp->v_interlock);
   1936 		lfs_writer_enter(fs, "ppdirop");
   1937 		if (locked)
   1938 			VOP_UNLOCK(vp, 0);
   1939 
   1940 		simple_lock(&fs->lfs_interlock);
   1941 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   1942 		simple_unlock(&fs->lfs_interlock);
   1943 
   1944 		simple_lock(&vp->v_interlock);
   1945 		if (locked) {
   1946 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   1947 			simple_lock(&vp->v_interlock);
   1948 		}
   1949 		lfs_writer_leave(fs);
   1950 
   1951 		/* XXX the flush should have taken care of this one too! */
   1952 	}
   1953 
   1954 	/*
   1955 	 * This is it.	We are going to write some pages.  From here on
   1956 	 * down it's all just mechanics.
   1957 	 *
   1958 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   1959 	 */
   1960 	ap->a_flags &= ~PGO_SYNCIO;
   1961 
   1962 	/*
   1963 	 * If we've already got the seglock, flush the node and return.
   1964 	 * The FIP has already been set up for us by lfs_writefile,
   1965 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   1966 	 * unless genfs_putpages returns EDEADLK; then we must flush
   1967 	 * what we have, and correct FIP and segment header accounting.
   1968 	 */
   1969 
   1970 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   1971 	if (!seglocked) {
   1972 		simple_unlock(&vp->v_interlock);
   1973 		/*
   1974 		 * Take the seglock, because we are going to be writing pages.
   1975 		 */
   1976 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   1977 		if (error != 0)
   1978 			return error;
   1979 		simple_lock(&vp->v_interlock);
   1980 	}
   1981 
   1982 	/*
   1983 	 * VOP_PUTPAGES should not be called while holding the seglock.
   1984 	 * XXXUBC fix lfs_markv, or do this properly.
   1985 	 */
   1986 #ifdef notyet
   1987 	KASSERT(fs->lfs_seglock == 1);
   1988 #endif /* notyet */
   1989 
   1990 	/*
   1991 	 * We assume we're being called with sp->fip pointing at blank space.
   1992 	 * Account for a new FIP in the segment header, and set sp->vp.
   1993 	 * (This should duplicate the setup at the top of lfs_writefile().)
   1994 	 */
   1995 	sp = fs->lfs_sp;
   1996 	if (!seglocked) {
   1997 		if (sp->seg_bytes_left < fs->lfs_bsize ||
   1998 		    sp->sum_bytes_left < sizeof(struct finfo))
   1999 			(void) lfs_writeseg(fs, fs->lfs_sp);
   2000 
   2001 		sp->sum_bytes_left -= FINFOSIZE;
   2002 		++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2003 	}
   2004 	KASSERT(sp->vp == NULL);
   2005 	sp->vp = vp;
   2006 
   2007 	if (!seglocked) {
   2008 		if (vp->v_flag & VDIROP)
   2009 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2010 	}
   2011 
   2012 	sp->fip->fi_nblocks = 0;
   2013 	sp->fip->fi_ino = ip->i_number;
   2014 	sp->fip->fi_version = ip->i_gen;
   2015 
   2016 	/*
   2017 	 * Loop through genfs_putpages until all pages are gathered.
   2018 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2019 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2020 	 * well.
   2021 	 */
   2022 again:
   2023 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2024 	    ap->a_flags, 0) < 0) {
   2025 		simple_unlock(&vp->v_interlock);
   2026 		sp->vp = NULL;
   2027 		if (!seglocked)
   2028 			lfs_segunlock(fs);
   2029 		return EDEADLK;
   2030 	}
   2031 
   2032 	error = genfs_putpages(v);
   2033 	if (error == EDEADLK || error == EAGAIN) {
   2034 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2035 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2036 		      ip->i_number, fs->lfs_offset,
   2037 		      dtosn(fs, fs->lfs_offset)));
   2038 		/* If nothing to write, short-circuit */
   2039 		if (sp->cbpp - sp->bpp > 1) {
   2040 			/* Write gathered pages */
   2041 			lfs_updatemeta(sp);
   2042 			(void) lfs_writeseg(fs, sp);
   2043 
   2044 			/*
   2045 			 * Reinitialize brand new FIP and add us to it.
   2046 			 * (This should duplicate the fixup in
   2047 			 * lfs_gatherpages().)
   2048 			 */
   2049 			KASSERT(sp->vp == vp);
   2050 			sp->fip->fi_version = ip->i_gen;
   2051 			sp->fip->fi_ino = ip->i_number;
   2052 			/* Add us to the new segment summary. */
   2053 			++((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2054 			sp->sum_bytes_left -= FINFOSIZE;
   2055 		}
   2056 
   2057 		/* Give the write a chance to complete */
   2058 		preempt(1);
   2059 
   2060 		/* We've lost the interlock.  Start over. */
   2061 		if (error == EDEADLK) {
   2062 			simple_lock(&vp->v_interlock);
   2063 			goto again;
   2064 		}
   2065 	}
   2066 
   2067 	KASSERT(sp->vp == vp);
   2068 	if (!seglocked) {
   2069 		sp->vp = NULL; /* XXX lfs_gather below will set this */
   2070 
   2071 		/* Write indirect blocks as well */
   2072 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2073 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2074 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2075 
   2076 		KASSERT(sp->vp == NULL);
   2077 		sp->vp = vp;
   2078 	}
   2079 
   2080 	/*
   2081 	 * Blocks are now gathered into a segment waiting to be written.
   2082 	 * All that's left to do is update metadata, and write them.
   2083 	 */
   2084 	lfs_updatemeta(sp);
   2085 	KASSERT(sp->vp == vp);
   2086 	sp->vp = NULL;
   2087 
   2088 	if (seglocked) {
   2089 		/* we're called by lfs_writefile. */
   2090 		return error;
   2091 	}
   2092 
   2093 	/*
   2094 	 * Clean up FIP, since we're done writing this file.
   2095 	 * This should duplicate cleanup at the end of lfs_writefile().
   2096 	 */
   2097 	if (sp->fip->fi_nblocks != 0) {
   2098 		sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
   2099 			sizeof(int32_t) * sp->fip->fi_nblocks);
   2100 		sp->start_lbp = &sp->fip->fi_blocks[0];
   2101 	} else {
   2102 		sp->sum_bytes_left += FINFOSIZE;
   2103 		--((SEGSUM *)(sp->segsum))->ss_nfinfo;
   2104 	}
   2105 	lfs_writeseg(fs, fs->lfs_sp);
   2106 
   2107 	/*
   2108 	 * Remove us from paging queue, since we've now written all our
   2109 	 * pages.
   2110 	 */
   2111 	simple_lock(&fs->lfs_interlock);
   2112 	if (ip->i_flags & IN_PAGING) {
   2113 		ip->i_flags &= ~IN_PAGING;
   2114 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2115 	}
   2116 	simple_unlock(&fs->lfs_interlock);
   2117 
   2118 	/*
   2119 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2120 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2121 	 * will not be true if we stop using malloc/copy.
   2122 	 */
   2123 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2124 	lfs_segunlock(fs);
   2125 
   2126 	/*
   2127 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2128 	 * take care of this, but there is a slight possibility that
   2129 	 * aiodoned might not have got around to our buffers yet.
   2130 	 */
   2131 	if (sync) {
   2132 		s = splbio();
   2133 		simple_lock(&global_v_numoutput_slock);
   2134 		while (vp->v_numoutput > 0) {
   2135 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2136 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2137 			vp->v_flag |= VBWAIT;
   2138 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2139 			    &global_v_numoutput_slock);
   2140 		}
   2141 		simple_unlock(&global_v_numoutput_slock);
   2142 		splx(s);
   2143 	}
   2144 	return error;
   2145 }
   2146 
   2147 /*
   2148  * Return the last logical file offset that should be written for this file
   2149  * if we're doing a write that ends at "size".	If writing, we need to know
   2150  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2151  * to know about entire blocks.
   2152  */
   2153 void
   2154 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2155 {
   2156 	struct inode *ip = VTOI(vp);
   2157 	struct lfs *fs = ip->i_lfs;
   2158 	daddr_t olbn, nlbn;
   2159 
   2160 	olbn = lblkno(fs, ip->i_size);
   2161 	nlbn = lblkno(fs, size);
   2162 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2163 		*eobp = fragroundup(fs, size);
   2164 	} else {
   2165 		*eobp = blkroundup(fs, size);
   2166 	}
   2167 }
   2168 
   2169 #ifdef DEBUG
   2170 void lfs_dump_vop(void *);
   2171 
   2172 void
   2173 lfs_dump_vop(void *v)
   2174 {
   2175 	struct vop_putpages_args /* {
   2176 		struct vnode *a_vp;
   2177 		voff_t a_offlo;
   2178 		voff_t a_offhi;
   2179 		int a_flags;
   2180 	} */ *ap = v;
   2181 
   2182 #ifdef DDB
   2183 	vfs_vnode_print(ap->a_vp, 0, printf);
   2184 #endif
   2185 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2186 }
   2187 #endif
   2188 
   2189 int
   2190 lfs_mmap(void *v)
   2191 {
   2192 	struct vop_mmap_args /* {
   2193 		const struct vnodeop_desc *a_desc;
   2194 		struct vnode *a_vp;
   2195 		int a_fflags;
   2196 		struct ucred *a_cred;
   2197 		struct lwp *a_l;
   2198 	} */ *ap = v;
   2199 
   2200 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2201 		return EOPNOTSUPP;
   2202 	return ufs_mmap(v);
   2203 }
   2204