lfs_vnops.c revision 1.175 1 /* $NetBSD: lfs_vnops.c,v 1.175 2006/05/12 23:36:12 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.175 2006/05/12 23:36:12 perseant Exp $");
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/namei.h>
75 #include <sys/resourcevar.h>
76 #include <sys/kernel.h>
77 #include <sys/file.h>
78 #include <sys/stat.h>
79 #include <sys/buf.h>
80 #include <sys/proc.h>
81 #include <sys/mount.h>
82 #include <sys/vnode.h>
83 #include <sys/pool.h>
84 #include <sys/signalvar.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104
105 /* Global vfs data structures for lfs. */
106 int (**lfs_vnodeop_p)(void *);
107 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
108 { &vop_default_desc, vn_default_error },
109 { &vop_lookup_desc, ufs_lookup }, /* lookup */
110 { &vop_create_desc, lfs_create }, /* create */
111 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
112 { &vop_mknod_desc, lfs_mknod }, /* mknod */
113 { &vop_open_desc, ufs_open }, /* open */
114 { &vop_close_desc, lfs_close }, /* close */
115 { &vop_access_desc, ufs_access }, /* access */
116 { &vop_getattr_desc, lfs_getattr }, /* getattr */
117 { &vop_setattr_desc, lfs_setattr }, /* setattr */
118 { &vop_read_desc, lfs_read }, /* read */
119 { &vop_write_desc, lfs_write }, /* write */
120 { &vop_lease_desc, ufs_lease_check }, /* lease */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_lease_desc, spec_lease_check }, /* lease */
170 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
171 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
172 { &vop_poll_desc, spec_poll }, /* poll */
173 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
174 { &vop_revoke_desc, spec_revoke }, /* revoke */
175 { &vop_mmap_desc, spec_mmap }, /* mmap */
176 { &vop_fsync_desc, spec_fsync }, /* fsync */
177 { &vop_seek_desc, spec_seek }, /* seek */
178 { &vop_remove_desc, spec_remove }, /* remove */
179 { &vop_link_desc, spec_link }, /* link */
180 { &vop_rename_desc, spec_rename }, /* rename */
181 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
182 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
183 { &vop_symlink_desc, spec_symlink }, /* symlink */
184 { &vop_readdir_desc, spec_readdir }, /* readdir */
185 { &vop_readlink_desc, spec_readlink }, /* readlink */
186 { &vop_abortop_desc, spec_abortop }, /* abortop */
187 { &vop_inactive_desc, lfs_inactive }, /* inactive */
188 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
189 { &vop_lock_desc, ufs_lock }, /* lock */
190 { &vop_unlock_desc, ufs_unlock }, /* unlock */
191 { &vop_bmap_desc, spec_bmap }, /* bmap */
192 { &vop_strategy_desc, spec_strategy }, /* strategy */
193 { &vop_print_desc, ufs_print }, /* print */
194 { &vop_islocked_desc, ufs_islocked }, /* islocked */
195 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
196 { &vop_advlock_desc, spec_advlock }, /* advlock */
197 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
198 { &vop_getpages_desc, spec_getpages }, /* getpages */
199 { &vop_putpages_desc, spec_putpages }, /* putpages */
200 { NULL, NULL }
201 };
202 const struct vnodeopv_desc lfs_specop_opv_desc =
203 { &lfs_specop_p, lfs_specop_entries };
204
205 int (**lfs_fifoop_p)(void *);
206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
207 { &vop_default_desc, vn_default_error },
208 { &vop_lookup_desc, fifo_lookup }, /* lookup */
209 { &vop_create_desc, fifo_create }, /* create */
210 { &vop_mknod_desc, fifo_mknod }, /* mknod */
211 { &vop_open_desc, fifo_open }, /* open */
212 { &vop_close_desc, lfsfifo_close }, /* close */
213 { &vop_access_desc, ufs_access }, /* access */
214 { &vop_getattr_desc, lfs_getattr }, /* getattr */
215 { &vop_setattr_desc, lfs_setattr }, /* setattr */
216 { &vop_read_desc, ufsfifo_read }, /* read */
217 { &vop_write_desc, ufsfifo_write }, /* write */
218 { &vop_lease_desc, fifo_lease_check }, /* lease */
219 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
220 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
221 { &vop_poll_desc, fifo_poll }, /* poll */
222 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
223 { &vop_revoke_desc, fifo_revoke }, /* revoke */
224 { &vop_mmap_desc, fifo_mmap }, /* mmap */
225 { &vop_fsync_desc, fifo_fsync }, /* fsync */
226 { &vop_seek_desc, fifo_seek }, /* seek */
227 { &vop_remove_desc, fifo_remove }, /* remove */
228 { &vop_link_desc, fifo_link }, /* link */
229 { &vop_rename_desc, fifo_rename }, /* rename */
230 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
231 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
232 { &vop_symlink_desc, fifo_symlink }, /* symlink */
233 { &vop_readdir_desc, fifo_readdir }, /* readdir */
234 { &vop_readlink_desc, fifo_readlink }, /* readlink */
235 { &vop_abortop_desc, fifo_abortop }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ufs_lock }, /* lock */
239 { &vop_unlock_desc, ufs_unlock }, /* unlock */
240 { &vop_bmap_desc, fifo_bmap }, /* bmap */
241 { &vop_strategy_desc, fifo_strategy }, /* strategy */
242 { &vop_print_desc, ufs_print }, /* print */
243 { &vop_islocked_desc, ufs_islocked }, /* islocked */
244 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
245 { &vop_advlock_desc, fifo_advlock }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, fifo_putpages }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
254
255 #define LFS_READWRITE
256 #include <ufs/ufs/ufs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 struct ucred *a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 struct lwp *a_l;
273 } */ *ap = v;
274 struct vnode *vp = ap->a_vp;
275 int error, wait;
276
277 /* If we're mounted read-only, don't try to sync. */
278 if (VTOI(vp)->i_lfs->lfs_ronly)
279 return 0;
280
281 /*
282 * Trickle sync checks for need to do a checkpoint after possible
283 * activity from the pagedaemon.
284 */
285 if (ap->a_flags & FSYNC_LAZY) {
286 simple_lock(&lfs_subsys_lock);
287 wakeup(&lfs_writer_daemon);
288 simple_unlock(&lfs_subsys_lock);
289 return 0;
290 }
291
292 /*
293 * Don't reclaim any vnodes that are being cleaned.
294 * This prevents the cleaner from writing files twice
295 * in the same partial segment, causing an accounting
296 * underflow.
297 */
298 if (ap->a_flags & FSYNC_RECLAIM) {
299 if (VTOI(vp)->i_flags & IN_CLEANING)
300 return EAGAIN;
301 }
302
303 wait = (ap->a_flags & FSYNC_WAIT);
304 simple_lock(&vp->v_interlock);
305 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
306 round_page(ap->a_offhi),
307 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
308 if (error)
309 return error;
310 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
311 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
312 int l = 0;
313 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
314 ap->a_l->l_proc->p_ucred, ap->a_l);
315 }
316 if (wait && !VPISEMPTY(vp))
317 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
318
319 return error;
320 }
321
322 /*
323 * Take IN_ADIROP off, then call ufs_inactive.
324 */
325 int
326 lfs_inactive(void *v)
327 {
328 struct vop_inactive_args /* {
329 struct vnode *a_vp;
330 struct lwp *a_l;
331 } */ *ap = v;
332
333 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
334
335 lfs_unmark_vnode(ap->a_vp);
336
337 /*
338 * The Ifile is only ever inactivated on unmount.
339 * Streamline this process by not giving it more dirty blocks.
340 */
341 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
342 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
343 VOP_UNLOCK(ap->a_vp, 0);
344 return 0;
345 }
346
347 return ufs_inactive(v);
348 }
349
350 /*
351 * These macros are used to bracket UFS directory ops, so that we can
352 * identify all the pages touched during directory ops which need to
353 * be ordered and flushed atomically, so that they may be recovered.
354 *
355 * Because we have to mark nodes VDIROP in order to prevent
356 * the cache from reclaiming them while a dirop is in progress, we must
357 * also manage the number of nodes so marked (otherwise we can run out).
358 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
359 * is decremented during segment write, when VDIROP is taken off.
360 */
361 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
362 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
363 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
364 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
365 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
366 static int lfs_set_dirop(struct vnode *, struct vnode *);
367
368 static int
369 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
370 {
371 struct lfs *fs;
372 int error;
373
374 KASSERT(VOP_ISLOCKED(dvp));
375 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
376
377 fs = VTOI(dvp)->i_lfs;
378
379 ASSERT_NO_SEGLOCK(fs);
380 /*
381 * LFS_NRESERVE calculates direct and indirect blocks as well
382 * as an inode block; an overestimate in most cases.
383 */
384 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
385 return (error);
386
387 restart:
388 simple_lock(&fs->lfs_interlock);
389 if (fs->lfs_dirops == 0) {
390 simple_unlock(&fs->lfs_interlock);
391 lfs_check(dvp, LFS_UNUSED_LBN, 0);
392 simple_lock(&fs->lfs_interlock);
393 }
394 while (fs->lfs_writer)
395 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
396 &fs->lfs_interlock);
397 simple_lock(&lfs_subsys_lock);
398 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
399 wakeup(&lfs_writer_daemon);
400 simple_unlock(&lfs_subsys_lock);
401 simple_unlock(&fs->lfs_interlock);
402 preempt(1);
403 goto restart;
404 }
405
406 if (lfs_dirvcount > LFS_MAX_DIROP) {
407 simple_unlock(&fs->lfs_interlock);
408 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
409 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
410 if ((error = ltsleep(&lfs_dirvcount,
411 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
412 &lfs_subsys_lock)) != 0) {
413 goto unreserve;
414 }
415 goto restart;
416 }
417 simple_unlock(&lfs_subsys_lock);
418
419 ++fs->lfs_dirops;
420 fs->lfs_doifile = 1;
421 simple_unlock(&fs->lfs_interlock);
422
423 /* Hold a reference so SET_ENDOP will be happy */
424 vref(dvp);
425 if (vp) {
426 vref(vp);
427 MARK_VNODE(vp);
428 }
429
430 MARK_VNODE(dvp);
431 return 0;
432
433 unreserve:
434 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
435 return error;
436 }
437
438 /*
439 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
440 * in getnewvnode(), if we have a stacked filesystem mounted on top
441 * of us.
442 *
443 * NB: this means we have to clear the new vnodes on error. Fortunately
444 * SET_ENDOP is there to do that for us.
445 */
446 static int
447 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
448 {
449 int error;
450 struct lfs *fs;
451
452 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
453 ASSERT_NO_SEGLOCK(fs);
454 if (fs->lfs_ronly)
455 return EROFS;
456 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
457 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
458 dvp, error));
459 return error;
460 }
461 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
462 if (vpp) {
463 ungetnewvnode(*vpp);
464 *vpp = NULL;
465 }
466 return error;
467 }
468 return 0;
469 }
470
471 #define SET_ENDOP_BASE(fs, dvp, str) \
472 do { \
473 simple_lock(&(fs)->lfs_interlock); \
474 --(fs)->lfs_dirops; \
475 if (!(fs)->lfs_dirops) { \
476 if ((fs)->lfs_nadirop) { \
477 panic("SET_ENDOP: %s: no dirops but " \
478 " nadirop=%d", (str), \
479 (fs)->lfs_nadirop); \
480 } \
481 wakeup(&(fs)->lfs_writer); \
482 simple_unlock(&(fs)->lfs_interlock); \
483 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
484 } else \
485 simple_unlock(&(fs)->lfs_interlock); \
486 } while(0)
487 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
488 do { \
489 UNMARK_VNODE(dvp); \
490 if (nvpp && *nvpp) \
491 UNMARK_VNODE(*nvpp); \
492 /* Check for error return to stem vnode leakage */ \
493 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
494 ungetnewvnode(*(nvpp)); \
495 SET_ENDOP_BASE((fs), (dvp), (str)); \
496 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
497 vrele(dvp); \
498 } while(0)
499 #define SET_ENDOP_CREATE_AP(ap, str) \
500 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
501 (ap)->a_vpp, (str))
502 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
503 do { \
504 UNMARK_VNODE(dvp); \
505 if (ovp) \
506 UNMARK_VNODE(ovp); \
507 SET_ENDOP_BASE((fs), (dvp), (str)); \
508 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
509 vrele(dvp); \
510 if (ovp) \
511 vrele(ovp); \
512 } while(0)
513
514 void
515 lfs_mark_vnode(struct vnode *vp)
516 {
517 struct inode *ip = VTOI(vp);
518 struct lfs *fs = ip->i_lfs;
519
520 simple_lock(&fs->lfs_interlock);
521 if (!(ip->i_flag & IN_ADIROP)) {
522 if (!(vp->v_flag & VDIROP)) {
523 (void)lfs_vref(vp);
524 simple_lock(&lfs_subsys_lock);
525 ++lfs_dirvcount;
526 ++fs->lfs_dirvcount;
527 simple_unlock(&lfs_subsys_lock);
528 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
529 vp->v_flag |= VDIROP;
530 }
531 ++fs->lfs_nadirop;
532 ip->i_flag |= IN_ADIROP;
533 } else
534 KASSERT(vp->v_flag & VDIROP);
535 simple_unlock(&fs->lfs_interlock);
536 }
537
538 void
539 lfs_unmark_vnode(struct vnode *vp)
540 {
541 struct inode *ip = VTOI(vp);
542
543 if (ip && (ip->i_flag & IN_ADIROP)) {
544 KASSERT(vp->v_flag & VDIROP);
545 simple_lock(&ip->i_lfs->lfs_interlock);
546 --ip->i_lfs->lfs_nadirop;
547 simple_unlock(&ip->i_lfs->lfs_interlock);
548 ip->i_flag &= ~IN_ADIROP;
549 }
550 }
551
552 int
553 lfs_symlink(void *v)
554 {
555 struct vop_symlink_args /* {
556 struct vnode *a_dvp;
557 struct vnode **a_vpp;
558 struct componentname *a_cnp;
559 struct vattr *a_vap;
560 char *a_target;
561 } */ *ap = v;
562 int error;
563
564 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
565 vput(ap->a_dvp);
566 return error;
567 }
568 error = ufs_symlink(ap);
569 SET_ENDOP_CREATE_AP(ap, "symlink");
570 return (error);
571 }
572
573 int
574 lfs_mknod(void *v)
575 {
576 struct vop_mknod_args /* {
577 struct vnode *a_dvp;
578 struct vnode **a_vpp;
579 struct componentname *a_cnp;
580 struct vattr *a_vap;
581 } */ *ap = v;
582 struct vattr *vap = ap->a_vap;
583 struct vnode **vpp = ap->a_vpp;
584 struct inode *ip;
585 int error;
586 struct mount *mp;
587 ino_t ino;
588
589 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
590 vput(ap->a_dvp);
591 return error;
592 }
593 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
594 ap->a_dvp, vpp, ap->a_cnp);
595
596 /* Either way we're done with the dirop at this point */
597 SET_ENDOP_CREATE_AP(ap, "mknod");
598
599 if (error)
600 return (error);
601
602 ip = VTOI(*vpp);
603 mp = (*vpp)->v_mount;
604 ino = ip->i_number;
605 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
606 if (vap->va_rdev != VNOVAL) {
607 /*
608 * Want to be able to use this to make badblock
609 * inodes, so don't truncate the dev number.
610 */
611 #if 0
612 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
613 UFS_MPNEEDSWAP((*vpp)->v_mount));
614 #else
615 ip->i_ffs1_rdev = vap->va_rdev;
616 #endif
617 }
618
619 /*
620 * Call fsync to write the vnode so that we don't have to deal with
621 * flushing it when it's marked VDIROP|VXLOCK.
622 *
623 * XXX KS - If we can't flush we also can't call vgone(), so must
624 * return. But, that leaves this vnode in limbo, also not good.
625 * Can this ever happen (barring hardware failure)?
626 */
627 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
628 curlwp)) != 0) {
629 panic("lfs_mknod: couldn't fsync (ino %llu)",
630 (unsigned long long)ino);
631 /* return (error); */
632 }
633 /*
634 * Remove vnode so that it will be reloaded by VFS_VGET and
635 * checked to see if it is an alias of an existing entry in
636 * the inode cache.
637 */
638 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
639
640 VOP_UNLOCK(*vpp, 0);
641 lfs_vunref(*vpp);
642 (*vpp)->v_type = VNON;
643 vgone(*vpp);
644 error = VFS_VGET(mp, ino, vpp);
645
646 if (error != 0) {
647 *vpp = NULL;
648 return (error);
649 }
650 return (0);
651 }
652
653 int
654 lfs_create(void *v)
655 {
656 struct vop_create_args /* {
657 struct vnode *a_dvp;
658 struct vnode **a_vpp;
659 struct componentname *a_cnp;
660 struct vattr *a_vap;
661 } */ *ap = v;
662 int error;
663
664 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
665 vput(ap->a_dvp);
666 return error;
667 }
668 error = ufs_create(ap);
669 SET_ENDOP_CREATE_AP(ap, "create");
670 return (error);
671 }
672
673 int
674 lfs_mkdir(void *v)
675 {
676 struct vop_mkdir_args /* {
677 struct vnode *a_dvp;
678 struct vnode **a_vpp;
679 struct componentname *a_cnp;
680 struct vattr *a_vap;
681 } */ *ap = v;
682 int error;
683
684 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
685 vput(ap->a_dvp);
686 return error;
687 }
688 error = ufs_mkdir(ap);
689 SET_ENDOP_CREATE_AP(ap, "mkdir");
690 return (error);
691 }
692
693 int
694 lfs_remove(void *v)
695 {
696 struct vop_remove_args /* {
697 struct vnode *a_dvp;
698 struct vnode *a_vp;
699 struct componentname *a_cnp;
700 } */ *ap = v;
701 struct vnode *dvp, *vp;
702 int error;
703
704 dvp = ap->a_dvp;
705 vp = ap->a_vp;
706 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
707 if (dvp == vp)
708 vrele(vp);
709 else
710 vput(vp);
711 vput(dvp);
712 return error;
713 }
714 error = ufs_remove(ap);
715 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
716 return (error);
717 }
718
719 int
720 lfs_rmdir(void *v)
721 {
722 struct vop_rmdir_args /* {
723 struct vnodeop_desc *a_desc;
724 struct vnode *a_dvp;
725 struct vnode *a_vp;
726 struct componentname *a_cnp;
727 } */ *ap = v;
728 struct vnode *vp;
729 int error;
730
731 vp = ap->a_vp;
732 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
733 vrele(ap->a_dvp);
734 if (ap->a_vp != ap->a_dvp)
735 VOP_UNLOCK(ap->a_dvp, 0);
736 vput(vp);
737 return error;
738 }
739 error = ufs_rmdir(ap);
740 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
741 return (error);
742 }
743
744 int
745 lfs_link(void *v)
746 {
747 struct vop_link_args /* {
748 struct vnode *a_dvp;
749 struct vnode *a_vp;
750 struct componentname *a_cnp;
751 } */ *ap = v;
752 int error;
753 struct vnode **vpp = NULL;
754
755 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
756 vput(ap->a_dvp);
757 return error;
758 }
759 error = ufs_link(ap);
760 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
761 return (error);
762 }
763
764 int
765 lfs_rename(void *v)
766 {
767 struct vop_rename_args /* {
768 struct vnode *a_fdvp;
769 struct vnode *a_fvp;
770 struct componentname *a_fcnp;
771 struct vnode *a_tdvp;
772 struct vnode *a_tvp;
773 struct componentname *a_tcnp;
774 } */ *ap = v;
775 struct vnode *tvp, *fvp, *tdvp, *fdvp;
776 struct componentname *tcnp, *fcnp;
777 int error;
778 struct lfs *fs;
779
780 fs = VTOI(ap->a_fdvp)->i_lfs;
781 tvp = ap->a_tvp;
782 tdvp = ap->a_tdvp;
783 tcnp = ap->a_tcnp;
784 fvp = ap->a_fvp;
785 fdvp = ap->a_fdvp;
786 fcnp = ap->a_fcnp;
787
788 /*
789 * Check for cross-device rename.
790 * If it is, we don't want to set dirops, just error out.
791 * (In particular note that MARK_VNODE(tdvp) will DTWT on
792 * a cross-device rename.)
793 *
794 * Copied from ufs_rename.
795 */
796 if ((fvp->v_mount != tdvp->v_mount) ||
797 (tvp && (fvp->v_mount != tvp->v_mount))) {
798 error = EXDEV;
799 goto errout;
800 }
801
802 /*
803 * Check to make sure we're not renaming a vnode onto itself
804 * (deleting a hard link by renaming one name onto another);
805 * if we are we can't recursively call VOP_REMOVE since that
806 * would leave us with an unaccounted-for number of live dirops.
807 *
808 * Inline the relevant section of ufs_rename here, *before*
809 * calling SET_DIROP_REMOVE.
810 */
811 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
812 (VTOI(tdvp)->i_flags & APPEND))) {
813 error = EPERM;
814 goto errout;
815 }
816 if (fvp == tvp) {
817 if (fvp->v_type == VDIR) {
818 error = EINVAL;
819 goto errout;
820 }
821
822 /* Release destination completely. */
823 VOP_ABORTOP(tdvp, tcnp);
824 vput(tdvp);
825 vput(tvp);
826
827 /* Delete source. */
828 vrele(fvp);
829 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
830 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
831 fcnp->cn_nameiop = DELETE;
832 if ((error = relookup(fdvp, &fvp, fcnp))){
833 /* relookup blew away fdvp */
834 return (error);
835 }
836 return (VOP_REMOVE(fdvp, fvp, fcnp));
837 }
838
839 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
840 goto errout;
841 MARK_VNODE(fdvp);
842 MARK_VNODE(fvp);
843
844 error = ufs_rename(ap);
845 UNMARK_VNODE(fdvp);
846 UNMARK_VNODE(fvp);
847 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
848 return (error);
849
850 errout:
851 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
852 if (tdvp == tvp)
853 vrele(tdvp);
854 else
855 vput(tdvp);
856 if (tvp)
857 vput(tvp);
858 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
859 vrele(fdvp);
860 vrele(fvp);
861 return (error);
862 }
863
864 /* XXX hack to avoid calling ITIMES in getattr */
865 int
866 lfs_getattr(void *v)
867 {
868 struct vop_getattr_args /* {
869 struct vnode *a_vp;
870 struct vattr *a_vap;
871 struct ucred *a_cred;
872 struct lwp *a_l;
873 } */ *ap = v;
874 struct vnode *vp = ap->a_vp;
875 struct inode *ip = VTOI(vp);
876 struct vattr *vap = ap->a_vap;
877 struct lfs *fs = ip->i_lfs;
878 /*
879 * Copy from inode table
880 */
881 vap->va_fsid = ip->i_dev;
882 vap->va_fileid = ip->i_number;
883 vap->va_mode = ip->i_mode & ~IFMT;
884 vap->va_nlink = ip->i_nlink;
885 vap->va_uid = ip->i_uid;
886 vap->va_gid = ip->i_gid;
887 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
888 vap->va_size = vp->v_size;
889 vap->va_atime.tv_sec = ip->i_ffs1_atime;
890 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
891 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
892 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
893 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
894 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
895 vap->va_flags = ip->i_flags;
896 vap->va_gen = ip->i_gen;
897 /* this doesn't belong here */
898 if (vp->v_type == VBLK)
899 vap->va_blocksize = BLKDEV_IOSIZE;
900 else if (vp->v_type == VCHR)
901 vap->va_blocksize = MAXBSIZE;
902 else
903 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
904 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
905 vap->va_type = vp->v_type;
906 vap->va_filerev = ip->i_modrev;
907 return (0);
908 }
909
910 /*
911 * Check to make sure the inode blocks won't choke the buffer
912 * cache, then call ufs_setattr as usual.
913 */
914 int
915 lfs_setattr(void *v)
916 {
917 struct vop_setattr_args /* {
918 struct vnode *a_vp;
919 struct vattr *a_vap;
920 struct ucred *a_cred;
921 struct lwp *a_l;
922 } */ *ap = v;
923 struct vnode *vp = ap->a_vp;
924
925 lfs_check(vp, LFS_UNUSED_LBN, 0);
926 return ufs_setattr(v);
927 }
928
929 /*
930 * Close called
931 *
932 * XXX -- we were using ufs_close, but since it updates the
933 * times on the inode, we might need to bump the uinodes
934 * count.
935 */
936 /* ARGSUSED */
937 int
938 lfs_close(void *v)
939 {
940 struct vop_close_args /* {
941 struct vnode *a_vp;
942 int a_fflag;
943 struct ucred *a_cred;
944 struct lwp *a_l;
945 } */ *ap = v;
946 struct vnode *vp = ap->a_vp;
947 struct inode *ip = VTOI(vp);
948
949 if (vp == ip->i_lfs->lfs_ivnode &&
950 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
951 return 0;
952
953 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
954 LFS_ITIMES(ip, NULL, NULL, NULL);
955 }
956 return (0);
957 }
958
959 /*
960 * Close wrapper for special devices.
961 *
962 * Update the times on the inode then do device close.
963 */
964 int
965 lfsspec_close(void *v)
966 {
967 struct vop_close_args /* {
968 struct vnode *a_vp;
969 int a_fflag;
970 struct ucred *a_cred;
971 struct lwp *a_l;
972 } */ *ap = v;
973 struct vnode *vp;
974 struct inode *ip;
975
976 vp = ap->a_vp;
977 ip = VTOI(vp);
978 if (vp->v_usecount > 1) {
979 LFS_ITIMES(ip, NULL, NULL, NULL);
980 }
981 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
982 }
983
984 /*
985 * Close wrapper for fifo's.
986 *
987 * Update the times on the inode then do device close.
988 */
989 int
990 lfsfifo_close(void *v)
991 {
992 struct vop_close_args /* {
993 struct vnode *a_vp;
994 int a_fflag;
995 struct ucred *a_cred;
996 struct lwp *a_l;
997 } */ *ap = v;
998 struct vnode *vp;
999 struct inode *ip;
1000
1001 vp = ap->a_vp;
1002 ip = VTOI(vp);
1003 if (ap->a_vp->v_usecount > 1) {
1004 LFS_ITIMES(ip, NULL, NULL, NULL);
1005 }
1006 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1007 }
1008
1009 /*
1010 * Reclaim an inode so that it can be used for other purposes.
1011 */
1012
1013 int
1014 lfs_reclaim(void *v)
1015 {
1016 struct vop_reclaim_args /* {
1017 struct vnode *a_vp;
1018 struct lwp *a_l;
1019 } */ *ap = v;
1020 struct vnode *vp = ap->a_vp;
1021 struct inode *ip = VTOI(vp);
1022 int error;
1023
1024 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1025
1026 LFS_CLR_UINO(ip, IN_ALLMOD);
1027 if ((error = ufs_reclaim(vp, ap->a_l)))
1028 return (error);
1029 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1030 lfs_deregister_all(vp);
1031 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1032 ip->inode_ext.lfs = NULL;
1033 pool_put(&lfs_inode_pool, vp->v_data);
1034 vp->v_data = NULL;
1035 return (0);
1036 }
1037
1038 /*
1039 * Read a block from a storage device.
1040 * In order to avoid reading blocks that are in the process of being
1041 * written by the cleaner---and hence are not mutexed by the normal
1042 * buffer cache / page cache mechanisms---check for collisions before
1043 * reading.
1044 *
1045 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1046 * the active cleaner test.
1047 *
1048 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1049 */
1050 int
1051 lfs_strategy(void *v)
1052 {
1053 struct vop_strategy_args /* {
1054 struct vnode *a_vp;
1055 struct buf *a_bp;
1056 } */ *ap = v;
1057 struct buf *bp;
1058 struct lfs *fs;
1059 struct vnode *vp;
1060 struct inode *ip;
1061 daddr_t tbn;
1062 int i, sn, error, slept;
1063
1064 bp = ap->a_bp;
1065 vp = ap->a_vp;
1066 ip = VTOI(vp);
1067 fs = ip->i_lfs;
1068
1069 /* lfs uses its strategy routine only for read */
1070 KASSERT(bp->b_flags & B_READ);
1071
1072 if (vp->v_type == VBLK || vp->v_type == VCHR)
1073 panic("lfs_strategy: spec");
1074 KASSERT(bp->b_bcount != 0);
1075 if (bp->b_blkno == bp->b_lblkno) {
1076 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1077 NULL);
1078 if (error) {
1079 bp->b_error = error;
1080 bp->b_flags |= B_ERROR;
1081 biodone(bp);
1082 return (error);
1083 }
1084 if ((long)bp->b_blkno == -1) /* no valid data */
1085 clrbuf(bp);
1086 }
1087 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1088 biodone(bp);
1089 return (0);
1090 }
1091
1092 slept = 1;
1093 simple_lock(&fs->lfs_interlock);
1094 while (slept && fs->lfs_seglock) {
1095 simple_unlock(&fs->lfs_interlock);
1096 /*
1097 * Look through list of intervals.
1098 * There will only be intervals to look through
1099 * if the cleaner holds the seglock.
1100 * Since the cleaner is synchronous, we can trust
1101 * the list of intervals to be current.
1102 */
1103 tbn = dbtofsb(fs, bp->b_blkno);
1104 sn = dtosn(fs, tbn);
1105 slept = 0;
1106 for (i = 0; i < fs->lfs_cleanind; i++) {
1107 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1108 tbn >= fs->lfs_cleanint[i]) {
1109 DLOG((DLOG_CLEAN,
1110 "lfs_strategy: ino %d lbn %" PRId64
1111 " ind %d sn %d fsb %" PRIx32
1112 " given sn %d fsb %" PRIx64 "\n",
1113 ip->i_number, bp->b_lblkno, i,
1114 dtosn(fs, fs->lfs_cleanint[i]),
1115 fs->lfs_cleanint[i], sn, tbn));
1116 DLOG((DLOG_CLEAN,
1117 "lfs_strategy: sleeping on ino %d lbn %"
1118 PRId64 "\n", ip->i_number, bp->b_lblkno));
1119 simple_lock(&fs->lfs_interlock);
1120 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1121 /* Cleaner can't wait for itself */
1122 ltsleep(&fs->lfs_iocount,
1123 (PRIBIO + 1) | PNORELOCK,
1124 "clean2", 0,
1125 &fs->lfs_interlock);
1126 slept = 1;
1127 break;
1128 } else if (fs->lfs_seglock) {
1129 ltsleep(&fs->lfs_seglock,
1130 (PRIBIO + 1) | PNORELOCK,
1131 "clean1", 0,
1132 &fs->lfs_interlock);
1133 slept = 1;
1134 break;
1135 }
1136 simple_unlock(&fs->lfs_interlock);
1137 }
1138 }
1139 simple_lock(&fs->lfs_interlock);
1140 }
1141 simple_unlock(&fs->lfs_interlock);
1142
1143 vp = ip->i_devvp;
1144 VOP_STRATEGY(vp, bp);
1145 return (0);
1146 }
1147
1148 void
1149 lfs_flush_dirops(struct lfs *fs)
1150 {
1151 struct inode *ip, *nip;
1152 struct vnode *vp;
1153 extern int lfs_dostats;
1154 struct segment *sp;
1155 int waslocked;
1156
1157 ASSERT_MAYBE_SEGLOCK(fs);
1158 KASSERT(fs->lfs_nadirop == 0);
1159
1160 if (fs->lfs_ronly)
1161 return;
1162
1163 simple_lock(&fs->lfs_interlock);
1164 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1165 simple_unlock(&fs->lfs_interlock);
1166 return;
1167 } else
1168 simple_unlock(&fs->lfs_interlock);
1169
1170 if (lfs_dostats)
1171 ++lfs_stats.flush_invoked;
1172
1173 /*
1174 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1175 * Technically this is a checkpoint (the on-disk state is valid)
1176 * even though we are leaving out all the file data.
1177 */
1178 lfs_imtime(fs);
1179 lfs_seglock(fs, SEGM_CKP);
1180 sp = fs->lfs_sp;
1181
1182 /*
1183 * lfs_writevnodes, optimized to get dirops out of the way.
1184 * Only write dirops, and don't flush files' pages, only
1185 * blocks from the directories.
1186 *
1187 * We don't need to vref these files because they are
1188 * dirops and so hold an extra reference until the
1189 * segunlock clears them of that status.
1190 *
1191 * We don't need to check for IN_ADIROP because we know that
1192 * no dirops are active.
1193 *
1194 */
1195 simple_lock(&fs->lfs_interlock);
1196 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1197 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1198 simple_unlock(&fs->lfs_interlock);
1199 vp = ITOV(ip);
1200
1201 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1202
1203 /*
1204 * All writes to directories come from dirops; all
1205 * writes to files' direct blocks go through the page
1206 * cache, which we're not touching. Reads to files
1207 * and/or directories will not be affected by writing
1208 * directory blocks inodes and file inodes. So we don't
1209 * really need to lock. If we don't lock, though,
1210 * make sure that we don't clear IN_MODIFIED
1211 * unnecessarily.
1212 */
1213 if (vp->v_flag & (VXLOCK | VFREEING)) {
1214 simple_lock(&fs->lfs_interlock);
1215 continue;
1216 }
1217 waslocked = VOP_ISLOCKED(vp);
1218 if (vp->v_type != VREG &&
1219 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1220 lfs_writefile(fs, sp, vp);
1221 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1222 !(ip->i_flag & IN_ALLMOD)) {
1223 LFS_SET_UINO(ip, IN_MODIFIED);
1224 }
1225 }
1226 (void) lfs_writeinode(fs, sp, ip);
1227 if (waslocked)
1228 LFS_SET_UINO(ip, IN_MODIFIED);
1229 simple_lock(&fs->lfs_interlock);
1230 }
1231 simple_unlock(&fs->lfs_interlock);
1232 /* We've written all the dirops there are */
1233 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1234 lfs_finalize_fs_seguse(fs);
1235 (void) lfs_writeseg(fs, sp);
1236 lfs_segunlock(fs);
1237 }
1238
1239 /*
1240 * Flush all vnodes for which the pagedaemon has requested pageouts.
1241 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1242 * has just run, this would be an error). If we have to skip a vnode
1243 * for any reason, just skip it; if we have to wait for the cleaner,
1244 * abort. The writer daemon will call us again later.
1245 */
1246 void
1247 lfs_flush_pchain(struct lfs *fs)
1248 {
1249 struct inode *ip, *nip;
1250 struct vnode *vp;
1251 extern int lfs_dostats;
1252 struct segment *sp;
1253 int error;
1254
1255 ASSERT_NO_SEGLOCK(fs);
1256
1257 if (fs->lfs_ronly)
1258 return;
1259
1260 simple_lock(&fs->lfs_interlock);
1261 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1262 simple_unlock(&fs->lfs_interlock);
1263 return;
1264 } else
1265 simple_unlock(&fs->lfs_interlock);
1266
1267 /* Get dirops out of the way */
1268 lfs_flush_dirops(fs);
1269
1270 if (lfs_dostats)
1271 ++lfs_stats.flush_invoked;
1272
1273 /*
1274 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1275 */
1276 lfs_imtime(fs);
1277 lfs_seglock(fs, 0);
1278 sp = fs->lfs_sp;
1279
1280 /*
1281 * lfs_writevnodes, optimized to clear pageout requests.
1282 * Only write non-dirop files that are in the pageout queue.
1283 * We're very conservative about what we write; we want to be
1284 * fast and async.
1285 */
1286 simple_lock(&fs->lfs_interlock);
1287 top:
1288 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1289 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1290 vp = ITOV(ip);
1291
1292 if (!(ip->i_flags & IN_PAGING))
1293 goto top;
1294
1295 if (vp->v_flag & (VXLOCK|VDIROP))
1296 continue;
1297 if (vp->v_type != VREG)
1298 continue;
1299 if (lfs_vref(vp))
1300 continue;
1301 simple_unlock(&fs->lfs_interlock);
1302
1303 if (VOP_ISLOCKED(vp)) {
1304 lfs_vunref(vp);
1305 simple_lock(&fs->lfs_interlock);
1306 continue;
1307 }
1308
1309 error = lfs_writefile(fs, sp, vp);
1310 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1311 !(ip->i_flag & IN_ALLMOD)) {
1312 LFS_SET_UINO(ip, IN_MODIFIED);
1313 }
1314 (void) lfs_writeinode(fs, sp, ip);
1315
1316 lfs_vunref(vp);
1317
1318 if (error == EAGAIN) {
1319 lfs_writeseg(fs, sp);
1320 simple_lock(&fs->lfs_interlock);
1321 break;
1322 }
1323 simple_lock(&fs->lfs_interlock);
1324 }
1325 simple_unlock(&fs->lfs_interlock);
1326 (void) lfs_writeseg(fs, sp);
1327 lfs_segunlock(fs);
1328 }
1329
1330 /*
1331 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1332 */
1333 int
1334 lfs_fcntl(void *v)
1335 {
1336 struct vop_fcntl_args /* {
1337 struct vnode *a_vp;
1338 u_long a_command;
1339 caddr_t a_data;
1340 int a_fflag;
1341 struct ucred *a_cred;
1342 struct lwp *a_l;
1343 } */ *ap = v;
1344 struct timeval *tvp;
1345 BLOCK_INFO *blkiov;
1346 CLEANERINFO *cip;
1347 SEGUSE *sup;
1348 int blkcnt, error, oclean;
1349 struct lfs_fcntl_markv blkvp;
1350 struct proc *p;
1351 fsid_t *fsidp;
1352 struct lfs *fs;
1353 struct buf *bp;
1354 fhandle_t *fhp;
1355 daddr_t off;
1356
1357 /* Only respect LFS fcntls on fs root or Ifile */
1358 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1359 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1360 return ufs_fcntl(v);
1361 }
1362
1363 /* Avoid locking a draining lock */
1364 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1365 return ESHUTDOWN;
1366 }
1367
1368 p = ap->a_l->l_proc;
1369 fs = VTOI(ap->a_vp)->i_lfs;
1370 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1371
1372 switch (ap->a_command) {
1373 case LFCNSEGWAITALL:
1374 case LFCNSEGWAITALL_COMPAT:
1375 fsidp = NULL;
1376 /* FALLSTHROUGH */
1377 case LFCNSEGWAIT:
1378 case LFCNSEGWAIT_COMPAT:
1379 tvp = (struct timeval *)ap->a_data;
1380 simple_lock(&fs->lfs_interlock);
1381 ++fs->lfs_sleepers;
1382 simple_unlock(&fs->lfs_interlock);
1383
1384 error = lfs_segwait(fsidp, tvp);
1385
1386 simple_lock(&fs->lfs_interlock);
1387 if (--fs->lfs_sleepers == 0)
1388 wakeup(&fs->lfs_sleepers);
1389 simple_unlock(&fs->lfs_interlock);
1390 return error;
1391
1392 case LFCNBMAPV:
1393 case LFCNMARKV:
1394 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1395 return (error);
1396 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1397
1398 blkcnt = blkvp.blkcnt;
1399 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1400 return (EINVAL);
1401 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1402 if ((error = copyin(blkvp.blkiov, blkiov,
1403 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1404 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1405 return error;
1406 }
1407
1408 simple_lock(&fs->lfs_interlock);
1409 ++fs->lfs_sleepers;
1410 simple_unlock(&fs->lfs_interlock);
1411 if (ap->a_command == LFCNBMAPV)
1412 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1413 else /* LFCNMARKV */
1414 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1415 if (error == 0)
1416 error = copyout(blkiov, blkvp.blkiov,
1417 blkcnt * sizeof(BLOCK_INFO));
1418 simple_lock(&fs->lfs_interlock);
1419 if (--fs->lfs_sleepers == 0)
1420 wakeup(&fs->lfs_sleepers);
1421 simple_unlock(&fs->lfs_interlock);
1422 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1423 return error;
1424
1425 case LFCNRECLAIM:
1426 /*
1427 * Flush dirops and write Ifile, allowing empty segments
1428 * to be immediately reclaimed.
1429 */
1430 lfs_writer_enter(fs, "pndirop");
1431 off = fs->lfs_offset;
1432 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1433 lfs_flush_dirops(fs);
1434 LFS_CLEANERINFO(cip, fs, bp);
1435 oclean = cip->clean;
1436 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1437 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1438 fs->lfs_sp->seg_flags |= SEGM_PROT;
1439 lfs_segunlock(fs);
1440 lfs_writer_leave(fs);
1441
1442 #ifdef DEBUG
1443 LFS_CLEANERINFO(cip, fs, bp);
1444 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1445 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1446 fs->lfs_offset - off, cip->clean - oclean,
1447 fs->lfs_activesb));
1448 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1449 #endif
1450
1451 return 0;
1452
1453 case LFCNIFILEFH:
1454 /* Return the filehandle of the Ifile */
1455 if ((error = suser(ap->a_l->l_proc->p_ucred, &ap->a_l->l_proc->p_acflag)) != 0)
1456 return (error);
1457 fhp = (struct fhandle *)ap->a_data;
1458 fhp->fh_fsid = *fsidp;
1459 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
1460
1461 case LFCNREWIND:
1462 /* Move lfs_offset to the lowest-numbered segment */
1463 return lfs_rewind(fs, *(int *)ap->a_data);
1464
1465 case LFCNINVAL:
1466 /* Mark a segment SEGUSE_INVAL */
1467 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1468 if (sup->su_nbytes > 0) {
1469 brelse(bp);
1470 lfs_unset_inval_all(fs);
1471 return EBUSY;
1472 }
1473 sup->su_flags |= SEGUSE_INVAL;
1474 VOP_BWRITE(bp);
1475 return 0;
1476
1477 case LFCNRESIZE:
1478 /* Resize the filesystem */
1479 return lfs_resize_fs(fs, *(int *)ap->a_data);
1480
1481 case LFCNWRAPSTOP:
1482 /*
1483 * Hold lfs_newseg at segment 0; sleep until the filesystem
1484 * wraps around. For debugging purposes, so an external
1485 * agent can log every segment in the filesystem as it
1486 * was written, and we can regression-test checkpoint
1487 * validity in the general case.
1488 */
1489 simple_lock(&fs->lfs_interlock);
1490 fs->lfs_nowrap = 1;
1491 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
1492 "segwrap", 0, &fs->lfs_interlock);
1493 if (error) {
1494 fs->lfs_nowrap = 0;
1495 wakeup(&fs->lfs_nowrap);
1496 }
1497 return 0;
1498
1499 case LFCNWRAPGO:
1500 /*
1501 * Having done its work, the agent wakes up the writer.
1502 * It sleeps until a new segment is selected.
1503 */
1504 simple_lock(&fs->lfs_interlock);
1505 fs->lfs_nowrap = 0;
1506 wakeup(&fs->lfs_nowrap);
1507 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
1508 "segment", 0, &fs->lfs_interlock);
1509 return 0;
1510
1511 default:
1512 return ufs_fcntl(v);
1513 }
1514 return 0;
1515 }
1516
1517 int
1518 lfs_getpages(void *v)
1519 {
1520 struct vop_getpages_args /* {
1521 struct vnode *a_vp;
1522 voff_t a_offset;
1523 struct vm_page **a_m;
1524 int *a_count;
1525 int a_centeridx;
1526 vm_prot_t a_access_type;
1527 int a_advice;
1528 int a_flags;
1529 } */ *ap = v;
1530
1531 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1532 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1533 return EPERM;
1534 }
1535 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1536 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1537 }
1538
1539 /*
1540 * we're relying on the fact that genfs_getpages() always read in
1541 * entire filesystem blocks.
1542 */
1543 return genfs_getpages(v);
1544 }
1545
1546 /*
1547 * Make sure that for all pages in every block in the given range,
1548 * either all are dirty or all are clean. If any of the pages
1549 * we've seen so far are dirty, put the vnode on the paging chain,
1550 * and mark it IN_PAGING.
1551 *
1552 * If checkfirst != 0, don't check all the pages but return at the
1553 * first dirty page.
1554 */
1555 static int
1556 check_dirty(struct lfs *fs, struct vnode *vp,
1557 off_t startoffset, off_t endoffset, off_t blkeof,
1558 int flags, int checkfirst)
1559 {
1560 int by_list;
1561 struct vm_page *curpg = NULL; /* XXX: gcc */
1562 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1563 off_t soff = 0; /* XXX: gcc */
1564 voff_t off;
1565 int i;
1566 int nonexistent;
1567 int any_dirty; /* number of dirty pages */
1568 int dirty; /* number of dirty pages in a block */
1569 int tdirty;
1570 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1571 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1572
1573 ASSERT_MAYBE_SEGLOCK(fs);
1574 top:
1575 by_list = (vp->v_uobj.uo_npages <=
1576 ((endoffset - startoffset) >> PAGE_SHIFT) *
1577 UVM_PAGE_HASH_PENALTY);
1578 any_dirty = 0;
1579
1580 if (by_list) {
1581 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1582 } else {
1583 soff = startoffset;
1584 }
1585 while (by_list || soff < MIN(blkeof, endoffset)) {
1586 if (by_list) {
1587 /*
1588 * Find the first page in a block. Skip
1589 * blocks outside our area of interest or beyond
1590 * the end of file.
1591 */
1592 if (pages_per_block > 1) {
1593 while (curpg &&
1594 ((curpg->offset & fs->lfs_bmask) ||
1595 curpg->offset >= vp->v_size ||
1596 curpg->offset >= endoffset))
1597 curpg = TAILQ_NEXT(curpg, listq);
1598 }
1599 if (curpg == NULL)
1600 break;
1601 soff = curpg->offset;
1602 }
1603
1604 /*
1605 * Mark all pages in extended range busy; find out if any
1606 * of them are dirty.
1607 */
1608 nonexistent = dirty = 0;
1609 for (i = 0; i == 0 || i < pages_per_block; i++) {
1610 if (by_list && pages_per_block <= 1) {
1611 pgs[i] = pg = curpg;
1612 } else {
1613 off = soff + (i << PAGE_SHIFT);
1614 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1615 if (pg == NULL) {
1616 ++nonexistent;
1617 continue;
1618 }
1619 }
1620 KASSERT(pg != NULL);
1621
1622 /*
1623 * If we're holding the segment lock, we can deadlocked
1624 * against a process that has our page and is waiting
1625 * for the cleaner, while the cleaner waits for the
1626 * segment lock. Just bail in that case.
1627 */
1628 if ((pg->flags & PG_BUSY) &&
1629 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1630 if (by_list && i > 0)
1631 uvm_page_unbusy(pgs, i);
1632 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1633 return -1;
1634 }
1635
1636 while (pg->flags & PG_BUSY) {
1637 pg->flags |= PG_WANTED;
1638 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1639 "lfsput", 0);
1640 simple_lock(&vp->v_interlock);
1641 if (by_list) {
1642 if (i > 0)
1643 uvm_page_unbusy(pgs, i);
1644 goto top;
1645 }
1646 }
1647 pg->flags |= PG_BUSY;
1648 UVM_PAGE_OWN(pg, "lfs_putpages");
1649
1650 pmap_page_protect(pg, VM_PROT_NONE);
1651 tdirty = (pmap_clear_modify(pg) ||
1652 (pg->flags & PG_CLEAN) == 0);
1653 dirty += tdirty;
1654 }
1655 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1656 if (by_list) {
1657 curpg = TAILQ_NEXT(curpg, listq);
1658 } else {
1659 soff += fs->lfs_bsize;
1660 }
1661 continue;
1662 }
1663
1664 any_dirty += dirty;
1665 KASSERT(nonexistent == 0);
1666
1667 /*
1668 * If any are dirty make all dirty; unbusy them,
1669 * but if we were asked to clean, wire them so that
1670 * the pagedaemon doesn't bother us about them while
1671 * they're on their way to disk.
1672 */
1673 for (i = 0; i == 0 || i < pages_per_block; i++) {
1674 pg = pgs[i];
1675 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1676 if (dirty) {
1677 pg->flags &= ~PG_CLEAN;
1678 if (flags & PGO_FREE) {
1679 /*
1680 * Wire the page so that
1681 * pdaemon doesn't see it again.
1682 */
1683 uvm_lock_pageq();
1684 uvm_pagewire(pg);
1685 uvm_unlock_pageq();
1686
1687 /* Suspended write flag */
1688 pg->flags |= PG_DELWRI;
1689 }
1690 }
1691 if (pg->flags & PG_WANTED)
1692 wakeup(pg);
1693 pg->flags &= ~(PG_WANTED|PG_BUSY);
1694 UVM_PAGE_OWN(pg, NULL);
1695 }
1696
1697 if (checkfirst && any_dirty)
1698 break;
1699
1700 if (by_list) {
1701 curpg = TAILQ_NEXT(curpg, listq);
1702 } else {
1703 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1704 }
1705 }
1706
1707 return any_dirty;
1708 }
1709
1710 /*
1711 * lfs_putpages functions like genfs_putpages except that
1712 *
1713 * (1) It needs to bounds-check the incoming requests to ensure that
1714 * they are block-aligned; if they are not, expand the range and
1715 * do the right thing in case, e.g., the requested range is clean
1716 * but the expanded range is dirty.
1717 * (2) It needs to explicitly send blocks to be written when it is done.
1718 * VOP_PUTPAGES is not ever called with the seglock held, so
1719 * we simply take the seglock and let lfs_segunlock wait for us.
1720 * XXX Actually we can be called with the seglock held, if we have
1721 * XXX to flush a vnode while lfs_markv is in operation. As of this
1722 * XXX writing we panic in this case.
1723 *
1724 * Assumptions:
1725 *
1726 * (1) The caller does not hold any pages in this vnode busy. If it does,
1727 * there is a danger that when we expand the page range and busy the
1728 * pages we will deadlock.
1729 * (2) We are called with vp->v_interlock held; we must return with it
1730 * released.
1731 * (3) We don't absolutely have to free pages right away, provided that
1732 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1733 * us a request with PGO_FREE, we take the pages out of the paging
1734 * queue and wake up the writer, which will handle freeing them for us.
1735 *
1736 * We ensure that for any filesystem block, all pages for that
1737 * block are either resident or not, even if those pages are higher
1738 * than EOF; that means that we will be getting requests to free
1739 * "unused" pages above EOF all the time, and should ignore them.
1740 *
1741 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1742 */
1743
1744 int
1745 lfs_putpages(void *v)
1746 {
1747 int error;
1748 struct vop_putpages_args /* {
1749 struct vnode *a_vp;
1750 voff_t a_offlo;
1751 voff_t a_offhi;
1752 int a_flags;
1753 } */ *ap = v;
1754 struct vnode *vp;
1755 struct inode *ip;
1756 struct lfs *fs;
1757 struct segment *sp;
1758 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1759 off_t off, max_endoffset;
1760 int s;
1761 boolean_t seglocked, sync, pagedaemon;
1762 struct vm_page *pg;
1763 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1764
1765 vp = ap->a_vp;
1766 ip = VTOI(vp);
1767 fs = ip->i_lfs;
1768 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1769 pagedaemon = (curproc == uvm.pagedaemon_proc);
1770
1771 /* Putpages does nothing for metadata. */
1772 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1773 simple_unlock(&vp->v_interlock);
1774 return 0;
1775 }
1776
1777 /*
1778 * If there are no pages, don't do anything.
1779 */
1780 if (vp->v_uobj.uo_npages == 0) {
1781 s = splbio();
1782 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1783 (vp->v_flag & VONWORKLST)) {
1784 vp->v_flag &= ~VONWORKLST;
1785 LIST_REMOVE(vp, v_synclist);
1786 }
1787 splx(s);
1788 simple_unlock(&vp->v_interlock);
1789
1790 /* Remove us from paging queue, if we were on it */
1791 simple_lock(&fs->lfs_interlock);
1792 if (ip->i_flags & IN_PAGING) {
1793 ip->i_flags &= ~IN_PAGING;
1794 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1795 }
1796 simple_unlock(&fs->lfs_interlock);
1797 return 0;
1798 }
1799
1800 blkeof = blkroundup(fs, ip->i_size);
1801
1802 /*
1803 * Ignore requests to free pages past EOF but in the same block
1804 * as EOF, unless the request is synchronous. (If the request is
1805 * sync, it comes from lfs_truncate.)
1806 * XXXUBC Make these pages look "active" so the pagedaemon won't
1807 * XXXUBC bother us with them again.
1808 */
1809 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1810 origoffset = ap->a_offlo;
1811 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1812 pg = uvm_pagelookup(&vp->v_uobj, off);
1813 KASSERT(pg != NULL);
1814 while (pg->flags & PG_BUSY) {
1815 pg->flags |= PG_WANTED;
1816 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1817 "lfsput2", 0);
1818 simple_lock(&vp->v_interlock);
1819 }
1820 uvm_lock_pageq();
1821 uvm_pageactivate(pg);
1822 uvm_unlock_pageq();
1823 }
1824 ap->a_offlo = blkeof;
1825 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1826 simple_unlock(&vp->v_interlock);
1827 return 0;
1828 }
1829 }
1830
1831 /*
1832 * Extend page range to start and end at block boundaries.
1833 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1834 */
1835 origoffset = ap->a_offlo;
1836 origendoffset = ap->a_offhi;
1837 startoffset = origoffset & ~(fs->lfs_bmask);
1838 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1839 << fs->lfs_bshift;
1840
1841 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1842 endoffset = max_endoffset;
1843 origendoffset = endoffset;
1844 } else {
1845 origendoffset = round_page(ap->a_offhi);
1846 endoffset = round_page(blkroundup(fs, origendoffset));
1847 }
1848
1849 KASSERT(startoffset > 0 || endoffset >= startoffset);
1850 if (startoffset == endoffset) {
1851 /* Nothing to do, why were we called? */
1852 simple_unlock(&vp->v_interlock);
1853 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1854 PRId64 "\n", startoffset));
1855 return 0;
1856 }
1857
1858 ap->a_offlo = startoffset;
1859 ap->a_offhi = endoffset;
1860
1861 if (!(ap->a_flags & PGO_CLEANIT))
1862 return genfs_putpages(v);
1863
1864 /*
1865 * If there are more than one page per block, we don't want
1866 * to get caught locking them backwards; so set PGO_BUSYFAIL
1867 * to avoid deadlocks.
1868 */
1869 ap->a_flags |= PGO_BUSYFAIL;
1870
1871 do {
1872 int r;
1873
1874 /* If no pages are dirty, we can just use genfs_putpages. */
1875 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1876 ap->a_flags, 1);
1877 if (r < 0) {
1878 simple_unlock(&vp->v_interlock);
1879 return EDEADLK;
1880 }
1881 if (r > 0)
1882 break;
1883
1884 /*
1885 * Sometimes pages are dirtied between the time that
1886 * we check and the time we try to clean them.
1887 * Instruct lfs_gop_write to return EDEADLK in this case
1888 * so we can write them properly.
1889 */
1890 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1891 r = genfs_putpages(v);
1892 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1893 if (r != EDEADLK)
1894 return r;
1895
1896 /* Start over. */
1897 preempt(1);
1898 simple_lock(&vp->v_interlock);
1899 } while(1);
1900
1901 /*
1902 * Dirty and asked to clean.
1903 *
1904 * Pagedaemon can't actually write LFS pages; wake up
1905 * the writer to take care of that. The writer will
1906 * notice the pager inode queue and act on that.
1907 */
1908 if (pagedaemon) {
1909 simple_lock(&fs->lfs_interlock);
1910 if (!(ip->i_flags & IN_PAGING)) {
1911 ip->i_flags |= IN_PAGING;
1912 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1913 }
1914 simple_lock(&lfs_subsys_lock);
1915 wakeup(&lfs_writer_daemon);
1916 simple_unlock(&lfs_subsys_lock);
1917 simple_unlock(&fs->lfs_interlock);
1918 simple_unlock(&vp->v_interlock);
1919 preempt(1);
1920 return EWOULDBLOCK;
1921 }
1922
1923 /*
1924 * If this is a file created in a recent dirop, we can't flush its
1925 * inode until the dirop is complete. Drain dirops, then flush the
1926 * filesystem (taking care of any other pending dirops while we're
1927 * at it).
1928 */
1929 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1930 (vp->v_flag & VDIROP)) {
1931 int locked;
1932
1933 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
1934 locked = VOP_ISLOCKED(vp) && /* XXX */
1935 vp->v_lock.lk_lockholder == curproc->p_pid;
1936 simple_unlock(&vp->v_interlock);
1937 lfs_writer_enter(fs, "ppdirop");
1938 if (locked)
1939 VOP_UNLOCK(vp, 0);
1940
1941 simple_lock(&fs->lfs_interlock);
1942 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1943 simple_unlock(&fs->lfs_interlock);
1944
1945 simple_lock(&vp->v_interlock);
1946 if (locked) {
1947 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1948 simple_lock(&vp->v_interlock);
1949 }
1950 lfs_writer_leave(fs);
1951
1952 /* XXX the flush should have taken care of this one too! */
1953 }
1954
1955 /*
1956 * This is it. We are going to write some pages. From here on
1957 * down it's all just mechanics.
1958 *
1959 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
1960 */
1961 ap->a_flags &= ~PGO_SYNCIO;
1962
1963 /*
1964 * If we've already got the seglock, flush the node and return.
1965 * The FIP has already been set up for us by lfs_writefile,
1966 * and FIP cleanup and lfs_updatemeta will also be done there,
1967 * unless genfs_putpages returns EDEADLK; then we must flush
1968 * what we have, and correct FIP and segment header accounting.
1969 */
1970
1971 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
1972 if (!seglocked) {
1973 simple_unlock(&vp->v_interlock);
1974 /*
1975 * Take the seglock, because we are going to be writing pages.
1976 */
1977 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
1978 if (error != 0)
1979 return error;
1980 simple_lock(&vp->v_interlock);
1981 }
1982
1983 /*
1984 * VOP_PUTPAGES should not be called while holding the seglock.
1985 * XXXUBC fix lfs_markv, or do this properly.
1986 */
1987 #ifdef notyet
1988 KASSERT(fs->lfs_seglock == 1);
1989 #endif /* notyet */
1990
1991 /*
1992 * We assume we're being called with sp->fip pointing at blank space.
1993 * Account for a new FIP in the segment header, and set sp->vp.
1994 * (This should duplicate the setup at the top of lfs_writefile().)
1995 */
1996 sp = fs->lfs_sp;
1997 if (!seglocked) {
1998 if (sp->seg_bytes_left < fs->lfs_bsize ||
1999 sp->sum_bytes_left < sizeof(struct finfo))
2000 (void) lfs_writeseg(fs, fs->lfs_sp);
2001
2002 sp->sum_bytes_left -= FINFOSIZE;
2003 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2004 }
2005 KASSERT(sp->vp == NULL);
2006 sp->vp = vp;
2007
2008 if (!seglocked) {
2009 if (vp->v_flag & VDIROP)
2010 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2011 }
2012
2013 sp->fip->fi_nblocks = 0;
2014 sp->fip->fi_ino = ip->i_number;
2015 sp->fip->fi_version = ip->i_gen;
2016
2017 /*
2018 * Loop through genfs_putpages until all pages are gathered.
2019 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2020 * Whenever we lose the interlock we have to rerun check_dirty, as
2021 * well.
2022 */
2023 again:
2024 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2025 ap->a_flags, 0) < 0) {
2026 simple_unlock(&vp->v_interlock);
2027 sp->vp = NULL;
2028 if (!seglocked)
2029 lfs_segunlock(fs);
2030 return EDEADLK;
2031 }
2032
2033 error = genfs_putpages(v);
2034 if (error == EDEADLK || error == EAGAIN) {
2035 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2036 " EDEADLK [2] ino %d off %x (seg %d)\n",
2037 ip->i_number, fs->lfs_offset,
2038 dtosn(fs, fs->lfs_offset)));
2039 /* If nothing to write, short-circuit */
2040 if (sp->cbpp - sp->bpp > 1) {
2041 /* Write gathered pages */
2042 lfs_updatemeta(sp);
2043 (void) lfs_writeseg(fs, sp);
2044
2045 /*
2046 * Reinitialize brand new FIP and add us to it.
2047 * (This should duplicate the fixup in
2048 * lfs_gatherpages().)
2049 */
2050 KASSERT(sp->vp == vp);
2051 sp->fip->fi_version = ip->i_gen;
2052 sp->fip->fi_ino = ip->i_number;
2053 /* Add us to the new segment summary. */
2054 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
2055 sp->sum_bytes_left -= FINFOSIZE;
2056 }
2057
2058 /* Give the write a chance to complete */
2059 preempt(1);
2060
2061 /* We've lost the interlock. Start over. */
2062 if (error == EDEADLK) {
2063 simple_lock(&vp->v_interlock);
2064 goto again;
2065 }
2066 }
2067
2068 KASSERT(sp->vp == vp);
2069 if (!seglocked) {
2070 sp->vp = NULL; /* XXX lfs_gather below will set this */
2071
2072 /* Write indirect blocks as well */
2073 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2074 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2075 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2076
2077 KASSERT(sp->vp == NULL);
2078 sp->vp = vp;
2079 }
2080
2081 /*
2082 * Blocks are now gathered into a segment waiting to be written.
2083 * All that's left to do is update metadata, and write them.
2084 */
2085 lfs_updatemeta(sp);
2086 KASSERT(sp->vp == vp);
2087 sp->vp = NULL;
2088
2089 if (seglocked) {
2090 /* we're called by lfs_writefile. */
2091 return error;
2092 }
2093
2094 /*
2095 * Clean up FIP, since we're done writing this file.
2096 * This should duplicate cleanup at the end of lfs_writefile().
2097 */
2098 if (sp->fip->fi_nblocks != 0) {
2099 sp->fip = (FINFO*)((caddr_t)sp->fip + FINFOSIZE +
2100 sizeof(int32_t) * sp->fip->fi_nblocks);
2101 sp->start_lbp = &sp->fip->fi_blocks[0];
2102 } else {
2103 sp->sum_bytes_left += FINFOSIZE;
2104 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
2105 }
2106 lfs_writeseg(fs, fs->lfs_sp);
2107
2108 /*
2109 * Remove us from paging queue, since we've now written all our
2110 * pages.
2111 */
2112 simple_lock(&fs->lfs_interlock);
2113 if (ip->i_flags & IN_PAGING) {
2114 ip->i_flags &= ~IN_PAGING;
2115 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2116 }
2117 simple_unlock(&fs->lfs_interlock);
2118
2119 /*
2120 * XXX - with the malloc/copy writeseg, the pages are freed by now
2121 * even if we don't wait (e.g. if we hold a nested lock). This
2122 * will not be true if we stop using malloc/copy.
2123 */
2124 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2125 lfs_segunlock(fs);
2126
2127 /*
2128 * Wait for v_numoutput to drop to zero. The seglock should
2129 * take care of this, but there is a slight possibility that
2130 * aiodoned might not have got around to our buffers yet.
2131 */
2132 if (sync) {
2133 s = splbio();
2134 simple_lock(&global_v_numoutput_slock);
2135 while (vp->v_numoutput > 0) {
2136 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2137 " num %d\n", ip->i_number, vp->v_numoutput));
2138 vp->v_flag |= VBWAIT;
2139 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2140 &global_v_numoutput_slock);
2141 }
2142 simple_unlock(&global_v_numoutput_slock);
2143 splx(s);
2144 }
2145 return error;
2146 }
2147
2148 /*
2149 * Return the last logical file offset that should be written for this file
2150 * if we're doing a write that ends at "size". If writing, we need to know
2151 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2152 * to know about entire blocks.
2153 */
2154 void
2155 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2156 {
2157 struct inode *ip = VTOI(vp);
2158 struct lfs *fs = ip->i_lfs;
2159 daddr_t olbn, nlbn;
2160
2161 olbn = lblkno(fs, ip->i_size);
2162 nlbn = lblkno(fs, size);
2163 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2164 *eobp = fragroundup(fs, size);
2165 } else {
2166 *eobp = blkroundup(fs, size);
2167 }
2168 }
2169
2170 #ifdef DEBUG
2171 void lfs_dump_vop(void *);
2172
2173 void
2174 lfs_dump_vop(void *v)
2175 {
2176 struct vop_putpages_args /* {
2177 struct vnode *a_vp;
2178 voff_t a_offlo;
2179 voff_t a_offhi;
2180 int a_flags;
2181 } */ *ap = v;
2182
2183 #ifdef DDB
2184 vfs_vnode_print(ap->a_vp, 0, printf);
2185 #endif
2186 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2187 }
2188 #endif
2189
2190 int
2191 lfs_mmap(void *v)
2192 {
2193 struct vop_mmap_args /* {
2194 const struct vnodeop_desc *a_desc;
2195 struct vnode *a_vp;
2196 int a_fflags;
2197 struct ucred *a_cred;
2198 struct lwp *a_l;
2199 } */ *ap = v;
2200
2201 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2202 return EOPNOTSUPP;
2203 return ufs_mmap(v);
2204 }
2205