Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.178
      1 /*	$NetBSD: lfs_vnops.c,v 1.178 2006/05/18 23:15:09 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.178 2006/05/18 23:15:09 perseant Exp $");
     71 
     72 #include <sys/param.h>
     73 #include <sys/systm.h>
     74 #include <sys/namei.h>
     75 #include <sys/resourcevar.h>
     76 #include <sys/kernel.h>
     77 #include <sys/file.h>
     78 #include <sys/stat.h>
     79 #include <sys/buf.h>
     80 #include <sys/proc.h>
     81 #include <sys/mount.h>
     82 #include <sys/vnode.h>
     83 #include <sys/pool.h>
     84 #include <sys/signalvar.h>
     85 #include <sys/kauth.h>
     86 
     87 #include <miscfs/fifofs/fifo.h>
     88 #include <miscfs/genfs/genfs.h>
     89 #include <miscfs/specfs/specdev.h>
     90 
     91 #include <ufs/ufs/inode.h>
     92 #include <ufs/ufs/dir.h>
     93 #include <ufs/ufs/ufsmount.h>
     94 #include <ufs/ufs/ufs_extern.h>
     95 
     96 #include <uvm/uvm.h>
     97 #include <uvm/uvm_pmap.h>
     98 #include <uvm/uvm_stat.h>
     99 #include <uvm/uvm_pager.h>
    100 
    101 #include <ufs/lfs/lfs.h>
    102 #include <ufs/lfs/lfs_extern.h>
    103 
    104 extern pid_t lfs_writer_daemon;
    105 
    106 /* Global vfs data structures for lfs. */
    107 int (**lfs_vnodeop_p)(void *);
    108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    109 	{ &vop_default_desc, vn_default_error },
    110 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    111 	{ &vop_create_desc, lfs_create },		/* create */
    112 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    113 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    114 	{ &vop_open_desc, ufs_open },			/* open */
    115 	{ &vop_close_desc, lfs_close },			/* close */
    116 	{ &vop_access_desc, ufs_access },		/* access */
    117 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    118 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    119 	{ &vop_read_desc, lfs_read },			/* read */
    120 	{ &vop_write_desc, lfs_write },			/* write */
    121 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    122 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    123 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    124 	{ &vop_poll_desc, ufs_poll },			/* poll */
    125 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    126 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    127 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    128 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    129 	{ &vop_seek_desc, ufs_seek },			/* seek */
    130 	{ &vop_remove_desc, lfs_remove },		/* remove */
    131 	{ &vop_link_desc, lfs_link },			/* link */
    132 	{ &vop_rename_desc, lfs_rename },		/* rename */
    133 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    134 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    135 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    136 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    137 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    138 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    139 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    140 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    141 	{ &vop_lock_desc, ufs_lock },			/* lock */
    142 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    143 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    144 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    145 	{ &vop_print_desc, ufs_print },			/* print */
    146 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    147 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    148 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    149 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    150 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    151 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    152 	{ NULL, NULL }
    153 };
    154 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    155 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    156 
    157 int (**lfs_specop_p)(void *);
    158 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    159 	{ &vop_default_desc, vn_default_error },
    160 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    161 	{ &vop_create_desc, spec_create },		/* create */
    162 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    163 	{ &vop_open_desc, spec_open },			/* open */
    164 	{ &vop_close_desc, lfsspec_close },		/* close */
    165 	{ &vop_access_desc, ufs_access },		/* access */
    166 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    167 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    168 	{ &vop_read_desc, ufsspec_read },		/* read */
    169 	{ &vop_write_desc, ufsspec_write },		/* write */
    170 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    171 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    173 	{ &vop_poll_desc, spec_poll },			/* poll */
    174 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178 	{ &vop_seek_desc, spec_seek },			/* seek */
    179 	{ &vop_remove_desc, spec_remove },		/* remove */
    180 	{ &vop_link_desc, spec_link },			/* link */
    181 	{ &vop_rename_desc, spec_rename },		/* rename */
    182 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190 	{ &vop_lock_desc, ufs_lock },			/* lock */
    191 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    192 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194 	{ &vop_print_desc, ufs_print },			/* print */
    195 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    196 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201 	{ NULL, NULL }
    202 };
    203 const struct vnodeopv_desc lfs_specop_opv_desc =
    204 	{ &lfs_specop_p, lfs_specop_entries };
    205 
    206 int (**lfs_fifoop_p)(void *);
    207 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208 	{ &vop_default_desc, vn_default_error },
    209 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    210 	{ &vop_create_desc, fifo_create },		/* create */
    211 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    212 	{ &vop_open_desc, fifo_open },			/* open */
    213 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214 	{ &vop_access_desc, ufs_access },		/* access */
    215 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217 	{ &vop_read_desc, ufsfifo_read },		/* read */
    218 	{ &vop_write_desc, ufsfifo_write },		/* write */
    219 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    220 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    221 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    222 	{ &vop_poll_desc, fifo_poll },			/* poll */
    223 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    224 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    225 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    226 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    227 	{ &vop_seek_desc, fifo_seek },			/* seek */
    228 	{ &vop_remove_desc, fifo_remove },		/* remove */
    229 	{ &vop_link_desc, fifo_link },			/* link */
    230 	{ &vop_rename_desc, fifo_rename },		/* rename */
    231 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    232 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    233 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    234 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    235 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    236 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    237 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    238 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    239 	{ &vop_lock_desc, ufs_lock },			/* lock */
    240 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    241 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    242 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    243 	{ &vop_print_desc, ufs_print },			/* print */
    244 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    245 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    246 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    247 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    248 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    249 	{ NULL, NULL }
    250 };
    251 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    252 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    253 
    254 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    255 
    256 #define	LFS_READWRITE
    257 #include <ufs/ufs/ufs_readwrite.c>
    258 #undef	LFS_READWRITE
    259 
    260 /*
    261  * Synch an open file.
    262  */
    263 /* ARGSUSED */
    264 int
    265 lfs_fsync(void *v)
    266 {
    267 	struct vop_fsync_args /* {
    268 		struct vnode *a_vp;
    269 		kauth_cred_t a_cred;
    270 		int a_flags;
    271 		off_t offlo;
    272 		off_t offhi;
    273 		struct lwp *a_l;
    274 	} */ *ap = v;
    275 	struct vnode *vp = ap->a_vp;
    276 	int error, wait;
    277 
    278 	/* If we're mounted read-only, don't try to sync. */
    279 	if (VTOI(vp)->i_lfs->lfs_ronly)
    280 		return 0;
    281 
    282 	/*
    283 	 * Trickle sync checks for need to do a checkpoint after possible
    284 	 * activity from the pagedaemon.
    285 	 */
    286 	if (ap->a_flags & FSYNC_LAZY) {
    287 		simple_lock(&lfs_subsys_lock);
    288 		wakeup(&lfs_writer_daemon);
    289 		simple_unlock(&lfs_subsys_lock);
    290 		return 0;
    291 	}
    292 
    293 	/*
    294 	 * Don't reclaim any vnodes that are being cleaned.
    295 	 * This prevents the cleaner from writing files twice
    296 	 * in the same partial segment, causing an accounting
    297 	 * underflow.
    298 	 */
    299 	if (ap->a_flags & FSYNC_RECLAIM) {
    300 		if (VTOI(vp)->i_flags & IN_CLEANING)
    301 			return EAGAIN;
    302 	}
    303 
    304 	wait = (ap->a_flags & FSYNC_WAIT);
    305 	simple_lock(&vp->v_interlock);
    306 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    307 			round_page(ap->a_offhi),
    308 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    309 	if (error)
    310 		return error;
    311 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    312 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    313 		int l = 0;
    314 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    315 				  ap->a_l->l_proc->p_cred, ap->a_l);
    316 	}
    317 	if (wait && !VPISEMPTY(vp))
    318 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    319 
    320 	return error;
    321 }
    322 
    323 /*
    324  * Take IN_ADIROP off, then call ufs_inactive.
    325  */
    326 int
    327 lfs_inactive(void *v)
    328 {
    329 	struct vop_inactive_args /* {
    330 		struct vnode *a_vp;
    331 		struct lwp *a_l;
    332 	} */ *ap = v;
    333 
    334 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    335 
    336 	lfs_unmark_vnode(ap->a_vp);
    337 
    338 	/*
    339 	 * The Ifile is only ever inactivated on unmount.
    340 	 * Streamline this process by not giving it more dirty blocks.
    341 	 */
    342 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    343 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    344 		VOP_UNLOCK(ap->a_vp, 0);
    345 		return 0;
    346 	}
    347 
    348 	return ufs_inactive(v);
    349 }
    350 
    351 /*
    352  * These macros are used to bracket UFS directory ops, so that we can
    353  * identify all the pages touched during directory ops which need to
    354  * be ordered and flushed atomically, so that they may be recovered.
    355  *
    356  * Because we have to mark nodes VDIROP in order to prevent
    357  * the cache from reclaiming them while a dirop is in progress, we must
    358  * also manage the number of nodes so marked (otherwise we can run out).
    359  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    360  * is decremented during segment write, when VDIROP is taken off.
    361  */
    362 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    363 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    364 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    365 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    366 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    367 static int lfs_set_dirop(struct vnode *, struct vnode *);
    368 
    369 static int
    370 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    371 {
    372 	struct lfs *fs;
    373 	int error;
    374 
    375 	KASSERT(VOP_ISLOCKED(dvp));
    376 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    377 
    378 	fs = VTOI(dvp)->i_lfs;
    379 
    380 	ASSERT_NO_SEGLOCK(fs);
    381 	/*
    382 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    383 	 * as an inode block; an overestimate in most cases.
    384 	 */
    385 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    386 		return (error);
    387 
    388     restart:
    389 	simple_lock(&fs->lfs_interlock);
    390 	if (fs->lfs_dirops == 0) {
    391 		simple_unlock(&fs->lfs_interlock);
    392 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    393 		simple_lock(&fs->lfs_interlock);
    394 	}
    395 	while (fs->lfs_writer)
    396 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    397 			&fs->lfs_interlock);
    398 	simple_lock(&lfs_subsys_lock);
    399 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    400 		wakeup(&lfs_writer_daemon);
    401 		simple_unlock(&lfs_subsys_lock);
    402 		simple_unlock(&fs->lfs_interlock);
    403 		preempt(1);
    404 		goto restart;
    405 	}
    406 
    407 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    408 		simple_unlock(&fs->lfs_interlock);
    409 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    410 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    411 		if ((error = ltsleep(&lfs_dirvcount,
    412 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    413 		    &lfs_subsys_lock)) != 0) {
    414 			goto unreserve;
    415 		}
    416 		goto restart;
    417 	}
    418 	simple_unlock(&lfs_subsys_lock);
    419 
    420 	++fs->lfs_dirops;
    421 	fs->lfs_doifile = 1;
    422 	simple_unlock(&fs->lfs_interlock);
    423 
    424 	/* Hold a reference so SET_ENDOP will be happy */
    425 	vref(dvp);
    426 	if (vp) {
    427 		vref(vp);
    428 		MARK_VNODE(vp);
    429 	}
    430 
    431 	MARK_VNODE(dvp);
    432 	return 0;
    433 
    434 unreserve:
    435 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    436 	return error;
    437 }
    438 
    439 /*
    440  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    441  * in getnewvnode(), if we have a stacked filesystem mounted on top
    442  * of us.
    443  *
    444  * NB: this means we have to clear the new vnodes on error.  Fortunately
    445  * SET_ENDOP is there to do that for us.
    446  */
    447 static int
    448 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    449 {
    450 	int error;
    451 	struct lfs *fs;
    452 
    453 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    454 	ASSERT_NO_SEGLOCK(fs);
    455 	if (fs->lfs_ronly)
    456 		return EROFS;
    457 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    458 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    459 		      dvp, error));
    460 		return error;
    461 	}
    462 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    463 		if (vpp) {
    464 			ungetnewvnode(*vpp);
    465 			*vpp = NULL;
    466 		}
    467 		return error;
    468 	}
    469 	return 0;
    470 }
    471 
    472 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    473 	do {								\
    474 		simple_lock(&(fs)->lfs_interlock);			\
    475 		--(fs)->lfs_dirops;					\
    476 		if (!(fs)->lfs_dirops) {				\
    477 			if ((fs)->lfs_nadirop) {			\
    478 				panic("SET_ENDOP: %s: no dirops but "	\
    479 					" nadirop=%d", (str),		\
    480 					(fs)->lfs_nadirop);		\
    481 			}						\
    482 			wakeup(&(fs)->lfs_writer);			\
    483 			simple_unlock(&(fs)->lfs_interlock);		\
    484 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    485 		} else							\
    486 			simple_unlock(&(fs)->lfs_interlock);		\
    487 	} while(0)
    488 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    489 	do {								\
    490 		UNMARK_VNODE(dvp);					\
    491 		if (nvpp && *nvpp)					\
    492 			UNMARK_VNODE(*nvpp);				\
    493 		/* Check for error return to stem vnode leakage */	\
    494 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    495 			ungetnewvnode(*(nvpp));				\
    496 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    497 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    498 		vrele(dvp);						\
    499 	} while(0)
    500 #define SET_ENDOP_CREATE_AP(ap, str)					\
    501 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    502 			 (ap)->a_vpp, (str))
    503 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    504 	do {								\
    505 		UNMARK_VNODE(dvp);					\
    506 		if (ovp)						\
    507 			UNMARK_VNODE(ovp);				\
    508 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    509 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    510 		vrele(dvp);						\
    511 		if (ovp)						\
    512 			vrele(ovp);					\
    513 	} while(0)
    514 
    515 void
    516 lfs_mark_vnode(struct vnode *vp)
    517 {
    518 	struct inode *ip = VTOI(vp);
    519 	struct lfs *fs = ip->i_lfs;
    520 
    521 	simple_lock(&fs->lfs_interlock);
    522 	if (!(ip->i_flag & IN_ADIROP)) {
    523 		if (!(vp->v_flag & VDIROP)) {
    524 			(void)lfs_vref(vp);
    525 			simple_lock(&lfs_subsys_lock);
    526 			++lfs_dirvcount;
    527 			++fs->lfs_dirvcount;
    528 			simple_unlock(&lfs_subsys_lock);
    529 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    530 			vp->v_flag |= VDIROP;
    531 		}
    532 		++fs->lfs_nadirop;
    533 		ip->i_flag |= IN_ADIROP;
    534 	} else
    535 		KASSERT(vp->v_flag & VDIROP);
    536 	simple_unlock(&fs->lfs_interlock);
    537 }
    538 
    539 void
    540 lfs_unmark_vnode(struct vnode *vp)
    541 {
    542 	struct inode *ip = VTOI(vp);
    543 
    544 	if (ip && (ip->i_flag & IN_ADIROP)) {
    545 		KASSERT(vp->v_flag & VDIROP);
    546 		simple_lock(&ip->i_lfs->lfs_interlock);
    547 		--ip->i_lfs->lfs_nadirop;
    548 		simple_unlock(&ip->i_lfs->lfs_interlock);
    549 		ip->i_flag &= ~IN_ADIROP;
    550 	}
    551 }
    552 
    553 int
    554 lfs_symlink(void *v)
    555 {
    556 	struct vop_symlink_args /* {
    557 		struct vnode *a_dvp;
    558 		struct vnode **a_vpp;
    559 		struct componentname *a_cnp;
    560 		struct vattr *a_vap;
    561 		char *a_target;
    562 	} */ *ap = v;
    563 	int error;
    564 
    565 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    566 		vput(ap->a_dvp);
    567 		return error;
    568 	}
    569 	error = ufs_symlink(ap);
    570 	SET_ENDOP_CREATE_AP(ap, "symlink");
    571 	return (error);
    572 }
    573 
    574 int
    575 lfs_mknod(void *v)
    576 {
    577 	struct vop_mknod_args	/* {
    578 		struct vnode *a_dvp;
    579 		struct vnode **a_vpp;
    580 		struct componentname *a_cnp;
    581 		struct vattr *a_vap;
    582 		} */ *ap = v;
    583 	struct vattr *vap = ap->a_vap;
    584 	struct vnode **vpp = ap->a_vpp;
    585 	struct inode *ip;
    586 	int error;
    587 	struct mount	*mp;
    588 	ino_t		ino;
    589 
    590 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    591 		vput(ap->a_dvp);
    592 		return error;
    593 	}
    594 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    595 	    ap->a_dvp, vpp, ap->a_cnp);
    596 
    597 	/* Either way we're done with the dirop at this point */
    598 	SET_ENDOP_CREATE_AP(ap, "mknod");
    599 
    600 	if (error)
    601 		return (error);
    602 
    603 	ip = VTOI(*vpp);
    604 	mp  = (*vpp)->v_mount;
    605 	ino = ip->i_number;
    606 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    607 	if (vap->va_rdev != VNOVAL) {
    608 		/*
    609 		 * Want to be able to use this to make badblock
    610 		 * inodes, so don't truncate the dev number.
    611 		 */
    612 #if 0
    613 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    614 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    615 #else
    616 		ip->i_ffs1_rdev = vap->va_rdev;
    617 #endif
    618 	}
    619 
    620 	/*
    621 	 * Call fsync to write the vnode so that we don't have to deal with
    622 	 * flushing it when it's marked VDIROP|VXLOCK.
    623 	 *
    624 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    625 	 * return.  But, that leaves this vnode in limbo, also not good.
    626 	 * Can this ever happen (barring hardware failure)?
    627 	 */
    628 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    629 	    curlwp)) != 0) {
    630 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    631 		    (unsigned long long)ino);
    632 		/* return (error); */
    633 	}
    634 	/*
    635 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    636 	 * checked to see if it is an alias of an existing entry in
    637 	 * the inode cache.
    638 	 */
    639 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    640 
    641 	VOP_UNLOCK(*vpp, 0);
    642 	lfs_vunref(*vpp);
    643 	(*vpp)->v_type = VNON;
    644 	vgone(*vpp);
    645 	error = VFS_VGET(mp, ino, vpp);
    646 
    647 	if (error != 0) {
    648 		*vpp = NULL;
    649 		return (error);
    650 	}
    651 	return (0);
    652 }
    653 
    654 int
    655 lfs_create(void *v)
    656 {
    657 	struct vop_create_args	/* {
    658 		struct vnode *a_dvp;
    659 		struct vnode **a_vpp;
    660 		struct componentname *a_cnp;
    661 		struct vattr *a_vap;
    662 	} */ *ap = v;
    663 	int error;
    664 
    665 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    666 		vput(ap->a_dvp);
    667 		return error;
    668 	}
    669 	error = ufs_create(ap);
    670 	SET_ENDOP_CREATE_AP(ap, "create");
    671 	return (error);
    672 }
    673 
    674 int
    675 lfs_mkdir(void *v)
    676 {
    677 	struct vop_mkdir_args	/* {
    678 		struct vnode *a_dvp;
    679 		struct vnode **a_vpp;
    680 		struct componentname *a_cnp;
    681 		struct vattr *a_vap;
    682 	} */ *ap = v;
    683 	int error;
    684 
    685 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    686 		vput(ap->a_dvp);
    687 		return error;
    688 	}
    689 	error = ufs_mkdir(ap);
    690 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    691 	return (error);
    692 }
    693 
    694 int
    695 lfs_remove(void *v)
    696 {
    697 	struct vop_remove_args	/* {
    698 		struct vnode *a_dvp;
    699 		struct vnode *a_vp;
    700 		struct componentname *a_cnp;
    701 	} */ *ap = v;
    702 	struct vnode *dvp, *vp;
    703 	int error;
    704 
    705 	dvp = ap->a_dvp;
    706 	vp = ap->a_vp;
    707 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    708 		if (dvp == vp)
    709 			vrele(vp);
    710 		else
    711 			vput(vp);
    712 		vput(dvp);
    713 		return error;
    714 	}
    715 	error = ufs_remove(ap);
    716 	SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
    717 	return (error);
    718 }
    719 
    720 int
    721 lfs_rmdir(void *v)
    722 {
    723 	struct vop_rmdir_args	/* {
    724 		struct vnodeop_desc *a_desc;
    725 		struct vnode *a_dvp;
    726 		struct vnode *a_vp;
    727 		struct componentname *a_cnp;
    728 	} */ *ap = v;
    729 	struct vnode *vp;
    730 	int error;
    731 
    732 	vp = ap->a_vp;
    733 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    734 		vrele(ap->a_dvp);
    735 		if (ap->a_vp != ap->a_dvp)
    736 			VOP_UNLOCK(ap->a_dvp, 0);
    737 		vput(vp);
    738 		return error;
    739 	}
    740 	error = ufs_rmdir(ap);
    741 	SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    742 	return (error);
    743 }
    744 
    745 int
    746 lfs_link(void *v)
    747 {
    748 	struct vop_link_args	/* {
    749 		struct vnode *a_dvp;
    750 		struct vnode *a_vp;
    751 		struct componentname *a_cnp;
    752 	} */ *ap = v;
    753 	int error;
    754 	struct vnode **vpp = NULL;
    755 
    756 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    757 		vput(ap->a_dvp);
    758 		return error;
    759 	}
    760 	error = ufs_link(ap);
    761 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    762 	return (error);
    763 }
    764 
    765 int
    766 lfs_rename(void *v)
    767 {
    768 	struct vop_rename_args	/* {
    769 		struct vnode *a_fdvp;
    770 		struct vnode *a_fvp;
    771 		struct componentname *a_fcnp;
    772 		struct vnode *a_tdvp;
    773 		struct vnode *a_tvp;
    774 		struct componentname *a_tcnp;
    775 	} */ *ap = v;
    776 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    777 	struct componentname *tcnp, *fcnp;
    778 	int error;
    779 	struct lfs *fs;
    780 
    781 	fs = VTOI(ap->a_fdvp)->i_lfs;
    782 	tvp = ap->a_tvp;
    783 	tdvp = ap->a_tdvp;
    784 	tcnp = ap->a_tcnp;
    785 	fvp = ap->a_fvp;
    786 	fdvp = ap->a_fdvp;
    787 	fcnp = ap->a_fcnp;
    788 
    789 	/*
    790 	 * Check for cross-device rename.
    791 	 * If it is, we don't want to set dirops, just error out.
    792 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    793 	 * a cross-device rename.)
    794 	 *
    795 	 * Copied from ufs_rename.
    796 	 */
    797 	if ((fvp->v_mount != tdvp->v_mount) ||
    798 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    799 		error = EXDEV;
    800 		goto errout;
    801 	}
    802 
    803 	/*
    804 	 * Check to make sure we're not renaming a vnode onto itself
    805 	 * (deleting a hard link by renaming one name onto another);
    806 	 * if we are we can't recursively call VOP_REMOVE since that
    807 	 * would leave us with an unaccounted-for number of live dirops.
    808 	 *
    809 	 * Inline the relevant section of ufs_rename here, *before*
    810 	 * calling SET_DIROP_REMOVE.
    811 	 */
    812 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    813 	    (VTOI(tdvp)->i_flags & APPEND))) {
    814 		error = EPERM;
    815 		goto errout;
    816 	}
    817 	if (fvp == tvp) {
    818 		if (fvp->v_type == VDIR) {
    819 			error = EINVAL;
    820 			goto errout;
    821 		}
    822 
    823 		/* Release destination completely. */
    824 		VOP_ABORTOP(tdvp, tcnp);
    825 		vput(tdvp);
    826 		vput(tvp);
    827 
    828 		/* Delete source. */
    829 		vrele(fvp);
    830 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    831 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    832 		fcnp->cn_nameiop = DELETE;
    833 		if ((error = relookup(fdvp, &fvp, fcnp))){
    834 			/* relookup blew away fdvp */
    835 			return (error);
    836 		}
    837 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    838 	}
    839 
    840 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    841 		goto errout;
    842 	MARK_VNODE(fdvp);
    843 	MARK_VNODE(fvp);
    844 
    845 	error = ufs_rename(ap);
    846 	UNMARK_VNODE(fdvp);
    847 	UNMARK_VNODE(fvp);
    848 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    849 	return (error);
    850 
    851     errout:
    852 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    853 	if (tdvp == tvp)
    854 		vrele(tdvp);
    855 	else
    856 		vput(tdvp);
    857 	if (tvp)
    858 		vput(tvp);
    859 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    860 	vrele(fdvp);
    861 	vrele(fvp);
    862 	return (error);
    863 }
    864 
    865 /* XXX hack to avoid calling ITIMES in getattr */
    866 int
    867 lfs_getattr(void *v)
    868 {
    869 	struct vop_getattr_args /* {
    870 		struct vnode *a_vp;
    871 		struct vattr *a_vap;
    872 		kauth_cred_t a_cred;
    873 		struct lwp *a_l;
    874 	} */ *ap = v;
    875 	struct vnode *vp = ap->a_vp;
    876 	struct inode *ip = VTOI(vp);
    877 	struct vattr *vap = ap->a_vap;
    878 	struct lfs *fs = ip->i_lfs;
    879 	/*
    880 	 * Copy from inode table
    881 	 */
    882 	vap->va_fsid = ip->i_dev;
    883 	vap->va_fileid = ip->i_number;
    884 	vap->va_mode = ip->i_mode & ~IFMT;
    885 	vap->va_nlink = ip->i_nlink;
    886 	vap->va_uid = ip->i_uid;
    887 	vap->va_gid = ip->i_gid;
    888 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    889 	vap->va_size = vp->v_size;
    890 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    891 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    892 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    893 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    894 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    895 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    896 	vap->va_flags = ip->i_flags;
    897 	vap->va_gen = ip->i_gen;
    898 	/* this doesn't belong here */
    899 	if (vp->v_type == VBLK)
    900 		vap->va_blocksize = BLKDEV_IOSIZE;
    901 	else if (vp->v_type == VCHR)
    902 		vap->va_blocksize = MAXBSIZE;
    903 	else
    904 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    905 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    906 	vap->va_type = vp->v_type;
    907 	vap->va_filerev = ip->i_modrev;
    908 	return (0);
    909 }
    910 
    911 /*
    912  * Check to make sure the inode blocks won't choke the buffer
    913  * cache, then call ufs_setattr as usual.
    914  */
    915 int
    916 lfs_setattr(void *v)
    917 {
    918 	struct vop_setattr_args /* {
    919 		struct vnode *a_vp;
    920 		struct vattr *a_vap;
    921 		kauth_cred_t a_cred;
    922 		struct lwp *a_l;
    923 	} */ *ap = v;
    924 	struct vnode *vp = ap->a_vp;
    925 
    926 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    927 	return ufs_setattr(v);
    928 }
    929 
    930 /*
    931  * Close called
    932  *
    933  * XXX -- we were using ufs_close, but since it updates the
    934  * times on the inode, we might need to bump the uinodes
    935  * count.
    936  */
    937 /* ARGSUSED */
    938 int
    939 lfs_close(void *v)
    940 {
    941 	struct vop_close_args /* {
    942 		struct vnode *a_vp;
    943 		int  a_fflag;
    944 		kauth_cred_t a_cred;
    945 		struct lwp *a_l;
    946 	} */ *ap = v;
    947 	struct vnode *vp = ap->a_vp;
    948 	struct inode *ip = VTOI(vp);
    949 
    950 	if (vp == ip->i_lfs->lfs_ivnode &&
    951 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    952 		return 0;
    953 
    954 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    955 		LFS_ITIMES(ip, NULL, NULL, NULL);
    956 	}
    957 	return (0);
    958 }
    959 
    960 /*
    961  * Close wrapper for special devices.
    962  *
    963  * Update the times on the inode then do device close.
    964  */
    965 int
    966 lfsspec_close(void *v)
    967 {
    968 	struct vop_close_args /* {
    969 		struct vnode	*a_vp;
    970 		int		a_fflag;
    971 		kauth_cred_t	a_cred;
    972 		struct lwp	*a_l;
    973 	} */ *ap = v;
    974 	struct vnode	*vp;
    975 	struct inode	*ip;
    976 
    977 	vp = ap->a_vp;
    978 	ip = VTOI(vp);
    979 	if (vp->v_usecount > 1) {
    980 		LFS_ITIMES(ip, NULL, NULL, NULL);
    981 	}
    982 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
    983 }
    984 
    985 /*
    986  * Close wrapper for fifo's.
    987  *
    988  * Update the times on the inode then do device close.
    989  */
    990 int
    991 lfsfifo_close(void *v)
    992 {
    993 	struct vop_close_args /* {
    994 		struct vnode	*a_vp;
    995 		int		a_fflag;
    996 		kauth_cred_	a_cred;
    997 		struct lwp	*a_l;
    998 	} */ *ap = v;
    999 	struct vnode	*vp;
   1000 	struct inode	*ip;
   1001 
   1002 	vp = ap->a_vp;
   1003 	ip = VTOI(vp);
   1004 	if (ap->a_vp->v_usecount > 1) {
   1005 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1006 	}
   1007 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1008 }
   1009 
   1010 /*
   1011  * Reclaim an inode so that it can be used for other purposes.
   1012  */
   1013 
   1014 int
   1015 lfs_reclaim(void *v)
   1016 {
   1017 	struct vop_reclaim_args /* {
   1018 		struct vnode *a_vp;
   1019 		struct lwp *a_l;
   1020 	} */ *ap = v;
   1021 	struct vnode *vp = ap->a_vp;
   1022 	struct inode *ip = VTOI(vp);
   1023 	int error;
   1024 
   1025 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1026 
   1027 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1028 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1029 		return (error);
   1030 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1031 	lfs_deregister_all(vp);
   1032 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1033 	ip->inode_ext.lfs = NULL;
   1034 	pool_put(&lfs_inode_pool, vp->v_data);
   1035 	vp->v_data = NULL;
   1036 	return (0);
   1037 }
   1038 
   1039 /*
   1040  * Read a block from a storage device.
   1041  * In order to avoid reading blocks that are in the process of being
   1042  * written by the cleaner---and hence are not mutexed by the normal
   1043  * buffer cache / page cache mechanisms---check for collisions before
   1044  * reading.
   1045  *
   1046  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1047  * the active cleaner test.
   1048  *
   1049  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1050  */
   1051 int
   1052 lfs_strategy(void *v)
   1053 {
   1054 	struct vop_strategy_args /* {
   1055 		struct vnode *a_vp;
   1056 		struct buf *a_bp;
   1057 	} */ *ap = v;
   1058 	struct buf	*bp;
   1059 	struct lfs	*fs;
   1060 	struct vnode	*vp;
   1061 	struct inode	*ip;
   1062 	daddr_t		tbn;
   1063 	int		i, sn, error, slept;
   1064 
   1065 	bp = ap->a_bp;
   1066 	vp = ap->a_vp;
   1067 	ip = VTOI(vp);
   1068 	fs = ip->i_lfs;
   1069 
   1070 	/* lfs uses its strategy routine only for read */
   1071 	KASSERT(bp->b_flags & B_READ);
   1072 
   1073 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1074 		panic("lfs_strategy: spec");
   1075 	KASSERT(bp->b_bcount != 0);
   1076 	if (bp->b_blkno == bp->b_lblkno) {
   1077 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1078 				 NULL);
   1079 		if (error) {
   1080 			bp->b_error = error;
   1081 			bp->b_flags |= B_ERROR;
   1082 			biodone(bp);
   1083 			return (error);
   1084 		}
   1085 		if ((long)bp->b_blkno == -1) /* no valid data */
   1086 			clrbuf(bp);
   1087 	}
   1088 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1089 		biodone(bp);
   1090 		return (0);
   1091 	}
   1092 
   1093 	slept = 1;
   1094 	simple_lock(&fs->lfs_interlock);
   1095 	while (slept && fs->lfs_seglock) {
   1096 		simple_unlock(&fs->lfs_interlock);
   1097 		/*
   1098 		 * Look through list of intervals.
   1099 		 * There will only be intervals to look through
   1100 		 * if the cleaner holds the seglock.
   1101 		 * Since the cleaner is synchronous, we can trust
   1102 		 * the list of intervals to be current.
   1103 		 */
   1104 		tbn = dbtofsb(fs, bp->b_blkno);
   1105 		sn = dtosn(fs, tbn);
   1106 		slept = 0;
   1107 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1108 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1109 			    tbn >= fs->lfs_cleanint[i]) {
   1110 				DLOG((DLOG_CLEAN,
   1111 				      "lfs_strategy: ino %d lbn %" PRId64
   1112 				       " ind %d sn %d fsb %" PRIx32
   1113 				       " given sn %d fsb %" PRIx64 "\n",
   1114 					ip->i_number, bp->b_lblkno, i,
   1115 					dtosn(fs, fs->lfs_cleanint[i]),
   1116 					fs->lfs_cleanint[i], sn, tbn));
   1117 				DLOG((DLOG_CLEAN,
   1118 				      "lfs_strategy: sleeping on ino %d lbn %"
   1119 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1120 				simple_lock(&fs->lfs_interlock);
   1121 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1122 					/* Cleaner can't wait for itself */
   1123 					ltsleep(&fs->lfs_iocount,
   1124 						(PRIBIO + 1) | PNORELOCK,
   1125 						"clean2", 0,
   1126 						&fs->lfs_interlock);
   1127 					slept = 1;
   1128 					break;
   1129 				} else if (fs->lfs_seglock) {
   1130 					ltsleep(&fs->lfs_seglock,
   1131 						(PRIBIO + 1) | PNORELOCK,
   1132 						"clean1", 0,
   1133 						&fs->lfs_interlock);
   1134 					slept = 1;
   1135 					break;
   1136 				}
   1137 				simple_unlock(&fs->lfs_interlock);
   1138 			}
   1139 		}
   1140 		simple_lock(&fs->lfs_interlock);
   1141 	}
   1142 	simple_unlock(&fs->lfs_interlock);
   1143 
   1144 	vp = ip->i_devvp;
   1145 	VOP_STRATEGY(vp, bp);
   1146 	return (0);
   1147 }
   1148 
   1149 void
   1150 lfs_flush_dirops(struct lfs *fs)
   1151 {
   1152 	struct inode *ip, *nip;
   1153 	struct vnode *vp;
   1154 	extern int lfs_dostats;
   1155 	struct segment *sp;
   1156 	int waslocked;
   1157 
   1158 	ASSERT_MAYBE_SEGLOCK(fs);
   1159 	KASSERT(fs->lfs_nadirop == 0);
   1160 
   1161 	if (fs->lfs_ronly)
   1162 		return;
   1163 
   1164 	simple_lock(&fs->lfs_interlock);
   1165 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1166 		simple_unlock(&fs->lfs_interlock);
   1167 		return;
   1168 	} else
   1169 		simple_unlock(&fs->lfs_interlock);
   1170 
   1171 	if (lfs_dostats)
   1172 		++lfs_stats.flush_invoked;
   1173 
   1174 	/*
   1175 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1176 	 * Technically this is a checkpoint (the on-disk state is valid)
   1177 	 * even though we are leaving out all the file data.
   1178 	 */
   1179 	lfs_imtime(fs);
   1180 	lfs_seglock(fs, SEGM_CKP);
   1181 	sp = fs->lfs_sp;
   1182 
   1183 	/*
   1184 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1185 	 * Only write dirops, and don't flush files' pages, only
   1186 	 * blocks from the directories.
   1187 	 *
   1188 	 * We don't need to vref these files because they are
   1189 	 * dirops and so hold an extra reference until the
   1190 	 * segunlock clears them of that status.
   1191 	 *
   1192 	 * We don't need to check for IN_ADIROP because we know that
   1193 	 * no dirops are active.
   1194 	 *
   1195 	 */
   1196 	simple_lock(&fs->lfs_interlock);
   1197 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1198 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1199 		simple_unlock(&fs->lfs_interlock);
   1200 		vp = ITOV(ip);
   1201 
   1202 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1203 
   1204 		/*
   1205 		 * All writes to directories come from dirops; all
   1206 		 * writes to files' direct blocks go through the page
   1207 		 * cache, which we're not touching.  Reads to files
   1208 		 * and/or directories will not be affected by writing
   1209 		 * directory blocks inodes and file inodes.  So we don't
   1210 		 * really need to lock.  If we don't lock, though,
   1211 		 * make sure that we don't clear IN_MODIFIED
   1212 		 * unnecessarily.
   1213 		 */
   1214 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1215 			simple_lock(&fs->lfs_interlock);
   1216 			continue;
   1217 		}
   1218 		waslocked = VOP_ISLOCKED(vp);
   1219 		if (vp->v_type != VREG &&
   1220 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1221 			lfs_writefile(fs, sp, vp);
   1222 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1223 			    !(ip->i_flag & IN_ALLMOD)) {
   1224 				LFS_SET_UINO(ip, IN_MODIFIED);
   1225 			}
   1226 		}
   1227 		(void) lfs_writeinode(fs, sp, ip);
   1228 		if (waslocked)
   1229 			LFS_SET_UINO(ip, IN_MODIFIED);
   1230 		simple_lock(&fs->lfs_interlock);
   1231 	}
   1232 	simple_unlock(&fs->lfs_interlock);
   1233 	/* We've written all the dirops there are */
   1234 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1235 	lfs_finalize_fs_seguse(fs);
   1236 	(void) lfs_writeseg(fs, sp);
   1237 	lfs_segunlock(fs);
   1238 }
   1239 
   1240 /*
   1241  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1242  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1243  * has just run, this would be an error).  If we have to skip a vnode
   1244  * for any reason, just skip it; if we have to wait for the cleaner,
   1245  * abort.  The writer daemon will call us again later.
   1246  */
   1247 void
   1248 lfs_flush_pchain(struct lfs *fs)
   1249 {
   1250 	struct inode *ip, *nip;
   1251 	struct vnode *vp;
   1252 	extern int lfs_dostats;
   1253 	struct segment *sp;
   1254 	int error;
   1255 
   1256 	ASSERT_NO_SEGLOCK(fs);
   1257 
   1258 	if (fs->lfs_ronly)
   1259 		return;
   1260 
   1261 	simple_lock(&fs->lfs_interlock);
   1262 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1263 		simple_unlock(&fs->lfs_interlock);
   1264 		return;
   1265 	} else
   1266 		simple_unlock(&fs->lfs_interlock);
   1267 
   1268 	/* Get dirops out of the way */
   1269 	lfs_flush_dirops(fs);
   1270 
   1271 	if (lfs_dostats)
   1272 		++lfs_stats.flush_invoked;
   1273 
   1274 	/*
   1275 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1276 	 */
   1277 	lfs_imtime(fs);
   1278 	lfs_seglock(fs, 0);
   1279 	sp = fs->lfs_sp;
   1280 
   1281 	/*
   1282 	 * lfs_writevnodes, optimized to clear pageout requests.
   1283 	 * Only write non-dirop files that are in the pageout queue.
   1284 	 * We're very conservative about what we write; we want to be
   1285 	 * fast and async.
   1286 	 */
   1287 	simple_lock(&fs->lfs_interlock);
   1288     top:
   1289 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1290 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1291 		vp = ITOV(ip);
   1292 
   1293 		if (!(ip->i_flags & IN_PAGING))
   1294 			goto top;
   1295 
   1296 		if (vp->v_flag & (VXLOCK|VDIROP))
   1297 			continue;
   1298 		if (vp->v_type != VREG)
   1299 			continue;
   1300 		if (lfs_vref(vp))
   1301 			continue;
   1302 		simple_unlock(&fs->lfs_interlock);
   1303 
   1304 		if (VOP_ISLOCKED(vp)) {
   1305 			lfs_vunref(vp);
   1306 			simple_lock(&fs->lfs_interlock);
   1307 			continue;
   1308 		}
   1309 
   1310 		error = lfs_writefile(fs, sp, vp);
   1311 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1312 		    !(ip->i_flag & IN_ALLMOD)) {
   1313 			LFS_SET_UINO(ip, IN_MODIFIED);
   1314 		}
   1315 		(void) lfs_writeinode(fs, sp, ip);
   1316 
   1317 		lfs_vunref(vp);
   1318 
   1319 		if (error == EAGAIN) {
   1320 			lfs_writeseg(fs, sp);
   1321 			simple_lock(&fs->lfs_interlock);
   1322 			break;
   1323 		}
   1324 		simple_lock(&fs->lfs_interlock);
   1325 	}
   1326 	simple_unlock(&fs->lfs_interlock);
   1327 	(void) lfs_writeseg(fs, sp);
   1328 	lfs_segunlock(fs);
   1329 }
   1330 
   1331 /*
   1332  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1333  */
   1334 int
   1335 lfs_fcntl(void *v)
   1336 {
   1337 	struct vop_fcntl_args /* {
   1338 		struct vnode *a_vp;
   1339 		u_long a_command;
   1340 		caddr_t  a_data;
   1341 		int  a_fflag;
   1342 		kauth_cred_t a_cred;
   1343 		struct lwp *a_l;
   1344 	} */ *ap = v;
   1345 	struct timeval *tvp;
   1346 	BLOCK_INFO *blkiov;
   1347 	CLEANERINFO *cip;
   1348 	SEGUSE *sup;
   1349 	int blkcnt, error, oclean;
   1350 	struct lfs_fcntl_markv blkvp;
   1351 	struct proc *p;
   1352 	fsid_t *fsidp;
   1353 	struct lfs *fs;
   1354 	struct buf *bp;
   1355 	fhandle_t *fhp;
   1356 	daddr_t off;
   1357 
   1358 	/* Only respect LFS fcntls on fs root or Ifile */
   1359 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1360 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1361 		return ufs_fcntl(v);
   1362 	}
   1363 
   1364 	/* Avoid locking a draining lock */
   1365 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1366 		return ESHUTDOWN;
   1367 	}
   1368 
   1369 	p = ap->a_l->l_proc;
   1370 	fs = VTOI(ap->a_vp)->i_lfs;
   1371 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1372 
   1373 	switch (ap->a_command) {
   1374 	    case LFCNSEGWAITALL:
   1375 	    case LFCNSEGWAITALL_COMPAT:
   1376 		fsidp = NULL;
   1377 		/* FALLSTHROUGH */
   1378 	    case LFCNSEGWAIT:
   1379 	    case LFCNSEGWAIT_COMPAT:
   1380 		tvp = (struct timeval *)ap->a_data;
   1381 		simple_lock(&fs->lfs_interlock);
   1382 		++fs->lfs_sleepers;
   1383 		simple_unlock(&fs->lfs_interlock);
   1384 
   1385 		error = lfs_segwait(fsidp, tvp);
   1386 
   1387 		simple_lock(&fs->lfs_interlock);
   1388 		if (--fs->lfs_sleepers == 0)
   1389 			wakeup(&fs->lfs_sleepers);
   1390 		simple_unlock(&fs->lfs_interlock);
   1391 		return error;
   1392 
   1393 	    case LFCNBMAPV:
   1394 	    case LFCNMARKV:
   1395 		if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
   1396 					       &p->p_acflag)) != 0)
   1397 			return (error);
   1398 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1399 
   1400 		blkcnt = blkvp.blkcnt;
   1401 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1402 			return (EINVAL);
   1403 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1404 		if ((error = copyin(blkvp.blkiov, blkiov,
   1405 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1406 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1407 			return error;
   1408 		}
   1409 
   1410 		simple_lock(&fs->lfs_interlock);
   1411 		++fs->lfs_sleepers;
   1412 		simple_unlock(&fs->lfs_interlock);
   1413 		if (ap->a_command == LFCNBMAPV)
   1414 			error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
   1415 		else /* LFCNMARKV */
   1416 			error = lfs_markv(p, fsidp, blkiov, blkcnt);
   1417 		if (error == 0)
   1418 			error = copyout(blkiov, blkvp.blkiov,
   1419 					blkcnt * sizeof(BLOCK_INFO));
   1420 		simple_lock(&fs->lfs_interlock);
   1421 		if (--fs->lfs_sleepers == 0)
   1422 			wakeup(&fs->lfs_sleepers);
   1423 		simple_unlock(&fs->lfs_interlock);
   1424 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1425 		return error;
   1426 
   1427 	    case LFCNRECLAIM:
   1428 		/*
   1429 		 * Flush dirops and write Ifile, allowing empty segments
   1430 		 * to be immediately reclaimed.
   1431 		 */
   1432 		lfs_writer_enter(fs, "pndirop");
   1433 		off = fs->lfs_offset;
   1434 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1435 		lfs_flush_dirops(fs);
   1436 		LFS_CLEANERINFO(cip, fs, bp);
   1437 		oclean = cip->clean;
   1438 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1439 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1440 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1441 		lfs_segunlock(fs);
   1442 		lfs_writer_leave(fs);
   1443 
   1444 #ifdef DEBUG
   1445 		LFS_CLEANERINFO(cip, fs, bp);
   1446 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1447 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1448 		      fs->lfs_offset - off, cip->clean - oclean,
   1449 		      fs->lfs_activesb));
   1450 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1451 #endif
   1452 
   1453 		return 0;
   1454 
   1455 	    case LFCNIFILEFH:
   1456 		/* Return the filehandle of the Ifile */
   1457 		if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
   1458 					       KAUTH_GENERIC_ISSUSER,
   1459 					       &ap->a_l->l_proc->p_acflag)) != 0)
   1460 			return (error);
   1461 		fhp = (struct fhandle *)ap->a_data;
   1462 		fhp->fh_fsid = *fsidp;
   1463 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid));
   1464 
   1465 	    case LFCNREWIND:
   1466 		/* Move lfs_offset to the lowest-numbered segment */
   1467 		return lfs_rewind(fs, *(int *)ap->a_data);
   1468 
   1469 	    case LFCNINVAL:
   1470 		/* Mark a segment SEGUSE_INVAL */
   1471 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1472 		if (sup->su_nbytes > 0) {
   1473 			brelse(bp);
   1474 			lfs_unset_inval_all(fs);
   1475 			return EBUSY;
   1476 		}
   1477 		sup->su_flags |= SEGUSE_INVAL;
   1478 		VOP_BWRITE(bp);
   1479 		return 0;
   1480 
   1481 	    case LFCNRESIZE:
   1482 		/* Resize the filesystem */
   1483 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1484 
   1485 	    case LFCNWRAPSTOP:
   1486 		/*
   1487 		 * Hold lfs_newseg at segment 0; sleep until the filesystem
   1488 		 * wraps around.  For debugging purposes, so an external
   1489 		 * agent can log every segment in the filesystem as it
   1490 		 * was written, and we can regression-test checkpoint
   1491 		 * validity in the general case.
   1492 		 */
   1493 		simple_lock(&fs->lfs_interlock);
   1494 		fs->lfs_nowrap = 1;
   1495 		error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER | PNORELOCK,
   1496 			"segwrap", 0, &fs->lfs_interlock);
   1497 		if (error) {
   1498 			fs->lfs_nowrap = 0;
   1499 			wakeup(&fs->lfs_nowrap);
   1500 		}
   1501 		return 0;
   1502 
   1503 	    case LFCNWRAPGO:
   1504 		/*
   1505 		 * Having done its work, the agent wakes up the writer.
   1506 		 * It sleeps until a new segment is selected.
   1507 		 */
   1508 		simple_lock(&fs->lfs_interlock);
   1509 		fs->lfs_nowrap = 0;
   1510 		wakeup(&fs->lfs_nowrap);
   1511 		ltsleep(&fs->lfs_nextseg, PCATCH | PUSER | PNORELOCK,
   1512 			"segment", 0, &fs->lfs_interlock);
   1513 		return 0;
   1514 
   1515 	    default:
   1516 		return ufs_fcntl(v);
   1517 	}
   1518 	return 0;
   1519 }
   1520 
   1521 int
   1522 lfs_getpages(void *v)
   1523 {
   1524 	struct vop_getpages_args /* {
   1525 		struct vnode *a_vp;
   1526 		voff_t a_offset;
   1527 		struct vm_page **a_m;
   1528 		int *a_count;
   1529 		int a_centeridx;
   1530 		vm_prot_t a_access_type;
   1531 		int a_advice;
   1532 		int a_flags;
   1533 	} */ *ap = v;
   1534 
   1535 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1536 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1537 		return EPERM;
   1538 	}
   1539 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1540 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1541 	}
   1542 
   1543 	/*
   1544 	 * we're relying on the fact that genfs_getpages() always read in
   1545 	 * entire filesystem blocks.
   1546 	 */
   1547 	return genfs_getpages(v);
   1548 }
   1549 
   1550 /*
   1551  * Make sure that for all pages in every block in the given range,
   1552  * either all are dirty or all are clean.  If any of the pages
   1553  * we've seen so far are dirty, put the vnode on the paging chain,
   1554  * and mark it IN_PAGING.
   1555  *
   1556  * If checkfirst != 0, don't check all the pages but return at the
   1557  * first dirty page.
   1558  */
   1559 static int
   1560 check_dirty(struct lfs *fs, struct vnode *vp,
   1561 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1562 	    int flags, int checkfirst)
   1563 {
   1564 	int by_list;
   1565 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1566 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1567 	off_t soff = 0; /* XXX: gcc */
   1568 	voff_t off;
   1569 	int i;
   1570 	int nonexistent;
   1571 	int any_dirty;	/* number of dirty pages */
   1572 	int dirty;	/* number of dirty pages in a block */
   1573 	int tdirty;
   1574 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1575 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1576 
   1577 	ASSERT_MAYBE_SEGLOCK(fs);
   1578   top:
   1579 	by_list = (vp->v_uobj.uo_npages <=
   1580 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1581 		   UVM_PAGE_HASH_PENALTY);
   1582 	any_dirty = 0;
   1583 
   1584 	if (by_list) {
   1585 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1586 	} else {
   1587 		soff = startoffset;
   1588 	}
   1589 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1590 		if (by_list) {
   1591 			/*
   1592 			 * Find the first page in a block.  Skip
   1593 			 * blocks outside our area of interest or beyond
   1594 			 * the end of file.
   1595 			 */
   1596 			if (pages_per_block > 1) {
   1597 				while (curpg &&
   1598 				       ((curpg->offset & fs->lfs_bmask) ||
   1599 					curpg->offset >= vp->v_size ||
   1600 					curpg->offset >= endoffset))
   1601 					curpg = TAILQ_NEXT(curpg, listq);
   1602 			}
   1603 			if (curpg == NULL)
   1604 				break;
   1605 			soff = curpg->offset;
   1606 		}
   1607 
   1608 		/*
   1609 		 * Mark all pages in extended range busy; find out if any
   1610 		 * of them are dirty.
   1611 		 */
   1612 		nonexistent = dirty = 0;
   1613 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1614 			if (by_list && pages_per_block <= 1) {
   1615 				pgs[i] = pg = curpg;
   1616 			} else {
   1617 				off = soff + (i << PAGE_SHIFT);
   1618 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1619 				if (pg == NULL) {
   1620 					++nonexistent;
   1621 					continue;
   1622 				}
   1623 			}
   1624 			KASSERT(pg != NULL);
   1625 
   1626 			/*
   1627 			 * If we're holding the segment lock, we can deadlock
   1628 			 * against a process that has our page and is waiting
   1629 			 * for the cleaner, while the cleaner waits for the
   1630 			 * segment lock.  Just bail in that case.
   1631 			 */
   1632 			if ((pg->flags & PG_BUSY) &&
   1633 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1634 				if (by_list && i > 0)
   1635 					uvm_page_unbusy(pgs, i);
   1636 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1637 				return -1;
   1638 			}
   1639 
   1640 			while (pg->flags & PG_BUSY) {
   1641 				pg->flags |= PG_WANTED;
   1642 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1643 						    "lfsput", 0);
   1644 				simple_lock(&vp->v_interlock);
   1645 				if (by_list) {
   1646 					if (i > 0)
   1647 						uvm_page_unbusy(pgs, i);
   1648 					goto top;
   1649 				}
   1650 			}
   1651 			pg->flags |= PG_BUSY;
   1652 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1653 
   1654 			pmap_page_protect(pg, VM_PROT_NONE);
   1655 			tdirty = (pmap_clear_modify(pg) ||
   1656 				  (pg->flags & PG_CLEAN) == 0);
   1657 			dirty += tdirty;
   1658 		}
   1659 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1660 			if (by_list) {
   1661 				curpg = TAILQ_NEXT(curpg, listq);
   1662 			} else {
   1663 				soff += fs->lfs_bsize;
   1664 			}
   1665 			continue;
   1666 		}
   1667 
   1668 		any_dirty += dirty;
   1669 		KASSERT(nonexistent == 0);
   1670 
   1671 		/*
   1672 		 * If any are dirty make all dirty; unbusy them,
   1673 		 * but if we were asked to clean, wire them so that
   1674 		 * the pagedaemon doesn't bother us about them while
   1675 		 * they're on their way to disk.
   1676 		 */
   1677 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1678 			pg = pgs[i];
   1679 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1680 			if (dirty) {
   1681 				pg->flags &= ~PG_CLEAN;
   1682 				if (flags & PGO_FREE) {
   1683 					/*
   1684 					 * Wire the page so that
   1685 					 * pdaemon doesn't see it again.
   1686 					 */
   1687 					uvm_lock_pageq();
   1688 					uvm_pagewire(pg);
   1689 					uvm_unlock_pageq();
   1690 
   1691 					/* Suspended write flag */
   1692 					pg->flags |= PG_DELWRI;
   1693 				}
   1694 			}
   1695 			if (pg->flags & PG_WANTED)
   1696 				wakeup(pg);
   1697 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1698 			UVM_PAGE_OWN(pg, NULL);
   1699 		}
   1700 
   1701 		if (checkfirst && any_dirty)
   1702 			break;
   1703 
   1704 		if (by_list) {
   1705 			curpg = TAILQ_NEXT(curpg, listq);
   1706 		} else {
   1707 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1708 		}
   1709 	}
   1710 
   1711 	return any_dirty;
   1712 }
   1713 
   1714 /*
   1715  * lfs_putpages functions like genfs_putpages except that
   1716  *
   1717  * (1) It needs to bounds-check the incoming requests to ensure that
   1718  *     they are block-aligned; if they are not, expand the range and
   1719  *     do the right thing in case, e.g., the requested range is clean
   1720  *     but the expanded range is dirty.
   1721  *
   1722  * (2) It needs to explicitly send blocks to be written when it is done.
   1723  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1724  *     we simply take the seglock and let lfs_segunlock wait for us.
   1725  *     XXX Actually we can be called with the seglock held, if we have
   1726  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1727  *     XXX writing we panic in this case.
   1728  *
   1729  * Assumptions:
   1730  *
   1731  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1732  *     there is a danger that when we expand the page range and busy the
   1733  *     pages we will deadlock.
   1734  *
   1735  * (2) We are called with vp->v_interlock held; we must return with it
   1736  *     released.
   1737  *
   1738  * (3) We don't absolutely have to free pages right away, provided that
   1739  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1740  *     us a request with PGO_FREE, we take the pages out of the paging
   1741  *     queue and wake up the writer, which will handle freeing them for us.
   1742  *
   1743  *     We ensure that for any filesystem block, all pages for that
   1744  *     block are either resident or not, even if those pages are higher
   1745  *     than EOF; that means that we will be getting requests to free
   1746  *     "unused" pages above EOF all the time, and should ignore them.
   1747  *
   1748  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   1749  *     into has been set up for us by lfs_writefile.  If not, we will
   1750  *     have to handle allocating and/or freeing an finfo entry.
   1751  *
   1752  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1753  */
   1754 
   1755 int
   1756 lfs_putpages(void *v)
   1757 {
   1758 	int error;
   1759 	struct vop_putpages_args /* {
   1760 		struct vnode *a_vp;
   1761 		voff_t a_offlo;
   1762 		voff_t a_offhi;
   1763 		int a_flags;
   1764 	} */ *ap = v;
   1765 	struct vnode *vp;
   1766 	struct inode *ip;
   1767 	struct lfs *fs;
   1768 	struct segment *sp;
   1769 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1770 	off_t off, max_endoffset;
   1771 	int s;
   1772 	boolean_t seglocked, sync, pagedaemon;
   1773 	struct vm_page *pg;
   1774 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1775 
   1776 	vp = ap->a_vp;
   1777 	ip = VTOI(vp);
   1778 	fs = ip->i_lfs;
   1779 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1780 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1781 
   1782 	/* Putpages does nothing for metadata. */
   1783 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1784 		simple_unlock(&vp->v_interlock);
   1785 		return 0;
   1786 	}
   1787 
   1788 	/*
   1789 	 * If there are no pages, don't do anything.
   1790 	 */
   1791 	if (vp->v_uobj.uo_npages == 0) {
   1792 		s = splbio();
   1793 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1794 		    (vp->v_flag & VONWORKLST)) {
   1795 			vp->v_flag &= ~VONWORKLST;
   1796 			LIST_REMOVE(vp, v_synclist);
   1797 		}
   1798 		splx(s);
   1799 		simple_unlock(&vp->v_interlock);
   1800 
   1801 		/* Remove us from paging queue, if we were on it */
   1802 		simple_lock(&fs->lfs_interlock);
   1803 		if (ip->i_flags & IN_PAGING) {
   1804 			ip->i_flags &= ~IN_PAGING;
   1805 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1806 		}
   1807 		simple_unlock(&fs->lfs_interlock);
   1808 		return 0;
   1809 	}
   1810 
   1811 	blkeof = blkroundup(fs, ip->i_size);
   1812 
   1813 	/*
   1814 	 * Ignore requests to free pages past EOF but in the same block
   1815 	 * as EOF, unless the request is synchronous.  (If the request is
   1816 	 * sync, it comes from lfs_truncate.)
   1817 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1818 	 * XXXUBC bother us with them again.
   1819 	 */
   1820 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1821 		origoffset = ap->a_offlo;
   1822 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1823 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1824 			KASSERT(pg != NULL);
   1825 			while (pg->flags & PG_BUSY) {
   1826 				pg->flags |= PG_WANTED;
   1827 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1828 						    "lfsput2", 0);
   1829 				simple_lock(&vp->v_interlock);
   1830 			}
   1831 			uvm_lock_pageq();
   1832 			uvm_pageactivate(pg);
   1833 			uvm_unlock_pageq();
   1834 		}
   1835 		ap->a_offlo = blkeof;
   1836 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1837 			simple_unlock(&vp->v_interlock);
   1838 			return 0;
   1839 		}
   1840 	}
   1841 
   1842 	/*
   1843 	 * Extend page range to start and end at block boundaries.
   1844 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1845 	 */
   1846 	origoffset = ap->a_offlo;
   1847 	origendoffset = ap->a_offhi;
   1848 	startoffset = origoffset & ~(fs->lfs_bmask);
   1849 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1850 					       << fs->lfs_bshift;
   1851 
   1852 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1853 		endoffset = max_endoffset;
   1854 		origendoffset = endoffset;
   1855 	} else {
   1856 		origendoffset = round_page(ap->a_offhi);
   1857 		endoffset = round_page(blkroundup(fs, origendoffset));
   1858 	}
   1859 
   1860 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1861 	if (startoffset == endoffset) {
   1862 		/* Nothing to do, why were we called? */
   1863 		simple_unlock(&vp->v_interlock);
   1864 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1865 		      PRId64 "\n", startoffset));
   1866 		return 0;
   1867 	}
   1868 
   1869 	ap->a_offlo = startoffset;
   1870 	ap->a_offhi = endoffset;
   1871 
   1872 	if (!(ap->a_flags & PGO_CLEANIT))
   1873 		return genfs_putpages(v);
   1874 
   1875 	/*
   1876 	 * If there are more than one page per block, we don't want
   1877 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1878 	 * to avoid deadlocks.
   1879 	 */
   1880 	ap->a_flags |= PGO_BUSYFAIL;
   1881 
   1882 	do {
   1883 		int r;
   1884 
   1885 		/* If no pages are dirty, we can just use genfs_putpages. */
   1886 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   1887 				ap->a_flags, 1);
   1888 		if (r < 0) {
   1889 			simple_unlock(&vp->v_interlock);
   1890 			return EDEADLK;
   1891 		}
   1892 		if (r > 0)
   1893 			break;
   1894 
   1895 		/*
   1896 		 * Sometimes pages are dirtied between the time that
   1897 		 * we check and the time we try to clean them.
   1898 		 * Instruct lfs_gop_write to return EDEADLK in this case
   1899 		 * so we can write them properly.
   1900 		 */
   1901 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   1902 		r = genfs_putpages(v);
   1903 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   1904 		if (r != EDEADLK)
   1905 			return r;
   1906 
   1907 		/* Start over. */
   1908 		preempt(1);
   1909 		simple_lock(&vp->v_interlock);
   1910 	} while(1);
   1911 
   1912 	/*
   1913 	 * Dirty and asked to clean.
   1914 	 *
   1915 	 * Pagedaemon can't actually write LFS pages; wake up
   1916 	 * the writer to take care of that.  The writer will
   1917 	 * notice the pager inode queue and act on that.
   1918 	 */
   1919 	if (pagedaemon) {
   1920 		simple_lock(&fs->lfs_interlock);
   1921 		if (!(ip->i_flags & IN_PAGING)) {
   1922 			ip->i_flags |= IN_PAGING;
   1923 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1924 		}
   1925 		simple_lock(&lfs_subsys_lock);
   1926 		wakeup(&lfs_writer_daemon);
   1927 		simple_unlock(&lfs_subsys_lock);
   1928 		simple_unlock(&fs->lfs_interlock);
   1929 		simple_unlock(&vp->v_interlock);
   1930 		preempt(1);
   1931 		return EWOULDBLOCK;
   1932 	}
   1933 
   1934 	/*
   1935 	 * If this is a file created in a recent dirop, we can't flush its
   1936 	 * inode until the dirop is complete.  Drain dirops, then flush the
   1937 	 * filesystem (taking care of any other pending dirops while we're
   1938 	 * at it).
   1939 	 */
   1940 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   1941 	    (vp->v_flag & VDIROP)) {
   1942 		int locked;
   1943 
   1944 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   1945 		locked = VOP_ISLOCKED(vp) && /* XXX */
   1946 			vp->v_lock.lk_lockholder == curproc->p_pid;
   1947 		simple_unlock(&vp->v_interlock);
   1948 		lfs_writer_enter(fs, "ppdirop");
   1949 		if (locked)
   1950 			VOP_UNLOCK(vp, 0);
   1951 
   1952 		simple_lock(&fs->lfs_interlock);
   1953 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   1954 		simple_unlock(&fs->lfs_interlock);
   1955 
   1956 		simple_lock(&vp->v_interlock);
   1957 		if (locked) {
   1958 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   1959 			simple_lock(&vp->v_interlock);
   1960 		}
   1961 		lfs_writer_leave(fs);
   1962 
   1963 		/* XXX the flush should have taken care of this one too! */
   1964 	}
   1965 
   1966 	/*
   1967 	 * This is it.	We are going to write some pages.  From here on
   1968 	 * down it's all just mechanics.
   1969 	 *
   1970 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   1971 	 */
   1972 	ap->a_flags &= ~PGO_SYNCIO;
   1973 
   1974 	/*
   1975 	 * If we've already got the seglock, flush the node and return.
   1976 	 * The FIP has already been set up for us by lfs_writefile,
   1977 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   1978 	 * unless genfs_putpages returns EDEADLK; then we must flush
   1979 	 * what we have, and correct FIP and segment header accounting.
   1980 	 */
   1981     get_seglock:
   1982 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   1983 	if (!seglocked) {
   1984 		simple_unlock(&vp->v_interlock);
   1985 		/*
   1986 		 * Take the seglock, because we are going to be writing pages.
   1987 		 */
   1988 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   1989 		if (error != 0)
   1990 			return error;
   1991 		simple_lock(&vp->v_interlock);
   1992 	}
   1993 
   1994 	/*
   1995 	 * VOP_PUTPAGES should not be called while holding the seglock.
   1996 	 * XXXUBC fix lfs_markv, or do this properly.
   1997 	 */
   1998 #ifdef notyet
   1999 	KASSERT(fs->lfs_seglock == 1);
   2000 #endif /* notyet */
   2001 
   2002 	/*
   2003 	 * We assume we're being called with sp->fip pointing at blank space.
   2004 	 * Account for a new FIP in the segment header, and set sp->vp.
   2005 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2006 	 */
   2007 	sp = fs->lfs_sp;
   2008 	if (!seglocked)
   2009 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2010 	KASSERT(sp->vp == NULL);
   2011 	sp->vp = vp;
   2012 
   2013 	if (!seglocked) {
   2014 		if (vp->v_flag & VDIROP)
   2015 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2016 	}
   2017 
   2018 	/*
   2019 	 * Loop through genfs_putpages until all pages are gathered.
   2020 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2021 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2022 	 * well.
   2023 	 */
   2024 again:
   2025 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2026 	    ap->a_flags, 0) < 0) {
   2027 		simple_unlock(&vp->v_interlock);
   2028 		sp->vp = NULL;
   2029 		if (!seglocked) {
   2030 			lfs_release_finfo(fs);
   2031 			lfs_segunlock(fs);
   2032 		}
   2033 		if (pagedaemon)
   2034 			return EDEADLK;
   2035 		/* else seglocked == 0 */
   2036 		preempt(1);
   2037 		simple_lock(&vp->v_interlock);
   2038 		goto get_seglock;
   2039 	}
   2040 
   2041 	error = genfs_putpages(v);
   2042 	if (error == EDEADLK || error == EAGAIN) {
   2043 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2044 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2045 		      ip->i_number, fs->lfs_offset,
   2046 		      dtosn(fs, fs->lfs_offset)));
   2047 		/* If nothing to write, short-circuit */
   2048 		if (sp->cbpp - sp->bpp > 1) {
   2049 			/* Write gathered pages */
   2050 			lfs_updatemeta(sp);
   2051 			(void) lfs_writeseg(fs, sp);
   2052 
   2053 			/*
   2054 			 * Reinitialize brand new FIP and add us to it.
   2055 			 */
   2056 			KASSERT(sp->vp == vp);
   2057 			lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2058 		}
   2059 
   2060 		/* Give the write a chance to complete */
   2061 		preempt(1);
   2062 
   2063 		/* We've lost the interlock.  Start over. */
   2064 		if (error == EDEADLK) {
   2065 			simple_lock(&vp->v_interlock);
   2066 			goto again;
   2067 		}
   2068 	}
   2069 
   2070 	KASSERT(sp->vp == vp);
   2071 	if (!seglocked) {
   2072 		sp->vp = NULL;
   2073 
   2074 		/* Write indirect blocks as well */
   2075 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2076 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2077 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2078 
   2079 		KASSERT(sp->vp == NULL);
   2080 		sp->vp = vp;
   2081 	}
   2082 
   2083 	/*
   2084 	 * Blocks are now gathered into a segment waiting to be written.
   2085 	 * All that's left to do is update metadata, and write them.
   2086 	 */
   2087 	lfs_updatemeta(sp);
   2088 	KASSERT(sp->vp == vp);
   2089 	sp->vp = NULL;
   2090 
   2091 	if (seglocked) {
   2092 		/* we're called by lfs_writefile. */
   2093 		return error;
   2094 	}
   2095 
   2096 	/* Clean up FIP and send it to disk. */
   2097 	lfs_release_finfo(fs);
   2098 	lfs_writeseg(fs, fs->lfs_sp);
   2099 
   2100 	/*
   2101 	 * Remove us from paging queue, since we've now written all our
   2102 	 * pages.
   2103 	 */
   2104 	simple_lock(&fs->lfs_interlock);
   2105 	if (ip->i_flags & IN_PAGING) {
   2106 		ip->i_flags &= ~IN_PAGING;
   2107 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2108 	}
   2109 	simple_unlock(&fs->lfs_interlock);
   2110 
   2111 	/*
   2112 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2113 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2114 	 * will not be true if we stop using malloc/copy.
   2115 	 */
   2116 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2117 	lfs_segunlock(fs);
   2118 
   2119 	/*
   2120 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2121 	 * take care of this, but there is a slight possibility that
   2122 	 * aiodoned might not have got around to our buffers yet.
   2123 	 */
   2124 	if (sync) {
   2125 		s = splbio();
   2126 		simple_lock(&global_v_numoutput_slock);
   2127 		while (vp->v_numoutput > 0) {
   2128 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2129 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2130 			vp->v_flag |= VBWAIT;
   2131 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2132 			    &global_v_numoutput_slock);
   2133 		}
   2134 		simple_unlock(&global_v_numoutput_slock);
   2135 		splx(s);
   2136 	}
   2137 	return error;
   2138 }
   2139 
   2140 /*
   2141  * Return the last logical file offset that should be written for this file
   2142  * if we're doing a write that ends at "size".	If writing, we need to know
   2143  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2144  * to know about entire blocks.
   2145  */
   2146 void
   2147 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2148 {
   2149 	struct inode *ip = VTOI(vp);
   2150 	struct lfs *fs = ip->i_lfs;
   2151 	daddr_t olbn, nlbn;
   2152 
   2153 	olbn = lblkno(fs, ip->i_size);
   2154 	nlbn = lblkno(fs, size);
   2155 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2156 		*eobp = fragroundup(fs, size);
   2157 	} else {
   2158 		*eobp = blkroundup(fs, size);
   2159 	}
   2160 }
   2161 
   2162 #ifdef DEBUG
   2163 void lfs_dump_vop(void *);
   2164 
   2165 void
   2166 lfs_dump_vop(void *v)
   2167 {
   2168 	struct vop_putpages_args /* {
   2169 		struct vnode *a_vp;
   2170 		voff_t a_offlo;
   2171 		voff_t a_offhi;
   2172 		int a_flags;
   2173 	} */ *ap = v;
   2174 
   2175 #ifdef DDB
   2176 	vfs_vnode_print(ap->a_vp, 0, printf);
   2177 #endif
   2178 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2179 }
   2180 #endif
   2181 
   2182 int
   2183 lfs_mmap(void *v)
   2184 {
   2185 	struct vop_mmap_args /* {
   2186 		const struct vnodeop_desc *a_desc;
   2187 		struct vnode *a_vp;
   2188 		int a_fflags;
   2189 		kauth_cred_t a_cred;
   2190 		struct lwp *a_l;
   2191 	} */ *ap = v;
   2192 
   2193 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2194 		return EOPNOTSUPP;
   2195 	return ufs_mmap(v);
   2196 }
   2197