Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.182
      1 /*	$NetBSD: lfs_vnops.c,v 1.182 2006/07/13 22:05:52 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.182 2006/07/13 22:05:52 martin Exp $");
     71 
     72 #include "opt_compat_netbsd.h"
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/namei.h>
     77 #include <sys/resourcevar.h>
     78 #include <sys/kernel.h>
     79 #include <sys/file.h>
     80 #include <sys/stat.h>
     81 #include <sys/buf.h>
     82 #include <sys/proc.h>
     83 #include <sys/mount.h>
     84 #include <sys/vnode.h>
     85 #include <sys/pool.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/kauth.h>
     88 #include <sys/syslog.h>
     89 
     90 #include <miscfs/fifofs/fifo.h>
     91 #include <miscfs/genfs/genfs.h>
     92 #include <miscfs/specfs/specdev.h>
     93 
     94 #include <ufs/ufs/inode.h>
     95 #include <ufs/ufs/dir.h>
     96 #include <ufs/ufs/ufsmount.h>
     97 #include <ufs/ufs/ufs_extern.h>
     98 
     99 #include <uvm/uvm.h>
    100 #include <uvm/uvm_pmap.h>
    101 #include <uvm/uvm_stat.h>
    102 #include <uvm/uvm_pager.h>
    103 
    104 #include <ufs/lfs/lfs.h>
    105 #include <ufs/lfs/lfs_extern.h>
    106 
    107 extern pid_t lfs_writer_daemon;
    108 
    109 /* Global vfs data structures for lfs. */
    110 int (**lfs_vnodeop_p)(void *);
    111 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    112 	{ &vop_default_desc, vn_default_error },
    113 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    114 	{ &vop_create_desc, lfs_create },		/* create */
    115 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    116 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    117 	{ &vop_open_desc, ufs_open },			/* open */
    118 	{ &vop_close_desc, lfs_close },			/* close */
    119 	{ &vop_access_desc, ufs_access },		/* access */
    120 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    121 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    122 	{ &vop_read_desc, lfs_read },			/* read */
    123 	{ &vop_write_desc, lfs_write },			/* write */
    124 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    125 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    126 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    127 	{ &vop_poll_desc, ufs_poll },			/* poll */
    128 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    129 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    130 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    131 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    132 	{ &vop_seek_desc, ufs_seek },			/* seek */
    133 	{ &vop_remove_desc, lfs_remove },		/* remove */
    134 	{ &vop_link_desc, lfs_link },			/* link */
    135 	{ &vop_rename_desc, lfs_rename },		/* rename */
    136 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    137 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    138 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    139 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    140 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    141 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    142 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    143 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    144 	{ &vop_lock_desc, ufs_lock },			/* lock */
    145 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    146 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    147 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    148 	{ &vop_print_desc, ufs_print },			/* print */
    149 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    150 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    151 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    152 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    153 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    154 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    155 	{ NULL, NULL }
    156 };
    157 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    158 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    159 
    160 int (**lfs_specop_p)(void *);
    161 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    162 	{ &vop_default_desc, vn_default_error },
    163 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    164 	{ &vop_create_desc, spec_create },		/* create */
    165 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    166 	{ &vop_open_desc, spec_open },			/* open */
    167 	{ &vop_close_desc, lfsspec_close },		/* close */
    168 	{ &vop_access_desc, ufs_access },		/* access */
    169 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    170 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    171 	{ &vop_read_desc, ufsspec_read },		/* read */
    172 	{ &vop_write_desc, ufsspec_write },		/* write */
    173 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    174 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    175 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    176 	{ &vop_poll_desc, spec_poll },			/* poll */
    177 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    178 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    179 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    180 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    181 	{ &vop_seek_desc, spec_seek },			/* seek */
    182 	{ &vop_remove_desc, spec_remove },		/* remove */
    183 	{ &vop_link_desc, spec_link },			/* link */
    184 	{ &vop_rename_desc, spec_rename },		/* rename */
    185 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    186 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    187 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    188 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    189 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    190 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    191 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    192 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    193 	{ &vop_lock_desc, ufs_lock },			/* lock */
    194 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    195 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    196 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    197 	{ &vop_print_desc, ufs_print },			/* print */
    198 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    199 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    200 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    201 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    202 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    203 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    204 	{ NULL, NULL }
    205 };
    206 const struct vnodeopv_desc lfs_specop_opv_desc =
    207 	{ &lfs_specop_p, lfs_specop_entries };
    208 
    209 int (**lfs_fifoop_p)(void *);
    210 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    211 	{ &vop_default_desc, vn_default_error },
    212 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    213 	{ &vop_create_desc, fifo_create },		/* create */
    214 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    215 	{ &vop_open_desc, fifo_open },			/* open */
    216 	{ &vop_close_desc, lfsfifo_close },		/* close */
    217 	{ &vop_access_desc, ufs_access },		/* access */
    218 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    219 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    220 	{ &vop_read_desc, ufsfifo_read },		/* read */
    221 	{ &vop_write_desc, ufsfifo_write },		/* write */
    222 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    223 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    224 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    225 	{ &vop_poll_desc, fifo_poll },			/* poll */
    226 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    227 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    228 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    229 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    230 	{ &vop_seek_desc, fifo_seek },			/* seek */
    231 	{ &vop_remove_desc, fifo_remove },		/* remove */
    232 	{ &vop_link_desc, fifo_link },			/* link */
    233 	{ &vop_rename_desc, fifo_rename },		/* rename */
    234 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    235 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    236 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    237 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    238 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    239 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    240 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    241 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    242 	{ &vop_lock_desc, ufs_lock },			/* lock */
    243 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    244 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    245 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    246 	{ &vop_print_desc, ufs_print },			/* print */
    247 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    248 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    249 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    250 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    251 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    252 	{ NULL, NULL }
    253 };
    254 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    255 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    256 
    257 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    258 
    259 #define	LFS_READWRITE
    260 #include <ufs/ufs/ufs_readwrite.c>
    261 #undef	LFS_READWRITE
    262 
    263 /*
    264  * Synch an open file.
    265  */
    266 /* ARGSUSED */
    267 int
    268 lfs_fsync(void *v)
    269 {
    270 	struct vop_fsync_args /* {
    271 		struct vnode *a_vp;
    272 		kauth_cred_t a_cred;
    273 		int a_flags;
    274 		off_t offlo;
    275 		off_t offhi;
    276 		struct lwp *a_l;
    277 	} */ *ap = v;
    278 	struct vnode *vp = ap->a_vp;
    279 	int error, wait;
    280 
    281 	/* If we're mounted read-only, don't try to sync. */
    282 	if (VTOI(vp)->i_lfs->lfs_ronly)
    283 		return 0;
    284 
    285 	/*
    286 	 * Trickle sync checks for need to do a checkpoint after possible
    287 	 * activity from the pagedaemon.
    288 	 */
    289 	if (ap->a_flags & FSYNC_LAZY) {
    290 		simple_lock(&lfs_subsys_lock);
    291 		wakeup(&lfs_writer_daemon);
    292 		simple_unlock(&lfs_subsys_lock);
    293 		return 0;
    294 	}
    295 
    296 	/*
    297 	 * Don't reclaim any vnodes that are being cleaned.
    298 	 * This prevents the cleaner from writing files twice
    299 	 * in the same partial segment, causing an accounting
    300 	 * underflow.
    301 	 */
    302 	if (ap->a_flags & FSYNC_RECLAIM) {
    303 		if (VTOI(vp)->i_flags & IN_CLEANING)
    304 			return EAGAIN;
    305 	}
    306 
    307 	wait = (ap->a_flags & FSYNC_WAIT);
    308 	simple_lock(&vp->v_interlock);
    309 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    310 			round_page(ap->a_offhi),
    311 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    312 	if (error)
    313 		return error;
    314 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    315 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    316 		int l = 0;
    317 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    318 				  ap->a_l->l_proc->p_cred, ap->a_l);
    319 	}
    320 	if (wait && !VPISEMPTY(vp))
    321 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    322 
    323 	return error;
    324 }
    325 
    326 /*
    327  * Take IN_ADIROP off, then call ufs_inactive.
    328  */
    329 int
    330 lfs_inactive(void *v)
    331 {
    332 	struct vop_inactive_args /* {
    333 		struct vnode *a_vp;
    334 		struct lwp *a_l;
    335 	} */ *ap = v;
    336 
    337 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    338 
    339 	lfs_unmark_vnode(ap->a_vp);
    340 
    341 	/*
    342 	 * The Ifile is only ever inactivated on unmount.
    343 	 * Streamline this process by not giving it more dirty blocks.
    344 	 */
    345 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    346 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    347 		VOP_UNLOCK(ap->a_vp, 0);
    348 		return 0;
    349 	}
    350 
    351 	return ufs_inactive(v);
    352 }
    353 
    354 /*
    355  * These macros are used to bracket UFS directory ops, so that we can
    356  * identify all the pages touched during directory ops which need to
    357  * be ordered and flushed atomically, so that they may be recovered.
    358  *
    359  * Because we have to mark nodes VDIROP in order to prevent
    360  * the cache from reclaiming them while a dirop is in progress, we must
    361  * also manage the number of nodes so marked (otherwise we can run out).
    362  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    363  * is decremented during segment write, when VDIROP is taken off.
    364  */
    365 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    366 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    367 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    368 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    369 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    370 static int lfs_set_dirop(struct vnode *, struct vnode *);
    371 
    372 static int
    373 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    374 {
    375 	struct lfs *fs;
    376 	int error;
    377 
    378 	KASSERT(VOP_ISLOCKED(dvp));
    379 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    380 
    381 	fs = VTOI(dvp)->i_lfs;
    382 
    383 	ASSERT_NO_SEGLOCK(fs);
    384 	/*
    385 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    386 	 * as an inode block; an overestimate in most cases.
    387 	 */
    388 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    389 		return (error);
    390 
    391     restart:
    392 	simple_lock(&fs->lfs_interlock);
    393 	if (fs->lfs_dirops == 0) {
    394 		simple_unlock(&fs->lfs_interlock);
    395 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    396 		simple_lock(&fs->lfs_interlock);
    397 	}
    398 	while (fs->lfs_writer)
    399 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    400 			&fs->lfs_interlock);
    401 	simple_lock(&lfs_subsys_lock);
    402 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    403 		wakeup(&lfs_writer_daemon);
    404 		simple_unlock(&lfs_subsys_lock);
    405 		simple_unlock(&fs->lfs_interlock);
    406 		preempt(1);
    407 		goto restart;
    408 	}
    409 
    410 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    411 		simple_unlock(&fs->lfs_interlock);
    412 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    413 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    414 		if ((error = ltsleep(&lfs_dirvcount,
    415 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    416 		    &lfs_subsys_lock)) != 0) {
    417 			goto unreserve;
    418 		}
    419 		goto restart;
    420 	}
    421 	simple_unlock(&lfs_subsys_lock);
    422 
    423 	++fs->lfs_dirops;
    424 	fs->lfs_doifile = 1;
    425 	simple_unlock(&fs->lfs_interlock);
    426 
    427 	/* Hold a reference so SET_ENDOP will be happy */
    428 	vref(dvp);
    429 	if (vp) {
    430 		vref(vp);
    431 		MARK_VNODE(vp);
    432 	}
    433 
    434 	MARK_VNODE(dvp);
    435 	return 0;
    436 
    437 unreserve:
    438 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    439 	return error;
    440 }
    441 
    442 /*
    443  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    444  * in getnewvnode(), if we have a stacked filesystem mounted on top
    445  * of us.
    446  *
    447  * NB: this means we have to clear the new vnodes on error.  Fortunately
    448  * SET_ENDOP is there to do that for us.
    449  */
    450 static int
    451 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    452 {
    453 	int error;
    454 	struct lfs *fs;
    455 
    456 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    457 	ASSERT_NO_SEGLOCK(fs);
    458 	if (fs->lfs_ronly)
    459 		return EROFS;
    460 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    461 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    462 		      dvp, error));
    463 		return error;
    464 	}
    465 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    466 		if (vpp) {
    467 			ungetnewvnode(*vpp);
    468 			*vpp = NULL;
    469 		}
    470 		return error;
    471 	}
    472 	return 0;
    473 }
    474 
    475 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    476 	do {								\
    477 		simple_lock(&(fs)->lfs_interlock);			\
    478 		--(fs)->lfs_dirops;					\
    479 		if (!(fs)->lfs_dirops) {				\
    480 			if ((fs)->lfs_nadirop) {			\
    481 				panic("SET_ENDOP: %s: no dirops but "	\
    482 					" nadirop=%d", (str),		\
    483 					(fs)->lfs_nadirop);		\
    484 			}						\
    485 			wakeup(&(fs)->lfs_writer);			\
    486 			simple_unlock(&(fs)->lfs_interlock);		\
    487 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    488 		} else							\
    489 			simple_unlock(&(fs)->lfs_interlock);		\
    490 	} while(0)
    491 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    492 	do {								\
    493 		UNMARK_VNODE(dvp);					\
    494 		if (nvpp && *nvpp)					\
    495 			UNMARK_VNODE(*nvpp);				\
    496 		/* Check for error return to stem vnode leakage */	\
    497 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    498 			ungetnewvnode(*(nvpp));				\
    499 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    500 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    501 		vrele(dvp);						\
    502 	} while(0)
    503 #define SET_ENDOP_CREATE_AP(ap, str)					\
    504 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    505 			 (ap)->a_vpp, (str))
    506 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    507 	do {								\
    508 		UNMARK_VNODE(dvp);					\
    509 		if (ovp)						\
    510 			UNMARK_VNODE(ovp);				\
    511 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    512 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    513 		vrele(dvp);						\
    514 		if (ovp)						\
    515 			vrele(ovp);					\
    516 	} while(0)
    517 
    518 void
    519 lfs_mark_vnode(struct vnode *vp)
    520 {
    521 	struct inode *ip = VTOI(vp);
    522 	struct lfs *fs = ip->i_lfs;
    523 
    524 	simple_lock(&fs->lfs_interlock);
    525 	if (!(ip->i_flag & IN_ADIROP)) {
    526 		if (!(vp->v_flag & VDIROP)) {
    527 			(void)lfs_vref(vp);
    528 			simple_lock(&lfs_subsys_lock);
    529 			++lfs_dirvcount;
    530 			++fs->lfs_dirvcount;
    531 			simple_unlock(&lfs_subsys_lock);
    532 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    533 			vp->v_flag |= VDIROP;
    534 		}
    535 		++fs->lfs_nadirop;
    536 		ip->i_flag |= IN_ADIROP;
    537 	} else
    538 		KASSERT(vp->v_flag & VDIROP);
    539 	simple_unlock(&fs->lfs_interlock);
    540 }
    541 
    542 void
    543 lfs_unmark_vnode(struct vnode *vp)
    544 {
    545 	struct inode *ip = VTOI(vp);
    546 
    547 	if (ip && (ip->i_flag & IN_ADIROP)) {
    548 		KASSERT(vp->v_flag & VDIROP);
    549 		simple_lock(&ip->i_lfs->lfs_interlock);
    550 		--ip->i_lfs->lfs_nadirop;
    551 		simple_unlock(&ip->i_lfs->lfs_interlock);
    552 		ip->i_flag &= ~IN_ADIROP;
    553 	}
    554 }
    555 
    556 int
    557 lfs_symlink(void *v)
    558 {
    559 	struct vop_symlink_args /* {
    560 		struct vnode *a_dvp;
    561 		struct vnode **a_vpp;
    562 		struct componentname *a_cnp;
    563 		struct vattr *a_vap;
    564 		char *a_target;
    565 	} */ *ap = v;
    566 	int error;
    567 
    568 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    569 		vput(ap->a_dvp);
    570 		return error;
    571 	}
    572 	error = ufs_symlink(ap);
    573 	SET_ENDOP_CREATE_AP(ap, "symlink");
    574 	return (error);
    575 }
    576 
    577 int
    578 lfs_mknod(void *v)
    579 {
    580 	struct vop_mknod_args	/* {
    581 		struct vnode *a_dvp;
    582 		struct vnode **a_vpp;
    583 		struct componentname *a_cnp;
    584 		struct vattr *a_vap;
    585 		} */ *ap = v;
    586 	struct vattr *vap = ap->a_vap;
    587 	struct vnode **vpp = ap->a_vpp;
    588 	struct inode *ip;
    589 	int error;
    590 	struct mount	*mp;
    591 	ino_t		ino;
    592 
    593 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    594 		vput(ap->a_dvp);
    595 		return error;
    596 	}
    597 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    598 	    ap->a_dvp, vpp, ap->a_cnp);
    599 
    600 	/* Either way we're done with the dirop at this point */
    601 	SET_ENDOP_CREATE_AP(ap, "mknod");
    602 
    603 	if (error)
    604 		return (error);
    605 
    606 	ip = VTOI(*vpp);
    607 	mp  = (*vpp)->v_mount;
    608 	ino = ip->i_number;
    609 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    610 	if (vap->va_rdev != VNOVAL) {
    611 		/*
    612 		 * Want to be able to use this to make badblock
    613 		 * inodes, so don't truncate the dev number.
    614 		 */
    615 #if 0
    616 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    617 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    618 #else
    619 		ip->i_ffs1_rdev = vap->va_rdev;
    620 #endif
    621 	}
    622 
    623 	/*
    624 	 * Call fsync to write the vnode so that we don't have to deal with
    625 	 * flushing it when it's marked VDIROP|VXLOCK.
    626 	 *
    627 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    628 	 * return.  But, that leaves this vnode in limbo, also not good.
    629 	 * Can this ever happen (barring hardware failure)?
    630 	 */
    631 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    632 	    curlwp)) != 0) {
    633 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    634 		    (unsigned long long)ino);
    635 		/* return (error); */
    636 	}
    637 	/*
    638 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    639 	 * checked to see if it is an alias of an existing entry in
    640 	 * the inode cache.
    641 	 */
    642 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    643 
    644 	VOP_UNLOCK(*vpp, 0);
    645 	lfs_vunref(*vpp);
    646 	(*vpp)->v_type = VNON;
    647 	vgone(*vpp);
    648 	error = VFS_VGET(mp, ino, vpp);
    649 
    650 	if (error != 0) {
    651 		*vpp = NULL;
    652 		return (error);
    653 	}
    654 	return (0);
    655 }
    656 
    657 int
    658 lfs_create(void *v)
    659 {
    660 	struct vop_create_args	/* {
    661 		struct vnode *a_dvp;
    662 		struct vnode **a_vpp;
    663 		struct componentname *a_cnp;
    664 		struct vattr *a_vap;
    665 	} */ *ap = v;
    666 	int error;
    667 
    668 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    669 		vput(ap->a_dvp);
    670 		return error;
    671 	}
    672 	error = ufs_create(ap);
    673 	SET_ENDOP_CREATE_AP(ap, "create");
    674 	return (error);
    675 }
    676 
    677 int
    678 lfs_mkdir(void *v)
    679 {
    680 	struct vop_mkdir_args	/* {
    681 		struct vnode *a_dvp;
    682 		struct vnode **a_vpp;
    683 		struct componentname *a_cnp;
    684 		struct vattr *a_vap;
    685 	} */ *ap = v;
    686 	int error;
    687 
    688 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    689 		vput(ap->a_dvp);
    690 		return error;
    691 	}
    692 	error = ufs_mkdir(ap);
    693 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    694 	return (error);
    695 }
    696 
    697 int
    698 lfs_remove(void *v)
    699 {
    700 	struct vop_remove_args	/* {
    701 		struct vnode *a_dvp;
    702 		struct vnode *a_vp;
    703 		struct componentname *a_cnp;
    704 	} */ *ap = v;
    705 	struct vnode *dvp, *vp;
    706 	int error;
    707 
    708 	dvp = ap->a_dvp;
    709 	vp = ap->a_vp;
    710 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    711 		if (dvp == vp)
    712 			vrele(vp);
    713 		else
    714 			vput(vp);
    715 		vput(dvp);
    716 		return error;
    717 	}
    718 	error = ufs_remove(ap);
    719 	SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
    720 	return (error);
    721 }
    722 
    723 int
    724 lfs_rmdir(void *v)
    725 {
    726 	struct vop_rmdir_args	/* {
    727 		struct vnodeop_desc *a_desc;
    728 		struct vnode *a_dvp;
    729 		struct vnode *a_vp;
    730 		struct componentname *a_cnp;
    731 	} */ *ap = v;
    732 	struct vnode *vp;
    733 	int error;
    734 
    735 	vp = ap->a_vp;
    736 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    737 		vrele(ap->a_dvp);
    738 		if (ap->a_vp != ap->a_dvp)
    739 			VOP_UNLOCK(ap->a_dvp, 0);
    740 		vput(vp);
    741 		return error;
    742 	}
    743 	error = ufs_rmdir(ap);
    744 	SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    745 	return (error);
    746 }
    747 
    748 int
    749 lfs_link(void *v)
    750 {
    751 	struct vop_link_args	/* {
    752 		struct vnode *a_dvp;
    753 		struct vnode *a_vp;
    754 		struct componentname *a_cnp;
    755 	} */ *ap = v;
    756 	int error;
    757 	struct vnode **vpp = NULL;
    758 
    759 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    760 		vput(ap->a_dvp);
    761 		return error;
    762 	}
    763 	error = ufs_link(ap);
    764 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    765 	return (error);
    766 }
    767 
    768 int
    769 lfs_rename(void *v)
    770 {
    771 	struct vop_rename_args	/* {
    772 		struct vnode *a_fdvp;
    773 		struct vnode *a_fvp;
    774 		struct componentname *a_fcnp;
    775 		struct vnode *a_tdvp;
    776 		struct vnode *a_tvp;
    777 		struct componentname *a_tcnp;
    778 	} */ *ap = v;
    779 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    780 	struct componentname *tcnp, *fcnp;
    781 	int error;
    782 	struct lfs *fs;
    783 
    784 	fs = VTOI(ap->a_fdvp)->i_lfs;
    785 	tvp = ap->a_tvp;
    786 	tdvp = ap->a_tdvp;
    787 	tcnp = ap->a_tcnp;
    788 	fvp = ap->a_fvp;
    789 	fdvp = ap->a_fdvp;
    790 	fcnp = ap->a_fcnp;
    791 
    792 	/*
    793 	 * Check for cross-device rename.
    794 	 * If it is, we don't want to set dirops, just error out.
    795 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    796 	 * a cross-device rename.)
    797 	 *
    798 	 * Copied from ufs_rename.
    799 	 */
    800 	if ((fvp->v_mount != tdvp->v_mount) ||
    801 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    802 		error = EXDEV;
    803 		goto errout;
    804 	}
    805 
    806 	/*
    807 	 * Check to make sure we're not renaming a vnode onto itself
    808 	 * (deleting a hard link by renaming one name onto another);
    809 	 * if we are we can't recursively call VOP_REMOVE since that
    810 	 * would leave us with an unaccounted-for number of live dirops.
    811 	 *
    812 	 * Inline the relevant section of ufs_rename here, *before*
    813 	 * calling SET_DIROP_REMOVE.
    814 	 */
    815 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    816 	    (VTOI(tdvp)->i_flags & APPEND))) {
    817 		error = EPERM;
    818 		goto errout;
    819 	}
    820 	if (fvp == tvp) {
    821 		if (fvp->v_type == VDIR) {
    822 			error = EINVAL;
    823 			goto errout;
    824 		}
    825 
    826 		/* Release destination completely. */
    827 		VOP_ABORTOP(tdvp, tcnp);
    828 		vput(tdvp);
    829 		vput(tvp);
    830 
    831 		/* Delete source. */
    832 		vrele(fvp);
    833 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    834 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    835 		fcnp->cn_nameiop = DELETE;
    836 		if ((error = relookup(fdvp, &fvp, fcnp))){
    837 			/* relookup blew away fdvp */
    838 			return (error);
    839 		}
    840 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    841 	}
    842 
    843 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    844 		goto errout;
    845 	MARK_VNODE(fdvp);
    846 	MARK_VNODE(fvp);
    847 
    848 	error = ufs_rename(ap);
    849 	UNMARK_VNODE(fdvp);
    850 	UNMARK_VNODE(fvp);
    851 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    852 	return (error);
    853 
    854     errout:
    855 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    856 	if (tdvp == tvp)
    857 		vrele(tdvp);
    858 	else
    859 		vput(tdvp);
    860 	if (tvp)
    861 		vput(tvp);
    862 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    863 	vrele(fdvp);
    864 	vrele(fvp);
    865 	return (error);
    866 }
    867 
    868 /* XXX hack to avoid calling ITIMES in getattr */
    869 int
    870 lfs_getattr(void *v)
    871 {
    872 	struct vop_getattr_args /* {
    873 		struct vnode *a_vp;
    874 		struct vattr *a_vap;
    875 		kauth_cred_t a_cred;
    876 		struct lwp *a_l;
    877 	} */ *ap = v;
    878 	struct vnode *vp = ap->a_vp;
    879 	struct inode *ip = VTOI(vp);
    880 	struct vattr *vap = ap->a_vap;
    881 	struct lfs *fs = ip->i_lfs;
    882 	/*
    883 	 * Copy from inode table
    884 	 */
    885 	vap->va_fsid = ip->i_dev;
    886 	vap->va_fileid = ip->i_number;
    887 	vap->va_mode = ip->i_mode & ~IFMT;
    888 	vap->va_nlink = ip->i_nlink;
    889 	vap->va_uid = ip->i_uid;
    890 	vap->va_gid = ip->i_gid;
    891 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    892 	vap->va_size = vp->v_size;
    893 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    894 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    895 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    896 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    897 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    898 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    899 	vap->va_flags = ip->i_flags;
    900 	vap->va_gen = ip->i_gen;
    901 	/* this doesn't belong here */
    902 	if (vp->v_type == VBLK)
    903 		vap->va_blocksize = BLKDEV_IOSIZE;
    904 	else if (vp->v_type == VCHR)
    905 		vap->va_blocksize = MAXBSIZE;
    906 	else
    907 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    908 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    909 	vap->va_type = vp->v_type;
    910 	vap->va_filerev = ip->i_modrev;
    911 	return (0);
    912 }
    913 
    914 /*
    915  * Check to make sure the inode blocks won't choke the buffer
    916  * cache, then call ufs_setattr as usual.
    917  */
    918 int
    919 lfs_setattr(void *v)
    920 {
    921 	struct vop_setattr_args /* {
    922 		struct vnode *a_vp;
    923 		struct vattr *a_vap;
    924 		kauth_cred_t a_cred;
    925 		struct lwp *a_l;
    926 	} */ *ap = v;
    927 	struct vnode *vp = ap->a_vp;
    928 
    929 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    930 	return ufs_setattr(v);
    931 }
    932 
    933 /*
    934  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    935  * or explicitly from LFCNWRAPGO.
    936  */
    937 static int
    938 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    939 {
    940 	if ((ip->i_lfs_iflags & LFSI_WRAPBLOCK) == 0)
    941 		return EBUSY;
    942 
    943 	ip->i_lfs_iflags &= ~LFSI_WRAPBLOCK;
    944 
    945 	KASSERT(fs->lfs_nowrap > 0);
    946 	if (fs->lfs_nowrap <= 0) {
    947 		simple_unlock(&fs->lfs_interlock);
    948 		return 0;
    949 	}
    950 
    951 	if (--fs->lfs_nowrap == 0) {
    952 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    953 		wakeup(&fs->lfs_nowrap);
    954 		lfs_wakeup_cleaner(fs);
    955 	}
    956 	if (waitfor) {
    957 		ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
    958 			"segment", 0, &fs->lfs_interlock);
    959 	}
    960 
    961 	return 0;
    962 }
    963 
    964 /*
    965  * Close called
    966  */
    967 /* ARGSUSED */
    968 int
    969 lfs_close(void *v)
    970 {
    971 	struct vop_close_args /* {
    972 		struct vnode *a_vp;
    973 		int  a_fflag;
    974 		kauth_cred_t a_cred;
    975 		struct lwp *a_l;
    976 	} */ *ap = v;
    977 	struct vnode *vp = ap->a_vp;
    978 	struct inode *ip = VTOI(vp);
    979 	struct lfs *fs = ip->i_lfs;
    980 
    981 	if (ip->i_lfs_iflags & LFSI_WRAPBLOCK) {
    982 		simple_lock(&fs->lfs_interlock);
    983 		lfs_wrapgo(fs, ip, 0);
    984 		simple_unlock(&fs->lfs_interlock);
    985 	}
    986 
    987 	if (vp == ip->i_lfs->lfs_ivnode &&
    988 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
    989 		return 0;
    990 
    991 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
    992 		LFS_ITIMES(ip, NULL, NULL, NULL);
    993 	}
    994 	return (0);
    995 }
    996 
    997 /*
    998  * Close wrapper for special devices.
    999  *
   1000  * Update the times on the inode then do device close.
   1001  */
   1002 int
   1003 lfsspec_close(void *v)
   1004 {
   1005 	struct vop_close_args /* {
   1006 		struct vnode	*a_vp;
   1007 		int		a_fflag;
   1008 		kauth_cred_t	a_cred;
   1009 		struct lwp	*a_l;
   1010 	} */ *ap = v;
   1011 	struct vnode	*vp;
   1012 	struct inode	*ip;
   1013 
   1014 	vp = ap->a_vp;
   1015 	ip = VTOI(vp);
   1016 	if (vp->v_usecount > 1) {
   1017 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1018 	}
   1019 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1020 }
   1021 
   1022 /*
   1023  * Close wrapper for fifo's.
   1024  *
   1025  * Update the times on the inode then do device close.
   1026  */
   1027 int
   1028 lfsfifo_close(void *v)
   1029 {
   1030 	struct vop_close_args /* {
   1031 		struct vnode	*a_vp;
   1032 		int		a_fflag;
   1033 		kauth_cred_	a_cred;
   1034 		struct lwp	*a_l;
   1035 	} */ *ap = v;
   1036 	struct vnode	*vp;
   1037 	struct inode	*ip;
   1038 
   1039 	vp = ap->a_vp;
   1040 	ip = VTOI(vp);
   1041 	if (ap->a_vp->v_usecount > 1) {
   1042 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1043 	}
   1044 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1045 }
   1046 
   1047 /*
   1048  * Reclaim an inode so that it can be used for other purposes.
   1049  */
   1050 
   1051 int
   1052 lfs_reclaim(void *v)
   1053 {
   1054 	struct vop_reclaim_args /* {
   1055 		struct vnode *a_vp;
   1056 		struct lwp *a_l;
   1057 	} */ *ap = v;
   1058 	struct vnode *vp = ap->a_vp;
   1059 	struct inode *ip = VTOI(vp);
   1060 	int error;
   1061 
   1062 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1063 
   1064 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1065 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1066 		return (error);
   1067 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1068 	lfs_deregister_all(vp);
   1069 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1070 	ip->inode_ext.lfs = NULL;
   1071 	pool_put(&lfs_inode_pool, vp->v_data);
   1072 	vp->v_data = NULL;
   1073 	return (0);
   1074 }
   1075 
   1076 /*
   1077  * Read a block from a storage device.
   1078  * In order to avoid reading blocks that are in the process of being
   1079  * written by the cleaner---and hence are not mutexed by the normal
   1080  * buffer cache / page cache mechanisms---check for collisions before
   1081  * reading.
   1082  *
   1083  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1084  * the active cleaner test.
   1085  *
   1086  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1087  */
   1088 int
   1089 lfs_strategy(void *v)
   1090 {
   1091 	struct vop_strategy_args /* {
   1092 		struct vnode *a_vp;
   1093 		struct buf *a_bp;
   1094 	} */ *ap = v;
   1095 	struct buf	*bp;
   1096 	struct lfs	*fs;
   1097 	struct vnode	*vp;
   1098 	struct inode	*ip;
   1099 	daddr_t		tbn;
   1100 	int		i, sn, error, slept;
   1101 
   1102 	bp = ap->a_bp;
   1103 	vp = ap->a_vp;
   1104 	ip = VTOI(vp);
   1105 	fs = ip->i_lfs;
   1106 
   1107 	/* lfs uses its strategy routine only for read */
   1108 	KASSERT(bp->b_flags & B_READ);
   1109 
   1110 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1111 		panic("lfs_strategy: spec");
   1112 	KASSERT(bp->b_bcount != 0);
   1113 	if (bp->b_blkno == bp->b_lblkno) {
   1114 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1115 				 NULL);
   1116 		if (error) {
   1117 			bp->b_error = error;
   1118 			bp->b_flags |= B_ERROR;
   1119 			biodone(bp);
   1120 			return (error);
   1121 		}
   1122 		if ((long)bp->b_blkno == -1) /* no valid data */
   1123 			clrbuf(bp);
   1124 	}
   1125 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1126 		biodone(bp);
   1127 		return (0);
   1128 	}
   1129 
   1130 	slept = 1;
   1131 	simple_lock(&fs->lfs_interlock);
   1132 	while (slept && fs->lfs_seglock) {
   1133 		simple_unlock(&fs->lfs_interlock);
   1134 		/*
   1135 		 * Look through list of intervals.
   1136 		 * There will only be intervals to look through
   1137 		 * if the cleaner holds the seglock.
   1138 		 * Since the cleaner is synchronous, we can trust
   1139 		 * the list of intervals to be current.
   1140 		 */
   1141 		tbn = dbtofsb(fs, bp->b_blkno);
   1142 		sn = dtosn(fs, tbn);
   1143 		slept = 0;
   1144 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1145 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1146 			    tbn >= fs->lfs_cleanint[i]) {
   1147 				DLOG((DLOG_CLEAN,
   1148 				      "lfs_strategy: ino %d lbn %" PRId64
   1149 				       " ind %d sn %d fsb %" PRIx32
   1150 				       " given sn %d fsb %" PRIx64 "\n",
   1151 					ip->i_number, bp->b_lblkno, i,
   1152 					dtosn(fs, fs->lfs_cleanint[i]),
   1153 					fs->lfs_cleanint[i], sn, tbn));
   1154 				DLOG((DLOG_CLEAN,
   1155 				      "lfs_strategy: sleeping on ino %d lbn %"
   1156 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1157 				simple_lock(&fs->lfs_interlock);
   1158 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1159 					/* Cleaner can't wait for itself */
   1160 					ltsleep(&fs->lfs_iocount,
   1161 						(PRIBIO + 1) | PNORELOCK,
   1162 						"clean2", 0,
   1163 						&fs->lfs_interlock);
   1164 					slept = 1;
   1165 					break;
   1166 				} else if (fs->lfs_seglock) {
   1167 					ltsleep(&fs->lfs_seglock,
   1168 						(PRIBIO + 1) | PNORELOCK,
   1169 						"clean1", 0,
   1170 						&fs->lfs_interlock);
   1171 					slept = 1;
   1172 					break;
   1173 				}
   1174 				simple_unlock(&fs->lfs_interlock);
   1175 			}
   1176 		}
   1177 		simple_lock(&fs->lfs_interlock);
   1178 	}
   1179 	simple_unlock(&fs->lfs_interlock);
   1180 
   1181 	vp = ip->i_devvp;
   1182 	VOP_STRATEGY(vp, bp);
   1183 	return (0);
   1184 }
   1185 
   1186 void
   1187 lfs_flush_dirops(struct lfs *fs)
   1188 {
   1189 	struct inode *ip, *nip;
   1190 	struct vnode *vp;
   1191 	extern int lfs_dostats;
   1192 	struct segment *sp;
   1193 	int waslocked;
   1194 
   1195 	ASSERT_MAYBE_SEGLOCK(fs);
   1196 	KASSERT(fs->lfs_nadirop == 0);
   1197 
   1198 	if (fs->lfs_ronly)
   1199 		return;
   1200 
   1201 	simple_lock(&fs->lfs_interlock);
   1202 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1203 		simple_unlock(&fs->lfs_interlock);
   1204 		return;
   1205 	} else
   1206 		simple_unlock(&fs->lfs_interlock);
   1207 
   1208 	if (lfs_dostats)
   1209 		++lfs_stats.flush_invoked;
   1210 
   1211 	/*
   1212 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1213 	 * Technically this is a checkpoint (the on-disk state is valid)
   1214 	 * even though we are leaving out all the file data.
   1215 	 */
   1216 	lfs_imtime(fs);
   1217 	lfs_seglock(fs, SEGM_CKP);
   1218 	sp = fs->lfs_sp;
   1219 
   1220 	/*
   1221 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1222 	 * Only write dirops, and don't flush files' pages, only
   1223 	 * blocks from the directories.
   1224 	 *
   1225 	 * We don't need to vref these files because they are
   1226 	 * dirops and so hold an extra reference until the
   1227 	 * segunlock clears them of that status.
   1228 	 *
   1229 	 * We don't need to check for IN_ADIROP because we know that
   1230 	 * no dirops are active.
   1231 	 *
   1232 	 */
   1233 	simple_lock(&fs->lfs_interlock);
   1234 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1235 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1236 		simple_unlock(&fs->lfs_interlock);
   1237 		vp = ITOV(ip);
   1238 
   1239 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1240 
   1241 		/*
   1242 		 * All writes to directories come from dirops; all
   1243 		 * writes to files' direct blocks go through the page
   1244 		 * cache, which we're not touching.  Reads to files
   1245 		 * and/or directories will not be affected by writing
   1246 		 * directory blocks inodes and file inodes.  So we don't
   1247 		 * really need to lock.  If we don't lock, though,
   1248 		 * make sure that we don't clear IN_MODIFIED
   1249 		 * unnecessarily.
   1250 		 */
   1251 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1252 			simple_lock(&fs->lfs_interlock);
   1253 			continue;
   1254 		}
   1255 		waslocked = VOP_ISLOCKED(vp);
   1256 		if (vp->v_type != VREG &&
   1257 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1258 			lfs_writefile(fs, sp, vp);
   1259 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1260 			    !(ip->i_flag & IN_ALLMOD)) {
   1261 				LFS_SET_UINO(ip, IN_MODIFIED);
   1262 			}
   1263 		}
   1264 		(void) lfs_writeinode(fs, sp, ip);
   1265 		if (waslocked)
   1266 			LFS_SET_UINO(ip, IN_MODIFIED);
   1267 		simple_lock(&fs->lfs_interlock);
   1268 	}
   1269 	simple_unlock(&fs->lfs_interlock);
   1270 	/* We've written all the dirops there are */
   1271 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1272 	lfs_finalize_fs_seguse(fs);
   1273 	(void) lfs_writeseg(fs, sp);
   1274 	lfs_segunlock(fs);
   1275 }
   1276 
   1277 /*
   1278  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1279  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1280  * has just run, this would be an error).  If we have to skip a vnode
   1281  * for any reason, just skip it; if we have to wait for the cleaner,
   1282  * abort.  The writer daemon will call us again later.
   1283  */
   1284 void
   1285 lfs_flush_pchain(struct lfs *fs)
   1286 {
   1287 	struct inode *ip, *nip;
   1288 	struct vnode *vp;
   1289 	extern int lfs_dostats;
   1290 	struct segment *sp;
   1291 	int error;
   1292 
   1293 	ASSERT_NO_SEGLOCK(fs);
   1294 
   1295 	if (fs->lfs_ronly)
   1296 		return;
   1297 
   1298 	simple_lock(&fs->lfs_interlock);
   1299 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1300 		simple_unlock(&fs->lfs_interlock);
   1301 		return;
   1302 	} else
   1303 		simple_unlock(&fs->lfs_interlock);
   1304 
   1305 	/* Get dirops out of the way */
   1306 	lfs_flush_dirops(fs);
   1307 
   1308 	if (lfs_dostats)
   1309 		++lfs_stats.flush_invoked;
   1310 
   1311 	/*
   1312 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1313 	 */
   1314 	lfs_imtime(fs);
   1315 	lfs_seglock(fs, 0);
   1316 	sp = fs->lfs_sp;
   1317 
   1318 	/*
   1319 	 * lfs_writevnodes, optimized to clear pageout requests.
   1320 	 * Only write non-dirop files that are in the pageout queue.
   1321 	 * We're very conservative about what we write; we want to be
   1322 	 * fast and async.
   1323 	 */
   1324 	simple_lock(&fs->lfs_interlock);
   1325     top:
   1326 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1327 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1328 		vp = ITOV(ip);
   1329 
   1330 		if (!(ip->i_flags & IN_PAGING))
   1331 			goto top;
   1332 
   1333 		if (vp->v_flag & (VXLOCK|VDIROP))
   1334 			continue;
   1335 		if (vp->v_type != VREG)
   1336 			continue;
   1337 		if (lfs_vref(vp))
   1338 			continue;
   1339 		simple_unlock(&fs->lfs_interlock);
   1340 
   1341 		if (VOP_ISLOCKED(vp)) {
   1342 			lfs_vunref(vp);
   1343 			simple_lock(&fs->lfs_interlock);
   1344 			continue;
   1345 		}
   1346 
   1347 		error = lfs_writefile(fs, sp, vp);
   1348 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1349 		    !(ip->i_flag & IN_ALLMOD)) {
   1350 			LFS_SET_UINO(ip, IN_MODIFIED);
   1351 		}
   1352 		(void) lfs_writeinode(fs, sp, ip);
   1353 
   1354 		lfs_vunref(vp);
   1355 
   1356 		if (error == EAGAIN) {
   1357 			lfs_writeseg(fs, sp);
   1358 			simple_lock(&fs->lfs_interlock);
   1359 			break;
   1360 		}
   1361 		simple_lock(&fs->lfs_interlock);
   1362 	}
   1363 	simple_unlock(&fs->lfs_interlock);
   1364 	(void) lfs_writeseg(fs, sp);
   1365 	lfs_segunlock(fs);
   1366 }
   1367 
   1368 /*
   1369  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1370  */
   1371 int
   1372 lfs_fcntl(void *v)
   1373 {
   1374 	struct vop_fcntl_args /* {
   1375 		struct vnode *a_vp;
   1376 		u_long a_command;
   1377 		caddr_t  a_data;
   1378 		int  a_fflag;
   1379 		kauth_cred_t a_cred;
   1380 		struct lwp *a_l;
   1381 	} */ *ap = v;
   1382 	struct timeval *tvp;
   1383 	BLOCK_INFO *blkiov;
   1384 	CLEANERINFO *cip;
   1385 	SEGUSE *sup;
   1386 	int blkcnt, error, oclean;
   1387 	size_t fh_size;
   1388 	struct lfs_fcntl_markv blkvp;
   1389 	struct proc *p;
   1390 	fsid_t *fsidp;
   1391 	struct lfs *fs;
   1392 	struct buf *bp;
   1393 	fhandle_t *fhp;
   1394 	daddr_t off;
   1395 
   1396 	/* Only respect LFS fcntls on fs root or Ifile */
   1397 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1398 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1399 		return ufs_fcntl(v);
   1400 	}
   1401 
   1402 	/* Avoid locking a draining lock */
   1403 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1404 		return ESHUTDOWN;
   1405 	}
   1406 
   1407 	p = ap->a_l->l_proc;
   1408 	fs = VTOI(ap->a_vp)->i_lfs;
   1409 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1410 
   1411 	switch (ap->a_command) {
   1412 	    case LFCNSEGWAITALL:
   1413 	    case LFCNSEGWAITALL_COMPAT:
   1414 		fsidp = NULL;
   1415 		/* FALLSTHROUGH */
   1416 	    case LFCNSEGWAIT:
   1417 	    case LFCNSEGWAIT_COMPAT:
   1418 		tvp = (struct timeval *)ap->a_data;
   1419 		simple_lock(&fs->lfs_interlock);
   1420 		++fs->lfs_sleepers;
   1421 		simple_unlock(&fs->lfs_interlock);
   1422 
   1423 		error = lfs_segwait(fsidp, tvp);
   1424 
   1425 		simple_lock(&fs->lfs_interlock);
   1426 		if (--fs->lfs_sleepers == 0)
   1427 			wakeup(&fs->lfs_sleepers);
   1428 		simple_unlock(&fs->lfs_interlock);
   1429 		return error;
   1430 
   1431 	    case LFCNBMAPV:
   1432 	    case LFCNMARKV:
   1433 		if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
   1434 					       &p->p_acflag)) != 0)
   1435 			return (error);
   1436 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1437 
   1438 		blkcnt = blkvp.blkcnt;
   1439 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1440 			return (EINVAL);
   1441 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1442 		if ((error = copyin(blkvp.blkiov, blkiov,
   1443 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1444 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1445 			return error;
   1446 		}
   1447 
   1448 		simple_lock(&fs->lfs_interlock);
   1449 		++fs->lfs_sleepers;
   1450 		simple_unlock(&fs->lfs_interlock);
   1451 		if (ap->a_command == LFCNBMAPV)
   1452 			error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
   1453 		else /* LFCNMARKV */
   1454 			error = lfs_markv(p, fsidp, blkiov, blkcnt);
   1455 		if (error == 0)
   1456 			error = copyout(blkiov, blkvp.blkiov,
   1457 					blkcnt * sizeof(BLOCK_INFO));
   1458 		simple_lock(&fs->lfs_interlock);
   1459 		if (--fs->lfs_sleepers == 0)
   1460 			wakeup(&fs->lfs_sleepers);
   1461 		simple_unlock(&fs->lfs_interlock);
   1462 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1463 		return error;
   1464 
   1465 	    case LFCNRECLAIM:
   1466 		/*
   1467 		 * Flush dirops and write Ifile, allowing empty segments
   1468 		 * to be immediately reclaimed.
   1469 		 */
   1470 		lfs_writer_enter(fs, "pndirop");
   1471 		off = fs->lfs_offset;
   1472 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1473 		lfs_flush_dirops(fs);
   1474 		LFS_CLEANERINFO(cip, fs, bp);
   1475 		oclean = cip->clean;
   1476 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1477 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1478 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1479 		lfs_segunlock(fs);
   1480 		lfs_writer_leave(fs);
   1481 
   1482 #ifdef DEBUG
   1483 		LFS_CLEANERINFO(cip, fs, bp);
   1484 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1485 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1486 		      fs->lfs_offset - off, cip->clean - oclean,
   1487 		      fs->lfs_activesb));
   1488 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1489 #endif
   1490 
   1491 		return 0;
   1492 
   1493 #ifdef COMPAT_30
   1494 	    case LFCNIFILEFH_COMPAT:
   1495 		/* Return the filehandle of the Ifile */
   1496 		if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
   1497 					       KAUTH_GENERIC_ISSUSER,
   1498 					       &ap->a_l->l_proc->p_acflag)) != 0)
   1499 			return (error);
   1500 		fhp = (struct fhandle *)ap->a_data;
   1501 		fhp->fh_fsid = *fsidp;
   1502 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1503 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1504 #endif
   1505 
   1506 	    case LFCNIFILEFH:
   1507 		/* Return the filehandle of the Ifile */
   1508 		if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
   1509 					       KAUTH_GENERIC_ISSUSER,
   1510 					       &ap->a_l->l_proc->p_acflag)) != 0)
   1511 			return (error);
   1512 		fhp = (struct fhandle *)ap->a_data;
   1513 		fhp->fh_fsid = *fsidp;
   1514 		fh_size = sizeof(union lfs_fhandle) -
   1515 		    offsetof(fhandle_t, fh_fid);
   1516 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1517 
   1518 	    case LFCNREWIND:
   1519 		/* Move lfs_offset to the lowest-numbered segment */
   1520 		return lfs_rewind(fs, *(int *)ap->a_data);
   1521 
   1522 	    case LFCNINVAL:
   1523 		/* Mark a segment SEGUSE_INVAL */
   1524 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1525 		if (sup->su_nbytes > 0) {
   1526 			brelse(bp);
   1527 			lfs_unset_inval_all(fs);
   1528 			return EBUSY;
   1529 		}
   1530 		sup->su_flags |= SEGUSE_INVAL;
   1531 		VOP_BWRITE(bp);
   1532 		return 0;
   1533 
   1534 	    case LFCNRESIZE:
   1535 		/* Resize the filesystem */
   1536 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1537 
   1538 	    case LFCNWRAPSTOP:
   1539 	    case LFCNWRAPSTOP_COMPAT:
   1540 		/*
   1541 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1542 		 * the filesystem wraps around.  To support external agents
   1543 		 * (dump, fsck-based regression test) that need to look at
   1544 		 * a snapshot of the filesystem, without necessarily
   1545 		 * requiring that all fs activity stops.
   1546 		 */
   1547 		if (VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPBLOCK)
   1548 			return EALREADY;
   1549 
   1550 		simple_lock(&fs->lfs_interlock);
   1551 		VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPBLOCK;
   1552 		if (fs->lfs_nowrap == 0)
   1553 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1554 		++fs->lfs_nowrap;
   1555 		if (*(int *)ap->a_data == 1 ||
   1556 		    ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1557 			error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1558 				"segwrap", 0, &fs->lfs_interlock);
   1559 			if (error) {
   1560 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1561 			}
   1562 		}
   1563 		simple_unlock(&fs->lfs_interlock);
   1564 		return 0;
   1565 
   1566 	    case LFCNWRAPGO:
   1567 	    case LFCNWRAPGO_COMPAT:
   1568 		/*
   1569 		 * Having done its work, the agent wakes up the writer.
   1570 		 * If the argument is 1, it sleeps until a new segment
   1571 		 * is selected.
   1572 		 */
   1573 		simple_lock(&fs->lfs_interlock);
   1574 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1575 				   (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1576 				    *((int *)ap->a_data)));
   1577 		simple_unlock(&fs->lfs_interlock);
   1578 		return error;
   1579 
   1580 	    default:
   1581 		return ufs_fcntl(v);
   1582 	}
   1583 	return 0;
   1584 }
   1585 
   1586 int
   1587 lfs_getpages(void *v)
   1588 {
   1589 	struct vop_getpages_args /* {
   1590 		struct vnode *a_vp;
   1591 		voff_t a_offset;
   1592 		struct vm_page **a_m;
   1593 		int *a_count;
   1594 		int a_centeridx;
   1595 		vm_prot_t a_access_type;
   1596 		int a_advice;
   1597 		int a_flags;
   1598 	} */ *ap = v;
   1599 
   1600 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1601 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1602 		return EPERM;
   1603 	}
   1604 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1605 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1606 	}
   1607 
   1608 	/*
   1609 	 * we're relying on the fact that genfs_getpages() always read in
   1610 	 * entire filesystem blocks.
   1611 	 */
   1612 	return genfs_getpages(v);
   1613 }
   1614 
   1615 /*
   1616  * Make sure that for all pages in every block in the given range,
   1617  * either all are dirty or all are clean.  If any of the pages
   1618  * we've seen so far are dirty, put the vnode on the paging chain,
   1619  * and mark it IN_PAGING.
   1620  *
   1621  * If checkfirst != 0, don't check all the pages but return at the
   1622  * first dirty page.
   1623  */
   1624 static int
   1625 check_dirty(struct lfs *fs, struct vnode *vp,
   1626 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1627 	    int flags, int checkfirst)
   1628 {
   1629 	int by_list;
   1630 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1631 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1632 	off_t soff = 0; /* XXX: gcc */
   1633 	voff_t off;
   1634 	int i;
   1635 	int nonexistent;
   1636 	int any_dirty;	/* number of dirty pages */
   1637 	int dirty;	/* number of dirty pages in a block */
   1638 	int tdirty;
   1639 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1640 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1641 
   1642 	ASSERT_MAYBE_SEGLOCK(fs);
   1643   top:
   1644 	by_list = (vp->v_uobj.uo_npages <=
   1645 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1646 		   UVM_PAGE_HASH_PENALTY);
   1647 	any_dirty = 0;
   1648 
   1649 	if (by_list) {
   1650 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1651 	} else {
   1652 		soff = startoffset;
   1653 	}
   1654 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1655 		if (by_list) {
   1656 			/*
   1657 			 * Find the first page in a block.  Skip
   1658 			 * blocks outside our area of interest or beyond
   1659 			 * the end of file.
   1660 			 */
   1661 			if (pages_per_block > 1) {
   1662 				while (curpg &&
   1663 				       ((curpg->offset & fs->lfs_bmask) ||
   1664 					curpg->offset >= vp->v_size ||
   1665 					curpg->offset >= endoffset))
   1666 					curpg = TAILQ_NEXT(curpg, listq);
   1667 			}
   1668 			if (curpg == NULL)
   1669 				break;
   1670 			soff = curpg->offset;
   1671 		}
   1672 
   1673 		/*
   1674 		 * Mark all pages in extended range busy; find out if any
   1675 		 * of them are dirty.
   1676 		 */
   1677 		nonexistent = dirty = 0;
   1678 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1679 			if (by_list && pages_per_block <= 1) {
   1680 				pgs[i] = pg = curpg;
   1681 			} else {
   1682 				off = soff + (i << PAGE_SHIFT);
   1683 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1684 				if (pg == NULL) {
   1685 					++nonexistent;
   1686 					continue;
   1687 				}
   1688 			}
   1689 			KASSERT(pg != NULL);
   1690 
   1691 			/*
   1692 			 * If we're holding the segment lock, we can deadlock
   1693 			 * against a process that has our page and is waiting
   1694 			 * for the cleaner, while the cleaner waits for the
   1695 			 * segment lock.  Just bail in that case.
   1696 			 */
   1697 			if ((pg->flags & PG_BUSY) &&
   1698 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1699 				if (by_list && i > 0)
   1700 					uvm_page_unbusy(pgs, i);
   1701 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1702 				return -1;
   1703 			}
   1704 
   1705 			while (pg->flags & PG_BUSY) {
   1706 				pg->flags |= PG_WANTED;
   1707 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1708 						    "lfsput", 0);
   1709 				simple_lock(&vp->v_interlock);
   1710 				if (by_list) {
   1711 					if (i > 0)
   1712 						uvm_page_unbusy(pgs, i);
   1713 					goto top;
   1714 				}
   1715 			}
   1716 			pg->flags |= PG_BUSY;
   1717 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1718 
   1719 			pmap_page_protect(pg, VM_PROT_NONE);
   1720 			tdirty = (pmap_clear_modify(pg) ||
   1721 				  (pg->flags & PG_CLEAN) == 0);
   1722 			dirty += tdirty;
   1723 		}
   1724 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1725 			if (by_list) {
   1726 				curpg = TAILQ_NEXT(curpg, listq);
   1727 			} else {
   1728 				soff += fs->lfs_bsize;
   1729 			}
   1730 			continue;
   1731 		}
   1732 
   1733 		any_dirty += dirty;
   1734 		KASSERT(nonexistent == 0);
   1735 
   1736 		/*
   1737 		 * If any are dirty make all dirty; unbusy them,
   1738 		 * but if we were asked to clean, wire them so that
   1739 		 * the pagedaemon doesn't bother us about them while
   1740 		 * they're on their way to disk.
   1741 		 */
   1742 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1743 			pg = pgs[i];
   1744 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1745 			if (dirty) {
   1746 				pg->flags &= ~PG_CLEAN;
   1747 				if (flags & PGO_FREE) {
   1748 					/*
   1749 					 * Wire the page so that
   1750 					 * pdaemon doesn't see it again.
   1751 					 */
   1752 					uvm_lock_pageq();
   1753 					uvm_pagewire(pg);
   1754 					uvm_unlock_pageq();
   1755 
   1756 					/* Suspended write flag */
   1757 					pg->flags |= PG_DELWRI;
   1758 				}
   1759 			}
   1760 			if (pg->flags & PG_WANTED)
   1761 				wakeup(pg);
   1762 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1763 			UVM_PAGE_OWN(pg, NULL);
   1764 		}
   1765 
   1766 		if (checkfirst && any_dirty)
   1767 			break;
   1768 
   1769 		if (by_list) {
   1770 			curpg = TAILQ_NEXT(curpg, listq);
   1771 		} else {
   1772 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1773 		}
   1774 	}
   1775 
   1776 	return any_dirty;
   1777 }
   1778 
   1779 /*
   1780  * lfs_putpages functions like genfs_putpages except that
   1781  *
   1782  * (1) It needs to bounds-check the incoming requests to ensure that
   1783  *     they are block-aligned; if they are not, expand the range and
   1784  *     do the right thing in case, e.g., the requested range is clean
   1785  *     but the expanded range is dirty.
   1786  *
   1787  * (2) It needs to explicitly send blocks to be written when it is done.
   1788  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1789  *     we simply take the seglock and let lfs_segunlock wait for us.
   1790  *     XXX Actually we can be called with the seglock held, if we have
   1791  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1792  *     XXX writing we panic in this case.
   1793  *
   1794  * Assumptions:
   1795  *
   1796  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1797  *     there is a danger that when we expand the page range and busy the
   1798  *     pages we will deadlock.
   1799  *
   1800  * (2) We are called with vp->v_interlock held; we must return with it
   1801  *     released.
   1802  *
   1803  * (3) We don't absolutely have to free pages right away, provided that
   1804  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1805  *     us a request with PGO_FREE, we take the pages out of the paging
   1806  *     queue and wake up the writer, which will handle freeing them for us.
   1807  *
   1808  *     We ensure that for any filesystem block, all pages for that
   1809  *     block are either resident or not, even if those pages are higher
   1810  *     than EOF; that means that we will be getting requests to free
   1811  *     "unused" pages above EOF all the time, and should ignore them.
   1812  *
   1813  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   1814  *     into has been set up for us by lfs_writefile.  If not, we will
   1815  *     have to handle allocating and/or freeing an finfo entry.
   1816  *
   1817  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1818  */
   1819 
   1820 int
   1821 lfs_putpages(void *v)
   1822 {
   1823 	int error;
   1824 	struct vop_putpages_args /* {
   1825 		struct vnode *a_vp;
   1826 		voff_t a_offlo;
   1827 		voff_t a_offhi;
   1828 		int a_flags;
   1829 	} */ *ap = v;
   1830 	struct vnode *vp;
   1831 	struct inode *ip;
   1832 	struct lfs *fs;
   1833 	struct segment *sp;
   1834 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1835 	off_t off, max_endoffset;
   1836 	int s;
   1837 	boolean_t seglocked, sync, pagedaemon;
   1838 	struct vm_page *pg;
   1839 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1840 
   1841 	vp = ap->a_vp;
   1842 	ip = VTOI(vp);
   1843 	fs = ip->i_lfs;
   1844 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1845 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1846 
   1847 	/* Putpages does nothing for metadata. */
   1848 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1849 		simple_unlock(&vp->v_interlock);
   1850 		return 0;
   1851 	}
   1852 
   1853 	/*
   1854 	 * If there are no pages, don't do anything.
   1855 	 */
   1856 	if (vp->v_uobj.uo_npages == 0) {
   1857 		s = splbio();
   1858 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1859 		    (vp->v_flag & VONWORKLST)) {
   1860 			vp->v_flag &= ~VONWORKLST;
   1861 			LIST_REMOVE(vp, v_synclist);
   1862 		}
   1863 		splx(s);
   1864 		simple_unlock(&vp->v_interlock);
   1865 
   1866 		/* Remove us from paging queue, if we were on it */
   1867 		simple_lock(&fs->lfs_interlock);
   1868 		if (ip->i_flags & IN_PAGING) {
   1869 			ip->i_flags &= ~IN_PAGING;
   1870 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1871 		}
   1872 		simple_unlock(&fs->lfs_interlock);
   1873 		return 0;
   1874 	}
   1875 
   1876 	blkeof = blkroundup(fs, ip->i_size);
   1877 
   1878 	/*
   1879 	 * Ignore requests to free pages past EOF but in the same block
   1880 	 * as EOF, unless the request is synchronous.  (If the request is
   1881 	 * sync, it comes from lfs_truncate.)
   1882 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1883 	 * XXXUBC bother us with them again.
   1884 	 */
   1885 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1886 		origoffset = ap->a_offlo;
   1887 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1888 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1889 			KASSERT(pg != NULL);
   1890 			while (pg->flags & PG_BUSY) {
   1891 				pg->flags |= PG_WANTED;
   1892 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1893 						    "lfsput2", 0);
   1894 				simple_lock(&vp->v_interlock);
   1895 			}
   1896 			uvm_lock_pageq();
   1897 			uvm_pageactivate(pg);
   1898 			uvm_unlock_pageq();
   1899 		}
   1900 		ap->a_offlo = blkeof;
   1901 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1902 			simple_unlock(&vp->v_interlock);
   1903 			return 0;
   1904 		}
   1905 	}
   1906 
   1907 	/*
   1908 	 * Extend page range to start and end at block boundaries.
   1909 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1910 	 */
   1911 	origoffset = ap->a_offlo;
   1912 	origendoffset = ap->a_offhi;
   1913 	startoffset = origoffset & ~(fs->lfs_bmask);
   1914 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1915 					       << fs->lfs_bshift;
   1916 
   1917 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1918 		endoffset = max_endoffset;
   1919 		origendoffset = endoffset;
   1920 	} else {
   1921 		origendoffset = round_page(ap->a_offhi);
   1922 		endoffset = round_page(blkroundup(fs, origendoffset));
   1923 	}
   1924 
   1925 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1926 	if (startoffset == endoffset) {
   1927 		/* Nothing to do, why were we called? */
   1928 		simple_unlock(&vp->v_interlock);
   1929 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1930 		      PRId64 "\n", startoffset));
   1931 		return 0;
   1932 	}
   1933 
   1934 	ap->a_offlo = startoffset;
   1935 	ap->a_offhi = endoffset;
   1936 
   1937 	if (!(ap->a_flags & PGO_CLEANIT))
   1938 		return genfs_putpages(v);
   1939 
   1940 	/*
   1941 	 * If there are more than one page per block, we don't want
   1942 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1943 	 * to avoid deadlocks.
   1944 	 */
   1945 	ap->a_flags |= PGO_BUSYFAIL;
   1946 
   1947 	do {
   1948 		int r;
   1949 
   1950 		/* If no pages are dirty, we can just use genfs_putpages. */
   1951 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   1952 				ap->a_flags, 1);
   1953 		if (r < 0) {
   1954 			simple_unlock(&vp->v_interlock);
   1955 			return EDEADLK;
   1956 		}
   1957 		if (r > 0)
   1958 			break;
   1959 
   1960 		/*
   1961 		 * Sometimes pages are dirtied between the time that
   1962 		 * we check and the time we try to clean them.
   1963 		 * Instruct lfs_gop_write to return EDEADLK in this case
   1964 		 * so we can write them properly.
   1965 		 */
   1966 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   1967 		r = genfs_putpages(v);
   1968 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   1969 		if (r != EDEADLK)
   1970 			return r;
   1971 
   1972 		/* Start over. */
   1973 		preempt(1);
   1974 		simple_lock(&vp->v_interlock);
   1975 	} while(1);
   1976 
   1977 	/*
   1978 	 * Dirty and asked to clean.
   1979 	 *
   1980 	 * Pagedaemon can't actually write LFS pages; wake up
   1981 	 * the writer to take care of that.  The writer will
   1982 	 * notice the pager inode queue and act on that.
   1983 	 */
   1984 	if (pagedaemon) {
   1985 		simple_lock(&fs->lfs_interlock);
   1986 		if (!(ip->i_flags & IN_PAGING)) {
   1987 			ip->i_flags |= IN_PAGING;
   1988 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1989 		}
   1990 		simple_lock(&lfs_subsys_lock);
   1991 		wakeup(&lfs_writer_daemon);
   1992 		simple_unlock(&lfs_subsys_lock);
   1993 		simple_unlock(&fs->lfs_interlock);
   1994 		simple_unlock(&vp->v_interlock);
   1995 		preempt(1);
   1996 		return EWOULDBLOCK;
   1997 	}
   1998 
   1999 	/*
   2000 	 * If this is a file created in a recent dirop, we can't flush its
   2001 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2002 	 * filesystem (taking care of any other pending dirops while we're
   2003 	 * at it).
   2004 	 */
   2005 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2006 	    (vp->v_flag & VDIROP)) {
   2007 		int locked;
   2008 
   2009 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   2010 		locked = VOP_ISLOCKED(vp) && /* XXX */
   2011 			vp->v_lock.lk_lockholder == curproc->p_pid;
   2012 		simple_unlock(&vp->v_interlock);
   2013 		lfs_writer_enter(fs, "ppdirop");
   2014 		if (locked)
   2015 			VOP_UNLOCK(vp, 0);
   2016 
   2017 		simple_lock(&fs->lfs_interlock);
   2018 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2019 		simple_unlock(&fs->lfs_interlock);
   2020 
   2021 		simple_lock(&vp->v_interlock);
   2022 		if (locked) {
   2023 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   2024 			simple_lock(&vp->v_interlock);
   2025 		}
   2026 		lfs_writer_leave(fs);
   2027 
   2028 		/* XXX the flush should have taken care of this one too! */
   2029 	}
   2030 
   2031 	/*
   2032 	 * This is it.	We are going to write some pages.  From here on
   2033 	 * down it's all just mechanics.
   2034 	 *
   2035 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2036 	 */
   2037 	ap->a_flags &= ~PGO_SYNCIO;
   2038 
   2039 	/*
   2040 	 * If we've already got the seglock, flush the node and return.
   2041 	 * The FIP has already been set up for us by lfs_writefile,
   2042 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2043 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2044 	 * what we have, and correct FIP and segment header accounting.
   2045 	 */
   2046     get_seglock:
   2047 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2048 	if (!seglocked) {
   2049 		simple_unlock(&vp->v_interlock);
   2050 		/*
   2051 		 * Take the seglock, because we are going to be writing pages.
   2052 		 */
   2053 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2054 		if (error != 0)
   2055 			return error;
   2056 		simple_lock(&vp->v_interlock);
   2057 	}
   2058 
   2059 	/*
   2060 	 * VOP_PUTPAGES should not be called while holding the seglock.
   2061 	 * XXXUBC fix lfs_markv, or do this properly.
   2062 	 */
   2063 #ifdef notyet
   2064 	KASSERT(fs->lfs_seglock == 1);
   2065 #endif /* notyet */
   2066 
   2067 	/*
   2068 	 * We assume we're being called with sp->fip pointing at blank space.
   2069 	 * Account for a new FIP in the segment header, and set sp->vp.
   2070 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2071 	 */
   2072 	sp = fs->lfs_sp;
   2073 	if (!seglocked)
   2074 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2075 	KASSERT(sp->vp == NULL);
   2076 	sp->vp = vp;
   2077 
   2078 	if (!seglocked) {
   2079 		if (vp->v_flag & VDIROP)
   2080 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2081 	}
   2082 
   2083 	/*
   2084 	 * Loop through genfs_putpages until all pages are gathered.
   2085 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2086 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2087 	 * well.
   2088 	 */
   2089 again:
   2090 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2091 	    ap->a_flags, 0) < 0) {
   2092 		simple_unlock(&vp->v_interlock);
   2093 		sp->vp = NULL;
   2094 		if (!seglocked) {
   2095 			lfs_release_finfo(fs);
   2096 			lfs_segunlock(fs);
   2097 		}
   2098 		if (pagedaemon)
   2099 			return EDEADLK;
   2100 		/* else seglocked == 0 */
   2101 		preempt(1);
   2102 		simple_lock(&vp->v_interlock);
   2103 		goto get_seglock;
   2104 	}
   2105 
   2106 	error = genfs_putpages(v);
   2107 	if (error == EDEADLK || error == EAGAIN) {
   2108 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2109 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2110 		      ip->i_number, fs->lfs_offset,
   2111 		      dtosn(fs, fs->lfs_offset)));
   2112 		/* If nothing to write, short-circuit */
   2113 		if (sp->cbpp - sp->bpp > 1) {
   2114 			/* Write gathered pages */
   2115 			lfs_updatemeta(sp);
   2116 			lfs_release_finfo(fs);
   2117 			(void) lfs_writeseg(fs, sp);
   2118 
   2119 			/*
   2120 			 * Reinitialize brand new FIP and add us to it.
   2121 			 */
   2122 			KASSERT(sp->vp == vp);
   2123 			lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2124 		}
   2125 
   2126 		/* Give the write a chance to complete */
   2127 		preempt(1);
   2128 
   2129 		/* We've lost the interlock.  Start over. */
   2130 		if (error == EDEADLK) {
   2131 			simple_lock(&vp->v_interlock);
   2132 			goto again;
   2133 		}
   2134 	}
   2135 
   2136 	KASSERT(sp->vp == vp);
   2137 	if (!seglocked) {
   2138 		sp->vp = NULL;
   2139 
   2140 		/* Write indirect blocks as well */
   2141 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2142 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2143 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2144 
   2145 		KASSERT(sp->vp == NULL);
   2146 		sp->vp = vp;
   2147 	}
   2148 
   2149 	/*
   2150 	 * Blocks are now gathered into a segment waiting to be written.
   2151 	 * All that's left to do is update metadata, and write them.
   2152 	 */
   2153 	lfs_updatemeta(sp);
   2154 	KASSERT(sp->vp == vp);
   2155 	sp->vp = NULL;
   2156 
   2157 	if (seglocked) {
   2158 		/* we're called by lfs_writefile. */
   2159 		return error;
   2160 	}
   2161 
   2162 	/* Clean up FIP and send it to disk. */
   2163 	lfs_release_finfo(fs);
   2164 	lfs_writeseg(fs, fs->lfs_sp);
   2165 
   2166 	/*
   2167 	 * Remove us from paging queue, since we've now written all our
   2168 	 * pages.
   2169 	 */
   2170 	simple_lock(&fs->lfs_interlock);
   2171 	if (ip->i_flags & IN_PAGING) {
   2172 		ip->i_flags &= ~IN_PAGING;
   2173 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2174 	}
   2175 	simple_unlock(&fs->lfs_interlock);
   2176 
   2177 	/*
   2178 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2179 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2180 	 * will not be true if we stop using malloc/copy.
   2181 	 */
   2182 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2183 	lfs_segunlock(fs);
   2184 
   2185 	/*
   2186 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2187 	 * take care of this, but there is a slight possibility that
   2188 	 * aiodoned might not have got around to our buffers yet.
   2189 	 */
   2190 	if (sync) {
   2191 		s = splbio();
   2192 		simple_lock(&global_v_numoutput_slock);
   2193 		while (vp->v_numoutput > 0) {
   2194 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2195 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2196 			vp->v_flag |= VBWAIT;
   2197 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2198 			    &global_v_numoutput_slock);
   2199 		}
   2200 		simple_unlock(&global_v_numoutput_slock);
   2201 		splx(s);
   2202 	}
   2203 	return error;
   2204 }
   2205 
   2206 /*
   2207  * Return the last logical file offset that should be written for this file
   2208  * if we're doing a write that ends at "size".	If writing, we need to know
   2209  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2210  * to know about entire blocks.
   2211  */
   2212 void
   2213 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2214 {
   2215 	struct inode *ip = VTOI(vp);
   2216 	struct lfs *fs = ip->i_lfs;
   2217 	daddr_t olbn, nlbn;
   2218 
   2219 	olbn = lblkno(fs, ip->i_size);
   2220 	nlbn = lblkno(fs, size);
   2221 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2222 		*eobp = fragroundup(fs, size);
   2223 	} else {
   2224 		*eobp = blkroundup(fs, size);
   2225 	}
   2226 }
   2227 
   2228 #ifdef DEBUG
   2229 void lfs_dump_vop(void *);
   2230 
   2231 void
   2232 lfs_dump_vop(void *v)
   2233 {
   2234 	struct vop_putpages_args /* {
   2235 		struct vnode *a_vp;
   2236 		voff_t a_offlo;
   2237 		voff_t a_offhi;
   2238 		int a_flags;
   2239 	} */ *ap = v;
   2240 
   2241 #ifdef DDB
   2242 	vfs_vnode_print(ap->a_vp, 0, printf);
   2243 #endif
   2244 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2245 }
   2246 #endif
   2247 
   2248 int
   2249 lfs_mmap(void *v)
   2250 {
   2251 	struct vop_mmap_args /* {
   2252 		const struct vnodeop_desc *a_desc;
   2253 		struct vnode *a_vp;
   2254 		int a_fflags;
   2255 		kauth_cred_t a_cred;
   2256 		struct lwp *a_l;
   2257 	} */ *ap = v;
   2258 
   2259 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2260 		return EOPNOTSUPP;
   2261 	return ufs_mmap(v);
   2262 }
   2263