lfs_vnops.c revision 1.183 1 /* $NetBSD: lfs_vnops.c,v 1.183 2006/07/13 22:08:00 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.183 2006/07/13 22:08:00 martin Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91
92 #include <miscfs/fifofs/fifo.h>
93 #include <miscfs/genfs/genfs.h>
94 #include <miscfs/specfs/specdev.h>
95
96 #include <ufs/ufs/inode.h>
97 #include <ufs/ufs/dir.h>
98 #include <ufs/ufs/ufsmount.h>
99 #include <ufs/ufs/ufs_extern.h>
100
101 #include <uvm/uvm.h>
102 #include <uvm/uvm_pmap.h>
103 #include <uvm/uvm_stat.h>
104 #include <uvm/uvm_pager.h>
105
106 #include <ufs/lfs/lfs.h>
107 #include <ufs/lfs/lfs_extern.h>
108
109 extern pid_t lfs_writer_daemon;
110
111 /* Global vfs data structures for lfs. */
112 int (**lfs_vnodeop_p)(void *);
113 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
114 { &vop_default_desc, vn_default_error },
115 { &vop_lookup_desc, ufs_lookup }, /* lookup */
116 { &vop_create_desc, lfs_create }, /* create */
117 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
118 { &vop_mknod_desc, lfs_mknod }, /* mknod */
119 { &vop_open_desc, ufs_open }, /* open */
120 { &vop_close_desc, lfs_close }, /* close */
121 { &vop_access_desc, ufs_access }, /* access */
122 { &vop_getattr_desc, lfs_getattr }, /* getattr */
123 { &vop_setattr_desc, lfs_setattr }, /* setattr */
124 { &vop_read_desc, lfs_read }, /* read */
125 { &vop_write_desc, lfs_write }, /* write */
126 { &vop_lease_desc, ufs_lease_check }, /* lease */
127 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
128 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
129 { &vop_poll_desc, ufs_poll }, /* poll */
130 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
131 { &vop_revoke_desc, ufs_revoke }, /* revoke */
132 { &vop_mmap_desc, lfs_mmap }, /* mmap */
133 { &vop_fsync_desc, lfs_fsync }, /* fsync */
134 { &vop_seek_desc, ufs_seek }, /* seek */
135 { &vop_remove_desc, lfs_remove }, /* remove */
136 { &vop_link_desc, lfs_link }, /* link */
137 { &vop_rename_desc, lfs_rename }, /* rename */
138 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
139 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
140 { &vop_symlink_desc, lfs_symlink }, /* symlink */
141 { &vop_readdir_desc, ufs_readdir }, /* readdir */
142 { &vop_readlink_desc, ufs_readlink }, /* readlink */
143 { &vop_abortop_desc, ufs_abortop }, /* abortop */
144 { &vop_inactive_desc, lfs_inactive }, /* inactive */
145 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
146 { &vop_lock_desc, ufs_lock }, /* lock */
147 { &vop_unlock_desc, ufs_unlock }, /* unlock */
148 { &vop_bmap_desc, ufs_bmap }, /* bmap */
149 { &vop_strategy_desc, lfs_strategy }, /* strategy */
150 { &vop_print_desc, ufs_print }, /* print */
151 { &vop_islocked_desc, ufs_islocked }, /* islocked */
152 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
153 { &vop_advlock_desc, ufs_advlock }, /* advlock */
154 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
155 { &vop_getpages_desc, lfs_getpages }, /* getpages */
156 { &vop_putpages_desc, lfs_putpages }, /* putpages */
157 { NULL, NULL }
158 };
159 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
160 { &lfs_vnodeop_p, lfs_vnodeop_entries };
161
162 int (**lfs_specop_p)(void *);
163 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
164 { &vop_default_desc, vn_default_error },
165 { &vop_lookup_desc, spec_lookup }, /* lookup */
166 { &vop_create_desc, spec_create }, /* create */
167 { &vop_mknod_desc, spec_mknod }, /* mknod */
168 { &vop_open_desc, spec_open }, /* open */
169 { &vop_close_desc, lfsspec_close }, /* close */
170 { &vop_access_desc, ufs_access }, /* access */
171 { &vop_getattr_desc, lfs_getattr }, /* getattr */
172 { &vop_setattr_desc, lfs_setattr }, /* setattr */
173 { &vop_read_desc, ufsspec_read }, /* read */
174 { &vop_write_desc, ufsspec_write }, /* write */
175 { &vop_lease_desc, spec_lease_check }, /* lease */
176 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
177 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
178 { &vop_poll_desc, spec_poll }, /* poll */
179 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
180 { &vop_revoke_desc, spec_revoke }, /* revoke */
181 { &vop_mmap_desc, spec_mmap }, /* mmap */
182 { &vop_fsync_desc, spec_fsync }, /* fsync */
183 { &vop_seek_desc, spec_seek }, /* seek */
184 { &vop_remove_desc, spec_remove }, /* remove */
185 { &vop_link_desc, spec_link }, /* link */
186 { &vop_rename_desc, spec_rename }, /* rename */
187 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
188 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
189 { &vop_symlink_desc, spec_symlink }, /* symlink */
190 { &vop_readdir_desc, spec_readdir }, /* readdir */
191 { &vop_readlink_desc, spec_readlink }, /* readlink */
192 { &vop_abortop_desc, spec_abortop }, /* abortop */
193 { &vop_inactive_desc, lfs_inactive }, /* inactive */
194 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
195 { &vop_lock_desc, ufs_lock }, /* lock */
196 { &vop_unlock_desc, ufs_unlock }, /* unlock */
197 { &vop_bmap_desc, spec_bmap }, /* bmap */
198 { &vop_strategy_desc, spec_strategy }, /* strategy */
199 { &vop_print_desc, ufs_print }, /* print */
200 { &vop_islocked_desc, ufs_islocked }, /* islocked */
201 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
202 { &vop_advlock_desc, spec_advlock }, /* advlock */
203 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
204 { &vop_getpages_desc, spec_getpages }, /* getpages */
205 { &vop_putpages_desc, spec_putpages }, /* putpages */
206 { NULL, NULL }
207 };
208 const struct vnodeopv_desc lfs_specop_opv_desc =
209 { &lfs_specop_p, lfs_specop_entries };
210
211 int (**lfs_fifoop_p)(void *);
212 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
213 { &vop_default_desc, vn_default_error },
214 { &vop_lookup_desc, fifo_lookup }, /* lookup */
215 { &vop_create_desc, fifo_create }, /* create */
216 { &vop_mknod_desc, fifo_mknod }, /* mknod */
217 { &vop_open_desc, fifo_open }, /* open */
218 { &vop_close_desc, lfsfifo_close }, /* close */
219 { &vop_access_desc, ufs_access }, /* access */
220 { &vop_getattr_desc, lfs_getattr }, /* getattr */
221 { &vop_setattr_desc, lfs_setattr }, /* setattr */
222 { &vop_read_desc, ufsfifo_read }, /* read */
223 { &vop_write_desc, ufsfifo_write }, /* write */
224 { &vop_lease_desc, fifo_lease_check }, /* lease */
225 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
226 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
227 { &vop_poll_desc, fifo_poll }, /* poll */
228 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
229 { &vop_revoke_desc, fifo_revoke }, /* revoke */
230 { &vop_mmap_desc, fifo_mmap }, /* mmap */
231 { &vop_fsync_desc, fifo_fsync }, /* fsync */
232 { &vop_seek_desc, fifo_seek }, /* seek */
233 { &vop_remove_desc, fifo_remove }, /* remove */
234 { &vop_link_desc, fifo_link }, /* link */
235 { &vop_rename_desc, fifo_rename }, /* rename */
236 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
237 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
238 { &vop_symlink_desc, fifo_symlink }, /* symlink */
239 { &vop_readdir_desc, fifo_readdir }, /* readdir */
240 { &vop_readlink_desc, fifo_readlink }, /* readlink */
241 { &vop_abortop_desc, fifo_abortop }, /* abortop */
242 { &vop_inactive_desc, lfs_inactive }, /* inactive */
243 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
244 { &vop_lock_desc, ufs_lock }, /* lock */
245 { &vop_unlock_desc, ufs_unlock }, /* unlock */
246 { &vop_bmap_desc, fifo_bmap }, /* bmap */
247 { &vop_strategy_desc, fifo_strategy }, /* strategy */
248 { &vop_print_desc, ufs_print }, /* print */
249 { &vop_islocked_desc, ufs_islocked }, /* islocked */
250 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
251 { &vop_advlock_desc, fifo_advlock }, /* advlock */
252 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
253 { &vop_putpages_desc, fifo_putpages }, /* putpages */
254 { NULL, NULL }
255 };
256 const struct vnodeopv_desc lfs_fifoop_opv_desc =
257 { &lfs_fifoop_p, lfs_fifoop_entries };
258
259 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
260
261 #define LFS_READWRITE
262 #include <ufs/ufs/ufs_readwrite.c>
263 #undef LFS_READWRITE
264
265 /*
266 * Synch an open file.
267 */
268 /* ARGSUSED */
269 int
270 lfs_fsync(void *v)
271 {
272 struct vop_fsync_args /* {
273 struct vnode *a_vp;
274 kauth_cred_t a_cred;
275 int a_flags;
276 off_t offlo;
277 off_t offhi;
278 struct lwp *a_l;
279 } */ *ap = v;
280 struct vnode *vp = ap->a_vp;
281 int error, wait;
282
283 /* If we're mounted read-only, don't try to sync. */
284 if (VTOI(vp)->i_lfs->lfs_ronly)
285 return 0;
286
287 /*
288 * Trickle sync checks for need to do a checkpoint after possible
289 * activity from the pagedaemon.
290 */
291 if (ap->a_flags & FSYNC_LAZY) {
292 simple_lock(&lfs_subsys_lock);
293 wakeup(&lfs_writer_daemon);
294 simple_unlock(&lfs_subsys_lock);
295 return 0;
296 }
297
298 /*
299 * Don't reclaim any vnodes that are being cleaned.
300 * This prevents the cleaner from writing files twice
301 * in the same partial segment, causing an accounting
302 * underflow.
303 */
304 if (ap->a_flags & FSYNC_RECLAIM) {
305 if (VTOI(vp)->i_flags & IN_CLEANING)
306 return EAGAIN;
307 }
308
309 wait = (ap->a_flags & FSYNC_WAIT);
310 simple_lock(&vp->v_interlock);
311 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
312 round_page(ap->a_offhi),
313 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
314 if (error)
315 return error;
316 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
317 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
318 int l = 0;
319 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
320 ap->a_l->l_proc->p_cred, ap->a_l);
321 }
322 if (wait && !VPISEMPTY(vp))
323 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
324
325 return error;
326 }
327
328 /*
329 * Take IN_ADIROP off, then call ufs_inactive.
330 */
331 int
332 lfs_inactive(void *v)
333 {
334 struct vop_inactive_args /* {
335 struct vnode *a_vp;
336 struct lwp *a_l;
337 } */ *ap = v;
338
339 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
340
341 lfs_unmark_vnode(ap->a_vp);
342
343 /*
344 * The Ifile is only ever inactivated on unmount.
345 * Streamline this process by not giving it more dirty blocks.
346 */
347 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
348 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
349 VOP_UNLOCK(ap->a_vp, 0);
350 return 0;
351 }
352
353 return ufs_inactive(v);
354 }
355
356 /*
357 * These macros are used to bracket UFS directory ops, so that we can
358 * identify all the pages touched during directory ops which need to
359 * be ordered and flushed atomically, so that they may be recovered.
360 *
361 * Because we have to mark nodes VDIROP in order to prevent
362 * the cache from reclaiming them while a dirop is in progress, we must
363 * also manage the number of nodes so marked (otherwise we can run out).
364 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
365 * is decremented during segment write, when VDIROP is taken off.
366 */
367 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
368 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
369 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
370 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
371 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
372 static int lfs_set_dirop(struct vnode *, struct vnode *);
373
374 static int
375 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
376 {
377 struct lfs *fs;
378 int error;
379
380 KASSERT(VOP_ISLOCKED(dvp));
381 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
382
383 fs = VTOI(dvp)->i_lfs;
384
385 ASSERT_NO_SEGLOCK(fs);
386 /*
387 * LFS_NRESERVE calculates direct and indirect blocks as well
388 * as an inode block; an overestimate in most cases.
389 */
390 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
391 return (error);
392
393 restart:
394 simple_lock(&fs->lfs_interlock);
395 if (fs->lfs_dirops == 0) {
396 simple_unlock(&fs->lfs_interlock);
397 lfs_check(dvp, LFS_UNUSED_LBN, 0);
398 simple_lock(&fs->lfs_interlock);
399 }
400 while (fs->lfs_writer)
401 ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
402 &fs->lfs_interlock);
403 simple_lock(&lfs_subsys_lock);
404 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
405 wakeup(&lfs_writer_daemon);
406 simple_unlock(&lfs_subsys_lock);
407 simple_unlock(&fs->lfs_interlock);
408 preempt(1);
409 goto restart;
410 }
411
412 if (lfs_dirvcount > LFS_MAX_DIROP) {
413 simple_unlock(&fs->lfs_interlock);
414 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
415 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
416 if ((error = ltsleep(&lfs_dirvcount,
417 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
418 &lfs_subsys_lock)) != 0) {
419 goto unreserve;
420 }
421 goto restart;
422 }
423 simple_unlock(&lfs_subsys_lock);
424
425 ++fs->lfs_dirops;
426 fs->lfs_doifile = 1;
427 simple_unlock(&fs->lfs_interlock);
428
429 /* Hold a reference so SET_ENDOP will be happy */
430 vref(dvp);
431 if (vp) {
432 vref(vp);
433 MARK_VNODE(vp);
434 }
435
436 MARK_VNODE(dvp);
437 return 0;
438
439 unreserve:
440 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
441 return error;
442 }
443
444 /*
445 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
446 * in getnewvnode(), if we have a stacked filesystem mounted on top
447 * of us.
448 *
449 * NB: this means we have to clear the new vnodes on error. Fortunately
450 * SET_ENDOP is there to do that for us.
451 */
452 static int
453 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
454 {
455 int error;
456 struct lfs *fs;
457
458 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
459 ASSERT_NO_SEGLOCK(fs);
460 if (fs->lfs_ronly)
461 return EROFS;
462 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
463 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
464 dvp, error));
465 return error;
466 }
467 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
468 if (vpp) {
469 ungetnewvnode(*vpp);
470 *vpp = NULL;
471 }
472 return error;
473 }
474 return 0;
475 }
476
477 #define SET_ENDOP_BASE(fs, dvp, str) \
478 do { \
479 simple_lock(&(fs)->lfs_interlock); \
480 --(fs)->lfs_dirops; \
481 if (!(fs)->lfs_dirops) { \
482 if ((fs)->lfs_nadirop) { \
483 panic("SET_ENDOP: %s: no dirops but " \
484 " nadirop=%d", (str), \
485 (fs)->lfs_nadirop); \
486 } \
487 wakeup(&(fs)->lfs_writer); \
488 simple_unlock(&(fs)->lfs_interlock); \
489 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
490 } else \
491 simple_unlock(&(fs)->lfs_interlock); \
492 } while(0)
493 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
494 do { \
495 UNMARK_VNODE(dvp); \
496 if (nvpp && *nvpp) \
497 UNMARK_VNODE(*nvpp); \
498 /* Check for error return to stem vnode leakage */ \
499 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
500 ungetnewvnode(*(nvpp)); \
501 SET_ENDOP_BASE((fs), (dvp), (str)); \
502 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
503 vrele(dvp); \
504 } while(0)
505 #define SET_ENDOP_CREATE_AP(ap, str) \
506 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
507 (ap)->a_vpp, (str))
508 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
509 do { \
510 UNMARK_VNODE(dvp); \
511 if (ovp) \
512 UNMARK_VNODE(ovp); \
513 SET_ENDOP_BASE((fs), (dvp), (str)); \
514 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
515 vrele(dvp); \
516 if (ovp) \
517 vrele(ovp); \
518 } while(0)
519
520 void
521 lfs_mark_vnode(struct vnode *vp)
522 {
523 struct inode *ip = VTOI(vp);
524 struct lfs *fs = ip->i_lfs;
525
526 simple_lock(&fs->lfs_interlock);
527 if (!(ip->i_flag & IN_ADIROP)) {
528 if (!(vp->v_flag & VDIROP)) {
529 (void)lfs_vref(vp);
530 simple_lock(&lfs_subsys_lock);
531 ++lfs_dirvcount;
532 ++fs->lfs_dirvcount;
533 simple_unlock(&lfs_subsys_lock);
534 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
535 vp->v_flag |= VDIROP;
536 }
537 ++fs->lfs_nadirop;
538 ip->i_flag |= IN_ADIROP;
539 } else
540 KASSERT(vp->v_flag & VDIROP);
541 simple_unlock(&fs->lfs_interlock);
542 }
543
544 void
545 lfs_unmark_vnode(struct vnode *vp)
546 {
547 struct inode *ip = VTOI(vp);
548
549 if (ip && (ip->i_flag & IN_ADIROP)) {
550 KASSERT(vp->v_flag & VDIROP);
551 simple_lock(&ip->i_lfs->lfs_interlock);
552 --ip->i_lfs->lfs_nadirop;
553 simple_unlock(&ip->i_lfs->lfs_interlock);
554 ip->i_flag &= ~IN_ADIROP;
555 }
556 }
557
558 int
559 lfs_symlink(void *v)
560 {
561 struct vop_symlink_args /* {
562 struct vnode *a_dvp;
563 struct vnode **a_vpp;
564 struct componentname *a_cnp;
565 struct vattr *a_vap;
566 char *a_target;
567 } */ *ap = v;
568 int error;
569
570 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
571 vput(ap->a_dvp);
572 return error;
573 }
574 error = ufs_symlink(ap);
575 SET_ENDOP_CREATE_AP(ap, "symlink");
576 return (error);
577 }
578
579 int
580 lfs_mknod(void *v)
581 {
582 struct vop_mknod_args /* {
583 struct vnode *a_dvp;
584 struct vnode **a_vpp;
585 struct componentname *a_cnp;
586 struct vattr *a_vap;
587 } */ *ap = v;
588 struct vattr *vap = ap->a_vap;
589 struct vnode **vpp = ap->a_vpp;
590 struct inode *ip;
591 int error;
592 struct mount *mp;
593 ino_t ino;
594
595 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
596 vput(ap->a_dvp);
597 return error;
598 }
599 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
600 ap->a_dvp, vpp, ap->a_cnp);
601
602 /* Either way we're done with the dirop at this point */
603 SET_ENDOP_CREATE_AP(ap, "mknod");
604
605 if (error)
606 return (error);
607
608 ip = VTOI(*vpp);
609 mp = (*vpp)->v_mount;
610 ino = ip->i_number;
611 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
612 if (vap->va_rdev != VNOVAL) {
613 /*
614 * Want to be able to use this to make badblock
615 * inodes, so don't truncate the dev number.
616 */
617 #if 0
618 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
619 UFS_MPNEEDSWAP((*vpp)->v_mount));
620 #else
621 ip->i_ffs1_rdev = vap->va_rdev;
622 #endif
623 }
624
625 /*
626 * Call fsync to write the vnode so that we don't have to deal with
627 * flushing it when it's marked VDIROP|VXLOCK.
628 *
629 * XXX KS - If we can't flush we also can't call vgone(), so must
630 * return. But, that leaves this vnode in limbo, also not good.
631 * Can this ever happen (barring hardware failure)?
632 */
633 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
634 curlwp)) != 0) {
635 panic("lfs_mknod: couldn't fsync (ino %llu)",
636 (unsigned long long)ino);
637 /* return (error); */
638 }
639 /*
640 * Remove vnode so that it will be reloaded by VFS_VGET and
641 * checked to see if it is an alias of an existing entry in
642 * the inode cache.
643 */
644 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
645
646 VOP_UNLOCK(*vpp, 0);
647 lfs_vunref(*vpp);
648 (*vpp)->v_type = VNON;
649 vgone(*vpp);
650 error = VFS_VGET(mp, ino, vpp);
651
652 if (error != 0) {
653 *vpp = NULL;
654 return (error);
655 }
656 return (0);
657 }
658
659 int
660 lfs_create(void *v)
661 {
662 struct vop_create_args /* {
663 struct vnode *a_dvp;
664 struct vnode **a_vpp;
665 struct componentname *a_cnp;
666 struct vattr *a_vap;
667 } */ *ap = v;
668 int error;
669
670 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
671 vput(ap->a_dvp);
672 return error;
673 }
674 error = ufs_create(ap);
675 SET_ENDOP_CREATE_AP(ap, "create");
676 return (error);
677 }
678
679 int
680 lfs_mkdir(void *v)
681 {
682 struct vop_mkdir_args /* {
683 struct vnode *a_dvp;
684 struct vnode **a_vpp;
685 struct componentname *a_cnp;
686 struct vattr *a_vap;
687 } */ *ap = v;
688 int error;
689
690 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
691 vput(ap->a_dvp);
692 return error;
693 }
694 error = ufs_mkdir(ap);
695 SET_ENDOP_CREATE_AP(ap, "mkdir");
696 return (error);
697 }
698
699 int
700 lfs_remove(void *v)
701 {
702 struct vop_remove_args /* {
703 struct vnode *a_dvp;
704 struct vnode *a_vp;
705 struct componentname *a_cnp;
706 } */ *ap = v;
707 struct vnode *dvp, *vp;
708 int error;
709
710 dvp = ap->a_dvp;
711 vp = ap->a_vp;
712 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
713 if (dvp == vp)
714 vrele(vp);
715 else
716 vput(vp);
717 vput(dvp);
718 return error;
719 }
720 error = ufs_remove(ap);
721 SET_ENDOP_REMOVE(VTOI(dvp)->i_lfs, dvp, ap->a_vp, "remove");
722 return (error);
723 }
724
725 int
726 lfs_rmdir(void *v)
727 {
728 struct vop_rmdir_args /* {
729 struct vnodeop_desc *a_desc;
730 struct vnode *a_dvp;
731 struct vnode *a_vp;
732 struct componentname *a_cnp;
733 } */ *ap = v;
734 struct vnode *vp;
735 int error;
736
737 vp = ap->a_vp;
738 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
739 vrele(ap->a_dvp);
740 if (ap->a_vp != ap->a_dvp)
741 VOP_UNLOCK(ap->a_dvp, 0);
742 vput(vp);
743 return error;
744 }
745 error = ufs_rmdir(ap);
746 SET_ENDOP_REMOVE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
747 return (error);
748 }
749
750 int
751 lfs_link(void *v)
752 {
753 struct vop_link_args /* {
754 struct vnode *a_dvp;
755 struct vnode *a_vp;
756 struct componentname *a_cnp;
757 } */ *ap = v;
758 int error;
759 struct vnode **vpp = NULL;
760
761 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
762 vput(ap->a_dvp);
763 return error;
764 }
765 error = ufs_link(ap);
766 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
767 return (error);
768 }
769
770 int
771 lfs_rename(void *v)
772 {
773 struct vop_rename_args /* {
774 struct vnode *a_fdvp;
775 struct vnode *a_fvp;
776 struct componentname *a_fcnp;
777 struct vnode *a_tdvp;
778 struct vnode *a_tvp;
779 struct componentname *a_tcnp;
780 } */ *ap = v;
781 struct vnode *tvp, *fvp, *tdvp, *fdvp;
782 struct componentname *tcnp, *fcnp;
783 int error;
784 struct lfs *fs;
785
786 fs = VTOI(ap->a_fdvp)->i_lfs;
787 tvp = ap->a_tvp;
788 tdvp = ap->a_tdvp;
789 tcnp = ap->a_tcnp;
790 fvp = ap->a_fvp;
791 fdvp = ap->a_fdvp;
792 fcnp = ap->a_fcnp;
793
794 /*
795 * Check for cross-device rename.
796 * If it is, we don't want to set dirops, just error out.
797 * (In particular note that MARK_VNODE(tdvp) will DTWT on
798 * a cross-device rename.)
799 *
800 * Copied from ufs_rename.
801 */
802 if ((fvp->v_mount != tdvp->v_mount) ||
803 (tvp && (fvp->v_mount != tvp->v_mount))) {
804 error = EXDEV;
805 goto errout;
806 }
807
808 /*
809 * Check to make sure we're not renaming a vnode onto itself
810 * (deleting a hard link by renaming one name onto another);
811 * if we are we can't recursively call VOP_REMOVE since that
812 * would leave us with an unaccounted-for number of live dirops.
813 *
814 * Inline the relevant section of ufs_rename here, *before*
815 * calling SET_DIROP_REMOVE.
816 */
817 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
818 (VTOI(tdvp)->i_flags & APPEND))) {
819 error = EPERM;
820 goto errout;
821 }
822 if (fvp == tvp) {
823 if (fvp->v_type == VDIR) {
824 error = EINVAL;
825 goto errout;
826 }
827
828 /* Release destination completely. */
829 VOP_ABORTOP(tdvp, tcnp);
830 vput(tdvp);
831 vput(tvp);
832
833 /* Delete source. */
834 vrele(fvp);
835 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
836 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
837 fcnp->cn_nameiop = DELETE;
838 if ((error = relookup(fdvp, &fvp, fcnp))){
839 /* relookup blew away fdvp */
840 return (error);
841 }
842 return (VOP_REMOVE(fdvp, fvp, fcnp));
843 }
844
845 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
846 goto errout;
847 MARK_VNODE(fdvp);
848 MARK_VNODE(fvp);
849
850 error = ufs_rename(ap);
851 UNMARK_VNODE(fdvp);
852 UNMARK_VNODE(fvp);
853 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
854 return (error);
855
856 errout:
857 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
858 if (tdvp == tvp)
859 vrele(tdvp);
860 else
861 vput(tdvp);
862 if (tvp)
863 vput(tvp);
864 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
865 vrele(fdvp);
866 vrele(fvp);
867 return (error);
868 }
869
870 /* XXX hack to avoid calling ITIMES in getattr */
871 int
872 lfs_getattr(void *v)
873 {
874 struct vop_getattr_args /* {
875 struct vnode *a_vp;
876 struct vattr *a_vap;
877 kauth_cred_t a_cred;
878 struct lwp *a_l;
879 } */ *ap = v;
880 struct vnode *vp = ap->a_vp;
881 struct inode *ip = VTOI(vp);
882 struct vattr *vap = ap->a_vap;
883 struct lfs *fs = ip->i_lfs;
884 /*
885 * Copy from inode table
886 */
887 vap->va_fsid = ip->i_dev;
888 vap->va_fileid = ip->i_number;
889 vap->va_mode = ip->i_mode & ~IFMT;
890 vap->va_nlink = ip->i_nlink;
891 vap->va_uid = ip->i_uid;
892 vap->va_gid = ip->i_gid;
893 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
894 vap->va_size = vp->v_size;
895 vap->va_atime.tv_sec = ip->i_ffs1_atime;
896 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
897 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
898 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
899 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
900 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
901 vap->va_flags = ip->i_flags;
902 vap->va_gen = ip->i_gen;
903 /* this doesn't belong here */
904 if (vp->v_type == VBLK)
905 vap->va_blocksize = BLKDEV_IOSIZE;
906 else if (vp->v_type == VCHR)
907 vap->va_blocksize = MAXBSIZE;
908 else
909 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
910 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
911 vap->va_type = vp->v_type;
912 vap->va_filerev = ip->i_modrev;
913 return (0);
914 }
915
916 /*
917 * Check to make sure the inode blocks won't choke the buffer
918 * cache, then call ufs_setattr as usual.
919 */
920 int
921 lfs_setattr(void *v)
922 {
923 struct vop_setattr_args /* {
924 struct vnode *a_vp;
925 struct vattr *a_vap;
926 kauth_cred_t a_cred;
927 struct lwp *a_l;
928 } */ *ap = v;
929 struct vnode *vp = ap->a_vp;
930
931 lfs_check(vp, LFS_UNUSED_LBN, 0);
932 return ufs_setattr(v);
933 }
934
935 /*
936 * Release the block we hold on lfs_newseg wrapping. Called on file close,
937 * or explicitly from LFCNWRAPGO.
938 */
939 static int
940 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
941 {
942 if ((ip->i_lfs_iflags & LFSI_WRAPBLOCK) == 0)
943 return EBUSY;
944
945 ip->i_lfs_iflags &= ~LFSI_WRAPBLOCK;
946
947 KASSERT(fs->lfs_nowrap > 0);
948 if (fs->lfs_nowrap <= 0) {
949 simple_unlock(&fs->lfs_interlock);
950 return 0;
951 }
952
953 if (--fs->lfs_nowrap == 0) {
954 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
955 wakeup(&fs->lfs_nowrap);
956 lfs_wakeup_cleaner(fs);
957 }
958 if (waitfor) {
959 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
960 "segment", 0, &fs->lfs_interlock);
961 }
962
963 return 0;
964 }
965
966 /*
967 * Close called
968 */
969 /* ARGSUSED */
970 int
971 lfs_close(void *v)
972 {
973 struct vop_close_args /* {
974 struct vnode *a_vp;
975 int a_fflag;
976 kauth_cred_t a_cred;
977 struct lwp *a_l;
978 } */ *ap = v;
979 struct vnode *vp = ap->a_vp;
980 struct inode *ip = VTOI(vp);
981 struct lfs *fs = ip->i_lfs;
982
983 if (ip->i_lfs_iflags & LFSI_WRAPBLOCK) {
984 simple_lock(&fs->lfs_interlock);
985 lfs_wrapgo(fs, ip, 0);
986 simple_unlock(&fs->lfs_interlock);
987 }
988
989 if (vp == ip->i_lfs->lfs_ivnode &&
990 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
991 return 0;
992
993 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
994 LFS_ITIMES(ip, NULL, NULL, NULL);
995 }
996 return (0);
997 }
998
999 /*
1000 * Close wrapper for special devices.
1001 *
1002 * Update the times on the inode then do device close.
1003 */
1004 int
1005 lfsspec_close(void *v)
1006 {
1007 struct vop_close_args /* {
1008 struct vnode *a_vp;
1009 int a_fflag;
1010 kauth_cred_t a_cred;
1011 struct lwp *a_l;
1012 } */ *ap = v;
1013 struct vnode *vp;
1014 struct inode *ip;
1015
1016 vp = ap->a_vp;
1017 ip = VTOI(vp);
1018 if (vp->v_usecount > 1) {
1019 LFS_ITIMES(ip, NULL, NULL, NULL);
1020 }
1021 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1022 }
1023
1024 /*
1025 * Close wrapper for fifo's.
1026 *
1027 * Update the times on the inode then do device close.
1028 */
1029 int
1030 lfsfifo_close(void *v)
1031 {
1032 struct vop_close_args /* {
1033 struct vnode *a_vp;
1034 int a_fflag;
1035 kauth_cred_ a_cred;
1036 struct lwp *a_l;
1037 } */ *ap = v;
1038 struct vnode *vp;
1039 struct inode *ip;
1040
1041 vp = ap->a_vp;
1042 ip = VTOI(vp);
1043 if (ap->a_vp->v_usecount > 1) {
1044 LFS_ITIMES(ip, NULL, NULL, NULL);
1045 }
1046 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1047 }
1048
1049 /*
1050 * Reclaim an inode so that it can be used for other purposes.
1051 */
1052
1053 int
1054 lfs_reclaim(void *v)
1055 {
1056 struct vop_reclaim_args /* {
1057 struct vnode *a_vp;
1058 struct lwp *a_l;
1059 } */ *ap = v;
1060 struct vnode *vp = ap->a_vp;
1061 struct inode *ip = VTOI(vp);
1062 int error;
1063
1064 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1065
1066 LFS_CLR_UINO(ip, IN_ALLMOD);
1067 if ((error = ufs_reclaim(vp, ap->a_l)))
1068 return (error);
1069 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1070 lfs_deregister_all(vp);
1071 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1072 ip->inode_ext.lfs = NULL;
1073 pool_put(&lfs_inode_pool, vp->v_data);
1074 vp->v_data = NULL;
1075 return (0);
1076 }
1077
1078 /*
1079 * Read a block from a storage device.
1080 * In order to avoid reading blocks that are in the process of being
1081 * written by the cleaner---and hence are not mutexed by the normal
1082 * buffer cache / page cache mechanisms---check for collisions before
1083 * reading.
1084 *
1085 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1086 * the active cleaner test.
1087 *
1088 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1089 */
1090 int
1091 lfs_strategy(void *v)
1092 {
1093 struct vop_strategy_args /* {
1094 struct vnode *a_vp;
1095 struct buf *a_bp;
1096 } */ *ap = v;
1097 struct buf *bp;
1098 struct lfs *fs;
1099 struct vnode *vp;
1100 struct inode *ip;
1101 daddr_t tbn;
1102 int i, sn, error, slept;
1103
1104 bp = ap->a_bp;
1105 vp = ap->a_vp;
1106 ip = VTOI(vp);
1107 fs = ip->i_lfs;
1108
1109 /* lfs uses its strategy routine only for read */
1110 KASSERT(bp->b_flags & B_READ);
1111
1112 if (vp->v_type == VBLK || vp->v_type == VCHR)
1113 panic("lfs_strategy: spec");
1114 KASSERT(bp->b_bcount != 0);
1115 if (bp->b_blkno == bp->b_lblkno) {
1116 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1117 NULL);
1118 if (error) {
1119 bp->b_error = error;
1120 bp->b_flags |= B_ERROR;
1121 biodone(bp);
1122 return (error);
1123 }
1124 if ((long)bp->b_blkno == -1) /* no valid data */
1125 clrbuf(bp);
1126 }
1127 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1128 biodone(bp);
1129 return (0);
1130 }
1131
1132 slept = 1;
1133 simple_lock(&fs->lfs_interlock);
1134 while (slept && fs->lfs_seglock) {
1135 simple_unlock(&fs->lfs_interlock);
1136 /*
1137 * Look through list of intervals.
1138 * There will only be intervals to look through
1139 * if the cleaner holds the seglock.
1140 * Since the cleaner is synchronous, we can trust
1141 * the list of intervals to be current.
1142 */
1143 tbn = dbtofsb(fs, bp->b_blkno);
1144 sn = dtosn(fs, tbn);
1145 slept = 0;
1146 for (i = 0; i < fs->lfs_cleanind; i++) {
1147 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1148 tbn >= fs->lfs_cleanint[i]) {
1149 DLOG((DLOG_CLEAN,
1150 "lfs_strategy: ino %d lbn %" PRId64
1151 " ind %d sn %d fsb %" PRIx32
1152 " given sn %d fsb %" PRIx64 "\n",
1153 ip->i_number, bp->b_lblkno, i,
1154 dtosn(fs, fs->lfs_cleanint[i]),
1155 fs->lfs_cleanint[i], sn, tbn));
1156 DLOG((DLOG_CLEAN,
1157 "lfs_strategy: sleeping on ino %d lbn %"
1158 PRId64 "\n", ip->i_number, bp->b_lblkno));
1159 simple_lock(&fs->lfs_interlock);
1160 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1161 /* Cleaner can't wait for itself */
1162 ltsleep(&fs->lfs_iocount,
1163 (PRIBIO + 1) | PNORELOCK,
1164 "clean2", 0,
1165 &fs->lfs_interlock);
1166 slept = 1;
1167 break;
1168 } else if (fs->lfs_seglock) {
1169 ltsleep(&fs->lfs_seglock,
1170 (PRIBIO + 1) | PNORELOCK,
1171 "clean1", 0,
1172 &fs->lfs_interlock);
1173 slept = 1;
1174 break;
1175 }
1176 simple_unlock(&fs->lfs_interlock);
1177 }
1178 }
1179 simple_lock(&fs->lfs_interlock);
1180 }
1181 simple_unlock(&fs->lfs_interlock);
1182
1183 vp = ip->i_devvp;
1184 VOP_STRATEGY(vp, bp);
1185 return (0);
1186 }
1187
1188 void
1189 lfs_flush_dirops(struct lfs *fs)
1190 {
1191 struct inode *ip, *nip;
1192 struct vnode *vp;
1193 extern int lfs_dostats;
1194 struct segment *sp;
1195 int waslocked;
1196
1197 ASSERT_MAYBE_SEGLOCK(fs);
1198 KASSERT(fs->lfs_nadirop == 0);
1199
1200 if (fs->lfs_ronly)
1201 return;
1202
1203 simple_lock(&fs->lfs_interlock);
1204 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1205 simple_unlock(&fs->lfs_interlock);
1206 return;
1207 } else
1208 simple_unlock(&fs->lfs_interlock);
1209
1210 if (lfs_dostats)
1211 ++lfs_stats.flush_invoked;
1212
1213 /*
1214 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1215 * Technically this is a checkpoint (the on-disk state is valid)
1216 * even though we are leaving out all the file data.
1217 */
1218 lfs_imtime(fs);
1219 lfs_seglock(fs, SEGM_CKP);
1220 sp = fs->lfs_sp;
1221
1222 /*
1223 * lfs_writevnodes, optimized to get dirops out of the way.
1224 * Only write dirops, and don't flush files' pages, only
1225 * blocks from the directories.
1226 *
1227 * We don't need to vref these files because they are
1228 * dirops and so hold an extra reference until the
1229 * segunlock clears them of that status.
1230 *
1231 * We don't need to check for IN_ADIROP because we know that
1232 * no dirops are active.
1233 *
1234 */
1235 simple_lock(&fs->lfs_interlock);
1236 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1237 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1238 simple_unlock(&fs->lfs_interlock);
1239 vp = ITOV(ip);
1240
1241 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1242
1243 /*
1244 * All writes to directories come from dirops; all
1245 * writes to files' direct blocks go through the page
1246 * cache, which we're not touching. Reads to files
1247 * and/or directories will not be affected by writing
1248 * directory blocks inodes and file inodes. So we don't
1249 * really need to lock. If we don't lock, though,
1250 * make sure that we don't clear IN_MODIFIED
1251 * unnecessarily.
1252 */
1253 if (vp->v_flag & (VXLOCK | VFREEING)) {
1254 simple_lock(&fs->lfs_interlock);
1255 continue;
1256 }
1257 waslocked = VOP_ISLOCKED(vp);
1258 if (vp->v_type != VREG &&
1259 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1260 lfs_writefile(fs, sp, vp);
1261 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1262 !(ip->i_flag & IN_ALLMOD)) {
1263 LFS_SET_UINO(ip, IN_MODIFIED);
1264 }
1265 }
1266 (void) lfs_writeinode(fs, sp, ip);
1267 if (waslocked)
1268 LFS_SET_UINO(ip, IN_MODIFIED);
1269 simple_lock(&fs->lfs_interlock);
1270 }
1271 simple_unlock(&fs->lfs_interlock);
1272 /* We've written all the dirops there are */
1273 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1274 lfs_finalize_fs_seguse(fs);
1275 (void) lfs_writeseg(fs, sp);
1276 lfs_segunlock(fs);
1277 }
1278
1279 /*
1280 * Flush all vnodes for which the pagedaemon has requested pageouts.
1281 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1282 * has just run, this would be an error). If we have to skip a vnode
1283 * for any reason, just skip it; if we have to wait for the cleaner,
1284 * abort. The writer daemon will call us again later.
1285 */
1286 void
1287 lfs_flush_pchain(struct lfs *fs)
1288 {
1289 struct inode *ip, *nip;
1290 struct vnode *vp;
1291 extern int lfs_dostats;
1292 struct segment *sp;
1293 int error;
1294
1295 ASSERT_NO_SEGLOCK(fs);
1296
1297 if (fs->lfs_ronly)
1298 return;
1299
1300 simple_lock(&fs->lfs_interlock);
1301 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1302 simple_unlock(&fs->lfs_interlock);
1303 return;
1304 } else
1305 simple_unlock(&fs->lfs_interlock);
1306
1307 /* Get dirops out of the way */
1308 lfs_flush_dirops(fs);
1309
1310 if (lfs_dostats)
1311 ++lfs_stats.flush_invoked;
1312
1313 /*
1314 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1315 */
1316 lfs_imtime(fs);
1317 lfs_seglock(fs, 0);
1318 sp = fs->lfs_sp;
1319
1320 /*
1321 * lfs_writevnodes, optimized to clear pageout requests.
1322 * Only write non-dirop files that are in the pageout queue.
1323 * We're very conservative about what we write; we want to be
1324 * fast and async.
1325 */
1326 simple_lock(&fs->lfs_interlock);
1327 top:
1328 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1329 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1330 vp = ITOV(ip);
1331
1332 if (!(ip->i_flags & IN_PAGING))
1333 goto top;
1334
1335 if (vp->v_flag & (VXLOCK|VDIROP))
1336 continue;
1337 if (vp->v_type != VREG)
1338 continue;
1339 if (lfs_vref(vp))
1340 continue;
1341 simple_unlock(&fs->lfs_interlock);
1342
1343 if (VOP_ISLOCKED(vp)) {
1344 lfs_vunref(vp);
1345 simple_lock(&fs->lfs_interlock);
1346 continue;
1347 }
1348
1349 error = lfs_writefile(fs, sp, vp);
1350 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1351 !(ip->i_flag & IN_ALLMOD)) {
1352 LFS_SET_UINO(ip, IN_MODIFIED);
1353 }
1354 (void) lfs_writeinode(fs, sp, ip);
1355
1356 lfs_vunref(vp);
1357
1358 if (error == EAGAIN) {
1359 lfs_writeseg(fs, sp);
1360 simple_lock(&fs->lfs_interlock);
1361 break;
1362 }
1363 simple_lock(&fs->lfs_interlock);
1364 }
1365 simple_unlock(&fs->lfs_interlock);
1366 (void) lfs_writeseg(fs, sp);
1367 lfs_segunlock(fs);
1368 }
1369
1370 /*
1371 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1372 */
1373 int
1374 lfs_fcntl(void *v)
1375 {
1376 struct vop_fcntl_args /* {
1377 struct vnode *a_vp;
1378 u_long a_command;
1379 caddr_t a_data;
1380 int a_fflag;
1381 kauth_cred_t a_cred;
1382 struct lwp *a_l;
1383 } */ *ap = v;
1384 struct timeval *tvp;
1385 BLOCK_INFO *blkiov;
1386 CLEANERINFO *cip;
1387 SEGUSE *sup;
1388 int blkcnt, error, oclean;
1389 size_t fh_size;
1390 struct lfs_fcntl_markv blkvp;
1391 struct proc *p;
1392 fsid_t *fsidp;
1393 struct lfs *fs;
1394 struct buf *bp;
1395 fhandle_t *fhp;
1396 daddr_t off;
1397
1398 /* Only respect LFS fcntls on fs root or Ifile */
1399 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1400 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1401 return ufs_fcntl(v);
1402 }
1403
1404 /* Avoid locking a draining lock */
1405 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1406 return ESHUTDOWN;
1407 }
1408
1409 p = ap->a_l->l_proc;
1410 fs = VTOI(ap->a_vp)->i_lfs;
1411 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1412
1413 switch (ap->a_command) {
1414 case LFCNSEGWAITALL:
1415 case LFCNSEGWAITALL_COMPAT:
1416 fsidp = NULL;
1417 /* FALLSTHROUGH */
1418 case LFCNSEGWAIT:
1419 case LFCNSEGWAIT_COMPAT:
1420 tvp = (struct timeval *)ap->a_data;
1421 simple_lock(&fs->lfs_interlock);
1422 ++fs->lfs_sleepers;
1423 simple_unlock(&fs->lfs_interlock);
1424
1425 error = lfs_segwait(fsidp, tvp);
1426
1427 simple_lock(&fs->lfs_interlock);
1428 if (--fs->lfs_sleepers == 0)
1429 wakeup(&fs->lfs_sleepers);
1430 simple_unlock(&fs->lfs_interlock);
1431 return error;
1432
1433 case LFCNBMAPV:
1434 case LFCNMARKV:
1435 if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
1436 &p->p_acflag)) != 0)
1437 return (error);
1438 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1439
1440 blkcnt = blkvp.blkcnt;
1441 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1442 return (EINVAL);
1443 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1444 if ((error = copyin(blkvp.blkiov, blkiov,
1445 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1446 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1447 return error;
1448 }
1449
1450 simple_lock(&fs->lfs_interlock);
1451 ++fs->lfs_sleepers;
1452 simple_unlock(&fs->lfs_interlock);
1453 if (ap->a_command == LFCNBMAPV)
1454 error = lfs_bmapv(p, fsidp, blkiov, blkcnt);
1455 else /* LFCNMARKV */
1456 error = lfs_markv(p, fsidp, blkiov, blkcnt);
1457 if (error == 0)
1458 error = copyout(blkiov, blkvp.blkiov,
1459 blkcnt * sizeof(BLOCK_INFO));
1460 simple_lock(&fs->lfs_interlock);
1461 if (--fs->lfs_sleepers == 0)
1462 wakeup(&fs->lfs_sleepers);
1463 simple_unlock(&fs->lfs_interlock);
1464 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1465 return error;
1466
1467 case LFCNRECLAIM:
1468 /*
1469 * Flush dirops and write Ifile, allowing empty segments
1470 * to be immediately reclaimed.
1471 */
1472 lfs_writer_enter(fs, "pndirop");
1473 off = fs->lfs_offset;
1474 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1475 lfs_flush_dirops(fs);
1476 LFS_CLEANERINFO(cip, fs, bp);
1477 oclean = cip->clean;
1478 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1479 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1480 fs->lfs_sp->seg_flags |= SEGM_PROT;
1481 lfs_segunlock(fs);
1482 lfs_writer_leave(fs);
1483
1484 #ifdef DEBUG
1485 LFS_CLEANERINFO(cip, fs, bp);
1486 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1487 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1488 fs->lfs_offset - off, cip->clean - oclean,
1489 fs->lfs_activesb));
1490 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1491 #endif
1492
1493 return 0;
1494
1495 #ifdef COMPAT_30
1496 case LFCNIFILEFH_COMPAT:
1497 /* Return the filehandle of the Ifile */
1498 if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
1499 KAUTH_GENERIC_ISSUSER,
1500 &ap->a_l->l_proc->p_acflag)) != 0)
1501 return (error);
1502 fhp = (struct fhandle *)ap->a_data;
1503 fhp->fh_fsid = *fsidp;
1504 fh_size = 16; /* former VFS_MAXFIDSIZ */
1505 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1506 #endif
1507
1508 case LFCNIFILEFH:
1509 /* Return the filehandle of the Ifile */
1510 if ((error = kauth_authorize_generic(ap->a_l->l_proc->p_cred,
1511 KAUTH_GENERIC_ISSUSER,
1512 &ap->a_l->l_proc->p_acflag)) != 0)
1513 return (error);
1514 fhp = (struct fhandle *)ap->a_data;
1515 fhp->fh_fsid = *fsidp;
1516 fh_size = sizeof(union lfs_fhandle) -
1517 offsetof(fhandle_t, fh_fid);
1518 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1519
1520 case LFCNREWIND:
1521 /* Move lfs_offset to the lowest-numbered segment */
1522 return lfs_rewind(fs, *(int *)ap->a_data);
1523
1524 case LFCNINVAL:
1525 /* Mark a segment SEGUSE_INVAL */
1526 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1527 if (sup->su_nbytes > 0) {
1528 brelse(bp);
1529 lfs_unset_inval_all(fs);
1530 return EBUSY;
1531 }
1532 sup->su_flags |= SEGUSE_INVAL;
1533 VOP_BWRITE(bp);
1534 return 0;
1535
1536 case LFCNRESIZE:
1537 /* Resize the filesystem */
1538 return lfs_resize_fs(fs, *(int *)ap->a_data);
1539
1540 case LFCNWRAPSTOP:
1541 case LFCNWRAPSTOP_COMPAT:
1542 /*
1543 * Hold lfs_newseg at segment 0; if requested, sleep until
1544 * the filesystem wraps around. To support external agents
1545 * (dump, fsck-based regression test) that need to look at
1546 * a snapshot of the filesystem, without necessarily
1547 * requiring that all fs activity stops.
1548 */
1549 if (VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPBLOCK)
1550 return EALREADY;
1551
1552 simple_lock(&fs->lfs_interlock);
1553 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPBLOCK;
1554 if (fs->lfs_nowrap == 0)
1555 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1556 ++fs->lfs_nowrap;
1557 if (*(int *)ap->a_data == 1 ||
1558 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1559 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1560 "segwrap", 0, &fs->lfs_interlock);
1561 if (error) {
1562 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1563 }
1564 }
1565 simple_unlock(&fs->lfs_interlock);
1566 return 0;
1567
1568 case LFCNWRAPGO:
1569 case LFCNWRAPGO_COMPAT:
1570 /*
1571 * Having done its work, the agent wakes up the writer.
1572 * If the argument is 1, it sleeps until a new segment
1573 * is selected.
1574 */
1575 simple_lock(&fs->lfs_interlock);
1576 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1577 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1578 *((int *)ap->a_data)));
1579 simple_unlock(&fs->lfs_interlock);
1580 return error;
1581
1582 default:
1583 return ufs_fcntl(v);
1584 }
1585 return 0;
1586 }
1587
1588 int
1589 lfs_getpages(void *v)
1590 {
1591 struct vop_getpages_args /* {
1592 struct vnode *a_vp;
1593 voff_t a_offset;
1594 struct vm_page **a_m;
1595 int *a_count;
1596 int a_centeridx;
1597 vm_prot_t a_access_type;
1598 int a_advice;
1599 int a_flags;
1600 } */ *ap = v;
1601
1602 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1603 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1604 return EPERM;
1605 }
1606 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1607 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1608 }
1609
1610 /*
1611 * we're relying on the fact that genfs_getpages() always read in
1612 * entire filesystem blocks.
1613 */
1614 return genfs_getpages(v);
1615 }
1616
1617 /*
1618 * Make sure that for all pages in every block in the given range,
1619 * either all are dirty or all are clean. If any of the pages
1620 * we've seen so far are dirty, put the vnode on the paging chain,
1621 * and mark it IN_PAGING.
1622 *
1623 * If checkfirst != 0, don't check all the pages but return at the
1624 * first dirty page.
1625 */
1626 static int
1627 check_dirty(struct lfs *fs, struct vnode *vp,
1628 off_t startoffset, off_t endoffset, off_t blkeof,
1629 int flags, int checkfirst)
1630 {
1631 int by_list;
1632 struct vm_page *curpg = NULL; /* XXX: gcc */
1633 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1634 off_t soff = 0; /* XXX: gcc */
1635 voff_t off;
1636 int i;
1637 int nonexistent;
1638 int any_dirty; /* number of dirty pages */
1639 int dirty; /* number of dirty pages in a block */
1640 int tdirty;
1641 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1642 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1643
1644 ASSERT_MAYBE_SEGLOCK(fs);
1645 top:
1646 by_list = (vp->v_uobj.uo_npages <=
1647 ((endoffset - startoffset) >> PAGE_SHIFT) *
1648 UVM_PAGE_HASH_PENALTY);
1649 any_dirty = 0;
1650
1651 if (by_list) {
1652 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1653 } else {
1654 soff = startoffset;
1655 }
1656 while (by_list || soff < MIN(blkeof, endoffset)) {
1657 if (by_list) {
1658 /*
1659 * Find the first page in a block. Skip
1660 * blocks outside our area of interest or beyond
1661 * the end of file.
1662 */
1663 if (pages_per_block > 1) {
1664 while (curpg &&
1665 ((curpg->offset & fs->lfs_bmask) ||
1666 curpg->offset >= vp->v_size ||
1667 curpg->offset >= endoffset))
1668 curpg = TAILQ_NEXT(curpg, listq);
1669 }
1670 if (curpg == NULL)
1671 break;
1672 soff = curpg->offset;
1673 }
1674
1675 /*
1676 * Mark all pages in extended range busy; find out if any
1677 * of them are dirty.
1678 */
1679 nonexistent = dirty = 0;
1680 for (i = 0; i == 0 || i < pages_per_block; i++) {
1681 if (by_list && pages_per_block <= 1) {
1682 pgs[i] = pg = curpg;
1683 } else {
1684 off = soff + (i << PAGE_SHIFT);
1685 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1686 if (pg == NULL) {
1687 ++nonexistent;
1688 continue;
1689 }
1690 }
1691 KASSERT(pg != NULL);
1692
1693 /*
1694 * If we're holding the segment lock, we can deadlock
1695 * against a process that has our page and is waiting
1696 * for the cleaner, while the cleaner waits for the
1697 * segment lock. Just bail in that case.
1698 */
1699 if ((pg->flags & PG_BUSY) &&
1700 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1701 if (by_list && i > 0)
1702 uvm_page_unbusy(pgs, i);
1703 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1704 return -1;
1705 }
1706
1707 while (pg->flags & PG_BUSY) {
1708 pg->flags |= PG_WANTED;
1709 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1710 "lfsput", 0);
1711 simple_lock(&vp->v_interlock);
1712 if (by_list) {
1713 if (i > 0)
1714 uvm_page_unbusy(pgs, i);
1715 goto top;
1716 }
1717 }
1718 pg->flags |= PG_BUSY;
1719 UVM_PAGE_OWN(pg, "lfs_putpages");
1720
1721 pmap_page_protect(pg, VM_PROT_NONE);
1722 tdirty = (pmap_clear_modify(pg) ||
1723 (pg->flags & PG_CLEAN) == 0);
1724 dirty += tdirty;
1725 }
1726 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1727 if (by_list) {
1728 curpg = TAILQ_NEXT(curpg, listq);
1729 } else {
1730 soff += fs->lfs_bsize;
1731 }
1732 continue;
1733 }
1734
1735 any_dirty += dirty;
1736 KASSERT(nonexistent == 0);
1737
1738 /*
1739 * If any are dirty make all dirty; unbusy them,
1740 * but if we were asked to clean, wire them so that
1741 * the pagedaemon doesn't bother us about them while
1742 * they're on their way to disk.
1743 */
1744 for (i = 0; i == 0 || i < pages_per_block; i++) {
1745 pg = pgs[i];
1746 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1747 if (dirty) {
1748 pg->flags &= ~PG_CLEAN;
1749 if (flags & PGO_FREE) {
1750 /*
1751 * Wire the page so that
1752 * pdaemon doesn't see it again.
1753 */
1754 uvm_lock_pageq();
1755 uvm_pagewire(pg);
1756 uvm_unlock_pageq();
1757
1758 /* Suspended write flag */
1759 pg->flags |= PG_DELWRI;
1760 }
1761 }
1762 if (pg->flags & PG_WANTED)
1763 wakeup(pg);
1764 pg->flags &= ~(PG_WANTED|PG_BUSY);
1765 UVM_PAGE_OWN(pg, NULL);
1766 }
1767
1768 if (checkfirst && any_dirty)
1769 break;
1770
1771 if (by_list) {
1772 curpg = TAILQ_NEXT(curpg, listq);
1773 } else {
1774 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1775 }
1776 }
1777
1778 return any_dirty;
1779 }
1780
1781 /*
1782 * lfs_putpages functions like genfs_putpages except that
1783 *
1784 * (1) It needs to bounds-check the incoming requests to ensure that
1785 * they are block-aligned; if they are not, expand the range and
1786 * do the right thing in case, e.g., the requested range is clean
1787 * but the expanded range is dirty.
1788 *
1789 * (2) It needs to explicitly send blocks to be written when it is done.
1790 * VOP_PUTPAGES is not ever called with the seglock held, so
1791 * we simply take the seglock and let lfs_segunlock wait for us.
1792 * XXX Actually we can be called with the seglock held, if we have
1793 * XXX to flush a vnode while lfs_markv is in operation. As of this
1794 * XXX writing we panic in this case.
1795 *
1796 * Assumptions:
1797 *
1798 * (1) The caller does not hold any pages in this vnode busy. If it does,
1799 * there is a danger that when we expand the page range and busy the
1800 * pages we will deadlock.
1801 *
1802 * (2) We are called with vp->v_interlock held; we must return with it
1803 * released.
1804 *
1805 * (3) We don't absolutely have to free pages right away, provided that
1806 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1807 * us a request with PGO_FREE, we take the pages out of the paging
1808 * queue and wake up the writer, which will handle freeing them for us.
1809 *
1810 * We ensure that for any filesystem block, all pages for that
1811 * block are either resident or not, even if those pages are higher
1812 * than EOF; that means that we will be getting requests to free
1813 * "unused" pages above EOF all the time, and should ignore them.
1814 *
1815 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1816 * into has been set up for us by lfs_writefile. If not, we will
1817 * have to handle allocating and/or freeing an finfo entry.
1818 *
1819 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1820 */
1821
1822 int
1823 lfs_putpages(void *v)
1824 {
1825 int error;
1826 struct vop_putpages_args /* {
1827 struct vnode *a_vp;
1828 voff_t a_offlo;
1829 voff_t a_offhi;
1830 int a_flags;
1831 } */ *ap = v;
1832 struct vnode *vp;
1833 struct inode *ip;
1834 struct lfs *fs;
1835 struct segment *sp;
1836 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1837 off_t off, max_endoffset;
1838 int s;
1839 boolean_t seglocked, sync, pagedaemon;
1840 struct vm_page *pg;
1841 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1842
1843 vp = ap->a_vp;
1844 ip = VTOI(vp);
1845 fs = ip->i_lfs;
1846 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1847 pagedaemon = (curproc == uvm.pagedaemon_proc);
1848
1849 /* Putpages does nothing for metadata. */
1850 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1851 simple_unlock(&vp->v_interlock);
1852 return 0;
1853 }
1854
1855 /*
1856 * If there are no pages, don't do anything.
1857 */
1858 if (vp->v_uobj.uo_npages == 0) {
1859 s = splbio();
1860 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1861 (vp->v_flag & VONWORKLST)) {
1862 vp->v_flag &= ~VONWORKLST;
1863 LIST_REMOVE(vp, v_synclist);
1864 }
1865 splx(s);
1866 simple_unlock(&vp->v_interlock);
1867
1868 /* Remove us from paging queue, if we were on it */
1869 simple_lock(&fs->lfs_interlock);
1870 if (ip->i_flags & IN_PAGING) {
1871 ip->i_flags &= ~IN_PAGING;
1872 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1873 }
1874 simple_unlock(&fs->lfs_interlock);
1875 return 0;
1876 }
1877
1878 blkeof = blkroundup(fs, ip->i_size);
1879
1880 /*
1881 * Ignore requests to free pages past EOF but in the same block
1882 * as EOF, unless the request is synchronous. (If the request is
1883 * sync, it comes from lfs_truncate.)
1884 * XXXUBC Make these pages look "active" so the pagedaemon won't
1885 * XXXUBC bother us with them again.
1886 */
1887 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1888 origoffset = ap->a_offlo;
1889 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1890 pg = uvm_pagelookup(&vp->v_uobj, off);
1891 KASSERT(pg != NULL);
1892 while (pg->flags & PG_BUSY) {
1893 pg->flags |= PG_WANTED;
1894 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1895 "lfsput2", 0);
1896 simple_lock(&vp->v_interlock);
1897 }
1898 uvm_lock_pageq();
1899 uvm_pageactivate(pg);
1900 uvm_unlock_pageq();
1901 }
1902 ap->a_offlo = blkeof;
1903 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1904 simple_unlock(&vp->v_interlock);
1905 return 0;
1906 }
1907 }
1908
1909 /*
1910 * Extend page range to start and end at block boundaries.
1911 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1912 */
1913 origoffset = ap->a_offlo;
1914 origendoffset = ap->a_offhi;
1915 startoffset = origoffset & ~(fs->lfs_bmask);
1916 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1917 << fs->lfs_bshift;
1918
1919 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1920 endoffset = max_endoffset;
1921 origendoffset = endoffset;
1922 } else {
1923 origendoffset = round_page(ap->a_offhi);
1924 endoffset = round_page(blkroundup(fs, origendoffset));
1925 }
1926
1927 KASSERT(startoffset > 0 || endoffset >= startoffset);
1928 if (startoffset == endoffset) {
1929 /* Nothing to do, why were we called? */
1930 simple_unlock(&vp->v_interlock);
1931 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1932 PRId64 "\n", startoffset));
1933 return 0;
1934 }
1935
1936 ap->a_offlo = startoffset;
1937 ap->a_offhi = endoffset;
1938
1939 if (!(ap->a_flags & PGO_CLEANIT))
1940 return genfs_putpages(v);
1941
1942 /*
1943 * If there are more than one page per block, we don't want
1944 * to get caught locking them backwards; so set PGO_BUSYFAIL
1945 * to avoid deadlocks.
1946 */
1947 ap->a_flags |= PGO_BUSYFAIL;
1948
1949 do {
1950 int r;
1951
1952 /* If no pages are dirty, we can just use genfs_putpages. */
1953 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
1954 ap->a_flags, 1);
1955 if (r < 0) {
1956 simple_unlock(&vp->v_interlock);
1957 return EDEADLK;
1958 }
1959 if (r > 0)
1960 break;
1961
1962 /*
1963 * Sometimes pages are dirtied between the time that
1964 * we check and the time we try to clean them.
1965 * Instruct lfs_gop_write to return EDEADLK in this case
1966 * so we can write them properly.
1967 */
1968 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
1969 r = genfs_putpages(v);
1970 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
1971 if (r != EDEADLK)
1972 return r;
1973
1974 /* Start over. */
1975 preempt(1);
1976 simple_lock(&vp->v_interlock);
1977 } while(1);
1978
1979 /*
1980 * Dirty and asked to clean.
1981 *
1982 * Pagedaemon can't actually write LFS pages; wake up
1983 * the writer to take care of that. The writer will
1984 * notice the pager inode queue and act on that.
1985 */
1986 if (pagedaemon) {
1987 simple_lock(&fs->lfs_interlock);
1988 if (!(ip->i_flags & IN_PAGING)) {
1989 ip->i_flags |= IN_PAGING;
1990 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1991 }
1992 simple_lock(&lfs_subsys_lock);
1993 wakeup(&lfs_writer_daemon);
1994 simple_unlock(&lfs_subsys_lock);
1995 simple_unlock(&fs->lfs_interlock);
1996 simple_unlock(&vp->v_interlock);
1997 preempt(1);
1998 return EWOULDBLOCK;
1999 }
2000
2001 /*
2002 * If this is a file created in a recent dirop, we can't flush its
2003 * inode until the dirop is complete. Drain dirops, then flush the
2004 * filesystem (taking care of any other pending dirops while we're
2005 * at it).
2006 */
2007 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2008 (vp->v_flag & VDIROP)) {
2009 int locked;
2010
2011 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
2012 locked = VOP_ISLOCKED(vp) && /* XXX */
2013 vp->v_lock.lk_lockholder == curproc->p_pid;
2014 simple_unlock(&vp->v_interlock);
2015 lfs_writer_enter(fs, "ppdirop");
2016 if (locked)
2017 VOP_UNLOCK(vp, 0);
2018
2019 simple_lock(&fs->lfs_interlock);
2020 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2021 simple_unlock(&fs->lfs_interlock);
2022
2023 simple_lock(&vp->v_interlock);
2024 if (locked) {
2025 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2026 simple_lock(&vp->v_interlock);
2027 }
2028 lfs_writer_leave(fs);
2029
2030 /* XXX the flush should have taken care of this one too! */
2031 }
2032
2033 /*
2034 * This is it. We are going to write some pages. From here on
2035 * down it's all just mechanics.
2036 *
2037 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2038 */
2039 ap->a_flags &= ~PGO_SYNCIO;
2040
2041 /*
2042 * If we've already got the seglock, flush the node and return.
2043 * The FIP has already been set up for us by lfs_writefile,
2044 * and FIP cleanup and lfs_updatemeta will also be done there,
2045 * unless genfs_putpages returns EDEADLK; then we must flush
2046 * what we have, and correct FIP and segment header accounting.
2047 */
2048 get_seglock:
2049 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2050 if (!seglocked) {
2051 simple_unlock(&vp->v_interlock);
2052 /*
2053 * Take the seglock, because we are going to be writing pages.
2054 */
2055 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2056 if (error != 0)
2057 return error;
2058 simple_lock(&vp->v_interlock);
2059 }
2060
2061 /*
2062 * VOP_PUTPAGES should not be called while holding the seglock.
2063 * XXXUBC fix lfs_markv, or do this properly.
2064 */
2065 #ifdef notyet
2066 KASSERT(fs->lfs_seglock == 1);
2067 #endif /* notyet */
2068
2069 /*
2070 * We assume we're being called with sp->fip pointing at blank space.
2071 * Account for a new FIP in the segment header, and set sp->vp.
2072 * (This should duplicate the setup at the top of lfs_writefile().)
2073 */
2074 sp = fs->lfs_sp;
2075 if (!seglocked)
2076 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2077 KASSERT(sp->vp == NULL);
2078 sp->vp = vp;
2079
2080 if (!seglocked) {
2081 if (vp->v_flag & VDIROP)
2082 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2083 }
2084
2085 /*
2086 * Loop through genfs_putpages until all pages are gathered.
2087 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2088 * Whenever we lose the interlock we have to rerun check_dirty, as
2089 * well.
2090 */
2091 again:
2092 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2093 ap->a_flags, 0) < 0) {
2094 simple_unlock(&vp->v_interlock);
2095 sp->vp = NULL;
2096 if (!seglocked) {
2097 lfs_release_finfo(fs);
2098 lfs_segunlock(fs);
2099 }
2100 if (pagedaemon)
2101 return EDEADLK;
2102 /* else seglocked == 0 */
2103 preempt(1);
2104 simple_lock(&vp->v_interlock);
2105 goto get_seglock;
2106 }
2107
2108 error = genfs_putpages(v);
2109 if (error == EDEADLK || error == EAGAIN) {
2110 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2111 " EDEADLK [2] ino %d off %x (seg %d)\n",
2112 ip->i_number, fs->lfs_offset,
2113 dtosn(fs, fs->lfs_offset)));
2114 /* If nothing to write, short-circuit */
2115 if (sp->cbpp - sp->bpp > 1) {
2116 /* Write gathered pages */
2117 lfs_updatemeta(sp);
2118 lfs_release_finfo(fs);
2119 (void) lfs_writeseg(fs, sp);
2120
2121 /*
2122 * Reinitialize brand new FIP and add us to it.
2123 */
2124 KASSERT(sp->vp == vp);
2125 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2126 }
2127
2128 /* Give the write a chance to complete */
2129 preempt(1);
2130
2131 /* We've lost the interlock. Start over. */
2132 if (error == EDEADLK) {
2133 simple_lock(&vp->v_interlock);
2134 goto again;
2135 }
2136 }
2137
2138 KASSERT(sp->vp == vp);
2139 if (!seglocked) {
2140 sp->vp = NULL;
2141
2142 /* Write indirect blocks as well */
2143 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2144 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2145 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2146
2147 KASSERT(sp->vp == NULL);
2148 sp->vp = vp;
2149 }
2150
2151 /*
2152 * Blocks are now gathered into a segment waiting to be written.
2153 * All that's left to do is update metadata, and write them.
2154 */
2155 lfs_updatemeta(sp);
2156 KASSERT(sp->vp == vp);
2157 sp->vp = NULL;
2158
2159 if (seglocked) {
2160 /* we're called by lfs_writefile. */
2161 return error;
2162 }
2163
2164 /* Clean up FIP and send it to disk. */
2165 lfs_release_finfo(fs);
2166 lfs_writeseg(fs, fs->lfs_sp);
2167
2168 /*
2169 * Remove us from paging queue, since we've now written all our
2170 * pages.
2171 */
2172 simple_lock(&fs->lfs_interlock);
2173 if (ip->i_flags & IN_PAGING) {
2174 ip->i_flags &= ~IN_PAGING;
2175 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2176 }
2177 simple_unlock(&fs->lfs_interlock);
2178
2179 /*
2180 * XXX - with the malloc/copy writeseg, the pages are freed by now
2181 * even if we don't wait (e.g. if we hold a nested lock). This
2182 * will not be true if we stop using malloc/copy.
2183 */
2184 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2185 lfs_segunlock(fs);
2186
2187 /*
2188 * Wait for v_numoutput to drop to zero. The seglock should
2189 * take care of this, but there is a slight possibility that
2190 * aiodoned might not have got around to our buffers yet.
2191 */
2192 if (sync) {
2193 s = splbio();
2194 simple_lock(&global_v_numoutput_slock);
2195 while (vp->v_numoutput > 0) {
2196 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2197 " num %d\n", ip->i_number, vp->v_numoutput));
2198 vp->v_flag |= VBWAIT;
2199 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2200 &global_v_numoutput_slock);
2201 }
2202 simple_unlock(&global_v_numoutput_slock);
2203 splx(s);
2204 }
2205 return error;
2206 }
2207
2208 /*
2209 * Return the last logical file offset that should be written for this file
2210 * if we're doing a write that ends at "size". If writing, we need to know
2211 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2212 * to know about entire blocks.
2213 */
2214 void
2215 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2216 {
2217 struct inode *ip = VTOI(vp);
2218 struct lfs *fs = ip->i_lfs;
2219 daddr_t olbn, nlbn;
2220
2221 olbn = lblkno(fs, ip->i_size);
2222 nlbn = lblkno(fs, size);
2223 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2224 *eobp = fragroundup(fs, size);
2225 } else {
2226 *eobp = blkroundup(fs, size);
2227 }
2228 }
2229
2230 #ifdef DEBUG
2231 void lfs_dump_vop(void *);
2232
2233 void
2234 lfs_dump_vop(void *v)
2235 {
2236 struct vop_putpages_args /* {
2237 struct vnode *a_vp;
2238 voff_t a_offlo;
2239 voff_t a_offhi;
2240 int a_flags;
2241 } */ *ap = v;
2242
2243 #ifdef DDB
2244 vfs_vnode_print(ap->a_vp, 0, printf);
2245 #endif
2246 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2247 }
2248 #endif
2249
2250 int
2251 lfs_mmap(void *v)
2252 {
2253 struct vop_mmap_args /* {
2254 const struct vnodeop_desc *a_desc;
2255 struct vnode *a_vp;
2256 int a_fflags;
2257 kauth_cred_t a_cred;
2258 struct lwp *a_l;
2259 } */ *ap = v;
2260
2261 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2262 return EOPNOTSUPP;
2263 return ufs_mmap(v);
2264 }
2265